EP0075512B1 - Image-intensifying tube with memory, and operating method - Google Patents

Image-intensifying tube with memory, and operating method Download PDF

Info

Publication number
EP0075512B1
EP0075512B1 EP82401670A EP82401670A EP0075512B1 EP 0075512 B1 EP0075512 B1 EP 0075512B1 EP 82401670 A EP82401670 A EP 82401670A EP 82401670 A EP82401670 A EP 82401670A EP 0075512 B1 EP0075512 B1 EP 0075512B1
Authority
EP
European Patent Office
Prior art keywords
voltage
image
cell
application
screen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82401670A
Other languages
German (de)
French (fr)
Other versions
EP0075512A1 (en
Inventor
Jean-Claude Boit
Jean-Pierre Galves
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0075512A1 publication Critical patent/EP0075512A1/en
Application granted granted Critical
Publication of EP0075512B1 publication Critical patent/EP0075512B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/10Screens on or from which an image or pattern is formed, picked up, converted or stored
    • H01J29/18Luminescent screens
    • H01J29/182Luminescent screens acting upon the lighting-up of the luminescent material other than by the composition of the luminescent material, e.g. by infra red or UV radiation, heating or electric fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/50Image-conversion or image-amplification tubes, i.e. having optical, X-ray, or analogous input, and optical output
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2231/00Cathode ray tubes or electron beam tubes
    • H01J2231/50Imaging and conversion tubes
    • H01J2231/50005Imaging and conversion tubes characterised by form of illumination
    • H01J2231/5001Photons
    • H01J2231/50031High energy photons
    • H01J2231/50036X-rays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2231/00Cathode ray tubes or electron beam tubes
    • H01J2231/50Imaging and conversion tubes
    • H01J2231/50057Imaging and conversion tubes characterised by form of output stage
    • H01J2231/50063Optical

Definitions

  • the invention relates to an image intensifier tube and its implementation.
  • the function of such a tube is to produce a bright image with high brightness.
  • the image is formed on the exit screen of the tube, the screen of which is exposed to incident radiation.
  • a stream of electrons, emitted by a photocathode incorporated in the input screen ensures the transfer of the signal from each point from one end to the other of the tube.
  • the output screen is a simple cathode-luminescent screen, capable of emitting light under the effect of bombardment by electrons, namely those of the flux in question. They then only allow operation in real time, where the image is visible on the output screen only when it is produced on the input screen, with the persistence near the traces on the 'output screen, of variable duration according to the provisions adopted, but, in any case, very limited in the current state of the art of these screens.
  • This kind of screen is also sensitive to the action of electronic bombardment, like the cathode-luminescent screens to which reference was made first, but in a completely different respect: electronic bombardment adds its action here to that of applied voltage and is equivalent to an additional voltage which would be superimposed on it. In particular, it would make it possible to cross the threshold voltage for an applied voltage lower than the value of this threshold and, in general, various signal processing operations, all of which will be more fully specified below.
  • CTR cathode ray tubes
  • this interest had to be even greater for tubes no longer of the TRC type, but in which, unlike the case of these tubes, the image on the output screen is formed by a flow of electrons whose l 'impact covers at once the entire surface of the exit screen, which is, so to speak, at a given moment, "sprinkled" entirely by the beam.
  • This watering can also be permanent during the shooting, or applied by pulses, as we will see later.
  • This case is typically that of radiological image intensifiers (IIR), intended for the medical uses mentioned above, and bright image intensifiers (IIL) reserved, in other fields, for the collection of images with low illumination or nocturnal.
  • IIR radiological image intensifiers
  • IIL bright image intensifiers
  • tubes of the same type of the prior art under the conditions which will be exposed. It concerns, in a generic way, all the tubes in which, as we said, the output screen is covered at all times at all its points by the flow of electrons carrying the signal coming from the input of the tube.
  • Figure 1 shows in section an example of an electroluminescent screen structure.
  • dielectric material for example aluminum oxide, tantalum oxide, silicon nitride, etc.
  • layers 3 and 5 of dielectric material for example aluminum oxide, tantalum oxide, silicon nitride, etc.
  • These three layers have approximately equal thicknesses of the order of a few hundred nm; they are taken between two conductive layers 2, 6; layer 2, made of indium tin oxide, is transparent to light radiation emitted by the cell; layer 6 made of aluminum is opaque to these radiations, to avoid any disturbance of the photocathode. In the tube, layer 6 faces the electron bombardment.
  • this difference in potential is generally alternative and of any shape: sinusoidal, with pulses of various shapes, rectangular, triangular ..., of varied width and frequency.
  • the whole rests, by the layer 2, on a thick glass support 1, which is not shown in proportions as to its thickness.
  • This type of screen has the property of emitting light radiation in the visible spectrum when it is excited by the applied voltage. This emission begins only above a certain threshold voltage V s and increases rapidly in intensity beyond this value. To fix the ideas, it will be indicated that a current value of V s is approximately 150 volts, the point of use, corresponding to the tention Vu, generally not exceeding 180 volts (Vu-V s of the order of 30 volts ), under normal operating conditions: point at the extreme top of the curve in Figure 2 described below.
  • the frequency of this very variable voltage is for example 5 kHz, all these figures being given by way of example and depending on the exact composition of the screen, in particular that of layer 4.
  • the same type of screen may have a memory effect linked to the hysteresis phenomena of which it is the seat (see Howard - Appl. Phys. Letters vol 31 page 399 September 1977).
  • the screen, or electroluminescent cell is excited by the positive and negative pulses of a voltage of amplitude V e called maintenance voltage.
  • the cell is not illuminated.
  • the cell is then energized with an addressing voltage Va (always in + and - pulses).
  • Va an addressing voltage
  • V e pulses V e to it .
  • the operating point is located at B.
  • the luminance is LB.
  • the cell emits light, whereas in the first case for the same voltage, no light was emitted (V e less than V s ).
  • V ef is the erasing voltage
  • V e (maintenance voltage).
  • the cell emits no light.
  • an input screen generally by the reference 21, located at the left end of the envelope and, at the other end, an output screen 22 towards which converge (arrows) the electrons emitted by the photocathode incorporated in the screen 21, in which it is placed opposite another part of the screen, possibly in contact with it and called a scintillator, which converts the incident radiation, X-rays in the example, in photons for the use of the photocathode.
  • a series of electrodes designated overall by the reference 23, each represented with its passage, without reference, ensures the acceleration and the concentration of the electrons towards the exit screen of small size, compared to the entry screen; the output screen in question is represented, as is often the case, arranged at the bottom of an equipotential box without mark, the front face of which is pierced with a small hole at the point of the point of convergence of the electron beam.
  • the object whose image we want to form, exposed to incident radiation (arrows on the left) has the mark 25.
  • FIG 4 gives some of the possible uses of an intensifier tube according to Figure 3, which will be discussed below.
  • the light beam 12 is taken up either by a photographic camera 26 for the presentation of films, or by a photographic camera 24 for the production of separate photos (radiophotos), or by a television camera 28, for viewing in real time, on a television monitor 30.
  • a photon gain of 150,000 is commonly obtained with an image intensifier, namely 150,000 light photons emitted by the output screen for 1 incident X photon.
  • This density is spatially modulated by the object whose image is sought to reproduce, because the intensity of the X-rays having passed through the object is a function of the point crossed.
  • the electron beam bombardment induces at each point of the light-emitting cell an internal polarization, the field of which is added to the field created by the alternating voltage applied to the cell; this is equivalent to an increase in the voltage V applied to the cell.
  • the device operates in pulses: the X-ray is applied to the object in pulses.
  • the cell is addressed by the beam, spatially modulated, as we have said; it receives at its various points the image signal, that is to say the information; this information is only perceived on the condition that the voltage applied to the cell is sufficient so that, superimposed on the addressing signal, it is greater than the threshold voltage V s .
  • V an applied voltage
  • This is also possible, by applying a constant voltage V equal to V e ; the difference between the two cases being that in the first image is visible during addressing and that in the second it is not.
  • Reading of the information can then be done in real time during the whole time of addressing, part to the left of the line in the figure; it can be extended, immediately after the X pulse, for the entire desired time, maintaining the maintenance voltage V e between the faces of the cell, part to the right of the line: it can also be stopped for the desired time and restored again; during this stop there is storage, that is to say memory of the information.
  • Figure 6 shows the voltage diagram corresponding to the latter case.
  • This interruption can be obtained, as shown in this figure, by giving the applied voltage a value invariable in time but sufficient to prevent erasure, greater than V ef .
  • This voltage is advantageously the previous voltage V e .
  • the cell under constant tension, gives no image, this being stored extinct; this reappears at the end of this step, when the alternating voltage V e is again applied to the cell, and remains for the entire time r 2 that this voltage V e is maintained.
  • the operation can be repeated several times, several successive readings of the same image being possible, separated by time intervals where it is stored.
  • Another important point, and which constitutes another advantage of the invention, is that the gain in photons, ratio of the number of light photons emitted by a point of the cell to the number of X photons received by the corresponding point of the input screen, can reach extremely high values, much higher than that cited, thanks to the possibility of storage and successive observations for a very long total time; this is of great interest for the production of radiophotos (24, FIG. 4); conversely, with a given gain, it is possible to reduce the radiation dose.
  • This gain depends moreover, all other things being equal, on the frequency of the alternating voltage applied; it is multiplied by a factor of around 100 when going from 50 Hz to 50 kHz.
  • the tubes of the invention can be easily adapted to the optimal value corresponding to each of the uses which is made of the image produced on the tube output screen (see FIG. 4), with incident irradiation intensity. fixed.
  • the thin film structure of the electroluminescent cell allows high resolutions of the output images.
  • the cells on their support commonly have the form of discs from 25 to 50 mm in diameter.
  • one operates in continuous X-ray radiation (FIG. 8).
  • This operating mode In this operating mode, it operates in real time, that is to say without any information storage.
  • the image is presented during the entire addressing period, then erased; then again, a second image is addressed, and so on.
  • the duration of a cycle can be 20 ms, thus making the presentation of the image compatible with a shooting by photo camera or television camera (marks 26 and 28 in FIG. 4).
  • the frequency of the maintenance voltage, its amplitude, the duration of addressing, the image frequency (or duration of a complete cycle), the dose X, the acceleration voltage of the addressing electrons are all parameters which allow the presentation of the image to be adapted to the use made of it.

Description

L'invention concerne un tube intensificateur d'images et sa mise en oeuvre.The invention relates to an image intensifier tube and its implementation.

Un tel tube a pour fonction la production d'une image lumineuse a brillance élevée. L'image est formée sur l'écran de sortie du tube, dont l'écran est exposé au rayonnement incident. Entre les deux, un flux d'électrons, émis par une photocathode incorporée à l'écran d'entrée, assure le transfert du signal de chaque point d'une extrémité à l'autre du tube.The function of such a tube is to produce a bright image with high brightness. The image is formed on the exit screen of the tube, the screen of which is exposed to incident radiation. In between, a stream of electrons, emitted by a photocathode incorporated in the input screen, ensures the transfer of the signal from each point from one end to the other of the tube.

Ces tubes sont largement connus de l'art, où ils sont utilisés notamment dans le domaine médical, avec un rayonnement incident X.These tubes are widely known in the art, where they are used in particular in the medical field, with incident X-rays.

Ils assurent en plus dans ce cas la fonction de convertisseurs, dans lesquels le rayonnement X incident est transformé en rayonnement visible.In this case, they also act as converters, in which the incident X-ray is transformed into visible radiation.

Généralement, l'écran de sortie est un simple écran cathodo-luminescent, capable d'émettre de la lumière sous l'effet d'un bombardement par des électrons, à savoir ceux du flux dont il a été question. Ils ne permettent alors qu'un fonctionnement en temps réel, où l'image n'est visible sur l'écran de sortie qu'an moment où elle est produite sur l'écran d'entrée, à la persistance près des traces sur l'écran de sortie, de durée variable suivant les dispositions adoptées, mais, de toute façon, très limitée dans l'état actuel de la technique de ces écrans.Generally, the output screen is a simple cathode-luminescent screen, capable of emitting light under the effect of bombardment by electrons, namely those of the flux in question. They then only allow operation in real time, where the image is visible on the output screen only when it is produced on the input screen, with the persistence near the traces on the 'output screen, of variable duration according to the provisions adopted, but, in any case, very limited in the current state of the art of these screens.

On connaît, d'autre part, une autre sorte d'écrans, les écrans électroluminescents en couches minces, qui ont la propriété d'émettre un rayonnement visible sous l'excitation d'une tension électrique appliquée entre leurs faces. Il existe une tension de seuil a partir de laquelle cet effet se manifeste et, pour certains d'entre eux, se prolonge un certain temps après que cette tension ait été ramenée a une valeur inférieure à ce seuil. La chute de luminance se produit alors avec hystérésis, et donne naturellement lieu a un effet de mémoire. On conçoit qu'en utilisant une tension on puisse alors obtenir la mise en mémoire, la visualisation et l'effacement d'un signal, comme c'est usuellement le cas avec les phénomènes d'hystérésis.We know, on the other hand, another kind of screens, thin-film electroluminescent screens, which have the property of emitting visible radiation under the excitation of an electric voltage applied between their faces. There is a threshold voltage from which this effect manifests itself and, for some of them, continues for some time after this voltage has been reduced to a value below this threshold. The fall in luminance then occurs with hysteresis, and naturally gives rise to a memory effect. It is understood that by using a voltage it is then possible to obtain the storage, display and erasure of a signal, as is usually the case with the hysteresis phenomena.

Cette sorte d'écran est également sensible à l'action d'un bombardement électronique, comme les écrans cathode-luminescents auxquels il a été fait référence en premier mais à un tout autre égard: le bombardement électronique ajoute ici son action à celle de la tension appliquée et équivaut à une tension supplémentaire qui se superposerait à celle-ci. Il permettrait en particulier de franchir la tension de seuil pour unetension appliquée inférieure à la valeur de ce seuil et, de façon générale, divers traitements du signal, toutes choses qui seront plus amplement précisées ci-dessous.This kind of screen is also sensitive to the action of electronic bombardment, like the cathode-luminescent screens to which reference was made first, but in a completely different respect: electronic bombardment adds its action here to that of applied voltage and is equivalent to an additional voltage which would be superimposed on it. In particular, it would make it possible to cross the threshold voltage for an applied voltage lower than the value of this threshold and, in general, various signal processing operations, all of which will be more fully specified below.

On a aperçu dans l'art antérieur l'intérêt que l'on pouvait tirer de l'utilisation d'écrans de sortie électroluminescents dans un certain nombre de types de tubes électroniques pour obtenir une persistance prolongée de l'image, et partant une mémoire de celle-ci, et diverses dispositions ont pu être proposées qui montrent des tubes munis de tels écrans (voir notamment le brevet français 2431 184 (79.17428) et le brevet délivré aux Etats Unis d'Amérique sous le n° 3 908 148).We have seen in the prior art the advantage which could be drawn from the use of light-emitting output screens in a certain number of types of electronic tubes to obtain a prolonged persistence of the image, and therefore a memory. of it, and various arrangements have been proposed which show tubes fitted with such screens (see in particular French patent 2431 184 (79.17428) and the patent granted in the United States of America under No. 3,908,148).

Les réalisations décrits concernent toutes, cependant, des tubes à rayons cathodiques (TRC), à savoir des tubes électroniques utilisant un pinceau d'électrons balayant l'écran de visualisation pour former séquentiellement, point par point, une image sur celui-ci.The embodiments described relate all, however, to cathode ray tubes (CRT), namely electronic tubes using an electron brush sweeping the display screen to form sequentially, point by point, an image thereon.

Selon les inventeurs, cet intérêt devait être encore plus grand pour des tubes non plus du type TRC, mais dans lesquels, contrairement au cas de ces tubes, l'image sur l'écran de sortie est formée par un flux d'électrons dont l'impact couvre à la fois toute la surface de l'écran de sortie, qui se trouve en quelque sorte, à un instant donné, »arrosé« tout entier par le faisceau. Cet arrosage peut d'ailleurs être permanent pendant la prise de vues, ou appliqué par impulsions, comme on le verra plus loin.According to the inventors, this interest had to be even greater for tubes no longer of the TRC type, but in which, unlike the case of these tubes, the image on the output screen is formed by a flow of electrons whose l 'impact covers at once the entire surface of the exit screen, which is, so to speak, at a given moment, "sprinkled" entirely by the beam. This watering can also be permanent during the shooting, or applied by pulses, as we will see later.

Ce cas est typiquement celui des intensificateurs d'images radiologiques (IIR), destinés aux usages médicaux évoqués plus haut, et des intensificateurs d'images lumineues (IIL) réservés, dans d'autres domaines, au prélèvement d'images à faible éclairement ou nocturnes.This case is typically that of radiological image intensifiers (IIR), intended for the medical uses mentioned above, and bright image intensifiers (IIL) reserved, in other fields, for the collection of images with low illumination or nocturnal.

C'est ce genre de tubes, IIR ou IIL, que concerne l'invention, qui prévoit la combinaison d'un écran électroluminescent aux autres éléments de ces tubes, laquelle assure l'obtention d'un certain nombre d'avantages généralement absents des tubes du même type de l'art antérieur, dans les conditions qui seront exposées. Elle concerne, de façon générique, tous les tubes dans lesquels, comme on l'a dit, l'écran de sortie est couvert en même temps en tous ses points par le flux d'électrons porteur du signal en provenance de l'entrée du tube.It is this type of tube, IIR or IIL, which the invention relates, which provides for the combination of an electroluminescent screen with the other elements of these tubes, which ensures that a certain number of advantages generally absent are obtained. tubes of the same type of the prior art, under the conditions which will be exposed. It concerns, in a generic way, all the tubes in which, as we said, the output screen is covered at all times at all its points by the flow of electrons carrying the signal coming from the input of the tube.

L'invention sera mieux comprise en se reportant à la description qui suit et aux figures jointes qui représentent:

  • - figure 1: une vue en coupe schématique d'un écran électrolumininescent;
  • - figure 2: un diagramme montrant le cycle d'hystérésis de l'écran électroluminescent utilisé dans les tubes intensificateurs d'images de l'invention;
  • - figures 3 et 4: une vue en coupe d'un tube intensificateur d'images de l'invention et un diagramme de ses utilisations, respectivement;
  • - figures 5 à 8: des diagrammes de la tension appliquée dans differents modes de mise en oeuvre du tube de l'invention.
The invention will be better understood by referring to the description which follows and to the attached figures which represent:
  • - Figure 1: a schematic sectional view of an electrolumininescent screen;
  • - Figure 2: a diagram showing the hysteresis cycle of the electroluminescent screen used in the image intensifier tubes of the invention;
  • - Figures 3 and 4: a sectional view of an image intensifier tube of the invention and a diagram of its uses, respectively;
  • - Figures 5 to 8: diagrams of the voltage applied in different embodiments of the tube of the invention.

On rappellera tout d'abord la constitution générale des écrans électroluminescents et un certain nombre de leurs propriétés.We first recall the general constitution of electroluminescent screens and a number of their properties.

Ces écrans constitués de plusieurs couches.These screens consist of several layers.

La figure 1, montre en coupe un exemple de structure d'écran électroluminescent.Figure 1 shows in section an example of an electroluminescent screen structure.

On y distingue une couche centrale 4 en sulfure de zinc, dopé au manganèse, disposée entre deux couches 3 et 5 en matériau diélectrique: par exemple oxyde d'aluminium, oxyde de tantale, nitrure de silicium, etc. Ces trois couches ont des épaisseurs à peu près égales et de l'ordre de quelques centaines de nm; elles sont prises entre deux couches conductrices 2, 6; la couche 2, en oxyde d'indium, étain est transparente aux radiations lumineuses émises par la cellule; la couche 6 constituée d'aluminium est, elle, opaque à ces radiations, pour éviter toute perturbation de la photocathode. Dans le tube, la couche 6 fait face au bombardement d'électrons. Entre les couches 2 et 6 est établie en fonctionnement une différence de potentiel; cette différence de potentiel, comme figuré, est généralement alternative et de forme quelconque: sinusoïdale, à impulsions de formes diverses, rectangulaires, triangulaires ..., de largeur et fréquence variées. Le tout repose, par la couche 2, sur un support épais en verre 1, qui n'est pas représenté en proportions quant à son épaisseur.There is a central layer 4 of zinc sulfide, doped with manganese, disposed between two layers 3 and 5 of dielectric material: for example aluminum oxide, tantalum oxide, silicon nitride, etc. These three layers have approximately equal thicknesses of the order of a few hundred nm; they are taken between two conductive layers 2, 6; layer 2, made of indium tin oxide, is transparent to light radiation emitted by the cell; layer 6 made of aluminum is opaque to these radiations, to avoid any disturbance of the photocathode. In the tube, layer 6 faces the electron bombardment. Between layers 2 and 6, a potential difference is established in operation; this difference in potential, as illustrated, is generally alternative and of any shape: sinusoidal, with pulses of various shapes, rectangular, triangular ..., of varied width and frequency. The whole rests, by the layer 2, on a thick glass support 1, which is not shown in proportions as to its thickness.

Ce type d'écran présente la propriété d'émettre un rayonnement lumineux dans le spectre visible lorsqu'il est excité par la tension appliquée. Cette émission ne commence qu'au-dessus d'une certaine tension de seuil Vs et croît rapidement en intensité au-delà de cette valeur. Pour fixer les idées on indiquera qu'une valeur courante de Vs est de 150 volts environ, le point d'utilisation, correspondant à la tention Vu, ne dépassant généralement pas 180 volts (Vu-Vs de l'ordre de 30 volts), dans les conditions normales de fonctionnement: point de la partie extrême du haut de la courbe de la figure 2 décrite plus loin. La fréquence de cette tension, très variable, est par exemple de 5 kHz, tous ces chiffres étant donnés à titre d'exemple et dépendant de la composition exacte de l'écran, de celle de la couche 4 notamment.This type of screen has the property of emitting light radiation in the visible spectrum when it is excited by the applied voltage. This emission begins only above a certain threshold voltage V s and increases rapidly in intensity beyond this value. To fix the ideas, it will be indicated that a current value of V s is approximately 150 volts, the point of use, corresponding to the tention Vu, generally not exceeding 180 volts (Vu-V s of the order of 30 volts ), under normal operating conditions: point at the extreme top of the curve in Figure 2 described below. The frequency of this very variable voltage is for example 5 kHz, all these figures being given by way of example and depending on the exact composition of the screen, in particular that of layer 4.

Pour certaines compositions de cette couche, et notamment pour certaines teneurs en manganèse, comprises entre 1% et 5% du total en poids, le même type d'écran peut présenter un effet de mémoire lié aux phénomènes d'hystérésis dont il est le siège (voir Howard - Appl. Phys. Letters vol 31 page 399 Septembre 1977).For certain compositions of this layer, and in particular for certain manganese contents, of between 1% and 5% of the total by weight, the same type of screen may have a memory effect linked to the hysteresis phenomena of which it is the seat (see Howard - Appl. Phys. Letters vol 31 page 399 September 1977).

La figure 2 montrant la luminance L en fonction de la tension V, (L=f(V)), donne un exemple d'une de ces cycles d'hystérésis, où l'on distingue la tension de seuil Vs précédente et trois valeurs Vef, Ve et Va dont la signification sera donnée ci-dessous.Figure 2 showing the luminance L as a function of the voltage V, (L = f (V)), gives an example of one of these hysteresis cycles, where we distinguish the previous threshold voltage V s and three values Ve f , V e and Va, the meaning of which will be given below.

L'écran, ou cellule électroluminescente, est excité par les impulsions positives et négatives d'une tension d'amplitude Ve dite tension d'entretien. La cellule n'est pas illuminée.The screen, or electroluminescent cell, is excited by the positive and negative pulses of a voltage of amplitude V e called maintenance voltage. The cell is not illuminated.

La cellule est ensuite excitée avec une tension d'adressage Va (toujours en impulsions + et -). Le point de fonctionnement se situe en A et la luminance de la cellule est LA.The cell is then energized with an addressing voltage Va (always in + and - pulses). The operating point is located at A and the luminance of the cell is LA.

De nouveau on lui applique des impulsions Ve. Le point de fonctionnement se situe en B. La luminance est LB. La cellule émet de la lumière, alors que dans le premier cas pour la même tension, aucune lumière n'était émise (Ve inférieure à Vs).Again we apply pulses V e to it . The operating point is located at B. The luminance is LB. The cell emits light, whereas in the first case for the same voltage, no light was emitted (V e less than V s ).

L'amplitude des impulsions est diminuée jusqu'à une tension Vef. La cellule s'éteint; aucune lumière n'est émise: Vef est la tension d'effacement.The amplitude of the pulses is reduced to a voltage V ef . The cell turns off; no light is emitted: V ef is the erasing voltage.

L'amplitude des impulsions est ramenée à Ve: (tension d'entretien). La cellule n'émet aucune lumière.The amplitude of the pulses is reduced to V e : (maintenance voltage). The cell emits no light.

Ces écrans ont, en outre, comme on l'a dit, la propriété de répondre à une excitation par bombardement d'électrons - et en général aussi par rayonnement utraviolet. Une tension leur étant appliquée dans les conditions indiquées plus haut, l'apport supplémentaire d'un tel bombardement permet de se déplacer sur le diagramme d'hystérésis, cet apport étant équivalent à une tension supplémentaire V appliquée à l'écran. Un tel apport constitue donc un moyen d'adressage d'un signal sur l'écran. C'est ce qui est fait dans les tubes intensificateurs de l'invention dans lesquels l'écran de sortie consiste en l'un de ces écrans électroluminescents. La quantité V est ici celle apportée par le bombardement d'électrons en provenance de l'écran d'entrée du tube.These screens have, moreover, as we have said, the property of responding to an excitation by electron bombardment - and in general also by utraviolet radiation. A voltage being applied to them under the conditions indicated above, the additional contribution of such bombardment makes it possible to move on the hysteresis diagram, this contribution being equivalent to an additional voltage V applied to the screen. Such a contribution therefore constitutes a means of addressing a signal on the screen. This is what is done in the intensifier tubes of the invention in which the output screen consists of one of these electroluminescent screens. The quantity V is here that brought by the bombardment of electrons coming from the screen of entry of the tube.

On rappelle ci-dessous à l'aide de la figure 3, sur laquelle ce tube porte le repère d'ensemble 10, la structure générale d'un tube intensificatuer d'images, largement connue.With reference to FIG. 3, on which this tube bears the overall reference 10, we recall below the general structure of a widely known image intensifier tube.

Dans une enveloppe à vide 20, on distingue sur la figure 3, un écran d'entrée globalement par le repère 21, situé à l'extrémité gauche de l'enveloppe et, à l'autre extrémité, un écran de sortie 22 vers lequel convergent (flèches) les électrons émis par la photocathode incorporée à l'écran 21, dans lequel elle est placée en regard d'une autre partie de l'écran, éventuellement en contact avec elle et appelée scintillateur, qui convertit le rayonnement incident, des rayons X dans l'exemple, en photons à l'usage de la photocathode. Une série d'électrodes, désignées globalement par le repère 23, représentées chacune avec son passage, sans repère, assure l'accélération et la concentration des électrons vers l'écran de sortie de petite taille, comparé à l'écran d'entrée; l'écran de sortie en question est représenté, comme c'est souvent le cas, disposé au fond d'une boîte équipotentielle sans repère, dont la face de devant est percée d'un petit trou à l'endroit du point de convergence du faisceau d'électrons. L'objet dont on veut former l'image, exposé au rayonnement incident (flèches de gauche) porte le repère 25. On n'a pas représenté sur le dessin l'ensemble des sources servant, en fonctionnement, à l'alimentation du tube dans les conditions connues de l'art; par contre, la source par laquelle est appliquée la tension à l'écran de sortie électroluminescent a été figurée, avec le repère S.In a vacuum envelope 20, there is in FIG. 3, an input screen generally by the reference 21, located at the left end of the envelope and, at the other end, an output screen 22 towards which converge (arrows) the electrons emitted by the photocathode incorporated in the screen 21, in which it is placed opposite another part of the screen, possibly in contact with it and called a scintillator, which converts the incident radiation, X-rays in the example, in photons for the use of the photocathode. A series of electrodes, designated overall by the reference 23, each represented with its passage, without reference, ensures the acceleration and the concentration of the electrons towards the exit screen of small size, compared to the entry screen; the output screen in question is represented, as is often the case, arranged at the bottom of an equipotential box without mark, the front face of which is pierced with a small hole at the point of the point of convergence of the electron beam. The object whose image we want to form, exposed to incident radiation (arrows on the left) has the mark 25. We have not shown in the drawing all the sources used, in operation, to supply the tube under the conditions known in the art; on the other hand, the source by which the voltage is applied to the electroluminescent output screen has been shown, with the mark S.

On donne sur la figure 4 certaines des utilisations possibles d'un tube intensificateur selon la figure 3, dont il sera question dans la suite.Figure 4 gives some of the possible uses of an intensifier tube according to Figure 3, which will be discussed below.

A la sortie de l'écran 22 le faisceau lumineux 12 est repris soit par une caméra photographique 26 pour la présentation de films, soit par un appareil photographique 24 pour la réalisation de photos séparées (radiophotos), soit par une caméra de télévision 28, pour visualisation en temps réel, sur un moniteur de télévision 30. On obtient couramment avec un intensificateur d'images un gain en photons de 150.000, à savoir 150.000 photons lumineux émis par l'écran de sortie pour 1 photon X incident.At the exit from the screen 22 the light beam 12 is taken up either by a photographic camera 26 for the presentation of films, or by a photographic camera 24 for the production of separate photos (radiophotos), or by a television camera 28, for viewing in real time, on a television monitor 30. A photon gain of 150,000 is commonly obtained with an image intensifier, namely 150,000 light photons emitted by the output screen for 1 incident X photon.

Enfin au sujet des propriétés de ces écrans mises à profit dans l'invention, on précisera que l'accroissement de tension LN précédent, résultant du bombardement de l'écran électroluminescent par le faisceau d'électrons, dépend:

  • - de la durée de ce bombardement;
  • - de la densité des électrons de bombardement.
Finally, concerning the properties of these screens taken advantage of in the invention, it will be specified that the previous increase in voltage LN, resulting from the bombardment of the electroluminescent screen by the electron beam, depends:
  • - the duration of this bombardment;
  • - the density of the bombardment electrons.

Cette densité est modulée spatialement par l'objet dont on cherche à reproduire l'image, car l'intensité des rayons X ayant traversé l'objet est fonction du point traversé.This density is spatially modulated by the object whose image is sought to reproduce, because the intensity of the X-rays having passed through the object is a function of the point crossed.

De ce qui précède, il résulte un certain nombre de possibilités nouvelles ouvertes par les tubes intensificateurs de l'invention à écran de sortie électroluminescent développées ci-dessous.From the above, it results from a certain number of new possibilities opened up by the intensifier tubes of the invention with an electroluminescent output screen developed below.

Le bombardement par les électrons faisceau induit en chaque point de la cellule électroluminescente une polarisation interne dont le champ s'ajoute au champ créé par la tension alternative appliquée à la cellule; celà équivaut à une augmentation de la tension V appliquée à la cellule.The electron beam bombardment induces at each point of the light-emitting cell an internal polarization, the field of which is added to the field created by the alternating voltage applied to the cell; this is equivalent to an increase in the voltage V applied to the cell.

Les effets diffèrent suivant le mode de mise en oeuvre adopté, dont des exemples sont donnés ci-dessous.The effects differ depending on the mode of implementation adopted, examples of which are given below.

Dans un premier mode de mise en oeuvre, le dispositif fonctionne en impulsions: le rayonnement X est appliqué sur l'objet par impulsions.In a first embodiment, the device operates in pulses: the X-ray is applied to the object in pulses.

Pendant toute la durée de l'impulsion X, qui peut être de quelques millisecondes, à 1 seconde, par exemple, la cellule se trouve adressée par le faisceau, modulé spatialement, comme on l'a dit; elle reçoit en ses différents points le signal image c'est-à-dire l'information; cette information n'est perçue qu'a la condition que la tension appliquée à la cellule soit suffisante pour que, superposée au signal d'adressage, elle soit supérieure à la tension de seuil Vs. Ceci est obtenu avec une tension V appliquée, fonction alternee du temps t de la forme représentée sur la figure 5, sans paliers à V=0, dont les maxima de part et d'autre du zéro sont de l'ordre de la tension d'entretien Ve comprise entre les valeurs Vef et Vs. Ceci est également possible, en appliquant une tension V constante égale à Ve; la différence entre les deux cas étant que dans le premier l'image est visible pendant l'adressage et que dans le second elle ne l'est pas.During the whole duration of the pulse X, which can be from a few milliseconds, to 1 second, for example, the cell is addressed by the beam, spatially modulated, as we have said; it receives at its various points the image signal, that is to say the information; this information is only perceived on the condition that the voltage applied to the cell is sufficient so that, superimposed on the addressing signal, it is greater than the threshold voltage V s . This is obtained with an applied voltage V, alternating function of time t of the form represented on figure 5, without stages with V = 0, whose maxima on both sides of the zero are of the order of the voltage d 'maintenance V e between the values V ef and V s . This is also possible, by applying a constant voltage V equal to V e ; the difference between the two cases being that in the first image is visible during addressing and that in the second it is not.

La lecture de l'information peut se faire alors en temps réel pendant tout le temps de l'adressage, partie à gauche du trait sur la figure; elle peut se prolonger, immédiatement après l'impulsion X, pendant tout le temps désiré, en maintenant entre les faces de la cellule la tension d'entretien Ve, partie à droite du trait: elle peut aussi être arrêtée pendant le temps désiré et rétablie de nouveau; pendant cet arrêt il y a stockage, c'est-à-dire mémoire de l'information.Reading of the information can then be done in real time during the whole time of addressing, part to the left of the line in the figure; it can be extended, immediately after the X pulse, for the entire desired time, maintaining the maintenance voltage V e between the faces of the cell, part to the right of the line: it can also be stopped for the desired time and restored again; during this stop there is storage, that is to say memory of the information.

La figure 6, montre le diagramme de la tension correspondant à ce dernier cas. Cette interruption peut être obtenue, comme représenté sur cette figure, en donnant à la tension appliquée une valeur invariable dans le temps mais suffisante pour empêcher l'effacement, supérieure à Vef. Cette tension est avantageusement la tension Ve précédente. Pendant tout le temps r que dure l'échelon large du centre de la figure, la cellule, sous tension constante, ne donne aucune image, celle-ci se trouvant stockée éteinte; celle-ci réapparaît à la fin de cet échelon, lorsque la tension alternative Ve est de nouveau appliquée à la cellule, et subsiste pendant tout le temps r2 que cette tension Ve est maintenue. Il y a donc possibilité de stockage de l'image pendant un temps donné choisi, après l'adressage, et avant une nouvelle lecture. L'opération peut se répéter plusieurs fois, plusieurs lectures successives de la même image étant possibles, séparées par des intervalles de temps où celle-ci est stockée.Figure 6 shows the voltage diagram corresponding to the latter case. This interruption can be obtained, as shown in this figure, by giving the applied voltage a value invariable in time but sufficient to prevent erasure, greater than V ef . This voltage is advantageously the previous voltage V e . During all the time r that the wide rung of the center of the figure lasts, the cell, under constant tension, gives no image, this being stored extinct; this reappears at the end of this step, when the alternating voltage V e is again applied to the cell, and remains for the entire time r 2 that this voltage V e is maintained. There is therefore the possibility of storing the image for a given chosen time, after addressing, and before a new reading. The operation can be repeated several times, several successive readings of the same image being possible, separated by time intervals where it is stored.

Ceci est un premier résultat à l'avantage de l'invention par rapport à l'art antérieur.This is a first result to the advantage of the invention compared to the prior art.

Mais on notera aussi un certain nombre d'autres points.But we will also note a certain number of other points.

Concernant notamment le gain, on notera que celui-ci, vu la forme des courbes qui composent en général un diagramme d'hystérésis, comme celui donné à la figure 2 pour la cellule électroluminescente, a, dans les tubes de l'invention, une valeur propre en chacun des points de l'image, contrairement à ce qui se passe dans les tubes du même genre de l'art antérieur, où ce gain, aux défauts d'écran prés, est le même pour tous les points. Il sera différent pour un point de l'écran auquel correspondent les états A et B et pour un point auquel correspondent les états A' et B' portés sur la figure 2, états qui dépendent, d'après ce qui précède, de la densité des électrons dans le faisceau, correspondant à ces points. La dynamique du gain à la surface de l'image s'en trouvera très différente de ce qu'elle était dans l'art antérieur, comme on peut l'apercevoir sur les courbes portant les flèches descendantes de la figure 2, qui dépendent elles-mêmes de la pente de la courbe de droite (fléches montantes), caractéristique de la cellule choisie. C'est ainsi que pour obtenir des luminances élevées, on pourra choisir des points de fonctionnement (Ve) près de la tension de seuil Vs et pour des contrastes élevés, des valeurs de Ve prés de Vef au contraire.Concerning in particular the gain, it will be noted that this, given the shape of the curves which generally make up a hysteresis diagram, like that given in FIG. 2 for the electroluminescent cell, has, in the tubes of the invention, a eigenvalue at each of the points of the image, contrary to what happens in tubes of the same kind of the prior art, where this gain, with near screen faults, is the same for all the points. It will be different for a point on the screen to which the states A and B correspond and for a point to which the states A 'and B' shown in FIG. 2 correspond, states which depend, according to the above, on the density electrons in the beam, corresponding to these points. The dynamics of the gain at the surface of the image will be very different from what it was in the prior art, as can be seen on the curves carrying the downward arrows in FIG. 2, which depend on them. -same of the slope of the right curve (rising arrows), characteristic of the selected cell. Thus, to obtain high luminances, it will be possible to choose operating points (V e ) near the threshold voltage V s and for high contrasts, values of V e near V ef on the contrary.

Un autre point important, et qui constitue un autre avantage de l'invention, est que le gain en photons, rapport du nombre de photons lumineux émis par un point de la cellule au nombre de photons X reçus par le point correspondant de l'écran d'entrée, peut atteindre des valeurs extrêmement élevées, largement supérieures à celle citée, grâce à la possibilité de stockage et d'observations successives pendant une durée total très longue; ceci présente un grand intérêt pour la production de radiophotos (24, figure 4); inversement, à gain donné, il est possible de diminuer la dose d'irradiation.Another important point, and which constitutes another advantage of the invention, is that the gain in photons, ratio of the number of light photons emitted by a point of the cell to the number of X photons received by the corresponding point of the input screen, can reach extremely high values, much higher than that cited, thanks to the possibility of storage and successive observations for a very long total time; this is of great interest for the production of radiophotos (24, FIG. 4); conversely, with a given gain, it is possible to reduce the radiation dose.

Ce gain dépend d'ailleurs, toutes choses étant égales, de la fréquence de la tension alternative appliquée; il est multiplié par un facteur 100 environ lorsque l'on passe de 50 Hz à 50 kHz.This gain depends moreover, all other things being equal, on the frequency of the alternating voltage applied; it is multiplied by a factor of around 100 when going from 50 Hz to 50 kHz.

Dans les tubes de l'invention, il peut être aisément adapté à la valeur optimale correspondant à chacune des utilisations qui est faite de l'image produite sur l'écran de sortie du tube (voir figure 4), à intensité d'irradiation incident fixe.In the tubes of the invention, it can be easily adapted to the optimal value corresponding to each of the uses which is made of the image produced on the tube output screen (see FIG. 4), with incident irradiation intensity. fixed.

L'intégration réalisée grâce aux possibilités de stockage et de lectures répétées est d'autre part favorable à une amélioration du rapport signal/ bruit.The integration achieved thanks to the possibilities of storage and repeated readings is also favorable to an improvement of the signal / noise ratio.

Le fonctionnement dans le voisinage de la zone de saturation de la courbe L=f (V) (figure 2) permet éventuellement de diminuer le bruit quantique.Operation in the vicinity of the saturation zone of the curve L = f (V) (FIG. 2) can possibly reduce the quantum noise.

Ceci amène à préciser qu'il est nécessaire de limiter la durée de l'adressage, car la tension induite par le faiceau dans la cellule, croissant à chaque alternance, risquerait de provoquer cette saturation.This leads to specify that it is necessary to limit the duration of the addressing, because the tension induced by the bundle in the cell, increasing with each alternation, would risk causing this saturation.

Enfin la structure en couches minces de la cellule électroluminescente, telle qu'elle ressort des chiffres d'épaisseur donnés plus haut, permet de grandes résolutions des images de sortie. Les cellules sur leur support ont couramment la forme de disques de 25 à 50 mm de diamètre.Finally, the thin film structure of the electroluminescent cell, as shown by the thickness figures given above, allows high resolutions of the output images. The cells on their support commonly have the form of discs from 25 to 50 mm in diameter.

L'effacement de l'image s'obtient simplement en abaissant l'amplitude de la tension appliquée au dessous de la valeur Vef. On aperçoit les échelons qui correspondent à cette phase du cycle dans la partie droite de la figure 7, dans laquelle la partie entre les deux traits mixtes de gauche correspond à la lecture, qui suit ici immédiatement l'impulsion du rayonnement incident comme dans le cas de la figure 5, et celle à droite du dernier trait mixte à l'adressage d'une nouvelle image.The erasure of the image is obtained simply by lowering the amplitude of the applied voltage below the value V ef . We see the steps that correspond to this phase of the cycle in the right part of Figure 7, in which the part between the two mixed lines on the left corresponds to the reading, which here immediately follows the impulse of the incident radiation as in the case in Figure 5, and the one to the right of the last dashed line to address a new image.

Dans un autre mode de mise en oeuvre, on opère en rayonnement X continu (figure 8).In another embodiment, one operates in continuous X-ray radiation (FIG. 8).

Dans ce mode de fonctionnement, on opère en temps réel, c'est à dire sans aucun stockage de l'information. L'image est présentée pendant toute la période d'adressage, puis effacée; puis de nouveau, une deuxième image est adressée, et ainsi de suite.In this operating mode, it operates in real time, that is to say without any information storage. The image is presented during the entire addressing period, then erased; then again, a second image is addressed, and so on.

Un cycle image comprend alors deux phases:

  • - un adressage par bombardement électronique et présentation de l'image en temps réel. Pendant toute la durée de l'adressage, la luminance croît à chaque échelon de la tension appliquée, car la polarisation interne de la cellule croit pendant toute la durée de l'adressage. Pendant cette période, la cellule est alimentée par la tension d'entretien Ve (partie de la figure entre les deux premiers traits mixtes);
  • - la deuxième phase du cycle est la phase d'effacement de l'image qui peut se faire sous bombardement électronique; elle consiste simplement à diminuer l'amplitude de la tension appliquée à une valeur inférieure à Vef, et éventuellement, cette fois, à séparer les échelons de la tension appliquée par des temps morts ou à amplitude nulle (partie de la figure entre les deux derniers traits mixtes).
An image cycle then comprises two phases:
  • - addressing by electronic bombardment and presentation of the image in real time. During the whole duration of the addressing, the luminance increases with each step of the applied voltage, because the internal polarization of the cell increases during the whole duration of the addressing. During this period, the cell is supplied by the maintenance voltage V e (part of the figure between the first two dashed lines);
  • - the second phase of the cycle is the phase of erasing the image which can be done under electronic bombardment; it consists simply in reducing the amplitude of the applied voltage to a value lower than V ef , and possibly, this time, in separating the steps of the applied voltage by dead times or at zero amplitude (part of the figure between the two last mixed lines).

La durée d'un cycle peut être de 20 ms, rendant ainsi compatible la présentation de l'image avec une prise de vue par caméra photo ou caméra de télévision (repères 26 et 28 de la figure 4).The duration of a cycle can be 20 ms, thus making the presentation of the image compatible with a shooting by photo camera or television camera (marks 26 and 28 in FIG. 4).

La fréquence de la tension d'entretien, son amplitude, la durée d'adressage, la fréquence image (ou durée d'un cycle complet), la dose X, la tension d'accélération des électrons d'adressage sont autant de paramètres qui permettent d'adapter la présentation de l'image à l'utilisation qui en est faite.The frequency of the maintenance voltage, its amplitude, the duration of addressing, the image frequency (or duration of a complete cycle), the dose X, the acceleration voltage of the addressing electrons are all parameters which allow the presentation of the image to be adapted to the use made of it.

Un fonctionnement mixte, combinant les deux modes précédents, peut aussi être envisage, permet:

  • - une analyse en temps réel, avec reprise par caméra de télévision pour toute image évolutive, suivant le processus qui vient d'être décrit (continu), et
  • - un arrêt sur une image fixe, par suppression simultanée de l'adressage, par coupure des X, et de la phase d'effacement du cycle image. La dernière image est alors mémorisée et présentée pendant le temps nécessaire à l'observation suivant le premier mode de fonctionnement, en impulsions.
A mixed operation, combining the two previous modes, can also be envisaged, allows:
  • - an analysis in real time, with recovery by television camera for any evolving image, according to the process which has just been described (continuous), and
  • - a stop on a fixed image, by simultaneous suppression of the addressing, by cutting of the X, and of the erasing phase of the image cycle. The last image is then memorized and presented for the time necessary for observation according to the first operating mode, in pulses.

Claims (5)

1. An image intensifier tube comprising an input screen exposed to incident radiaton and an output screen, and means for quiding the flow of electrons emitted by a photocathode incorporated in the input screen in the direction of the output screen, in order from thereon the image of the incident radiation, characterized in that the output screen is formed by an electroluminescent cell,
- which is able to emit visible light when an alternating voltage with an amplitude greater than a given threshold Vs is applied between its surfaces,
- which possesses a hysteresis, this light being erased only when the voltage amplitude drops below an erasure value Vei, which is less than Vs,
- and which is able to be addressed by electron bombardment, i. e. to emit visible light when subjected to such bombardment for a maintenance voltage Ve, which is less than Vs.
2. A method for operating an image intensifier tube as defined in claim 1, characterized in that this cell, when working, comprises means for applying an electric voltage V between its surfaces, this voltage being one of the following:
- a direct voltage V, between Vef and Vs;
- an alternating voltage V2 composed of positive and negative rectangular pulses with amplitude between Vef and Vs, without levels at V = between the pulses;
- an alternating voltage V3 composed of positive and negative rectangular pulses with amplitude below Vef
- an alternating voltage V4 composed of positive and negative rectangular pulses with amplitude below Vel, and with levels at V=0 between the pulses.
3. A method for operating the image intensifier tube as defined in claim 2, characterized in that the voltage V is applied to the cell in accordance with a predetermined cycle, using the voltages V1, V2, V3 and V4.
4. A method for operating the image intensifier tube as defined in claim 3, characterized in that, if the incident radiation is applied to the object in the form of separate pulses, the cycle comprises the following steps for each such pulse:
A) throughout the duration of the incident radiation pulse, application of voltage Vi or V2, to ensure the addressing of the cell during this pulse;
B) immediately after the end of the preceding phase, application of V1 or V2 for given durations chosen in advance and possibly alternate application of either of these voltages, to maintain the image in the cell in a visible state when voltage V2 is applied, and in an invisible state when voltage V, is applied;
C) immediately after the end of the previous phase, and before application of the subsequent incident radiation pulse to the object, application of V3, to erase the image corresponding to this radiation pulse.
5. A method for operating the image intensifier tube as defined in claim 3, characterized in that, if the incident radiation is applied continuously to the object, the cycle comprises the following alternating steps:
A') application of voltage V2, to address the cell and cause a visible image to appear on it;
B') application of voltage V4 to erase the image.
EP82401670A 1981-09-22 1982-09-14 Image-intensifying tube with memory, and operating method Expired EP0075512B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8117848 1981-09-22
FR8117848A FR2513438A1 (en) 1981-09-22 1981-09-22 IMAGE INTENSIFYING MEMORY TUBE AND METHOD OF IMPLEMENTING THE SAME

Publications (2)

Publication Number Publication Date
EP0075512A1 EP0075512A1 (en) 1983-03-30
EP0075512B1 true EP0075512B1 (en) 1985-01-23

Family

ID=9262360

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82401670A Expired EP0075512B1 (en) 1981-09-22 1982-09-14 Image-intensifying tube with memory, and operating method

Country Status (5)

Country Link
US (1) US4680461A (en)
EP (1) EP0075512B1 (en)
JP (1) JPS5866241A (en)
DE (1) DE3262058D1 (en)
FR (1) FR2513438A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5404072A (en) * 1993-05-28 1995-04-04 Itt Corporation Unistructural housing for an image intensifier tube
WO1995009432A1 (en) * 1993-05-28 1995-04-06 International Standard Electric Corp. Unistructural housing for an image intensifier tube
JP2002365662A (en) * 2001-06-11 2002-12-18 Rohm Co Ltd Display medium, display element and display device
US10492249B2 (en) * 2012-07-10 2019-11-26 Michael M McRae Electroluminescent ornaments and display systems

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3908148A (en) * 1973-12-27 1975-09-23 Watkins Johnson Co Electro-optical transducer and storage tube
FR2431184A1 (en) * 1978-07-10 1980-02-08 Tektronix Inc ELECTRO-LUMINESCENT STORAGE TUBE WITH CATHODE RAYS

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3590253A (en) * 1969-06-30 1971-06-29 Westinghouse Electric Corp Solid-state photoconductor-electroluminescent image intensifier
US3710081A (en) * 1971-06-14 1973-01-09 Tamar Electronics Ind System for computing the average of successive traffic measurements
FR2195841B1 (en) * 1972-08-11 1975-03-07 Thomson Csf
US3967112A (en) * 1973-06-15 1976-06-29 Sharp Kabushiki Kaisha Photo-image memory panel and activating method thereof
US3971931A (en) * 1975-01-23 1976-07-27 The United States Of America As Represented By The Secretary Of The Navy Led image tube light valve
US4206460A (en) * 1977-03-10 1980-06-03 Sharp Kabushiki Kaisha EL Display drive controlled by an electron beam
US4149108A (en) * 1977-06-17 1979-04-10 International Business Machines Corporation Multistable cathode ray type storage display device
US4207617A (en) * 1977-06-29 1980-06-10 Sharp Kabushiki Kaisha Memory erase and memory read-out in an EL display panel controlled by an electron beam
US4155030A (en) * 1977-12-19 1979-05-15 International Business Machines Corporation Multicolor display device using electroluminescent phosphor screen with internal memory and high resolution
US4184069A (en) * 1978-03-28 1980-01-15 The United States Of America As Represented By The Secretary Of The Army Orthogonal array faceplate wafer tube display
US4221002A (en) * 1978-11-06 1980-09-02 International Business Machines Corporation Electro-optically matrix-addressed electroluminescence display with memory
GB2050777A (en) * 1979-05-29 1981-01-07 Tektronix Inc Electroluminescent Storage CRT Display Device and Operating Method
DE2929745C2 (en) * 1979-07-23 1986-03-27 Siemens AG, 1000 Berlin und 8000 München Method for producing a fluorescent input screen of an X-ray image intensifier

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3908148A (en) * 1973-12-27 1975-09-23 Watkins Johnson Co Electro-optical transducer and storage tube
FR2431184A1 (en) * 1978-07-10 1980-02-08 Tektronix Inc ELECTRO-LUMINESCENT STORAGE TUBE WITH CATHODE RAYS

Also Published As

Publication number Publication date
DE3262058D1 (en) 1985-03-07
FR2513438A1 (en) 1983-03-25
US4680461A (en) 1987-07-14
JPS5866241A (en) 1983-04-20
EP0075512A1 (en) 1983-03-30
FR2513438B1 (en) 1983-12-02

Similar Documents

Publication Publication Date Title
FR2541784A1 (en) DEVICE FOR STATIC DEFLECTION OF AN INFRA-RED BEAM
EP0817472A1 (en) X- or gamma-ray imaging method and apparatus with exposure time optimisation
EP0332486A1 (en) Matrix of photosensitive elements and a variation sensor with such a matrix, especially a double energy X-ray sensor
EP0704877A1 (en) Electric protection of an anode of a plat viewing screen
FR2530851A1 (en) PLAN VIEWING APPARATUS FOR TELEVISIONS AND TERMINALS
FR2574972A1 (en) MEMORY EFFECT DISPLAY DEVICE COMPRISING SUPERIMPOSED ELECTROLUMINESCENT AND PHOTOCONDUCTOR LAYERS
CA2225778A1 (en) Ionizing radiation detection device with high-resistivity semiconductor
EP0075512B1 (en) Image-intensifying tube with memory, and operating method
EP0485285B1 (en) Electrooptic bistable device, display screen including the same and method of driving therefor
EP0331546B1 (en) Photosensitive matrix with two diodes at each point, without any specific reset lead
EP0324677A1 (en) Three diodes photosensitive matrix, without resetting
FR2760585A1 (en) METHOD FOR CONTROLLING A LOW RETENTION PHOTOSENSITIVE DEVICE, AND PHOTOSENSITIVE DEVICE IMPLEMENTING THE METHOD
EP0062553B1 (en) Image intensifier tube target and image intensifier tube with video output comprising such a target
US6504166B2 (en) Method and apparatus for recording image in recording medium using photoconductor with reduced dark latent image, and reading image from photoconductor with reduced dark current
EP0585172A1 (en) X-ray image acquisition method and device for performing the process
EP0240384A1 (en) Memory imaging system
EP0292376A1 (en) Electroluminescent display device with a memory effect and a half-tone
EP0670078B1 (en) Image-generating device using the luminescence effect
FR2471643A1 (en) ERASING METHOD FOR MEMORY LIGHT EMITTING DISPLAY DEVICE
FR2671229A1 (en) METHOD, TUBE AND SYSTEM FOR REMOVING AN ANTI-DIFFUSING GRID FIXED IN A RADIOLOGICAL IMAGE
CA2203413A1 (en) Dispositif de detection de rayons x a base de semi-conducteurs
FR2601499A1 (en) IMAGE PHOTOCONDUCTIVE IMAGE DETECTOR
EP0338910B1 (en) Amorphous silicon photodetector with enhanced quantum efficiency
FR2579811A1 (en) DEVICE AND METHOD FOR RECORDING IMAGES USING MICROCHANNEL WAFERS
FR2762741A1 (en) CCD array control method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE GB NL

17P Request for examination filed

Effective date: 19830409

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE GB NL

REF Corresponds to:

Ref document number: 3262058

Country of ref document: DE

Date of ref document: 19850307

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19870930

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19880914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19890401

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19890601