EP0070895A1 - Amplifier having reduced power dissipation and improved slew rate - Google Patents

Amplifier having reduced power dissipation and improved slew rate

Info

Publication number
EP0070895A1
EP0070895A1 EP19820900874 EP82900874A EP0070895A1 EP 0070895 A1 EP0070895 A1 EP 0070895A1 EP 19820900874 EP19820900874 EP 19820900874 EP 82900874 A EP82900874 A EP 82900874A EP 0070895 A1 EP0070895 A1 EP 0070895A1
Authority
EP
European Patent Office
Prior art keywords
signal
current
transistor
coupled
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19820900874
Other languages
German (de)
French (fr)
Inventor
Fred D. Johnson
Michael D. Flasza
George J. Tzakis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0070895A1 publication Critical patent/EP0070895A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0261Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the polarisation voltage or current, e.g. gliding Class A
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/34Negative-feedback-circuit arrangements with or without positive feedback

Definitions

  • This invention is directed ' generally to signal amplifiers, and particularly to large signal amplifiers capable of developing amplified signal outputs in excess of one hundred volts.
  • Amplifiers of the type used in television re ⁇ ceivers and other products are frequently required to develop output signals in excess of one hundred volts.
  • the three video output stages in a color television receiver are examples of this type of amplifier.
  • Typical video output stages are required to have a small signal bandwidth of from four to six mega ⁇ hertz and a slew rate of from 250 to 500 volts per microsecond.
  • Conventional video output stages generally meet these requirements, but they do so using designs which dissipate considerable power.
  • three conventional video output stages in a television recei ⁇ ver may dissipate up to five watts.
  • the trend in modern television receivers is to construct as much of the circuitry as possible on integrated circuit chips. Because of the relatively high power dissipation of conventional video output stages, however, it has not been practical to integrate them.
  • the present invention overcomes this problem by
  • OMPI providing an amplifier which is capable of being inte ⁇ grated and which meets the conventional slew rate and bandwidth requirements.
  • FIG 1 shows an amplifier embodying various aspects of the invention
  • Figure 2 shows an amplifier which is similar to the amplifier of Figure 1 but which is specifically designed as a video amplifier
  • Figure 3 shows another amplifier which is similar to the amplifier of Figure 2, and which includes additional circuit details which are not shown in Figure 2;
  • Figure 4 illustrates another embodiment of an amplifier which is specifically designed as a video amplifier according to the invention.
  • Figure 5 illustrates various waveforms useful in describing the operation of the amplifier shown in Figure 4.
  • an integratable ampli ⁇ bomb 10 which embodies various aspects of the invention.
  • This amplifier has an input 12 for receiv ⁇ ing a signal input and an output 14 at which an ampli ⁇ fied signal is developed.
  • an input stage comprising an NPN transistor 16, a PNP tran- sistor 18, a resistor 20 coupling the emitter of transistor 16 to a common node 22, and a resistor 24 coupling the emitter of transistor 18 to the node 22.
  • This input stage receives the signal input at the node 22 via a resistance 26.
  • a bias voltage VB- is applied to the base of the transistor 16 and another bias voltage VB 2 is applied to the base of the transistor 18.
  • These two bias voltages are selected to turn on the transistors 16 and 18 so that the transistor 16 conducts a small quiescent I- and the transistor 18 conducts a small quiescent current I_ which equals I-.
  • the currents I, and I- each equal about 50 microamperes.
  • Coupled to the collector of transistor 16 is a first input current path 28 through which the current I, flows.
  • a second input current path 30 is coupled to the collector of transistor 18 for carrying the current I.-.
  • Receiving the current I. is a current mirror 32 which may be of conventional construction.
  • the function of the current mirror 32 is to establish a current I- in an output current path 34 such that the current I-. mirrors the current I, . That is, the current I- is proportional to the current I..
  • the current I_ is larger in amplitude than the current I., but other ⁇ wise similar to it.
  • Another current mirror 36 receives the cur- rent I- for establishing a .current I . in another output current path 38.
  • the mirrors 32 and 36 exhibit equal gain, if any, so that the currents 1 ⁇ and 1 . are equal under quiescent conditions.
  • the current paths 34 and 38 are coupled to a common node 40. Also coupled to the node 40 is an output stage which includes transistors 42 and 44. The emitters of these transistors are both coupled to the output terminal 14 and their bases are both coupled to the node 40. This forms a class B output stage in which the transistors 42 and 44 draw little or no current in quiescent conditions.
  • the factors which influence' the slew rate of the amplifier 10 are the parasitic capacitance 46 at the node 40 and the capacity 48 at the output ter- minal 14.
  • the latter capacity may be, for example, the capacity of a cathode ray tube which is driven by the amplifier 10.
  • the way in which good slew rate is achieved will be understood from the following des ⁇ cription of operation. In the quiescent conditions, the currents
  • I, through I. are very small. Because the current I, is substantially equal to the current I., only small base currents, if any, flow in the transistors 42 and 44. Hence, very little power is dissipated when no signal input is present.
  • transistor 16 When the signal input at terminal 12 under ⁇ goes a rapid negative transition of two, volts, for example, the conduction of transistor 16 may typically increase to about 500 microamDeres.
  • the current mirror 32 establishes a larger current I- in the current path 34 for rapidly charging the capacitance 46.
  • the transistor 42 responds to the increasing voltage at node 40 by turning on and rapidly charging the capacitance 48, thereby driving the output voltage high.
  • the transistor 16 turns off and the transistor 18 conducts harder to increase I 2 -
  • the current I . undergoes a proportional increase due to the operation of the current mirror 36. Consequently, the current I. rapidly discharges the capacitance 46 and the voltage at node 40 decreases.
  • the transistor 44 is turned on for rapidly discharging the capacitance 48 and driving the output voltage low. In this manner, the capacitances 46 and 48 are rapidly charged and discharged to achieve a good slew rate.
  • the comments above describe the amplifier 10 in terms of its open loop operation, i.e., without feedback. In that condition the open loop gain of the amplifier can be shown to equal 2 times R .
  • R equals the output impedance of the current mirrors and R is the value of the resistors 20 and 24. Because R is typically several hundred thousand ohms and the value of the resistors 20 and 24 is typically a few thousand ohms or less, the open loop gain of the amplifier is quite large. Because it is an invert- ing amplifier, a feedback path' may be included to couple the output signal back to the input stage to stabilize amplifier operation. In the-illustrated embodiment, a feedback resistor 50 is coupled between the output terminal 14 and the node 22. With the feedback resistor in circuit, the magnitude of the gain of the amplifier is approximately equal to the ratio of the resistor 50 to the resistor 26.
  • the input stage responds to the instantaneous difference between the output signal and the input signal for increasing the current in one of the input current paths and decreasing the current in the other input current path so that the currents in the output current paths increase and decrease correspondingly, and the output stage varies the amplitude of the output signal as a function of the difference between the currents in the output current paths.
  • the amplifier 10 is integratable and yet con- su es relatively little power.
  • the currents I_, I_, I_ and I. are very small. Those cur ⁇ rents increase only when the input signal undergoes a large, rapid transition. In other words, the currents I, through I . increase only as needed to charge or discharge the capacitances 46 and 48.
  • the transistor 44 may be constructed as a lateral PNP. Because such transistors normally have a relatively low current gain and a relatively poor frequency res- ponse, the use of a lateral PNP in the output stage renders the amplifier 10 more suited to audio frequen ⁇ cy applications rather than video frequency applica ⁇ tions.
  • FIG. 2 another amplifier 52 is shown which is a modified*version of the ampli ⁇ bomb 10 for use as a video output stage.
  • Components of the amplifier 52 which provide functions similar to corresponding components of the amplifier 10 have corresponding reference numerals.
  • the amplifier 52 includes the first and sec ⁇ ond input current paths 28 and 30, and first and sec ⁇ ond output current paths 34 and 38.
  • Current mirrors 32 and 36 each having a current gain of about ten, couple each input current path to an output current path in the manner described previously.
  • One modification incorporated in the ampli ⁇ bomb 52 is the elimination of a PNP transistor in the input stage. That stage now includes a single NPN transistor 54, and a pair of matched resistors 56 and 58 coupled to a common node 60. A bias voltage VB.. is applied to the base of the transistor 54 to estab ⁇ lish small quiescent currents I- and I 2 in the input current paths. Currents I-. and I. flow in the output current paths 34 and 38.
  • the input signal is coupled to the node 60 by an emitter follower transistor 62.
  • a current source 64 is coupled to the emitter of the transistor 62 and establishes the upper limit of the current which the transistor 54 can conduct in response to a negative voltage transition at the signal input terminal 12.
  • a PNP transistor 66 in the current path 34 and an NPN transistor 68 in the current path 38. These transistors are included to increase the amplifier's bandwidth and slew rate.
  • each of the current mirrors 32 and 36 includes an output transistor whose collector to base capacity is increased by virtue of the so-called Miller effect.
  • the output stage of the amplifier 52 is modi ⁇ fied to eliminate the lateral PNP transistor. Instead, an NPN transistor 70 has a base coupled to a node 72 and an emitter coupled to the output terminal 14. A diode Dl is coupled between the node 72 and the current path 38 at node 74, and another diode D2 is coupled between the output terminal 14 and the node 74.
  • the operation of the amplifier 52 is similar to the operation of the amplifier 10 in that, at quies ⁇ cence, small currents I. through I. flow in their res ⁇ pective current paths. When a negative voltage transi ⁇ tion occurs at the input terminal 12, the currents I, and I_ increase, and the currents I_ and I. decrease.
  • the transistor 66 conducts the current I- to the node 72 for rapidly charging parasitic capacitance 76.
  • the diode Dl remains continuously on and conducts charg- ing current to parasitic capacitance 78 at the node 74.
  • the diode D2 is off and the transistor 70 conducts- an output current I- for charging the out ⁇ put capacitance 48 and increasing the output voltage.
  • the transistor 70 turns off, the diode Dl remains on, and the diode D2 turns on.
  • the transistor 68 carries a current I. for discharging capacitances 76 and 78, and an output current I-. flows from the terminal 14, through diode D2, and to the transistor 68 for discharging the capacitance 48 and decreasing the output voltage.
  • the feedback resistor 50 causes the input stage to respond to the instantaneous difference between the output signal and the input signal " for increasing the current in one of the output paths, and the output sj stage varies the amplitude of the output signal as a function of the difference between the currents in the output current paths.
  • an amplifier 80 is shown which is similar to the amplifier 52 and which is designed as a video amplifier for developing the output signal whose amplitude can vary between 5 volts and about 195 volts.
  • the preferred construc ⁇ tion of the current mirrors 32 and 36 is also shown.
  • the current mirror 32 is a PNP current mir ⁇ ror having PNP transistors 82, 84 and 86.
  • the col ⁇ lector of the transistor 84 and the base of the tran ⁇ sistor 82 are coupled to the input path 28.
  • the emitter of transistor 82 and the bases of transistors 84 and 86 are coupled together at a node 88.
  • the emitter of transistor 84 is coupled to a 200 volts source via a resistor 90.
  • Another resis ⁇ tor 92 couples the node 88 to the 200 volt source.
  • the emitter of the transistor 86 is coupled to the same voltage source by a resistor 94. With this ar ⁇ rangement, the collector of transistor 86 delivers the current I, to the transistor 66. The base of the latter transistor is biased by a 195 volt source.
  • the mirror 36 is a NPN current mirror which includes a diode D3, a transistor 94 and resistors 96 and 98.
  • the anode of the diode D3 is coupled to the current path 30, and its cathode is coupled to ground via the resistor 96.
  • the emitter of the tran ⁇ sistor 94 is coupled to ground through the resistor 98.
  • the collector of the transistor 94 is coupled to the emitter of transistor 68 whose base receives a 5 volt bias.
  • the gain of the current mirror 36 depends primarily on the ratio of the resistor 98 to the
  • the resistor 98 is selected to be ten times smaller than the resistor 96 to achieve a current gain of approximately 10.
  • a current gain of approximately 10 is established in the current mirror 32 by selecting the resistor 94 to be ten times small ⁇ er than the resistor 90.
  • the transistor 54 it may be biased by the illustrated connection of a resistor 100 and diodes D4 and D5.
  • the value of the resistor 100 may be selected to develop about one milliampere of current in the diodes D4 and D5.
  • the current source 64 at the emitter of transistor 62 may be conventional and may be selected to provide a current of about one milliampere.
  • the amplifier 80 operates as previously des ⁇ cribed for the amplifier 52. The only difference in construction is that the resistor 58 ( Figure 2) is eliminated from the input current path 30 to provide increased current drive for the transistor 94.
  • the resistor 56 may be selected to provide about 50 d.b. of open loop amplifier gain.
  • the illustrated construction has been found • to provide an amplifier slew rate of about one volt per nanosecond, a bandwith of about 6 to 8 mega- hertz, and an output signal swing of from about 5 volts to 195 volts. Hence, it is well suited for use as a video output stage in a television receiver.
  • each includes: a circuit for generating a first signal current (I- in Figures 1, 2 and 3, for example) whose amplitude increases in response to input signal transitions of a given direction, and a second signal current (I_ in Figures 1, 2 and 3, for example) whose amplitude de- creases in response to the same input signal transi ⁇ tions; another circuit (such as current mirror 32) for establishing a third signal current (I_, for example) which mirrors the first signal current; a further cir ⁇ cuit (current mirror 36 and the output stage) which receives the second and third currents for conversion thereof to an amplified output signal; and a negative feedback path for stabilizing the gain of the amplifier.
  • an amplifier 100 is shown which is specifically designed as an integratable video amplifier for use in a television receiver.
  • the illustrated amplifier receives a video input signal at an input terminal 12a for developing an amplified video output signal at a terminal 14a.
  • a feedback resistor 50a is coupled between the input signal and the output ter ⁇ minal 14a to stabilize the gain of this amplifier.
  • the ampli ⁇ bomb 100 includes circuitry which responds to the input video signal for generating a first signal current I., whose amplitude increases in response to input signal transitions of a given direction or polarity, and a second signal current I- whose emplitude decreases in re ⁇ sponse to the same input signal transitions.
  • Further circuitry in the form of a current mirror 32a receives the current I, for establishing a third signal current I 3 which is proportional to the current I, .
  • An output stage which includes a transistor ' 70a converts the currents 2 and I « to an amplified output signal at the terminal 14a.
  • the " input signal at terminal 12a is coupled to an input transistor 62a via a resistance 26a.
  • the emitter of this transistor is coupled to ground through a zener diode 102 and a resistor 104.
  • the zener diode may be selected to pro ⁇ vide a D.C. voltage of about .85 volt at the junction (node 106) between itself and the resistor 104.
  • the node 106 is coupled to the base of a tran ⁇ sistor 108 whose emitter is coupled to the emitter of another transistor 110, with a resistor 112 coupling both emitters to ground.
  • the transistors 108 and 110 com ⁇ prise a differential amplifier.
  • a conventional D.C. current source 114 is coupled to a grounded diode 116 at node 118, and this node is connected to the base of the transistor 110.
  • the transistor 110, the source 114 and the diode 116 collectively form a current mirror in which the peak current of the transistor 110 is substantially equal to the total current supplied by the current source 114.
  • that peak current is about 350 microamperes while the quiescent D.C. current conducted by the transis ⁇ tor 110 is limited to about 50 microamperes.
  • the collector circuit of the transistor 110 is coupled to the emitter of a signal coupling transistor 120.
  • the base of this latter transistor receives a D.C- bias voltage (12 volts, for example) and its collector is coupled via a lead 122 to the input of the current mirror 32a.
  • the current mirror 32a includes a diode 124 serially coupled with a resistor 126 between a supply voltage (200 volts, for example) and the lead 122.
  • the cathode of the diode 124 is coupled to the base of a PNP transistor 128 whose emitter is coupled through another resistor 130 to the supply voltage.
  • the current output I-. from the mirror 32a is coupled to the emitter of a signal coupling transistor 66a whose base receives a D.C. bias voltage of 194 volts, for example.
  • the collector of this transistor is coupled to the base of the transistor 70a and to the anode of a diode Dl.
  • the emitter of the transistor 70a is coupled at the output terminal 14a and to the anode of another diode D2.
  • the cathodes of both diodes are coupled to- gether as shown.
  • the transistor 108 its col ⁇ lector circuit is coupled to the emitter of another signal coupling transistor 68a whose base receives a D.C. bias voltage of 12 volts, for example.
  • the col- lector of the transistor 68a is coupled to the cathodes of diodes Dl and D2.
  • the voltage V ⁇ undergoes a similar positive transition. Consequently, the conduc ⁇ tion of transistor 103 increases to develop a rapid increase in the current I 2 . Simultaneously, the conduction of the transistor 110 decreases to develop a rapid nega ⁇ tive transition in the current I,. If the magnitude of the positive transition in the video input signal is of sufficient magnitude, the current I, decreases to zero as indicated in Figure 5.
  • the current mirror 32a In response to the decrease in the current I, the current mirror 32a rapidly reduces the current I-, to zero. ' Accordingly, the current I 2 flows from the output terminal 14a, through the diode D2 and the tran ⁇ sistor 68a, to the collector of the transistor 108. Any parasitic capacitance present at the terminal 14a and at the base of transistor 70a is rapidly discharged so that the video output signal undergoes a relatively fast negative transition.
  • the voltage V, and the current I 2 decay to their quiescent values as the video output signal decreases toward its maximum negative value at time t culinary. Consequently, the currents I- and I- increase to their quiescent values at the same time. While the video input signal remains at its maximum positive value (between times t 2 and t,) the currents I,, I 2 and I- remain at their quies- cent levels.
  • the voltage V. and the currents I_ undergo rapid negative transitions while the current I., undergoes a rapid positive transition. Since the current I, has a maximum value which is limit ⁇ ed by the value of the current supplied by the source 114, the currents I, and I, remain at a relatively constant level while charging the parasitic capaci ⁇ tance at the base of transistor 70a.
  • the transistor 70a conducts a current similar to for driving the output signal high and charging parasitic capacitance at the output terminal 14a.
  • the currents I,, I- and I- return to their quiescent values.
  • the power dissipa-' tion of the amplifier is limited by increasing the currents I 2 and I_ only as needed to charge the para ⁇ sitic capacitances.
  • the current I 2 may increase to a maximum level of about 15 to 20 milliamperes, as determined by * the value of the resis ⁇ tor 112.
  • the current I_ may increase to a maximum level of about 3.5 milliamperes due to the limited current supplied by the current source 114.
  • the rise time of the video output signal is typically about 200 nanoseconds, whereas its fall time is typically about 100 nanoseconds. Such a difference is ordinarily not objectionable.
  • the rise time of the output signal may be made compar ⁇ able to its fall time by, for example, increasing the level of current supplied by the source 102 or by other ⁇ wise increasing the current which the transistor 110 may conduct.
  • each of the illustrated embodiments exhibit reduced power dissi ⁇ pation. This is primarily because their signal currents increase only "as needed" to respond to large amplitude transitions in the input signal. Consequently, the amplifiers are much more easily integrated than con ⁇ ventional large signal amplifiers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

Amplificateur pouvant etre integre developpant un signal de sortie eleve avec une dissipation d'energie reduite. L'amplificateur comprend un premier circuit (108, 110) qui repond a un signal d'entree en produisant un premier et un deuxieme courants de signal dont les amplitudes augmentent et diminuent respectivement en reponse a une transition du signal d'entree dans une direction donnee, Un deuxieme circuit (32a) recoit le premier courant de signal pour donner lieu a un troisieme courant de signal qui est une image reflechie du premier courant de signal. Le deuxieme et le troisieme courants de signal sont recus par un troisieme circuit (70a) les convertissant en un signal de sortie amplifie. Afin de stabiliser le gain de l'amplificateur, un chemin de retro-commande negative (50a) est couple entre le signal d'entree et le signal de sortie.Integrable amplifier developing a high output signal with reduced energy dissipation. The amplifier includes a first circuit (108, 110) which responds to an input signal by producing first and second signal currents whose amplitudes increase and decrease respectively in response to a transition of the input signal in one direction. Given, A second circuit (32a) receives the first signal current to give rise to a third signal current which is a reflected image of the first signal current. The second and third signal currents are received by a third circuit (70a) converting them into an amplified output signal. In order to stabilize the gain of the amplifier, a negative feedback path (50a) is coupled between the input signal and the output signal.

Description

o
AMPLIFIER HAVING REDUCED POWER DISSIPATION AND IMPROVED SLEW RATE
This application is a continuation-in-part of copending U. S. application Serial No. 232,783, filed February 9, 1981.
TECHNICAL FIELD
This invention is directed' generally to signal amplifiers, and particularly to large signal amplifiers capable of developing amplified signal outputs in excess of one hundred volts.
• BACKGROUND ART
Amplifiers of the type used in television re¬ ceivers and other products are frequently required to develop output signals in excess of one hundred volts. The three video output stages in a color television receiver are examples of this type of amplifier.
Typical video output stages are required to have a small signal bandwidth of from four to six mega¬ hertz and a slew rate of from 250 to 500 volts per microsecond. Conventional video output stages generally meet these requirements, but they do so using designs which dissipate considerable power. For example, three conventional video output stages in a television recei¬ ver may dissipate up to five watts. The trend in modern television receivers is to construct as much of the circuitry as possible on integrated circuit chips. Because of the relatively high power dissipation of conventional video output stages, however, it has not been practical to integrate them. The present invention overcomes this problem by
fυn
OMPI providing an amplifier which is capable of being inte¬ grated and which meets the conventional slew rate and bandwidth requirements.
OBJECTS OF THE INVENTION
It is a general object of the invention to pro¬ vide an improved amplifier.
It is a more specific object of the invention to provide an integratable amplifier having a relative¬ ly wide bandwidth, a good slew rate and having an out- put capability in excess of one hundred volts.
BRIEF DESCRIPTION OF THE DRAWINGS
The objects stated above and other objects of the invention are set forth more particularly in the following detailed description and accompanying drawings, of which:
Figure 1 shows an amplifier embodying various aspects of the invention;
Figure 2 shows an amplifier which is similar to the amplifier of Figure 1 but which is specifically designed as a video amplifier;
Figure 3 shows another amplifier which is similar to the amplifier of Figure 2, and which includes additional circuit details which are not shown in Figure 2; Figure 4 illustrates another embodiment of an amplifier which is specifically designed as a video amplifier according to the invention; and
Figure 5 illustrates various waveforms useful in describing the operation of the amplifier shown in Figure 4. DISCLOSURE OF INVENTION- AND DESCRIPTION OF THE PREFERRED EMBODIMENT
Referring to Figure 1, an integratable ampli¬ fier 10 is shown which embodies various aspects of the invention. This amplifier has an input 12 for receiv¬ ing a signal input and an output 14 at which an ampli¬ fied signal is developed.
Included in the illustrated amplifier is an input stage comprising an NPN transistor 16, a PNP tran- sistor 18, a resistor 20 coupling the emitter of transistor 16 to a common node 22, and a resistor 24 coupling the emitter of transistor 18 to the node 22. This input stage receives the signal input at the node 22 via a resistance 26. A bias voltage VB- is applied to the base of the transistor 16 and another bias voltage VB2 is applied to the base of the transistor 18. These two bias voltages are selected to turn on the transistors 16 and 18 so that the transistor 16 conducts a small quiescent I- and the transistor 18 conducts a small quiescent current I_ which equals I-. Typically the currents I, and I- each equal about 50 microamperes.
Coupled to the collector of transistor 16 is a first input current path 28 through which the current I, flows. A second input current path 30 is coupled to the collector of transistor 18 for carrying the current I.-.
Receiving the current I. is a current mirror 32 which may be of conventional construction. The function of the current mirror 32 is to establish a current I- in an output current path 34 such that the current I-. mirrors the current I, . That is, the current I- is proportional to the current I.. In the case where the mirror 32 includes gain, the current I_ is larger in amplitude than the current I., but other¬ wise similar to it.
Another current mirror 36 receives the cur- rent I- for establishing a .current I . in another output current path 38. The mirrors 32 and 36 exhibit equal gain, if any, so that the currents 1^ and 1 . are equal under quiescent conditions.
The current paths 34 and 38 are coupled to a common node 40. Also coupled to the node 40 is an output stage which includes transistors 42 and 44. The emitters of these transistors are both coupled to the output terminal 14 and their bases are both coupled to the node 40. This forms a class B output stage in which the transistors 42 and 44 draw little or no current in quiescent conditions.
The factors which influence' the slew rate of the amplifier 10 are the parasitic capacitance 46 at the node 40 and the capacity 48 at the output ter- minal 14. The latter capacity may be, for example, the capacity of a cathode ray tube which is driven by the amplifier 10. The way in which good slew rate is achieved will be understood from the following des¬ cription of operation. In the quiescent conditions, the currents
I, through I. are very small. Because the current I, is substantially equal to the current I., only small base currents, if any, flow in the transistors 42 and 44. Hence, very little power is dissipated when no signal input is present.
When the signal input at terminal 12 under¬ goes a rapid negative transition of two, volts, for example, the conduction of transistor 16 may typically increase to about 500 microamDeres. The transistor 18 0 -5-
turns off, and a current I5 of about 500 microamperes flows toward the resistor 26 from the node 22.
The current mirror 32 establishes a larger current I- in the current path 34 for rapidly charging the capacitance 46. The transistor 42 responds to the increasing voltage at node 40 by turning on and rapidly charging the capacitance 48, thereby driving the output voltage high.
When the input signal undergoes a rapid positive transition, the transistor 16 turns off and the transistor 18 conducts harder to increase I2- The current I . undergoes a proportional increase due to the operation of the current mirror 36. Consequently, the current I. rapidly discharges the capacitance 46 and the voltage at node 40 decreases. In addition, the transistor 44 is turned on for rapidly discharging the capacitance 48 and driving the output voltage low. In this manner, the capacitances 46 and 48 are rapidly charged and discharged to achieve a good slew rate. The comments above describe the amplifier 10 in terms of its open loop operation, i.e., without feedback. In that condition the open loop gain of the amplifier can be shown to equal 2 times R . ÷ R, where R equals the output impedance of the current mirrors and R is the value of the resistors 20 and 24. Because R is typically several hundred thousand ohms and the value of the resistors 20 and 24 is typically a few thousand ohms or less, the open loop gain of the amplifier is quite large. Because it is an invert- ing amplifier, a feedback path' may be included to couple the output signal back to the input stage to stabilize amplifier operation. In the-illustrated embodiment, a feedback resistor 50 is coupled between the output terminal 14 and the node 22. With the feedback resistor in circuit, the magnitude of the gain of the amplifier is approximately equal to the ratio of the resistor 50 to the resistor 26. Now the input stage responds to the instantaneous difference between the output signal and the input signal for increasing the current in one of the input current paths and decreasing the current in the other input current path so that the currents in the output current paths increase and decrease correspondingly, and the output stage varies the amplitude of the output signal as a function of the difference between the currents in the output current paths.
The primary advantages of this arrangement is that the amplifier 10 is integratable and yet con- su es relatively little power. At quiescence, the currents I_, I_, I_ and I. are very small. Those cur¬ rents increase only when the input signal undergoes a large, rapid transition. In other words, the currents I, through I . increase only as needed to charge or discharge the capacitances 46 and 48.
When the amplifier 10 is integrated, the transistor 44 may be constructed as a lateral PNP. Because such transistors normally have a relatively low current gain and a relatively poor frequency res- ponse, the use of a lateral PNP in the output stage renders the amplifier 10 more suited to audio frequen¬ cy applications rather than video frequency applica¬ tions.
Referring now to Figure 2, another amplifier 52 is shown which is a modified*version of the ampli¬ fier 10 for use as a video output stage. Components of the amplifier 52 which provide functions similar to corresponding components of the amplifier 10 have corresponding reference numerals. The amplifier 52 includes the first and sec¬ ond input current paths 28 and 30, and first and sec¬ ond output current paths 34 and 38. Current mirrors 32 and 36, each having a current gain of about ten, couple each input current path to an output current path in the manner described previously.
One modification incorporated in the ampli¬ fier 52 is the elimination of a PNP transistor in the input stage. That stage now includes a single NPN transistor 54, and a pair of matched resistors 56 and 58 coupled to a common node 60. A bias voltage VB.. is applied to the base of the transistor 54 to estab¬ lish small quiescent currents I- and I2 in the input current paths. Currents I-. and I. flow in the output current paths 34 and 38.
To increase the amplifier's current gain and its input impedance, the input signal is coupled to the node 60 by an emitter follower transistor 62.
A current source 64 is coupled to the emitter of the transistor 62 and establishes the upper limit of the current which the transistor 54 can conduct in response to a negative voltage transition at the signal input terminal 12.
Another modification included in the ampli- fier 52 is the inclusion of a PNP transistor 66 in the current path 34 and an NPN transistor 68 in the current path 38. These transistors are included to increase the amplifier's bandwidth and slew rate.
Typically, each of the current mirrors 32 and 36 includes an output transistor whose collector to base capacity is increased by virtue of the so- called Miller effect. By coupling the.transis ors 66 and 68 in the output current paths as shown,t and by applying fixed bias voltages VB. and VB.. to their
OMPI bases, the Miller effect is reduced and the amplifier's bandwidth and slew rate are increased.
The output stage of the amplifier 52 is modi¬ fied to eliminate the lateral PNP transistor. Instead, an NPN transistor 70 has a base coupled to a node 72 and an emitter coupled to the output terminal 14. A diode Dl is coupled between the node 72 and the current path 38 at node 74, and another diode D2 is coupled between the output terminal 14 and the node 74. The operation of the amplifier 52 is similar to the operation of the amplifier 10 in that, at quies¬ cence, small currents I. through I. flow in their res¬ pective current paths. When a negative voltage transi¬ tion occurs at the input terminal 12, the currents I, and I_ increase, and the currents I_ and I. decrease. The transistor 66 conducts the current I- to the node 72 for rapidly charging parasitic capacitance 76. The diode Dl remains continuously on and conducts charg- ing current to parasitic capacitance 78 at the node 74. In addition, the diode D2 is off and the transistor 70 conducts- an output current I- for charging the out¬ put capacitance 48 and increasing the output voltage. When a signal input transition of the oppo¬ site polarity occurs, the transistor 70 turns off, the diode Dl remains on, and the diode D2 turns on. The transistor 68 carries a current I. for discharging capacitances 76 and 78, and an output current I-. flows from the terminal 14, through diode D2, and to the transistor 68 for discharging the capacitance 48 and decreasing the output voltage.
The feedback resistor 50 causes the input stage to respond to the instantaneous difference between the output signal and the input signal "for increasing the current in one of the output paths, and the output sj stage varies the amplitude of the output signal as a function of the difference between the currents in the output current paths.
Referring now to Figure 3, an amplifier 80 is shown which is similar to the amplifier 52 and which is designed as a video amplifier for developing the output signal whose amplitude can vary between 5 volts and about 195 volts. The preferred construc¬ tion of the current mirrors 32 and 36 is also shown. The current mirror 32 is a PNP current mir¬ ror having PNP transistors 82, 84 and 86. The col¬ lector of the transistor 84 and the base of the tran¬ sistor 82 are coupled to the input path 28. The emitter of transistor 82 and the bases of transistors 84 and 86 are coupled together at a node 88.
The emitter of transistor 84 is coupled to a 200 volts source via a resistor 90. Another resis¬ tor 92 couples the node 88 to the 200 volt source. The emitter of the transistor 86 is coupled to the same voltage source by a resistor 94. With this ar¬ rangement, the collector of transistor 86 delivers the current I, to the transistor 66. The base of the latter transistor is biased by a 195 volt source. The mirror 36 is a NPN current mirror which includes a diode D3, a transistor 94 and resistors 96 and 98. The anode of the diode D3 is coupled to the current path 30, and its cathode is coupled to ground via the resistor 96. The emitter of the tran¬ sistor 94 is coupled to ground through the resistor 98. The collector of the transistor 94 is coupled to the emitter of transistor 68 whose base receives a 5 volt bias.
The gain of the current mirror 36 depends primarily on the ratio of the resistor 98 to the
OMPI resistor 96. Preferably, the resistor 98 is selected to be ten times smaller than the resistor 96 to achieve a current gain of approximately 10. A current gain of approximately 10 is established in the current mirror 32 by selecting the resistor 94 to be ten times small¬ er than the resistor 90.
Referring to the transistor 54, it may be biased by the illustrated connection of a resistor 100 and diodes D4 and D5. The value of the resistor 100 may be selected to develop about one milliampere of current in the diodes D4 and D5.
The current source 64 at the emitter of transistor 62 may be conventional and may be selected to provide a current of about one milliampere. The amplifier 80 operates as previously des¬ cribed for the amplifier 52. The only difference in construction is that the resistor 58 (Figure 2) is eliminated from the input current path 30 to provide increased current drive for the transistor 94. The resistor 56 may be selected to provide about 50 d.b. of open loop amplifier gain.
The illustrated construction has been found • to provide an amplifier slew rate of about one volt per nanosecond, a bandwith of about 6 to 8 mega- hertz, and an output signal swing of from about 5 volts to 195 volts. Hence, it is well suited for use as a video output stage in a television receiver.
The embodiments described previously have certain common constructional features. For example, they include first and second input current paths, first and second output current paths, and an output stage. Another way of characterizing some of the common features of the embodiments described above is that each includes: a circuit for generating a first signal current (I- in Figures 1, 2 and 3, for example) whose amplitude increases in response to input signal transitions of a given direction, and a second signal current (I_ in Figures 1, 2 and 3, for example) whose amplitude de- creases in response to the same input signal transi¬ tions; another circuit (such as current mirror 32) for establishing a third signal current (I_, for example) which mirrors the first signal current; a further cir¬ cuit (current mirror 36 and the output stage) which receives the second and third currents for conversion thereof to an amplified output signal; and a negative feedback path for stabilizing the gain of the amplifier. Considering the invention from this standpoint, it can be seen that a second current mirror (such as current mirror 36) and a fourth output current are not absolute¬ ly required. An embodiment of the invention which re¬ places the current mirror 36 with a different form of circuitry is shown in Figure 4 in which components which provide functions similar to components in the previous figures have corresponding reference numerals followed by the character "a".
Turning now to Figure 4, an amplifier 100 is shown which is specifically designed as an integratable video amplifier for use in a television receiver. The illustrated amplifier receives a video input signal at an input terminal 12a for developing an amplified video output signal at a terminal 14a. A feedback resistor 50a is coupled between the input signal and the output ter¬ minal 14a to stabilize the gain of this amplifier. As described in more detail below, the ampli¬ fier 100 includes circuitry which responds to the input video signal for generating a first signal current I., whose amplitude increases in response to input signal transitions of a given direction or polarity, and a second signal current I- whose emplitude decreases in re¬ sponse to the same input signal transitions. Further circuitry in the form of a current mirror 32a receives the current I, for establishing a third signal current I3 which is proportional to the current I, . An output stage which includes a transistor' 70a converts the currents 2 and I« to an amplified output signal at the terminal 14a.
More specifically, the "input signal at terminal 12a is coupled to an input transistor 62a via a resistance 26a. The emitter of this transistor is coupled to ground through a zener diode 102 and a resistor 104. In the case where the input signal is superimposed on a DtC. voltage of about 8.5 volts, the zener diode may be selected to pro¬ vide a D.C. voltage of about .85 volt at the junction (node 106) between itself and the resistor 104.
The node 106 is coupled to the base of a tran¬ sistor 108 whose emitter is coupled to the emitter of another transistor 110, with a resistor 112 coupling both emitters to ground. Thus, the transistors 108 and 110 com¬ prise a differential amplifier.
To establish a selected quiescent current in the transistor 110, a conventional D.C. current source 114 is coupled to a grounded diode 116 at node 118, and this node is connected to the base of the transistor 110. With this arrangement, the transistor 110, the source 114 and the diode 116 collectively form a current mirror in which the peak current of the transistor 110 is substantially equal to the total current supplied by the current source 114. Typically, that peak current is about 350 microamperes while the quiescent D.C. current conducted by the transis¬ tor 110 is limited to about 50 microamperes.
The collector circuit of the transistor 110 is coupled to the emitter of a signal coupling transistor 120. The base of this latter transistor receives a D.C- bias voltage (12 volts, for example) and its collector is coupled via a lead 122 to the input of the current mirror 32a. As shown, the current mirror 32a includes a diode 124 serially coupled with a resistor 126 between a supply voltage (200 volts, for example) and the lead 122. The cathode of the diode 124 is coupled to the base of a PNP transistor 128 whose emitter is coupled through another resistor 130 to the supply voltage. A current mirror is thus provided which provides an output current I- which is proportional to the current I-; that is, 1. = KI.. , where K is a constant factor which is greater than 1 and typically about lθ. This factor K is pri- marily determined by selecting the resistor 126 to be K times larger than the resistor 130.
The current output I-. from the mirror 32a is coupled to the emitter of a signal coupling transistor 66a whose base receives a D.C. bias voltage of 194 volts, for example. The collector of this transistor is coupled to the base of the transistor 70a and to the anode of a diode Dl. The emitter of the transistor 70a is coupled at the output terminal 14a and to the anode of another diode D2. The cathodes of both diodes are coupled to- gether as shown.
Referring now to the transistor 108, its col¬ lector circuit is coupled to the emitter of another signal coupling transistor 68a whose base receives a D.C. bias voltage of 12 volts, for example. The col- lector of the transistor 68a is coupled to the cathodes of diodes Dl and D2.
Under quiescent conditions (no A.C. input signal) , the currents I_ and I are substantially equal
£r to each other and substantially equal to KI,. This condition is established, in part, by the feedback re¬ sistor 50a forcing the differential base voltage between transistors 108 and 110 to a level which causes I2 to equal KI, at equilibrium. Under quiescent conditions, therefore, the current I, may be at a level of about 50 microamperes while the currents I2 and 1^ are each at a level of about 500 microamperes. The transistor 70a conducts very little, if any, current under these condi¬ tions.
The A.C. operation of the amplifier 100 will now be described with reference to the waveforms shown in Figure 5 in which the waveform V, corresponds to the voltage on the base of the transistor 108, and in which the signal levels designated as "Q" correspond to quiescent conditions.
When the video input signal undergoes a posi¬ tive transition at time t, , the voltage V^ undergoes a similar positive transition. Consequently, the conduc¬ tion of transistor 103 increases to develop a rapid increase in the current I2. Simultaneously, the conduction of the transistor 110 decreases to develop a rapid nega¬ tive transition in the current I,. If the magnitude of the positive transition in the video input signal is of sufficient magnitude, the current I, decreases to zero as indicated in Figure 5.
In response to the decrease in the current I,, the current mirror 32a rapidly reduces the current I-, to zero. ' Accordingly, the current I2 flows from the output terminal 14a, through the diode D2 and the tran¬ sistor 68a, to the collector of the transistor 108. Any parasitic capacitance present at the terminal 14a and at the base of transistor 70a is rapidly discharged so that the video output signal undergoes a relatively fast negative transition.
Because of the feedback resistor 50a, the voltage V, and the current I2 decay to their quiescent values as the video output signal decreases toward its maximum negative value at time t„. Consequently, the currents I- and I- increase to their quiescent values at the same time. While the video input signal remains at its maximum positive value (between times t2 and t,) the currents I,, I2 and I- remain at their quies- cent levels.
When the video input signal undergoes a negative transition at time t3, the voltage V. and the currents I_ undergo rapid negative transitions while the current I., undergoes a rapid positive transition. Since the current I, has a maximum value which is limit¬ ed by the value of the current supplied by the source 114, the currents I, and I, remain at a relatively constant level while charging the parasitic capaci¬ tance at the base of transistor 70a. The transistor 70a conducts a current similar to for driving the output signal high and charging parasitic capacitance at the output terminal 14a.
As the output signal returns to its quiescent value at time t., the currents I,, I- and I-, return to their quiescent values. Thus, the power dissipa-' tion of the amplifier is limited by increasing the currents I2 and I_ only as needed to charge the para¬ sitic capacitances.
In a typical application, the current I2 may increase to a maximum level of about 15 to 20 milliamperes, as determined by* the value of the resis¬ tor 112. The current I_ may increase to a maximum level of about 3.5 milliamperes due to the limited current supplied by the current source 114. Under these constraints, the rise time of the video output signal is typically about 200 nanoseconds, whereas its fall time is typically about 100 nanoseconds. Such a difference is ordinarily not objectionable. However, the rise time of the output signal may be made compar¬ able to its fall time by, for example, increasing the level of current supplied by the source 102 or by other¬ wise increasing the current which the transistor 110 may conduct. The amplifier 100 and the amplifier 80
(Figure 3) dissipate substantially the same low level of power and provide output signals having comparable rise and fall times. An advantage of the amplifier 100, however, is that it requires no internal filters to operate rapidly. The amplifier 80, on the other hand, will operate best when the base of the transistor 54 is at a very low A.C. impedance as established, for ex¬ ample, by a filter capacitor (not shown) at the base of the transistor 54. Because the amplifier 100 does not require such a filter capacitor, it is preferred when construction is to be in integrated circuit form.
A characteristic of each of the illustrated embodiments is that they exhibit reduced power dissi¬ pation. This is primarily because their signal currents increase only "as needed" to respond to large amplitude transitions in the input signal. Consequently, the amplifiers are much more easily integrated than con¬ ventional large signal amplifiers.
Although the invention has been described in terms of the illustrated embodiments, it will be obvious to those skilled in the art that many alterations and modifications may be made without departing from the invention. Accordingly, it is intended that all such alterations and modifications be included within the spirit and scope of the invention as defined by the appended claims.

Claims

WHAT IS CLAIMED IS:
1. An amplifier, comprising: first circuit means receiving an input signal for generating a first signal current whose amplitude increases in response to input signal transitions of a given direction, and for generat¬ ing a second signal current whose amplitude decreases in response to the same input signal transitions; second circuit means receiving the first signal current for establishing a third signal current which mirrors the first signal current; third circuit means receiving the second • and third signal currents for con- version thereof to an amplified output signal; and a negative feedback path coupled between the input signal and the output signal to stabilize the gain of the amplifier.
2. An amplifier as set forth in claim 1 where¬ in said first circuit means includes a differential amplifier-. ■
3. An amplifier as set forth in claim 2 where¬ in said differential amplifier includes first and second emitter-coupled transistors, the first transistor having a collector circuit in which the first signal current is developed, the second transistor having a base receiving the input signal and a collector circuit in which the second signal current is developed.
4. An amplifier as set forth in claim 3 including a D.C. current source coupled to the base of the first transistor of the differential amplifier for establishing a predetermined quiescent level for said first signal current.
5. An amplifier as set forth in claim 3 wherein said second circuit means comprises a current mirror having an input coupled to the collector circuit of said first transistor and an output carrying said third signal current to said third circuit means.
6. An amplifier as set forth in claim 5 wherein said third circuit means includes an output transistor coupled to the output of said current mirror and coupled to the collector circuit of' said second transistor in the differential amplifier.
7. An amplifier as set forth in claim 6 where¬ in the output transistor includes a base coupled to the output of said current mirror, an emitter coupled to an output terminal, and including a diode coupling the emitter of the output transistor to the collector cir¬ cuit of said second transistor.
8. An amplifier as set forth in claim 1 wherein said third circuit means includes: a first current mirror receiving the second signal current for generating a fourth signal current which mirrors the second signal current; and an output stage receiving the third and fourth signal currents for develop¬ ing an output signal corresponding to the difference between the third and fourth signal currents.
9. An amplifier as set forth in claim 8 wherein said second circuit means comprises a second current mirror having an input and an output, wherein the input of the second current mirror receives the first signal current and wherein the output of the second current mirror comprises the third signal current.
10. An amplifier as set forth in claim 9 wherein said first circuit means includes: a first transistor having its collector coupled to the input of the second current mirror and its base coupled to a bias voltage; a first resistor coupled between a common node and the emitter of the first transistor; a second transistor having its collector coupled to an input of the first current mirror .and its base coupled to a bias voltage; a second resistor coupled between the common node and the emitter of the second transistor; and means for coupling the input signal to said common node.
11. An amplifier as set forth in claim 10 wherein said feedback path includes an impedance coup¬ ling the output signal to said common node.
12. An amplifier as set forth in claim 9 wherein said first circuit means includes: a transistor whose collector is coupled to the input of the second current mirror and whose base receives a
y bias voltage; a first resistance coupled between a common node and the emitter of said transistor; a second resistance coupling the common node to the input of the first current mirror; and means for coupling the input signal to said common node.
13. An amplifier as set forth in claim 12 wherein said means for coupling the input signal to the common node includes an emitter follower transistor whose base receives the input signal and whose emitter is coupled to said common node.
14. An amplifier as set forth in claim 13 wherein said feedback path includes an impedance coupling the output signal to the base of the emitter follower transistor.
15. An amplifier as set forth in claim 9 wherein the third signal current is coupled to the output stage by a first signal coupling transistor having an emitter coupled to the output of the second current mirror, having a base receiving a bias voltage, and having a collector coupled to the output stage, and wherein the fourth current signal is coupled to the output stage by a second signal coupling transistor having an emitter coupled to the output of the first current mirror, having a base receiving a bias volt¬ age, and having a collector coupled to the output stage.
16. An amplifier as set forth in claim 15 wherein the output stage includes: an output transistor having its base coupled to the collector of the first signal coupling transistor, having the collector coupled to a source of operating voltage and its emitter coupled to an output terminal; a first diode coupled -between the base of the output transistor and the collector of the second signal coupling transistor; and a second diode coupled between the emitter of the output transistor and the collector of the second signal coupling transistor.
17. A video amplifier for a television re¬ ceiver, comprising: a differential amplifier responsive to an input video signal for generating a first signal current whose amplitude increases in response to input video signal transitions of a given direc¬ tion and for generating a second sig¬ nal current whose amplitude decreases in response to the same transitions in the input video signal? a current mirror coupled to the differen- tial amplifier and receiving the first signal current for generating a third signal current which-is proportional. to the first signal current; a first signal coupling transistor coupled to the current mirror for trans-
OMPI ferring the third signal current to an output stage; a second signal coupling transistor couple to the differential amplifier for transferring the second signal current to the output stage; an output stage for converting the second and third signal currents to an out¬ put signal; and a negative feedback path coupling the input signal to the output stage so as to stabilize the gain of the amplifier.
18. A video amplifier for a television receiv¬ er, comprising: means defining first and second input current paths; an input stage for establishing currents in the first and second input current paths, the input stage, including: a first transistor receiving a bias voltage at its base and having its collector coupled to the first input current path; a resistance coupling the emitter of the first transistor to a common node and to the second input current path; and means coupling an input video signal to the common node for establishing signal currents in the first and second current paths; a first current mirror having an input receiving current from the first current path and having an output; a second current mirror having an input
25 receiving current from the second current path and having an output; a first output current path, including a PNP transistor having a base, an emitter and a collector, the base
30 of the PNP transistor receiving a bias voltage and its emitter being coupled to the output of the first current mirror; a second output current path, including
35 an NPN transistor having a base, an emitter and a collector, the base of the NPN transistor receiving a bias voltage and its emitter being coupled to the output of the
40 second current mirror; an output stage coupled to the collectors of the NPN and PNP transistors for developing an amplified video output signal; and
45 a feedback impedance coupling the video output signal back to said means which couples the input video signal to the common terminal.
EP19820900874 1981-02-09 1982-02-05 Amplifier having reduced power dissipation and improved slew rate Withdrawn EP0070895A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US23278381A 1981-02-09 1981-02-09
US232783 1981-02-09

Publications (1)

Publication Number Publication Date
EP0070895A1 true EP0070895A1 (en) 1983-02-09

Family

ID=22874562

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19820900874 Withdrawn EP0070895A1 (en) 1981-02-09 1982-02-05 Amplifier having reduced power dissipation and improved slew rate

Country Status (2)

Country Link
EP (1) EP0070895A1 (en)
WO (1) WO1982002805A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4812687A (en) * 1988-07-13 1989-03-14 International Business Machines Corporation Dual direction integrating delay circuit
DE4136605A1 (en) * 1991-11-07 1993-05-13 Philips Patentverwaltung AMPLIFIER

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7407953A (en) * 1974-06-14 1975-12-16 Philips Nv VOLTAGE CURRENT CONVERTER.
SU657585A1 (en) * 1976-12-29 1979-04-15 Ленинградский Ордена Ленина Электротехнический Институт Им. В.И.Ульянова (Ленина) Differential amplifier
US4166964A (en) * 1977-12-08 1979-09-04 Rca Corporation Inverting buffer circuit
US4267519A (en) * 1979-09-18 1981-05-12 Rca Corporation Operational transconductance amplifiers with non-linear component current amplifiers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8202805A1 *

Also Published As

Publication number Publication date
WO1982002805A1 (en) 1982-08-19

Similar Documents

Publication Publication Date Title
US4446443A (en) Amplifier having reduced power dissipation and improved slew rate
JPH05347519A (en) Operational amplifier
CA1085471A (en) Audio frequency power amplifier
EP0302548A2 (en) Circuit for generating a trapezoidal current waveform with matched rise and fall times
US4701720A (en) Capacitive feedback to boost amplifier slew rate
EP0343730B1 (en) Wideband class AB CRT cathode driver
JPS614310A (en) Level shifting circuit
US4728815A (en) Data shaping circuit
US4287435A (en) Complementary transistor inverting emitter follower circuit
EP0070895A1 (en) Amplifier having reduced power dissipation and improved slew rate
KR100514333B1 (en) Pulse output circuit
US5282039A (en) Video signal amplifier arrangement for a television display tube
US5075580A (en) Circuit for converting an ECL signal into a CMOS signal
US4516247A (en) Signal receiver which indicates the status of the device connected thereto
GB1587627A (en) Video amplifier including capacitive coupled stages
KR0155615B1 (en) Synchronizing signal separation circuit of image input apparatus
KR100421077B1 (en) Audio Signal Amplifier
US5349287A (en) Low power comparator having a non-saturating current mirror load
US4297595A (en) Signal regenerating circuit with improved input-output isolation
US4871929A (en) ECL logic gate
US4843253A (en) Monolithically integratable circuit for the generation of extremely short duration current pulses
US3604843A (en) Amplifier circuits
JP2844796B2 (en) Amplifier circuit
US3461397A (en) Balanced differential amplifier with improved longitudinal voltage margin
JP4078858B2 (en) Optical amplifier circuit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): FR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19830412