EP0071781B1 - Annular recuperative heat exchanger - Google Patents

Annular recuperative heat exchanger Download PDF

Info

Publication number
EP0071781B1
EP0071781B1 EP82106236A EP82106236A EP0071781B1 EP 0071781 B1 EP0071781 B1 EP 0071781B1 EP 82106236 A EP82106236 A EP 82106236A EP 82106236 A EP82106236 A EP 82106236A EP 0071781 B1 EP0071781 B1 EP 0071781B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
plates
ducts
intermediate plates
guide plates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82106236A
Other languages
German (de)
French (fr)
Other versions
EP0071781A1 (en
Inventor
Thomas Dipl.-Ing. Weber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kloeckner Humboldt Deutz AG
Original Assignee
Kloeckner Humboldt Deutz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kloeckner Humboldt Deutz AG filed Critical Kloeckner Humboldt Deutz AG
Publication of EP0071781A1 publication Critical patent/EP0071781A1/en
Application granted granted Critical
Publication of EP0071781B1 publication Critical patent/EP0071781B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0012Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the apparatus having an annular form
    • F28D9/0018Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the apparatus having an annular form without any annular circulation of the heat exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/10Particular pattern of flow of the heat exchange media
    • F28F2250/108Particular pattern of flow of the heat exchange media with combined cross flow and parallel flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S165/00Heat exchange
    • Y10S165/355Heat exchange having separate flow passage for two distinct fluids
    • Y10S165/356Plural plates forming a stack providing flow passages therein
    • Y10S165/357Plural plates forming a stack providing flow passages therein forming annular heat exchanger
    • Y10S165/358Radially arranged plates

Definitions

  • the invention relates to an annular recuperative heat exchanger according to the co-current or countercurrent principle according to the preamble of claim 1 and an annular recuperative heat exchanger according to the cross-flow principle according to the preamble of claim 5. These heat exchangers are preferably provided for the coaxial arrangement on gas turbine systems.
  • annular countercurrent or cocurrent heat exchanger is known from US-A-4 098 330, in which beveled shafts of guide plates overlap on the end faces of the heat exchanger ring, so that individual heat exchanger elements can be inserted into the ring from the outside unhindered.
  • the intermediate plates butt against one another in a step-like manner, without overlapping.
  • the manufacturing effort and the representation of sufficient manufacturing accuracy is difficult here.
  • annular heat exchanger according to the cross-flow principle is disclosed, in which multi-deformed intermediate plates encapsulate in one piece a wedge-shaped, axially flowed-through element and in each case two half parallel-walled, radially flowed through elements, so that here too, due to the large number of individual machining operations the overall manufacturing process must be viewed as very complex.
  • the characterizing features of claim 1 are proposed for an annular heat exchanger according to the countercurrent or cocurrent principle and the characterizing features according to claim 5 are proposed for an annular heat exchanger according to the crossflow principle.
  • the solution thus lies in intermediate sheets which are U-shaped in cross section and which are stacked, closed overall to form a ring, pushed into one another and connected to one another on their two legs, where appropriate even a firm connection of the intermediate sheets with the guide plates. This considerably simplifies the manufacturing effort.
  • the simple construction sought according to the invention is achieved by the intermediate plates bent at right angles at their edges. This creates a very simple matrix of an annular heat exchanger, which is also easy to manufacture by connecting the intermediate plates and in which a metallic connection to the guide plates can in turn be dispensed with.
  • every second of the guide plates has increasing shaft height from the center distance, while the respective intervening guide plate with the center distance remains constant Has wave height, so that a wedge-shaped heat exchanger element and a parallel-walled heat exchanger element alternate.
  • the idea according to the invention realized here is to produce a ring heat exchanger which dispenses with any dead spaces in order to make better use of the installation space.
  • Claim 6 describes a favorable embodiment of both the cocurrent or countercurrent heat exchanger according to the invention and the cross-flow heat exchanger according to the invention.
  • Fig. 1 shows two adjacent corrugated guide plates 1, 2 of which one is in the hot gas and the other in the cold air flow.
  • the guide plates each form a wedge-shaped heat exchanger element with an associated intermediate plate 3 and 4.
  • the intermediate plates 3, 4 have triangular end pieces 5, 6, which on opposite sides of the free sides 7 and 8, 9 and 10 at right angles to each other and also in pairs on sides 7 and 9, 8 and 10 of adjacent intermediate plates 5, 6 folded in opposite directions are so that when two wedge elements each consisting of guide plate 1, 2 and intermediate plate 3, 4 are joined together, a partial covering of adjacent folding strips 8 and 10 is achieved. In each case, alternating diagonally inwards and diagonally outwards, free entry and exit gaps are formed.
  • the intermediate plates 3, 4 are also bent at right angles in the same sense, projecting at the longitudinal edges beyond the height of the guide plates 1, 2, so that outer and inner cylindrical strips 11, 12 which partially overlap are formed.
  • FIG. 2 shows part of a counterflow heat exchanger matrix according to FIG. 1 with channel widths increasing from the inside to the outside.
  • the corrugated guide plates for hot gas 1 and for cold air 2 each have significantly different wave heights.
  • the intermediate plates 3 and 4 each have cylindrical strips 11, 12 which overlap on the inside and outside.
  • the guide plates are deformed in a trapezoidal shape.
  • Fig. 3 shows a small gas turbine 13 with a counterflow ring heat exchanger in partial section.
  • the combustion air exits the compressor (not shown in section) via the diffuser 14 into the air inlet area 15 on the ring heat exchanger. From here it reaches the air outlet area 17 via the corresponding axial cold air channels in the heat exchanger matrix 16 and from there into the combustion chamber 18 with the burner 19.
  • the fuel gases drive the partially cut axial turbine 20 and flow via the exhaust gas channel 22 and. the hot gas inlet 23 to the heat exchanger matrix 16, the hot gas channels of which lead to the exhaust gas outlet 24.
  • Fig. 4 shows white corrugated guide plates 25, 26 for axial flow and two corrugated guide plates 27, 28 for radial flow.
  • the first-mentioned guide plates each form wedge-shaped heat exchanger elements with intermediate plates 29, 30.
  • the intermediate plates 29, 30, 31, 32 are each bent twice at a right angle at the end of the associated shaft trains and thus form a reinforcement to terminate the corresponding heat exchanger elements.
  • 5a shows three views of different diameter areas of a cross-flow ring heat exchanger from the front side, wherein a wedge-shaped element for axial flow and two adjacent parallel-walled plate elements for radial flow can be seen.
  • 5b shows the top view of a peripheral part of the cross-flow ring heat exchanger in half representations from the inside and from the outside, in which three elements for radial flow and two elements for axial flow appear in the view.
  • the wedge-shaped element has a smaller width at the foot than at the head.
  • the individual digits designate the same elements as in FIG. 4.
  • Fig. 6 shows a gas turbine engine 33 with a cross-flow ring heat exchanger 34 in half section.
  • the compressor air enters at the air inlet 35, reaches the diffuser 37 via the radial compressor 36 and flows radially through the matrix of the heat exchanger 34 from the outside inwards.
  • the combustion air enters the exhaust gas duct 40 via the combustion chamber 38 and the axial turbine 39, flows axially through the heat exchanger matrix and leaves the heat exchanger 34 at the exhaust gas outlet 41.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

Die Erfindung betrifft einen ringförmigen rekuperativen Wärmetauscher nach dem Gleich- oder Gegenstromprinzip gemäß dem Oberbegriff des Anspruches 1 sowie einen ringförmigen rekuperativen Wärmetauscher nach dem Kreuzstromprinzip gemäß dem Oberbegriff des Anspruches 5. Diese Wärmetauscher sind vorzugsweise für die koaxiale Anordnung an Gasturbinenanlagen vorgesehen.The invention relates to an annular recuperative heat exchanger according to the co-current or countercurrent principle according to the preamble of claim 1 and an annular recuperative heat exchanger according to the cross-flow principle according to the preamble of claim 5. These heat exchangers are preferably provided for the coaxial arrangement on gas turbine systems.

Aus der DE-A-21 62 888 ist ein ringförmiger im Gegenstrom radial durchströmter Wärmetauscher bekannt. Die wesentlichen Nachteile der hier beschriebenen Anordnung liegen in der jeweils doppelten Richtungsumkehr der jeweils axial zuströmenden Gasströme und in der Querschnittserweiterung bzw. -verengung der Gaskanäle, die durch die streng radiale Anordnung der gewälten Platten gegeben ist.From DE-A-21 62 888 an annular heat exchanger with a radial flow in counterflow is known. The main disadvantages of the arrangement described here lie in the double reversal of direction of the respective axially inflowing gas streams and in the cross-sectional widening or narrowing of the gas channels, which is given by the strictly radial arrangement of the selected plates.

In der US-A-3 818 984 ist ein Gegenstrom- bzw. Gleichstromwärmetauscher beschrieben, bei dem die verwendeten Zwischenbleche stumpf auf gesonderte Ringflächen stoßen, so daß sie keine Funktion bezüglich der Verbindung am Außen-und Innenmantel des Wärmetauscherringes erfüllen können. Des weiteren ist hier vorgesehen, entweder keilförmige Wärmetauscherelemente zu verwenden oder aber alternativ eine Anordnung von Wärmetauscherelementen in parallelwandigen Blöcken, die in überaus unrationeller Weise unter Bildung von Toträumen zusammengesetzt sind. Insgesamt gestaltet sich daher die Herstellung der hier beschriebenen Wärmetauscherausbildungen als sehr aufwendig.In US-A-3 818 984 a countercurrent or cocurrent heat exchanger is described, in which the intermediate plates used butt butt against separate ring surfaces, so that they cannot perform any function with regard to the connection on the outer and inner jacket of the heat exchanger ring. Furthermore, it is provided here either to use wedge-shaped heat exchanger elements or alternatively to arrange heat exchanger elements in parallel-walled blocks, which are assembled in an extremely inefficient manner to form dead spaces. Overall, therefore, the manufacture of the heat exchanger designs described here is very expensive.

Daneben ist aus der US-A-4 098 330 ein ringförmiger Gegenstrom- bzw. Gleichstromwärmetauscher bekannt, bei dem sich an den Stirnflächen des Wärmetauscherringes abgekantete Wellen von Führungsblechen überlappen, so daß einzelne Wärmetauscherlemente ungehindert von außen in den Ring eingeschoben werden können. Am Außenumfang dagegen stoßen jedoch die Zwischenbleche stumpf, stufenartig aneinander, ohne daß eine Überlappung erfolgt. Somit ist auch hier der Fertigungsaufwand und die Darstellung einer ausreichenden Fertigungsgenauigkeit erschwert.In addition, an annular countercurrent or cocurrent heat exchanger is known from US-A-4 098 330, in which beveled shafts of guide plates overlap on the end faces of the heat exchanger ring, so that individual heat exchanger elements can be inserted into the ring from the outside unhindered. On the outer circumference, however, the intermediate plates butt against one another in a step-like manner, without overlapping. Thus, the manufacturing effort and the representation of sufficient manufacturing accuracy is difficult here.

Aus der US-A-2 792 200 ist ein ringförmiger Wärmetauscher nach dem Kreuzstromprinzip offenbart, bei dem mehrfach verformte Zwischenbleche einstückig ein keilförmiges, axial durchströmtes Element sowie jeweils zwei halbe parallelwandige, radial durchströmte Elemente ummanteln, so daß auch hier durch die Vielzahl von Einzelbearbeitungsvorgängen der Gesamtherstellungsprozeß als sehr aufwendig angesehen werden muß.From US-A-2 792 200 an annular heat exchanger according to the cross-flow principle is disclosed, in which multi-deformed intermediate plates encapsulate in one piece a wedge-shaped, axially flowed-through element and in each case two half parallel-walled, radially flowed through elements, so that here too, due to the large number of individual machining operations the overall manufacturing process must be viewed as very complex.

Es ist Aufgabe der vorliegenden Erfindung, ringförmige, rekuperative Wärmetauscher nach dem Gegenstrom- bzw. Gleichstromprinzip und nach dem Kreuzstromprinzip vorzuschlagen, die unter Verwendung möglichst einfach zu fertigender Elemente unkompliziert und rationell herzustellen sind.It is an object of the present invention to propose ring-shaped, recuperative heat exchangers according to the countercurrent or cocurrent principle and according to the crossflow principle, which can be produced in an uncomplicated and efficient manner using elements which are as simple to manufacture as possible.

Zur Lösung dieser Aufgabe werden bei einem ringförmigen Wärmetauscher nach dem Gegenstrom- bzw. Gleichstromprinzip die kennzeichnenden Merkmale des Anspruches 1 und bei einem ringförmigen Wärmetauscher nach dem Kreuzstromprinzip die kennzeichnenden Merkmale nach dem Anspruch 5 vorgeschlagen.To solve this problem, the characterizing features of claim 1 are proposed for an annular heat exchanger according to the countercurrent or cocurrent principle and the characterizing features according to claim 5 are proposed for an annular heat exchanger according to the crossflow principle.

Bei dem rein axial durchströmten Wärmetauscher nach Anspruch 1 liegt die Lösung somit in im Querschnitt U-förmig gestalteten Zwischenblechen, die stapelartig, insgesamt zu einem Ring geschlossen, ineinandergeschoben und an ihren beiden Schenkeln miteinander verbunden sind, wobei sich gegebenenfalls sogar eine feste Verbindung der Zwischenbleche mit den Führungsblechen erübrigen kann. Hierdurch ist der Herstellungsaufwand erheblich vereinfacht.In the case of the purely axially flowing heat exchanger according to claim 1, the solution thus lies in intermediate sheets which are U-shaped in cross section and which are stacked, closed overall to form a ring, pushed into one another and connected to one another on their two legs, where appropriate even a firm connection of the intermediate sheets with the guide plates. This considerably simplifies the manufacturing effort.

Für den Ringwärmetauscher nach dem Kreuzstromprinzip gemäß Anspruch 5 wird die erfindungsgemäß angestrebte einfache Konstruktion durch die an ihren Kanten jeweils doppelt rechtwinklich abgekanteten Zwischenbleche erreicht. Hierdurch ist eine sehr einfach aufgebaute Matrix eines ringförmigen Wärmetauschers geschaffen, die ebenfalls durch Verbindung der Zwischenbleche leicht herzustellen ist und bei der auf eine metallische Verbindung zu den Führungsblechen gegebenenfalls wiederum verzichtet werden kann.For the ring heat exchanger according to the cross-flow principle according to claim 5, the simple construction sought according to the invention is achieved by the intermediate plates bent at right angles at their edges. This creates a very simple matrix of an annular heat exchanger, which is also easy to manufacture by connecting the intermediate plates and in which a metallic connection to the guide plates can in turn be dispensed with.

Den erfindungsgemäßen Lösungen nach den Ansprüchen 1 und 5 ist somit gemein, daß die Zwischenbleche in besonders günstiger Weise nur entlang paralleler Kanten in einem Sinne verformt werden müssen und daß jeweils die gesamten Kanalquerschnitte für den Eintritt und für den Austritt des Strömungsmediums frei sind, ohne durch die Konstruktion der Zwischenbelche in irgendeiner Weise behindert zu sein.The solutions according to the invention according to claims 1 and 5 therefore have in common that the intermediate plates have to be deformed in a particularly advantageous manner only along parallel edges in one sense and that in each case the entire channel cross sections for the entry and for the exit of the flow medium are free without through the construction of the intermediate plates is in any way hindered.

Bezüglich der rein axial durchströmten Wärmetauscher nach dem Gleich- oder Gegenstromprinzip liegt ein weiterer erfinderischer Beitrag zur einfacheren und kostengünstigeren Konstruktion entsprechend Anspruch 2 in dem Merkmal, daß jedes zweite der Führungsbleche von dem Achsabstand zunehmende Wellenhöhe hat, während das jeweils dazwischenliegende Fürungsblech mit dem Achsabstand gleichbleibende Wellenhöhe hat, so daß jeweils ein keilförmiges Wärmetauscherelement und ein parallelwandiges Wärmetauscherelement abwechseln. Der hier verwirklichte erfindungsgemäße Gedanke liegt darin, einen Ringwärmetauscher herzustellen, der zu besseren Ausnutzung des Bauraumes auf Irgendwelche Toträume verzichtet.With regard to the purely axially flowed heat exchanger according to the co-current or counter-current principle, a further inventive contribution to the simpler and cheaper construction according to claim 2 lies in the feature that every second of the guide plates has increasing shaft height from the center distance, while the respective intervening guide plate with the center distance remains constant Has wave height, so that a wedge-shaped heat exchanger element and a parallel-walled heat exchanger element alternate. The idea according to the invention realized here is to produce a ring heat exchanger which dispenses with any dead spaces in order to make better use of the installation space.

Weitere vorteilhafte Ausgestaltungen des erfindungsgemäßen ringförmigen Wärmetauschers nach dem Gegenstrom- bzw. Gleichstromprinzip sind in den Ansprüchen 3 und 4 beschrieben. Der Anspruch 6 beschreibt eine günstige Ausgestaltung sowohl des erfindungsgemäßen Gleich- bzw. Gegenstromwärmetauschers als auch der erfindungsgemäßen Kreuzstromwärmetauschers.Further advantageous refinements of the annular heat exchanger according to the invention according to the countercurrent or cocurrent principle are described in claims 3 and 4. Claim 6 describes a favorable embodiment of both the cocurrent or countercurrent heat exchanger according to the invention and the cross-flow heat exchanger according to the invention.

Ausführungsbeispiele der Erfindung zeigen die folgenden Darstellungen.

  • Figur 1 zeigt zwei Führungsbleche und zwei Zwischenbleche eines Gegenstromringwärmetauschers,
  • Figur 2 zeigt die Wärmetauschermatrix für einen gegenstromringwärmetauscher im Querschnitt,
  • Figur 3 zeigt die Anordnung eines Gegenstromringwärmetauschers an einer Kleingasturbine,
  • Figur 4 zeigt jeweils zwei axiale und radiale Führungsbleche sowie Zwischenbleche eines Kreuzstromringwärmetauschers,
  • Figuren 5a und 5b zeigen die Wärmetauschermatrix eines Kreuzstromringwärmetauschers im Querschnitt und Zylinderschnitt,
  • Figur 6 zeigt die Anordnung eines Kreuzstromringwärmetauschers an einer Gasturbine.
The following illustrations show exemplary embodiments of the invention.
  • FIG. 1 shows two guide plates and two intermediate plates of a counterflow ring heat exchanger,
  • FIG. 2 shows the heat exchanger matrix for a counterflow ring heat exchanger in cross section,
  • FIG. 3 shows the arrangement of a counterflow ring heat exchanger on a small gas turbine,
  • FIG. 4 shows two axial and radial guide plates and intermediate plates of a cross-flow ring heat exchanger,
  • FIGS. 5a and 5b show the heat exchanger matrix of a cross-flow ring heat exchanger in cross section and cylinder section,
  • Figure 6 shows the arrangement of a cross-flow ring heat exchanger on a gas turbine.

Fig. 1 zeigt zwei benachbarte gewellte Führungsbleche 1, 2 von denen eines im Heißgas-und das andere im Kaltluftstrom liegt. Die Führungsbleche bilden jeweils mit einem zugehörigen Zwischenblech 3 und 4 ein keilförmiges Wärmetauscherelement. Die Zwischenbleche 3, 4 besitzen dreieckige Endstücke 5, 6, die an den freien Seiten 7 und 8, 9 und 10 im rechten Winkel zueinander gegensinnig und ebenfalls paarweise an sich entsprechenden Seiten 7 und 9, 8 und 10 benachbarter Zwischenbleche 5, 6 gegensinnig abgekantet sind, so daß bei Zusammenfügen zweier jeweils aus Führungsblech 1, 2 und Zwischenblech 3, 4 bestehender Keilelemente eine partielle Überdeckung von benachbarten Abkantstreifen 8 und 10 zustandekommt. Jeweils abwechselnd schräg nach innen und schräg nach außen bilden sich dabei freibleibende Eintritts-und Austrittsspalte aus. In der gezeigten Darstellung sind die Zwischenbleche 3, 4 auch an den Längskanten über die Höhe der Führungsbleche 1, 2 hinausragend rechtwinklig im gleichen Sinne umgebogen, so daß sich teilweise zu Überdeckung kommende äußere und innere Zylinderstreifen 11, 12 bilden.Fig. 1 shows two adjacent corrugated guide plates 1, 2 of which one is in the hot gas and the other in the cold air flow. The guide plates each form a wedge-shaped heat exchanger element with an associated intermediate plate 3 and 4. The intermediate plates 3, 4 have triangular end pieces 5, 6, which on opposite sides of the free sides 7 and 8, 9 and 10 at right angles to each other and also in pairs on sides 7 and 9, 8 and 10 of adjacent intermediate plates 5, 6 folded in opposite directions are so that when two wedge elements each consisting of guide plate 1, 2 and intermediate plate 3, 4 are joined together, a partial covering of adjacent folding strips 8 and 10 is achieved. In each case, alternating diagonally inwards and diagonally outwards, free entry and exit gaps are formed. In the illustration shown, the intermediate plates 3, 4 are also bent at right angles in the same sense, projecting at the longitudinal edges beyond the height of the guide plates 1, 2, so that outer and inner cylindrical strips 11, 12 which partially overlap are formed.

In Fig. 2 ist ein Teil einer Gegenstromwärmetauschermatrix nach Fig 1 mit von innen nach außen zunehmenden Kanalbreiten gezeigt. Die gewellten Führungsbleche für Heißgas 1 und für Kaltluft 2 haben jeweils deutlich unterschiedliche Wellenhöhe. Die Zwischenbleche 3 und 4 haben jeweils innen und außen sich überdeckende Zylinderstreifen 11, 12. Die Führungsbleche sind trapezförmig verformt.FIG. 2 shows part of a counterflow heat exchanger matrix according to FIG. 1 with channel widths increasing from the inside to the outside. The corrugated guide plates for hot gas 1 and for cold air 2 each have significantly different wave heights. The intermediate plates 3 and 4 each have cylindrical strips 11, 12 which overlap on the inside and outside. The guide plates are deformed in a trapezoidal shape.

Fig. 3 zeigt eine Kleingasturbine 13 mit einem Gegenstromringwärmetauscher im Teilschnitt. Die Verbrennungsluft tritt aus dem nicht im Schnitt dargestellten Verdichter über den Diffusor 14 in den Lufteintrittsbereich 15 am Ringwärmetauscher. Von hier gelangt sie über die entsprechenden axialen Kaltluftkanäle in der Wärmetauschermatrix 16 in den Luftaustrittsbereich 17 und von dort in die Brennkammer 18 mit dem Brenner 19. Die Brenngase treiben die teilweise geschnittene Axial-turbine 20 an und strömen über den Abgaskanal 22 u. den Heißgaseintritt 23 zur Wärmetauschermatrix 16, deren Heißgaskanäle zum Abgasaustritt 24 führen.Fig. 3 shows a small gas turbine 13 with a counterflow ring heat exchanger in partial section. The combustion air exits the compressor (not shown in section) via the diffuser 14 into the air inlet area 15 on the ring heat exchanger. From here it reaches the air outlet area 17 via the corresponding axial cold air channels in the heat exchanger matrix 16 and from there into the combustion chamber 18 with the burner 19. The fuel gases drive the partially cut axial turbine 20 and flow via the exhaust gas channel 22 and. the hot gas inlet 23 to the heat exchanger matrix 16, the hot gas channels of which lead to the exhaust gas outlet 24.

Fig. 4 zeigt jeweils wei gewellte Führungsbleche 25, 26 für axiale Durchströmung und zwei gewellte Führungsbleche 27, 28 für radiale Durchströmung. Die erstgenannten Führungsbleche bilden mit Zwischenblechen 29, 30 jeweils keilförmige Wärmetauscherelemente. Die Führungsbleche 27, 28 bilden mit weiteren in Umfangsrichtung im gleichen Sinne angeordneten Führungsblechen 31, 32 dazwischen angeordnete plattenförmige Wärmetauscherelemente gleichbleibender Dicke. Die Zwischenbleche 29, 30, 31, 32 sind jeweils am Ende der zugehörigen Wellenzüge zweifach rechtwinklig abgekantet und bilden so eine Verstärkung einen Abschluß der entsprechenden Wärmetauscherelemente.Fig. 4 shows white corrugated guide plates 25, 26 for axial flow and two corrugated guide plates 27, 28 for radial flow. The first-mentioned guide plates each form wedge-shaped heat exchanger elements with intermediate plates 29, 30. The guide plates 27, 28, together with further guide plates 31, 32 arranged in the circumferential direction in the same sense, form plate-shaped heat exchanger elements of constant thickness arranged therebetween. The intermediate plates 29, 30, 31, 32 are each bent twice at a right angle at the end of the associated shaft trains and thus form a reinforcement to terminate the corresponding heat exchanger elements.

Fig. 5a zeigt drei Ansichten von verschiedenen Durchmesserbereichen eines Kreuzstromringwärmetauschers von der Stirnseite, wobei ein keilförmiges Element für axiale Durchströmung und zwei benachbarte parallelwandige Plattenelemente für radiale Durchströmung zu sehen sind. Die Draufsicht eines Umfangsteiles des Kreuzstromringwärmetauschers in Halbdarstellungen von innen und von außen zeigt die Fig. 5b, bei der drei Elemente für radiale Durchströmung und zwei Elemente für axiale Durchströmung in der Ansicht erscheinen. Das Keilförmige Element weist am Fuß geringere Breite auf als am Kopf. Die einzelnen Ziffern bezeichnen die gleichen Elemente wie in Fig. 4.5a shows three views of different diameter areas of a cross-flow ring heat exchanger from the front side, wherein a wedge-shaped element for axial flow and two adjacent parallel-walled plate elements for radial flow can be seen. 5b shows the top view of a peripheral part of the cross-flow ring heat exchanger in half representations from the inside and from the outside, in which three elements for radial flow and two elements for axial flow appear in the view. The wedge-shaped element has a smaller width at the foot than at the head. The individual digits designate the same elements as in FIG. 4.

Fig. 6 zeigt ein Gasturbinentriebwerk 33 mit einem Kreuzstromringwärmetauscher 34 im Halbschnitt. Die Verdichterluft tritt am Lufteintritt 35 ein, gelangt über den Radialverdichter 36 in den Diffusor 37 und durchströmt die Matrix des Wärmetauschers 34 radial von außen nach innen. Über die Brennkammer 38 und die Axialturbine 39 gelangt die Brennluft in den Abgaskanal 40, durchströmt die Wärmetauschermatrix axial und verläßt den Wärmetauscher 34 am Abgasaustritt 41.Fig. 6 shows a gas turbine engine 33 with a cross-flow ring heat exchanger 34 in half section. The compressor air enters at the air inlet 35, reaches the diffuser 37 via the radial compressor 36 and flows radially through the matrix of the heat exchanger 34 from the outside inwards. The combustion air enters the exhaust gas duct 40 via the combustion chamber 38 and the axial turbine 39, flows axially through the heat exchanger matrix and leaves the heat exchanger 34 at the exhaust gas outlet 41.

Claims (6)

1. An annular recuperative heat exchanger operating on the unidirectional flow or counterflow principle and having corrugated or meander shaped guide plates (1, 2) for increasing the size of the heat exchanger surface with generatrices which are axially parallel in the direction of the heat exchanger and form, with substantially radially directed intermediate plates (3, 4) ducts through which axial flow takes place, characterized in that, at the two straight cutting edges of adjacent guide plates (1, 2), the intermediate plates (3, 4) are each bent away over the depth of the channel substantially at right angles and in the same direction and are stacked on each intermediate plate by the limbs of their U-shaped cross-section and so close off the two outer ducts formed by the intermediate plate.
2. A heat exchanger according to Claim 1, characterized in that, alternating in the peripheral direction, each first guide plate has a depth of corrugation which increases with the axial spacing and forms walls of a wedgeshaped heat exchanger element, and in that each second guide plate has a constant depth of corrugation over the axial gap and forms walls in a parallel- walled heat heat exchanger element.
3. A heat exchanger according to Claim 1, characterized in that all of the guide plates have in the known manner a depth of corrugation increasing over the axial gap, and form walls in wedge-shaped heat exchanger elements.
4. A heat exchanger according to any one of Claims 1 to 3, characterized in that the intermediate plates (3, 4) terminate beyond the endface cutting edge of the guide plates (1, 2) in triangular pieces (5, 6), the two free sides (7, 8 ; 9,10) of each of which are turned at right angles in opposite directions and which, in conjunction with the triangular pieces (5, 6) of each adjacent intermediate plate (3, 4) whose corresponding free sides (9, 10; 7, 8) are turned in a mirror symmetrical manner, form gas-conducting ducts which are open alternately inwardly and outwardly.
5. An annular recuperative heat exchanger operating on the unidirectional flow or counterflow principle and having corrugated or meander shaped guide plates for increasing the size of the heat exchanger surface, each first guide plate, alternating in the peripheral direction, having a depth of corrugation increasing, with generatrices axially parallel to the heat exchanger ring, over the axial distance and forming, with substantially radially extending intermediate plates, ducts through which axial flow takes place, while each second guide plate has a constant depth of corrugation with generatrices at right angles to the heat exchanger ring over the axial distance and forms, with substantially radially extending intermediate plates, ducts through which radial flow occurs, characterized in that, at the two straight cutting edges of adjacent guide plates (25 to 28), the intermediate plates (29 to 32) are turned over twice at right angles in the same direction and at a distance equal to the width of duct concerned and so enclose the two outer ducts formed by the intermediate plates and constitute a support for the adjacent intermediate plates.
6. A heat exchanger according to any one of the preceding Claims, characterized in that, when the heat exchanger is used as an air preheater, the ducts for the air have a smaller cross-section than the ducts for the hot gas.
EP82106236A 1981-08-06 1982-07-13 Annular recuperative heat exchanger Expired EP0071781B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3131091 1981-08-06
DE19813131091 DE3131091A1 (en) 1981-08-06 1981-08-06 RING-SHAPED RECUPERATIVE HEAT EXCHANGER

Publications (2)

Publication Number Publication Date
EP0071781A1 EP0071781A1 (en) 1983-02-16
EP0071781B1 true EP0071781B1 (en) 1985-01-09

Family

ID=6138688

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82106236A Expired EP0071781B1 (en) 1981-08-06 1982-07-13 Annular recuperative heat exchanger

Country Status (3)

Country Link
US (1) US4527622A (en)
EP (1) EP0071781B1 (en)
DE (2) DE3131091A1 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3131091A1 (en) * 1981-08-06 1983-02-24 Klöckner-Humboldt-Deutz AG, 5000 Köln RING-SHAPED RECUPERATIVE HEAT EXCHANGER
USRE33912E (en) * 1988-02-09 1992-05-05 Jones Environics Ltd. Heat exchanger
US4848450A (en) * 1988-02-09 1989-07-18 C & J Jones (1985) Limited Heat exchanger
US5072790A (en) * 1990-07-30 1991-12-17 Jones Environics Ltd. Heat exchanger core construction
US5681538A (en) * 1995-02-01 1997-10-28 Engelhard Corporation Metallic monolith and plates for the assembly thereof
JPH0942865A (en) * 1995-07-28 1997-02-14 Honda Motor Co Ltd Heat exchanger
JP3685890B2 (en) 1996-10-17 2005-08-24 本田技研工業株式会社 Heat exchanger
DE69717506T2 (en) * 1996-10-17 2003-04-03 Honda Motor Co Ltd Heat Exchanger
WO1998033030A1 (en) * 1997-01-27 1998-07-30 Honda Giken Kogyo Kabushiki Kaisha Heat exchanger
US6438936B1 (en) 2000-05-16 2002-08-27 Elliott Energy Systems, Inc. Recuperator for use with turbine/turbo-alternator
DE10042690A1 (en) * 2000-08-31 2002-03-14 Behr Gmbh & Co Bed heat exchanger
WO2002052214A1 (en) * 2000-12-25 2002-07-04 Honda Giken Kogyo Kabushiki Kaisha Heat exchanger
US7147050B2 (en) * 2003-10-28 2006-12-12 Capstone Turbine Corporation Recuperator construction for a gas turbine engine
NL1025958C2 (en) * 2004-04-15 2005-10-18 Nefit Buderus B V Heat exchanger transmits heat from relatively hot fluid to relatively cold fluid and comprises cylindrical body in which several plates extend
US8646516B2 (en) * 2006-08-17 2014-02-11 Pana Canada Corporation Alternating plate headerless heat exchangers
US20100319892A1 (en) * 2008-04-02 2010-12-23 United Technologies Corporation Heat exchanging structure
DE102012201710A1 (en) * 2011-02-14 2012-08-16 Denso Corporation heat exchangers
WO2014201311A1 (en) * 2013-06-14 2014-12-18 United Technologies Corporation Curved plate/fin heat exchanger
EP2910887B1 (en) * 2014-02-21 2019-06-26 Rolls-Royce Corporation Microchannel heat exchangers for gas turbine intercooling and condensing as well as corresponding method
EP3271676B1 (en) * 2015-03-17 2022-10-05 Zehnder Group International AG Exchange element for passenger cabin and passenger cabin equipped with such an exchange element
US10551131B2 (en) * 2018-01-08 2020-02-04 Hamilton Sundstrand Corporation Method for manufacturing a curved heat exchanger using wedge shaped segments
US11162737B2 (en) * 2019-04-29 2021-11-02 Hamilton Sundstrand Corporation Offset/slanted cross counter flow heat exchanger
US11333452B2 (en) 2019-12-16 2022-05-17 Hamilton Sundstrand Corporation Conformal heat exchanger passage features for improved flow distribution
US11674758B2 (en) * 2020-01-19 2023-06-13 Raytheon Technologies Corporation Aircraft heat exchangers and plates

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB291593A (en) * 1927-05-13 1928-06-07 Martyn Clissold Macpherson Improvements in or relating to radiators for effecting heat transference to or from fluids
NL43858C (en) * 1936-02-01
US2428066A (en) * 1942-11-17 1947-09-30 Garrett Corp Exhaust heat exchanger
GB567880A (en) * 1943-02-05 1945-03-07 James Frank Belaieff Improvements in, or relating to, plate heat exchange apparatus
US2792200A (en) * 1952-03-15 1957-05-14 Modine Mfg Co Toroidal type heat exchanger
DE1121090B (en) * 1956-03-27 1962-01-04 Parsons C A & Co Ltd Heat exchange element as well as heat exchanger built up from this
US3015475A (en) * 1957-12-05 1962-01-02 Philips Corp Cylindrical heat exchanger
US3302397A (en) * 1958-09-02 1967-02-07 Davidovic Vlastimir Regeneratively cooled gas turbines
US3289757A (en) * 1964-06-24 1966-12-06 Stewart Warner Corp Heat exchanger
GB1136297A (en) * 1965-11-09 1968-12-11 Olof Cardell Improvements in or relating to heat exchangers
JPS4828189B1 (en) * 1970-12-26 1973-08-30
US3831374A (en) * 1971-08-30 1974-08-27 Power Technology Corp Gas turbine engine and counterflow heat exchanger with outer air passageway
BR7207451D0 (en) * 1971-10-25 1973-08-21 Maria Domingo Regina Jose HEAT EXCHANGER IMPROVEMENTS
US3741293A (en) * 1971-11-01 1973-06-26 Curtiss Wright Corp Plate type heat exchanger
US3818984A (en) * 1972-01-31 1974-06-25 Nippon Denso Co Heat exchanger
US4098330A (en) * 1976-07-23 1978-07-04 General Motors Corporation Annular metal recuperator
CH613512A5 (en) * 1976-07-30 1979-09-28 Sulzer Ag
DE3001568A1 (en) * 1980-01-17 1981-07-23 Wilhelm Gebhardt Gmbh, 7112 Waldenburg Plate type chamber heat exchanger - has C=shaped plate with two opposite edges bent to same side, while abutting edges are bent to opposite sides
DE3131091A1 (en) * 1981-08-06 1983-02-24 Klöckner-Humboldt-Deutz AG, 5000 Köln RING-SHAPED RECUPERATIVE HEAT EXCHANGER

Also Published As

Publication number Publication date
US4527622A (en) 1985-07-09
DE3131091A1 (en) 1983-02-24
EP0071781A1 (en) 1983-02-16
DE3261848D1 (en) 1985-02-21

Similar Documents

Publication Publication Date Title
EP0071781B1 (en) Annular recuperative heat exchanger
DE69912539T2 (en) Cooling a turbine jacket ring
DE2946804C2 (en)
DE3232925C2 (en)
DE2342173A1 (en) PLATE HEAT EXCHANGER
EP2413080A2 (en) Cooling device for a combustion engine
DE112004001703T5 (en) Heat exchanger with shaped discs
DE970426C (en) Cyclone combustion chamber for gas turbines
EP1288604A2 (en) Cooler and process for cooling a medium
DE112015002074T5 (en) Intercooler with multipart plastic housing
EP0152560B1 (en) Matrix for a catalytic reactor for purifying exhaust gases
DE2657307B2 (en) Heat exchanger
EP1657512B2 (en) Heat exchanger with open profile as housing
DE69403599T2 (en) Semi-detached houses of a combustion chamber
WO2016131786A1 (en) Shell and tube heat exchanger
DE2549359A1 (en) COOLING TOWER
DE1501586A1 (en) Heat exchanger made of plates
DE3324347C2 (en)
DE2413165A1 (en) RECHARGEABLE COUNTERFLOW PLATE HEAT EXCHANGER
DE2713174A1 (en) HEAT EXCHANGER FOR A STIRLING ENGINE, IN PARTICULAR FOR MOTOR VEHICLES
EP3882552B1 (en) Exchanger apparatus
EP1788320B1 (en) Heat exchanger
EP3203173B1 (en) Exhaust gas heat exchanger
EP0230982B1 (en) Cylindrical heat exchanger manufactured from prefabricated components, in particular a chimney recuperator
DE1152715B (en) Heat exchanger each with a flow channel delimiting, radially spaced sheet metal held by end strips

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19830301

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB IT NL SE

REF Corresponds to:

Ref document number: 3261848

Country of ref document: DE

Date of ref document: 19850221

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19870731

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19890607

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19890612

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19890630

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19890727

Year of fee payment: 8

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19900201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19900713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19900714

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19910329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19910403

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 82106236.1

Effective date: 19910402