EP0078848B1 - Mechanischer aufbau von stirlingmotoren - Google Patents

Mechanischer aufbau von stirlingmotoren Download PDF

Info

Publication number
EP0078848B1
EP0078848B1 EP19820902016 EP82902016A EP0078848B1 EP 0078848 B1 EP0078848 B1 EP 0078848B1 EP 19820902016 EP19820902016 EP 19820902016 EP 82902016 A EP82902016 A EP 82902016A EP 0078848 B1 EP0078848 B1 EP 0078848B1
Authority
EP
European Patent Office
Prior art keywords
machine
cylinders
piston
cylinder
pistons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP19820902016
Other languages
English (en)
French (fr)
Other versions
EP0078848A1 (de
EP0078848A4 (de
Inventor
William Matthew Moscrip
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WILKINS, GORDON A.
Original Assignee
Wilkins Gordon A
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wilkins Gordon A filed Critical Wilkins Gordon A
Priority to AT82902016T priority Critical patent/ATE42607T1/de
Publication of EP0078848A1 publication Critical patent/EP0078848A1/de
Publication of EP0078848A4 publication Critical patent/EP0078848A4/de
Application granted granted Critical
Publication of EP0078848B1 publication Critical patent/EP0078848B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B3/00Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F01B3/04Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis the piston motion being transmitted by curved surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/044Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines having at least two working members, e.g. pistons, delivering power output
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/06Controlling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2244/00Machines having two pistons
    • F02G2244/02Single-acting two piston engines
    • F02G2244/06Single-acting two piston engines of stationary cylinder type
    • F02G2244/12Single-acting two piston engines of stationary cylinder type having opposed pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2244/00Machines having two pistons
    • F02G2244/50Double acting piston machines

Definitions

  • This invention relates to Stirling-cycle engines, also known as regenerative thermal machines.
  • a Stirling-cycle engine is a machine which operates on a closed regenerative thermodynamic cycle, with periodic compression and expansion of a gaseous working fluid at different temperature levels, and where the flow is controlled by volume changes in such a way as to produce a net conversion of heat to work, or vice-versa.
  • a typical Stirling-cycle engine comprises an expansion block enclosing an expansion space, a compression space enclosing a compression space, a regenerator, a working fluid enclosed in said spaces and in ducts permitting oscillatory flow of said fluid between said spaces through said regenerator, a heater for transmitting heat from an external heat source to working fluid in the expansion space and a cooler for transmitting heat from working fluid in the compression space to an external heat sink.
  • the regenerator is a device which in prior art takes the form of a porous mass of metal in an insulated duct. This mass takes up heat from the working fluid during one part of the cycle, temporarily stores it within the machine until a later part of the cycle, and subsequently returns it to the working fluid prior to the start of the next cycle.
  • the regenerator may be thought of as an oscillatory thermodynamic sponge, alternatively absorbing and releasing heat with complete reversibility and no loss.
  • the original type of machine as con- veived by Stirling and subsequently exemplified by, for example, US-A-3403508 and US-A-3407593 utilises loose fitting displacer pistons to transfer the working fluid from the hot end of the machine to the cold end, the working fluid flowing partly through the annular gap between the displacer piston and the wall of the cylinder and partly through the regenerator.
  • the second basic form of machine as exemplified, for example, by US-A-2579702 utilises two fully sealed pistons. The internal heat exchange, heater/regenerator/cooler, are interposed , between two cylinders and form the transfer port between the cylinders.
  • the invention provides modified forms of the second type of Stirling cycle machine.
  • the invention comprises fundamental concepts and mechanical components which are combined to form a new family of Stirling-cycle machines, specifically including the following: (1) a single-acting, two piston engine having stationary, coaxial, in-line cylinders and employing a pair of cylindrical face cams affixed to the pistons to drive a centrally disposed flywheel element about a hollow shaft, herein termed a "ducted axle", which also serves as the regenerator housing; (2) an engine power level control subsystem associated with that ducted axle machine by which the instantaneous phase angle between the periodic reciprocating motions of the pistons is readily adjusted as a function of power demand; and (3) a quasi double-acting, multiple-piston engine having an annular and parallel array of cylinder and regenerator volumes and employing a single cylindrical drum cam to control the aforesaid instantaneous phase angle and to transfer mechanical work into or out of the machine.
  • the primary significance of the present invention is that it represents a radical departure from traditional mechanical arrangements and methods. It thereby achieves a striking reduction in overall complexity and cost, both at the system and at the component level. Indeed, in its simplest and perhaps most useful form, the ducted axle machine, the invention can be functionally accomplished with as few as five moving parts. Yet the same device can be scaled to virtually any size for application to products of enormous diversity, and it can be adapted to run on any fuel, whether gas, liquid, solid, or hybrid, or on other heat source, including solar energy.
  • the invention provides a rare and special combination of superior technical performance, broad market potential, and economic mass producibility, and therefore portends a new era of more thermally efficient and cost effective power products.
  • These include noiseless propane powered lawn mowers, thermal battery powered automobiles, biomass powered fishing vessels, solar powered irrigation pumps, and nuclear powered navy warships. Since the Stirling-cycle engine is thermodynamically reversible, the invention will find countless other applications in the realms of refrigerators, heat pumps, air conditioners, and the like.
  • a reciprocating, single-acting, Stirling-cycle thermal machine of the type which does not employ loose fitting displacer pistons and comprises a frame; at least one pair of stationary, coaxial, in-line, right-circular cylinders mounted in said frame, said cylinders being thermally isolated from each other, one of said cylinders enclosing an expansion space of the machine and the other enclosing a compression space of the machine; an external heat source; an external heat sink; a regenerator for the or each cylinder pair; a heater for the or each expansion space comprising a heat exchanger element closing one end of the expansion space and serving to thermally conductively connect said source to the machine working fluid; a cooler for the or each compression space comprising a heat exchanger element closing one end of the compression space and serving to thermally conductively connect said sink to the machine working fluid; and a piston; arranged to reciprocate within said cylinders characterised in that the machine is a multi-piston machine having an annular and
  • reciprocating a single-acting, Stirling-cycle thermal machine of the type which does not employ loose fitting displacer pistons comprises a frame; at least one pair of stationary, coaxial, in-line, right-circular cylinders mounted in said frame, said cylinders being thermally isolated from each other, one of said cylinders enclosing an expansion space of the machine and the other enclosing a compression space of the machine; an external heat source; an external heat sink; a regenerator for the or each cylinder pair; a heater for the or each expansion space comprising a heat exchanger element closing one end of the expansion space and serving to thermally conductively connect said source to the machine working fluid; a cooler for the or each compression space comprising a heat exchanger element closing one end of the compression space and serving to thermally conductively connect said sink to the machine working fluid; and a piston arranged to reciprocate within each said cylinders characterised in that the machine has only two cylinders and pistons, said cylinders are
  • numeral 1 designates an idealized version of a two-piston, Stirling-cycle prime mover.
  • a conceptually constant mass of pressurized gaseous working fluid occupies the working volume between the compression piston 2 and the expansion piston 3.
  • the total working volume is comprised by compression space 4, regenerator 5, and expansion space 6.
  • a portion of compression space 4 is continually cooled by cooler 7, while a portion of expansion space 6 is continually heated by heater 8.
  • Arrows 9 are intended to represent the input of heat by conduction, convection, or radiation. Escape of fluid from the working volume is prevented by the piston seals 10.
  • regenerator 5 yields stored heat to the working fluid as it is transferred to expansion space 6 with the volume remaining constant. The temperature and pressure rise to their maximum levels.
  • regenerator 5 recovers heat from the working fluid as it is transferred to compression space 4 with the volume remaining constant. The temperature and pressure return to the starting levels of the cycle.
  • One favorable embodiment of the present invention may be characterized as a single-acting, two piston engine with stationary, coaxial, in-line cylinders and a ducted axle.
  • Fig. 3(a) shows the form of a piston 20 of a ducted axle machine as compared to that of a piston 11 from a prior art multiple-piston machine. It may be seen that piston 20 has no connecting rod 14 as does piston 11; that piston 20 incorporates a special cam surface 26 normal to. the axis of reciprocation 13; and that there is an axial bore 22 through the top of piston 20. This last condition permits the pistons of a ducted axle machine to be operated in a coaxial arrangement surrounding, and at the opposite ends of, a tubular regenerator/shaft combination.
  • the regenerator/shaft or ducted axle 40 serves as the structural backbone of the machine and also provides an internally disposed conduit for the regenerator element 42.
  • Ducted axle 40 is coaxial with the machine axis of symmetry 15, extends from one end of the machine to the other between cooler 25 and heater 35, and provides the axle about which the centrally disposed flywheel drive element 45 revolves.
  • the rotational motion of the flywheel drive element is guided by a pair of radial bearings 46 and a pair of thrust bearings 48.
  • a pair of stationary, coaxial, in-line, right-circular cylinders comprises the housing of the ducted axle machine.
  • Compression cylinder 16 encloses compression space 27 and all other compression elements, is closed and sealed at one end by cooler 25, and is threaded to receive cooler head 29.
  • Expansion cylinder 18 encloses expansion space 37 and all other expansion elements, is closed and sealed at one end by heater 35, and is threaded to receive heater head 39.
  • heater head 39 may take on a variety of forms to accommodate various combustors, collectors, thermal accumulators, or other sources of heat. Both cylinders (shown in Fig.
  • the disk elements are designed to be affixed to the extreme opposite ends of the ducted axle 40 and together with it comprise the interior frame or structural support of the machine.
  • Various mechanical fastener means may be used, depending upon whether it is desired to prohibit or permit relative rotation of either disk about ducted axle 40.
  • a threaded retainer 41 and a spline 43 are provided; in the second case the retainer 44 is a heavy duty snap ring mated to groove 55.
  • the disk elements serve to constrain the longitudinal placement of both cylinders in relation to ducted axle 40 and to direct the flow of working fluid to and from the periphery of cooler 25 and heater 35.
  • compression piston 20 incorporates internally a coaxially disposed cylindrical face cam 24 having a cam surface 26 which is oriented in such a way as to face, and to maintain a particular angular position with respect to, the corresponding cam surface 36 of cylindrical face cam 34 similarly fixed within expansion piston 30.
  • the pressure forces of the working fluid hold each cam against low-friction cam follower assemblies 56 mounted upon flywheel drive element 45..
  • the reciprocating motion of the pistons within the cylinders and along the ducted axle is coupled to and converted into or from rotational motion of flywheel drive element 45, and vice versa, by opposed cam surfaces 26 and 36. Angular rotation of the pistons within the bore is prevented without restricting their axial reciprocation by means of longitudinal slots 50 which are engaged by piston guide assemblies 52.
  • Reciprocating seals 21 and 23 prevent the escape of working fluid from compression space 27, while reciprocating seals 31 and 33 similarly contain the working fluid within expansion space 37.
  • Rotating seals 49 contain a separate quantity of gaseous buffer fluid within buffer space 47, which is partially pressurized to reduce the magnitude of the static loading on the cams. Holes 51 within flywheel drive element 45 conjoin the compression and expansion sections of buffer space 47.
  • working fluid is alternately shifted from compression space 27, over the rounded periphery of compression disk element 28, through the radial flow passages of cooler 25, through regenerator element 42 within ducted axle 40, through the radial flow passages of heater 35, over the rounded periphery of expansion disk element 38, to expansion space 37, and back again.
  • Working fluid is introduced into the working volume by means of tank valve 17; buffer fluid is introduced into the buffer space by means of tank valve 19.
  • flywheel drive element 45 corresponds to one complete thermodynamic cycle.
  • work is done on flywheel drive element 45 to increase its kinetic energy during the aforementioned expansion stroke of each cycle; likewise, work is done on the working fluid by flywheel drive element 45 during the compression and displacement phases of each cycle.
  • Net power output may be transferred from flywheel drive element 45 to the indicated output shaft 57 by means of any common mechanical transmission such as a V-belt (designated by numeral 58 in Fig. 4), chain or gear drive assembly. Since the Stirling prime mover is not self-starting, an external starter device (not shown) would normally be an adjunct to the power transmission subsystem.
  • a significant consequence of the ducted axle machine arrangement is to permit, in one embodiment of the invention, a uniquely uncomplicated power level control method. It should be recalled at this point that the instantaneous phase angle between the sinusoidally time-variant reciprocations of the pistons in a Stirling engine is a critical performance parameter. It will be readily appreciated by those skilled in the art that the instantaneous phase angle of the ducted axle machine depends only upon the relative angular displacement of compression cam 24 with respect to that of expansion cam 34 for a given rotational direction of flywheel drive element 45. As shown in Fig.
  • the instantaneous phase angle, and consequently the power level of the machine may be either manually or automatically controlled with precision by an enormous variety of mechanical, thermal, electronic, or other conventional and well-known feedback methods.
  • this type of power level control one can thereby optimize engine performance and efficiency for any given speed and torque requirements inherent in the nature of the system application.
  • yet another important specific teaching of this invention is that speed controlled engines analogous to a synchronous electric motor-generator or converter may be developed on this basis for specialized applications. That is, the engine would act either as a prime mover or as a heat pump depending on whether the engine is driving the load or the load is driving the engine at a selected excitation frequency.
  • This type of device could have a striking impact on the technology of transportation from the standpoint of total system energy efficiency and conservation.
  • the effective utilization of the aforesaid negative torque mode for regenerative braking and reversible heat reclamation in the largely stop-and-go environment of the automotive prime mover may constitute a technological break-through of astonishing economic significance.
  • Another favorable embodiment of the invention may be characterized as a single-acting, quasi- double acting, four-piston engine having an annular and parallel array of cylinders and regenerators interconnected in series and incorporating a cylindrical drum cam drive element. That is, the machine has four in-line cylinder pairs arranged within and symmetrically about a cylindrical annulus which also contains four regenerator ducts exterior from, parallel to, and alternately interspersed among the cylinders. These are all interconnected in a series so as to form a folded serpertine arrangement in conjunction with four double-ended pistons within the aforesaid cylindrical annulus.
  • the drive shaft is coaxial with and integral to a right-circular cylindrical drum cam mechanism which is interior to and symmetrical with the said annular array of components.
  • Each separate working volume so interconnected constitutes a stage wherein both the constant volume displacement functions and the compression and expansion functions of the Stirling cycle are independently accomplished as long as pistons 62 are constrained by the design of the drive mechanism (not shown) to move with a suitable phase shift in their displacement.
  • the proper phase shift is 90 degrees which is normally accomplished by means of well-known swash plate or crankshaft type drive mechanisms.
  • the Rinia arrangement has the advantage that the number of moving parts associated with a given cylinder is only one per cycle, compared with two per cycle in other prior art designs. It also affords a reasonably compact mechanical arrangement when the cylinders are arranged parallel to one another in a cylindrical annulus and the pistons are coordinated by means of a swash plate mechanism internal to the annular volume.
  • the desired configuration can be imagined to derive from a simple conceptual transformation of the Rinia arrangement which preserves the manner in which the cylinders now become disjoint cylinder pairs, are interconnected, but which replaces the double-acting character of the Rinia approach with a single-acting, quasi double-acting mode. It may be seen that the new arrangement disposes of the undesirable aspects of the Rinia arrangement without disturbing the cyclic phase relationship inherent in equivalent working volumes.
  • numeral 71 designates a schematized version of the quasi double-acting drum cam machine of the present invention.
  • this machine is single-acting because only one surface of each piston 72 works directly against working fluid pressure, whether at low temperature in compression space 74 below or at high temperature in expansion space 76 above the seals 90, the other surface being substantially at atmospheric.
  • multiple cylinders are fluid flow interconnected, so that the lower compression space 74 of one cylinder is connected to the upper expansion space 76 of an adjacent cylinder by means of a flow path past cooler 77, through regenerator 75, and past heater 78 in series.
  • a portion of compression space 74 is continually cooled by cooler 77, while a portion of expansion space 76 is continually heated by heater 78;
  • arrows 79 are intended to represent the input of heat by conduction, convection, or radiation.
  • any number of piston-cylinder pairs can be interconnected in the manner illustrated for four cylinders in Fig. 11, as long as the proper phase shift is maintained between each set. This can be accomplished, as shown in Fig. 12, by taking the drive from sets 82 of paired rotary gudgeon pins located at the mid-point 80 of each double-ended piston connecting rod 81.
  • Each gudgeon pin assembly 82 is a low friction cam follower mechanism which is mated in preloaded intimate contact with the protruding surfaces of cylindrical drum cam 83 and the linear surfaces of longitudinal cams 91.
  • Cylindrical drum cam 83 mechanically converts uniform angular rotation of drive shaft 85, guided by low friction bearings 92 and 92', into simple harmonic reciprocation of each double-ended piston 72 and vice versa.
  • the proper phase relationship is kinematically determined by the relative angular position of each piston-cylinder pair about the machine axis of symmetry 15.
  • each gudgeon pin assembly 82 consists of pairs of drum cam followers 84 and matching oppositely directed pairs of longitudinal cam followers 86 supported by means of precision low friction needle or roller bearings 87.
  • Spring 88 serves to maintain the requisite preloading force, while balls 89 decouple the rotation of drum cam followers 84 from the rotation of longitudinal cam followers 86.
  • All longitudinal cam followers 86 are constrained to move back and forth within longitudinal cams 91, which are parallel to both machine axis of symmetry 15 and reciprocation axes 13, and which serve to prevent the relative rotation of pistons 72 within the bore.
  • follower axes of rotation 15' are oriented radially with respect to the machine axis of symmetry 15.
  • Fig. 14 wherein the overall functional configuration of the drum cam machine is illustrated. It should be apparent that all compression spaces 74 are collocated within a single stationary right-circular cylindrical "compression block” 94, made of material having comparatively low thermal conductivity. Likewise all expansion spaces 76 are collocated within a single stationary right-circular cylindrical "expansion block” 96, also made of material having comparatively low thermal conductivity. Compression block 94 and expansion block 96 are conjoined by the four regenerator housings 95 and also by the four longitudinal cams 91.
  • a series of shallow segmented annular depressions 93 connect each piston-cylinder working volume with an adjacent regenerator duct 75 and serve as a housing for the internal heat transfer surfaces of either cooler 77 or heater 78.
  • Working fluid is conveyed into each piston-cylinder working volume by means of tank valves 99 located on the periphery of compression block 94.
  • cooler 77 or heater 78 These now consist of a flanged plate made of material possessing comparatively high thermal conductivity, each having a plurality of radial flow passages on the exterior face and a plurality of segmented annular flow passages on the interior face.
  • Cooler 77 serves upon assembly and in conjunction with cooler head 97 to close and connect compression volumes 74 with adjacent regenerators 75 and to transfer heat from the internal working fluid to an exterior sink.
  • Heater 78 serves upon assembly and in conjunction with heater head 98 to close and connect expansion volumes 76 and with adjacent regenerators 75 and to transfer heat from an exterior source to the internal working fluid. It is, therefore, an important teaching of this invention that the drum cam machine so constructed thereby effect that aforesaid interconnection of stages in a uniquely compact annularly folded serpentine head-to-tail arrangement, clearly illustrated by Fig. 12.
  • the drum cam machine design is an arrangement which involves a minimum number of separate components, and wherein the hot and cold regions of the machine are inherently located at extreme diametrically opposite ends. It should be readily apparent to those skilled in the art that the collocation of cooler elements within a compact cooler head at one end of the drum cam machine, and of heater elements within a similarly compact heater head at the other end of the machine, has the highly desirable effect of reducing heat losses from conduction and radiation to improve the overall thermal efficiency of the machine. But it also leads to a substantial simplification, in the design and manufacture of not only the heat transfer elements but also of other mechanical components of the machine as well. For example, both compression block 94 and expansion block 96 may now be very conveniently constructed from identical mass-produced precision investment castings. This could be of crucial importance with respect to economical production in a high volume application, by producing an important savings in the cost of materials and labor. A similar economy of production might also be realized for some applications through the design and fabrication of identical cooler head assemblies 97 and heater head assemblies 98.
  • the closed cycle Stirling prime mover operates solely on the basis of the difference in temperature in the working fluid between the hot expansion space and the cold compression space, the development of useful power output is not specific to the source of heat available for use. Therefore, the design of the heat source can be any one of a large variety of possible types.
  • a rather simple combustion system can be produced, for example, which will cleanly and efficiently burn various kinds of both liquid fuels and gaseous fuels without any modification whatsoever.
  • a single prime mover may be made to operate on regular or premium gasoline, diesel oil, alcohol, crude oil, lubricating oil, olive oil, vegetable oil, propane, butane, natural gas, and synthetic coal gas.
  • prime movers for automotive marine, aeronautical, astronautical, industrial, military, agricultural, multifuel, nonfuel, portable, and biomedical users
  • refrigerators air conditioners; cryogenic cooling engines
  • residential, industrial and military heat pumps water coolers
  • air or other gas compressors portable or stationary remote electric generators
  • hydroelectric, nuclear, radioisotope solar, geothermal, ocean, biomass and solid waste power converters small and large cogeneration power plants, remote stationary and portable fluid pumps; remote portable, outdoor and underwater power tools; toys and novelties.

Claims (7)

1. Eine einfachwirkende Stirling-Hubkolben-Wärmekraftmaschine eines Typs, bei dem keine lose montierten Verschiebekolben . verwendet werden, und welcher einen Rahmen hat; mindestens ein parr stationäre, koaxiale, in einer Reihe befindlichen, rechtskreisförmigen Zylinder (94, 96), die in besagtem Rahmen montiert sind, wobei die besagten Zylinder (94, 96) thermisch voneinander isoliert sind, wobei einer der besagten Zylinder (96) einen Expansionsraum (76) der Maschine umschließt und der andere (94) einen Kompressionraum (74) cler Maschine umschließt; eine außenstehende Wärmequelle; eine außenstehende Wärmesenke; ein Regenerator (75) für das oder jedes Zylinderpaar; eine Heizung (78) für den oder jeden Expansionsraum (76), der ein Wärmeaustauschelement enthält, welches ein Ende des Expansionsraums (76) abschließt und dazu dient, die besagte Quelle wärmeleitend mit der Arbeitsflüssigkeit der Maschine zu verbinden; ein Kühler (77) für den oder jeden Kompressionsraum (74), der ein Wärmeaustauschelement enthält, das ein Ende des Kompressionsraums (74) abschließt und dazu dient, die besagte Senke mit der Arbeitsflüssigkeit der Maschine wärmeleitend yu verbinden; ein Kolben (72) so angeordnet, daß er sich innerhalb der besagten Zylinder hin- und herbewegt, dadurch gekennzeichnet, daß die Maschine eine Mehrfachkolbenmaschine ist, mit einer ringförmigen und parallelen Anordnung von Zylinderpaaren (72) und Regeneratorenvolumen (75), wobei die besagten Zylinderpaare (94, 96) auseinanderliegen und an den einander zugewandten Enden offen und an den voneinander abgewandten Enden geschlossen sind; ein paar flüssigkeitsfeste Kolben (72), vorgesehen für die Hin- und Herbewegung innerhalb eines jeden Zylinders (94, 96), wobei jeder Kolben (72) gegen die Rotation des Partner-Zylinders (94, 96) arretiert ist, und das offene Ende desselben schließt, wobei die Kolben (72) eines jeden koaxialen Zylinderpaares (94, 96) mechanisch miteinander verbunden sind; Daumen (83) und Daumenstösselvorrichtung (84) sind zwischen den besagten Kolbenpaaren (72) angeordnet, die alle besagten Kolben (72) mit einem Rotationsmechanismus (85), der sich um eine Achse koaxial zur Hauptsymmetrieachse der Maschine dreht, verbindet, wobei die symmetrische Fläche von besagtem Rotationsmechanismus (85) normal zu ihrer Rotationsachse mit der symmetrischen Fläche der sich hin- und herbewegenden Maschinenteile übereinstimmt; die Arbeitsflüssigkeit der Maschine befindet sich in einer oder mehreren isolierten Stationen, bestehend aus einem Expansionsraum (76), einer Heizung (78), einem Regenerator (75), einem Kühler (77), und einem Kompressionsraum (74), serienmäßig verbunden mittels Kanälen, die einen oszillierenden Fluß zwischen den besagten Räumen gestatten.
2. Eine Maschine entsprechend dem Anspruch 1, welche mindestens vier Zylinderpaare hat, und in welcher der Rahmen einen Expansionsblock (96) beinhaltet, worin alle Expansionsräume (76) ringförmig angeordnet sind, sowie einen Kompressionsblock (94), worin alle Kompressionräume (76) gleichfalls ringförmig angeordnet sind, mit den Wechselwirkungsachsen von jedem Kolbenpaar (72) parallel zu der und symmetrisch um die Hauptsymmetrieachse der Maschine angeordnet, wobei die Kolben (72) in jedem Zylinderpaar mittels einer starren Pleuelstange (81) verbunden sind, an deren Mitte sich die Daumenstösselvorrichtung (84) befindet, wobei besagter Daumenstössel (84) eine harmonische Verschiebung des rechtskreisförmigen zylindrischen Trommeldaumens (83) betätigt, welchen die input-output Welle (85) hält, wobei besagte Daumen (83) und Welle (85) von einer Gleitlagervorrichtung (92) geführt werden, und zwar in dem Rahmen zwecks Rotation um eine Achse koaxial zu der symmetrischen Achse der Maschine, wobei die Arbeitsflüssigkeit der Maschine in einer Anzahl von Stationen enthalten ist, welche der Anzahl der Zylinderpaare entspricht, wobei sich der Expansionsraum (76) jeder Station in einem Zylinderpaar und der Kompressionsraum (74) derjenigen Station in einem anderen Zylinderpaar befindet.
3. Eine Maschine entsprechend dem Anspruch 2 mit vier Zylinderpaaren, in denen die Regeneratoren (75) in rohrförmigen Kanälen (95) enthalten sind, und zwar parallel zu, ringförmig angeordnet um und angrenzend an die Zylinder, wobei jeder Regenerator (75) in eine segmentierte Mulde (93) innerhalb der Expansions- und Kompressionsblöcke (96, 94) hineinragt, die dazu dient, einen Zylinder und ein Regeneratorröhrenende (95) einer Station zu verbinden, und die Heizungen (78) innerhalb des Expansionsblocks (96) und die Kühler (77) innerhalb des Kompressionsblocks (94) jeweils in die Reihe zu stellen und aufzunehmen.
4. Eine einfachwirkende Stirling-Hubkolben-Wärmekraftmaschine eines Typs, bei dem keine lose montierten Verschiebekolben verwendet werden, und welcher einen Rahmen hat; mindestens ein Paar stationäre, koaxiale, sich in einer Reihe befindlichen, rechtskreisförmigen Zylinder (16, 18) thermisch voneinander isoliert sind, und wobei einer der besagten Zylinder (18) einen Expansionsraum (37) der Maschine umschließt, und der andere (16) einen Kompressionsraum (27) der Maschine umschließt; eine außenstehende Wärmequelle; eine außenstehende Wärmesenke; ein Regenerator (42) für das oder jedes Zylinderpaar; eine Heizung (35) für den oder jeden Expansionsraum (37), der ein Wärmeaustauschelement enthält, welches ein Ende des Expansionsraums (37) abschließt und dazu dient, die besagte Quelle wärmeleitend mit der Arbeitsflüssigkeit der Maschine zu verbinden; ein Kühler (25) für den oder jeden Kompressionsraum (27), der ein Wärmeaustauschelement enthält, das ein Ende des Kompressionsraums (27) abschließt und dazu dient, die besagte Senke mit der Arbeitsflüssigkeit der Maschine wärmeleitend zu verbinden; ein Kolben (20, 30), so angeordnet, daß er sich innerhalb jedem der besagten Zylinder (16,18) hin- und herbewegt, dadurch gekennzeichnet, daß die Maschine nur zwei Zylinder (16, 18) und Kolben (20, 30) hat, wobei die besagten Zylinder (16, 18) auseinander liegen und an den einander zugewandten Enden offen und an den voneinander abgewandten Enden geschfossen sind; ein paar flüssigkeitsfeste Kolben (20, 30), vorgesehen für die Hin- und Herbewegung innerhalb eines jeden Zylinders (16, 18), wobei jeder Kolben (20, 30) gegen die Rotation des Partner-Zylinders (16, 18) arretiert ist und das offene Ende desselben verschließt, wobei ein Schwungrad (45) in dem Raum zwischen den Zylindern (16, 18) vorgesehen ist und auf einer Ausführungsachse (40) koaxial zu der Hin- und Herbewegungsachse der Kolben (20, 30) geführt wird und die Struktur der Abschlußwand einer der besagten Zylinder (18, 20) trägt, welche an jedem der äußeren Enden angebracht ist und gegen die Längsverschiebung entlang besagter Achse (40) mittels eines Halteteils (28, 38) gehalten wird, das den Fluß der Arbeitsflüssigkeit um dieselbe gestattet, wobei der Kolben (20, 30) in jedem der Zylinder (16, 18) eine zentrale Bohrung im äußeren Ende hat, durch welche die besagte Achse (40) in gleitender, flüssigkeitsfester Relation hineinragt, und die angrenzenden Innenseiten eines jeden Kolbens (20, 30) eine harmonische Verschiebung der zylindrischen, axial wirkenden Daumen (24, 34) tätigen, wobei die Daumenoberflächen (26, 36) normal zu der Hubkolbenachse ausgerichtet sind und eine spezifische relative Winkelstellung um die Symmetrieachse der Maschine einnehmen, wobei sie mit den Daumenstösseln (56), die von dem Schwungrad (45) getragen werden, zusammenwirken und der hohle Schwerpunkt von besagter Ausführungsachse (40) einen Kanal bildet, der die Heizung (35) und den Kühler (25) verbindet und der den Regenerator (42) enthält.
5. Eine Maschine entsprechend dem Anspruch 4, in welcher einer der Zylinder-Wandstrukturen entgegen der Rotation in Relation zu dem Rahmen befestigt ist und die andere von einer Haltevorrichtung gehalten wird, die besagte Rotation gestattet.
6. Eine Maschine entsprechend dem Anspruch 5, einschließlich Mittel zur Rotation einer Zylinderstruktur in Relation zur anderen, wobei der Augenblicks-Phasen winkel zwischen den periodischen Hubbewegungen der Kolben justiert werden kann.
7. Eine Maschine entsprechend dem Anspruch 6, welche mit einer Fahrzeugladung verbunden ist, worin die außenstehende Wärmequelle Mittel zur thermischen Energiespeicherung enthält und der Umfang der Phasenwinkelregelung eine negativen Drehweise mit einschließt.
EP19820902016 1981-05-14 1982-05-14 Mechanischer aufbau von stirlingmotoren Expired EP0078848B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT82902016T ATE42607T1 (de) 1981-05-14 1982-05-14 Mechanischer aufbau von stirlingmotoren.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US26369181A 1981-05-14 1981-05-14
US263691 1981-05-14

Publications (3)

Publication Number Publication Date
EP0078848A1 EP0078848A1 (de) 1983-05-18
EP0078848A4 EP0078848A4 (de) 1984-12-11
EP0078848B1 true EP0078848B1 (de) 1989-04-26

Family

ID=23002858

Family Applications (4)

Application Number Title Priority Date Filing Date
EP19820902016 Expired EP0078848B1 (de) 1981-05-14 1982-05-14 Mechanischer aufbau von stirlingmotoren
EP82902018A Expired EP0078850B1 (de) 1981-05-14 1982-05-14 Komponenten für die wärmeübertragung bei stirlingmotoren
EP19820902017 Expired EP0078849B1 (de) 1981-05-14 1982-05-14 Regenerator-struktur für stirlingmotoren
EP19820902015 Expired EP0078847B1 (de) 1981-05-14 1982-05-14 Thermodynamische arbeitsmedien für stirlingmotoren

Family Applications After (3)

Application Number Title Priority Date Filing Date
EP82902018A Expired EP0078850B1 (de) 1981-05-14 1982-05-14 Komponenten für die wärmeübertragung bei stirlingmotoren
EP19820902017 Expired EP0078849B1 (de) 1981-05-14 1982-05-14 Regenerator-struktur für stirlingmotoren
EP19820902015 Expired EP0078847B1 (de) 1981-05-14 1982-05-14 Thermodynamische arbeitsmedien für stirlingmotoren

Country Status (3)

Country Link
EP (4) EP0078848B1 (de)
DE (4) DE3275848D1 (de)
WO (4) WO1982004099A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BG63221B1 (bg) 1997-03-14 2001-06-29 Боян БАХНЕВ Гърбичен двигател
US6282895B1 (en) * 1997-07-14 2001-09-04 Stm Power, Inc. Heat engine heater head assembly
US6668809B2 (en) * 2001-11-19 2003-12-30 Alvin Lowi, Jr. Stationary regenerator, regenerated, reciprocating engine
HRP20040269B1 (en) * 2004-03-19 2010-03-31 Rak Miroslav Thermal hydro-machine on hot gas with recirculation
CN101988443A (zh) * 2010-10-27 2011-03-23 靳北彪 非共轭零距高低温热源热气机

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US766410A (en) * 1903-11-19 1904-08-02 Marshall Alger Motor.
US1229009A (en) * 1915-06-07 1917-06-05 Joseph F Allison Pumping-engine.
US2616668A (en) * 1947-05-30 1952-11-04 Hartford Nat Bank & Trust Co Regenerator
GB715594A (en) * 1951-11-27 1954-09-15 Philips Nv Improvements in thermal regenerators
BE669418A (de) * 1964-09-11
DE1451156A1 (de) * 1964-09-16 1969-02-06 Linde Ag Waerme- und Stoffaustauschelement
US3403508A (en) * 1966-12-09 1968-10-01 Donald A. Kelly Stirling cycle engine with wave-cam means interconnecting pistons and drive shaft thereof
US3385051A (en) * 1967-02-10 1968-05-28 Donald A. Kelly Stirling cycle engine with two wave cam means, two piston banks and driveshaft
US3407593A (en) * 1967-04-10 1968-10-29 Donald A. Kelly Reciprocating stirling cycle engine with dual wave cam drive
US4084376A (en) * 1969-10-30 1978-04-18 U.S. Philips Corporation Heating system
US3950947A (en) * 1969-12-24 1976-04-20 U.S. Philips Corporation Hot-gas machine comprising a heat transfer device
US3678992A (en) * 1970-08-06 1972-07-25 Philips Corp Thermal regenerator
US3710572A (en) * 1971-01-04 1973-01-16 Textron Inc Thrust chamber
US3913666A (en) * 1972-03-20 1975-10-21 Peter Bayliss Heat resistant wall construction
US3994136A (en) * 1975-07-03 1976-11-30 Josam Manufacturing Co. Hot gas engine
US3999388A (en) * 1975-10-08 1976-12-28 Forenade Fabriksverken Power control device
US4030297A (en) * 1976-06-28 1977-06-21 Ford Motor Company Hydrogen compression system for Stirling engine power control
NL7705363A (nl) * 1977-05-16 1978-11-20 Philips Nv Heetgasmotor.
US4183213A (en) * 1977-07-18 1980-01-15 Ford Motor Company Heat exchanger for Stirling engine
DE2820526C2 (de) * 1978-05-11 1982-04-22 Schneider, Christian, Dipl.-Ing., 8650 Kulmbach Heißgas-Hubkolbenmotor mit elektromagnetisch angetriebenem Verdränger
SE417448B (sv) * 1979-06-19 1981-03-16 Cmc Ab Modul for uppbyggnad av en dubbelverkande, fyrcylindrig stirling-motor

Also Published As

Publication number Publication date
DE3275848D1 (en) 1987-04-30
EP0078848A1 (de) 1983-05-18
WO1982004101A1 (en) 1982-11-25
EP0078847B1 (de) 1987-03-04
EP0078850A4 (de) 1985-02-28
DE3278913D1 (en) 1988-09-22
EP0078847A1 (de) 1983-05-18
DE3275577D1 (en) 1987-04-09
EP0078849A1 (de) 1983-05-18
EP0078850B1 (de) 1988-08-17
EP0078850A1 (de) 1983-05-18
DE3279652D1 (en) 1989-06-01
EP0078847A4 (de) 1984-12-11
WO1982004099A1 (en) 1982-11-25
EP0078849A4 (de) 1985-02-28
EP0078849B1 (de) 1987-03-25
EP0078848A4 (de) 1984-12-11
WO1982004098A1 (en) 1982-11-25
WO1982004100A1 (en) 1982-11-25

Similar Documents

Publication Publication Date Title
US4413474A (en) Mechanical arrangements for Stirling-cycle, reciprocating thermal machines
US4444011A (en) Hot gas engine
US4199945A (en) Method and device for balanced compounding of Stirling cycle machines
US4044558A (en) Thermal oscillator
US6568169B2 (en) Fluidic-piston engine
US4413475A (en) Thermodynamic working fluids for Stirling-cycle, reciprocating thermal machines
US5456076A (en) Balanced compound engine
US4429732A (en) Regenerator structure for stirling-cycle, reciprocating thermal machines
US5678406A (en) Energy generating system
US7836691B2 (en) Heat engine
US4455825A (en) Maximized thermal efficiency hot gas engine
WO2003027541A1 (en) Method and apparatus for diminishing the consumption of fuel and converting reciprocal piston motion into rotary motion
EP0083297A2 (de) Wärmegetriebene Wärmepumpe und Verfahren zum Betrieb
KR19980042401A (ko) 스터링 사이클 기관
US4413473A (en) Heat transfer components for Stirling-cycle, reciprocating thermal machines
EP0078848B1 (de) Mechanischer aufbau von stirlingmotoren
Arslan et al. A Comprehensive Review on Stirling Engines
WO1981000883A1 (en) Engines and particularly those incorporating the stirling cycle
US3478511A (en) Closed-cycle gas engine
US3220178A (en) Heat engine
US5644917A (en) Kinematic stirling engine
Walker et al. Stirling engine heat pumps
CA1226443A (en) Stirling-cycle, reciprocating, thermal machines
Ross Stirling Machines: From Potential to Practicality
Mitchell et al. Sibling cycle piston and valving method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19830221

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB LI LU NL SE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19890426

Ref country code: NL

Effective date: 19890426

REF Corresponds to:

Ref document number: 42607

Country of ref document: AT

Date of ref document: 19890515

Kind code of ref document: T

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19890531

REF Corresponds to:

Ref document number: 3279652

Country of ref document: DE

Date of ref document: 19890601

DIN2 Information on inventor provided after grant (deleted)
RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: WILKINS, GORDON A.

RIN2 Information on inventor provided after grant (corrected)

Free format text: MOSCRIP, WILLIAM MATTHEW

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: GORDON A. WILKINS

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19891025

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19891027

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19891030

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19891031

Year of fee payment: 8

Ref country code: GB

Payment date: 19891031

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19891116

Year of fee payment: 8

BECN Be: change of holder's name

Effective date: 19890426

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19900514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19900531

Ref country code: BE

Effective date: 19900531

Ref country code: CH

Effective date: 19900531

BERE Be: lapsed

Owner name: WILKINS GORDON A.

Effective date: 19900531

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19910131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19910301

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19910305

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19920515

EUG Se: european patent has lapsed

Ref document number: 82902016.3

Effective date: 19921204