EP0070213B1 - Process for treating aqueous basic effluents containing plutonium and possibly uranium - Google Patents

Process for treating aqueous basic effluents containing plutonium and possibly uranium Download PDF

Info

Publication number
EP0070213B1
EP0070213B1 EP82401143A EP82401143A EP0070213B1 EP 0070213 B1 EP0070213 B1 EP 0070213B1 EP 82401143 A EP82401143 A EP 82401143A EP 82401143 A EP82401143 A EP 82401143A EP 0070213 B1 EP0070213 B1 EP 0070213B1
Authority
EP
European Patent Office
Prior art keywords
plutonium
effluents
evaporation
solution
uranium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82401143A
Other languages
German (de)
French (fr)
Other versions
EP0070213A1 (en
Inventor
Alain Aspart
Bernard Guillaume
Jean-Paul Moulin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP0070213A1 publication Critical patent/EP0070213A1/en
Application granted granted Critical
Publication of EP0070213B1 publication Critical patent/EP0070213B1/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/08Processing by evaporation; by distillation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S159/00Concentrating evaporators
    • Y10S159/12Radioactive

Definitions

  • the present invention relates to a process for treating basic aqueous effluents containing plutonium and optionally uranium, which can be used in particular for treating aqueous effluents obtained by alkaline washing of the organic solvents used in nuclear fuel reprocessing plants irradiated.
  • organic solvents are generally used to extract plutonium and uranium from nitric solutions for dissolving used fuel. After this extraction step in the organic solvent, the uranium and plutonium are recovered by selective re-extraction in aqueous solutions, then the organic solvent is treated to purify and decontaminate it before recycling it at the extraction stage of the 'uranium and plutonium.
  • the purification treatment of the solvent comprises an alkaline washing step carried out for example by means of a sodium carbonate solution.
  • this alkaline washing step with a sodium carbonate solution makes it possible, on the one hand, to extract from the aqueous solution, dibutylphosphoric acid [(DBP) -H + ] which is the main degradation product of tributyl phosphate and, on the other hand, to keep heavy metal ions in aqueous solution, in particular uranium, zirconium and especially plutonium, thanks to the complexing properties of the carbonate ion.
  • DBP dibutylphosphoric acid
  • Radioactive effluents are thus obtained, following this alkaline washing step, which contain traces of plutonium and uranium in solution.
  • the present invention specifically relates to a process for treating basic aqueous effluents containing either plutonium or plutonium and uranium in solution, which makes it possible to reduce the volume of these effluents while avoiding precipitation of the plutonium.
  • the process of the invention is characterized in that said effluents are concentrated by evaporation under reduced pressure, at a temperature below 80 ° C to avoid precipitation of plutonium.
  • the effluent is evaporated at a pressure of 67,500 to 72,900 Pa.
  • the solubility of plutonium in carbonate medium decreases sharply when the temperature reaches 90 ° C, which is probably due to the fact that the rise in temperature promotes the displacement of plutonium from its carbonate complexes by hydrolysis.
  • the dissolution rate of the plutonium precipitate thus formed is undoubtedly too slow when cold in carbonate solutions. This does not ensure a re-solution of the precipitated plutonium.
  • the temperature used during evaporation, the precipitation of plutonium is avoided and it is thus possible to obtain solutions concentrated in plutonium.
  • the method of the invention is particularly applicable to the treatment of aqueous effluents containing sodium carbonate, and optionally sodium hydrogencarbonate and sodium nitrate.
  • evaporation is carried out under reduced pressure by heating the solution for a period such that a concentration factor of the effluents is obtained at least equal to 6.
  • This solution is concentrated by evaporation, operating under a pressure of 70875 Pa, at a temperature of 60 ° C., and the evaporation is continued until concentration factors ranging from 2 to 8 are obtained.
  • the plutonium precipitates at a rate of 1% of the total plutonium.
  • the concentration factor reaches the value 10
  • the concentration factor reaches the value 10
  • the formation of a slight precipitate is observed.
  • the latter does not contain plutonium to the accuracy of the measurements.
  • the precipitate which forms contains 6% of the total plutonium.
  • the concentration of the effluents by evaporation under reduced pressure at a temperature below 80 ° C., makes it possible to carry out the concentration of these effluents until a concentration factor is obtained at less than 6 without precipitation of plutonium.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Description

La présente invention, a pour objet un procédé de traitement d'effluents aqueux basiques contenant du plutonium et éventuellement de l'uranium, utilisable en particulier pour traiter les effluents aqueux obtenus par lavage alcalin des solvants organiques utilisés dans les installations de retraitement de combustibles nucléaires irradiés.The present invention relates to a process for treating basic aqueous effluents containing plutonium and optionally uranium, which can be used in particular for treating aqueous effluents obtained by alkaline washing of the organic solvents used in nuclear fuel reprocessing plants irradiated.

Dans les installations de retraitement de combustibles nucléaires irradiés, on utilise généralement des solvants organiques pour extraire le plutonium et l'uranium à partir des solutions nitriques de dissolution des combustibles irradiés. Après cette étape d'extraction dans le solvant organique, on récupère l'uranium et le plutonium par réextraction sélective dans des solutions aqueuses, puis on traite le solvant organique pour le purifier et le décontaminer avant de le recycler au stade d'extraction de l'uranium et du plutonium.In nuclear fuel reprocessing plants, organic solvents are generally used to extract plutonium and uranium from nitric solutions for dissolving used fuel. After this extraction step in the organic solvent, the uranium and plutonium are recovered by selective re-extraction in aqueous solutions, then the organic solvent is treated to purify and decontaminate it before recycling it at the extraction stage of the 'uranium and plutonium.

Généralement, le traitement de purification du solvant comprend une étape de lavage alcalin réalisée par exemple au moyen d'une solution de carbonate de sodium. Lorsque le solvant est du phosphate de tributyle, cette étape de lavage alcalin par une solution de carbonate de sodium permet, d'une part, d'extraire dans la solution aqueuse, l'acide dibutylphosphorique [(DBP)-H+] qui est le principal produit de dégradation du phosphate de tributyle et, d'autre part, de maintenir en solution aqueuse les ions de métaux lourds, en particulier d'uranium, de zirconium et notamment de plutonium, grâce aux propriétés complexantes de l'ion carbonate.Generally, the purification treatment of the solvent comprises an alkaline washing step carried out for example by means of a sodium carbonate solution. When the solvent is tributyl phosphate, this alkaline washing step with a sodium carbonate solution makes it possible, on the one hand, to extract from the aqueous solution, dibutylphosphoric acid [(DBP) -H + ] which is the main degradation product of tributyl phosphate and, on the other hand, to keep heavy metal ions in aqueous solution, in particular uranium, zirconium and especially plutonium, thanks to the complexing properties of the carbonate ion.

On obtient ainsi, à la suite de cette étape de lavage alcalin, des effluents radioactifs qui contiennent en solution des traces de plutonium et d'uranium. Afin d'assurer dans de bonnes conditons le traitement ultérieur de ces effluents radioactifs, il est préférable de les concentrer par évaporation pour diminuer ainsi le volume d'effluents à traiter.Radioactive effluents are thus obtained, following this alkaline washing step, which contain traces of plutonium and uranium in solution. In order to ensure in good condition the subsequent treatment of these radioactive effluents, it is preferable to concentrate them by evaporation to thereby reduce the volume of effluents to be treated.

Cependant, la concentration par évaporation à la pression atmosphérique d'effluents de ce type a un inconvénient majeur : il se produit au cours de l'évaporation une précipitation partielle mais relativement importante (50 % environ) du plutonium initialement en solution, ce qui présente certains dangers en raison de la possibilité d'accumuler une masse critique de plutonium aussi bien dans l'évaporateur que dans les dispositifs de stockage et de transport des effluents concentrés.However, the concentration by evaporation at atmospheric pressure of effluents of this type has a major drawback: there occurs during evaporation a partial but relatively large precipitation (about 50%) of the plutonium initially in solution, which presents certain dangers due to the possibility of accumulating a critical mass of plutonium both in the evaporator and in the storage and transport devices for concentrated effluents.

La présente invention a précisément pour objet un procédé de traitement d'effluents aqueux basiques contenant en solution soit du plutonium soit du plutonium et de l'uranium, qui permet de diminuer le volume de ces effluents tout en évitant une précipitation du plutonium.The present invention specifically relates to a process for treating basic aqueous effluents containing either plutonium or plutonium and uranium in solution, which makes it possible to reduce the volume of these effluents while avoiding precipitation of the plutonium.

A cet effet, le procédé de l'invention se caractérise en ce que l'on concentre lesdits effluents par évaporation sous pression réduite, à une température inférieure à 80 °C pour éviter la précipitation du plutonium.To this end, the process of the invention is characterized in that said effluents are concentrated by evaporation under reduced pressure, at a temperature below 80 ° C to avoid precipitation of plutonium.

Avantageusement, on réalise l'évaporation des effluents à une pression de 67 500 à 72 900 Pa.Advantageously, the effluent is evaporated at a pressure of 67,500 to 72,900 Pa.

En réalisant, selon l'invention, une concentration des effluents par chauffage sous pression réduite, on peut ainsi obtenir une évaporation tout en limitant la température de la solution de façon à éviter la précipitation du plutonium.By carrying out, according to the invention, a concentration of the effluents by heating under reduced pressure, it is thus possible to obtain an evaporation while limiting the temperature of the solution so as to avoid precipitation of the plutonium.

En effet, des expériences effectuées sur différentes solutions de plutonium en milieu carbonate ont montré que la précipitation du plutonium lors de l'évaporation ne résultait pas d'une saturation de la solution, mais qu'elle était due à l'effet de la température utilisée pour obtenir cette évaporation.Indeed, experiments carried out on different plutonium solutions in carbonate medium have shown that the precipitation of plutonium during evaporation did not result from saturation of the solution, but that it was due to the effect of temperature. used to obtain this evaporation.

Comme le montre les résultats du tableau 1 ci-joint, la solubilité du plutonium dans des solutions de carbonate à la température ambiante, est très supérieure à la concentration en plutonium que l'on peut atteindre dans des effluents aqueux basiques concentrés par évaporation sous pression atmosphérique.As shown in the results of table 1 attached, the solubility of plutonium in carbonate solutions at room temperature is much higher than the plutonium concentration which can be achieved in basic aqueous effluents concentrated by evaporation under pressure atmospheric.

Par ailleurs, des expériences menées en portant, pendant des durées déterminées, des solutions de plutonium en milieu carbonate à différentes températures, ont montré que la précipitation du plutonium dépendait surtout de la température. Les résultats de ces expériences sont donnés dans le tableau 2 ci-joint, pour deux solutions dénommées respectivement solution 1 et solution Il, la solution 1 ayant une teneur initiale en NaHC03 de 0,4 M et ayant été portée à chaque température pendant une durée de deux heures, et la solution Il ayant des teneurs initiales en NaHC03 de 0,4 M et en Na2C03 de 0,44 M, et ayant été portée à chaque température pendant une durée de 4 heures.In addition, experiments carried out by carrying, for determined periods, solutions of plutonium in carbonate medium at different temperatures, have shown that the precipitation of plutonium depended mainly on the temperature. The results of these experiments are given in table 2 attached, for two solutions called solution 1 and solution II respectively, solution 1 having an initial NaHCO 3 content of 0.4 M and having been brought to each temperature for one duration of two hours, and the solution II having initial contents of NaHC0 3 of 0.4 M and Na 2 C0 3 of 0.44 M, and having been brought to each temperature for a duration of 4 hours.

Ainsi, la solubilité du plutonium en milieu carbonate décroît fortement lorsque la température atteint 90 °C, ce qui est dû vraisemblablement au fait que l'élévation de la température favorise le déplacement du plutonium de ses complexes carbonates par hydrolyse. D'autre part, la vitesse de dissolution du précipité de plutonium ainsi formé est sans doute trop lente à froid dans les solutions de carbonate. Ceci ne permet pas d'assurer une remise en solution du plutonium précipité.Thus, the solubility of plutonium in carbonate medium decreases sharply when the temperature reaches 90 ° C, which is probably due to the fact that the rise in temperature promotes the displacement of plutonium from its carbonate complexes by hydrolysis. On the other hand, the dissolution rate of the plutonium precipitate thus formed is undoubtedly too slow when cold in carbonate solutions. This does not ensure a re-solution of the precipitated plutonium.

Aussi en limitant, selon l'invention, la température utilisée lors de l'évaporation, on évite la précipitation du plutonium et l'on peut obtenir ainsi des solutions concentrées en plutonium.Also by limiting, according to the invention, the temperature used during evaporation, the precipitation of plutonium is avoided and it is thus possible to obtain solutions concentrated in plutonium.

Le procédé de l'invention s'applique particulièrement au traitement d'effluents aqueux contenant du carbonate de sodium, et éventuellement de l'hydrogénocarbonate de sodium et du nitrate de sodium.The method of the invention is particularly applicable to the treatment of aqueous effluents containing sodium carbonate, and optionally sodium hydrogencarbonate and sodium nitrate.

Avantageusement, selon l'invention, on réalise l'évaporation sous pression réduite en chauffant la solution pendant une durée telle qu'on obtient un facteur de concentration des effluents au moins égal à 6.Advantageously, according to the invention, evaporation is carried out under reduced pressure by heating the solution for a period such that a concentration factor of the effluents is obtained at least equal to 6.

D'autres avantages et caractéristiques de l'invention apparaîtront mieux à la lecture des exemples suivants donnés bien entendu à titre illustratif et non limitatif.Other advantages and characteristics of the invention will appear better on reading the following examples given, of course, by way of illustration and not limitation.

Exemple 1Example 1

Cet exemple concerne le traitement d'effluents aqueux basiques ayant la composition suivante :

  • [Na+] = 0,5 M ; [CO3 2-] = 0,013 M ; [HCO3 -] = 0,38 M ; [NO3 -] = 0,1 M ; [Pu] = 85 mg.l-1; [U] = 1,03 g.l-1; [DBP-] = 1 g.l-1
This example concerns the treatment of basic aqueous effluents having the following composition:
  • [Na + ] = 0.5 M; [CO 3 2- ] = 0.013 M; [HCO 3 - ] = 0.38 M; [NO 3 - ] = 0.1 M; [Pu] = 85 mg.l -1 ; [U] = 1.03 gl -1 ; [DBP-] = 1 gl -1

On concentre ces effluents en opérant à une température de 58 °C, sous une pression de 67 500 Pa, et on poursuit l'évaporation jusqu'à l'obtention de différents facteurs de concentration.These effluents are concentrated by operating at a temperature of 58 ° C., under a pressure of 67,500 Pa, and the evaporation is continued until various concentration factors are obtained.

On mesure dans chaque cas, les quantités de plutonium et d'uranium, qui sont sous forme de précipité et qui sont en solution.In each case, the quantities of plutonium and uranium, which are in the form of a precipitate and which are in solution, are measured.

Les résultats obtenus sont donnés dans le tableau 3 ci-joint.The results obtained are given in table 3 attached.

Au vu de ce tableau, on constate que pour un facteur de concentration de 6, on n'observe aucune précipitation du plutonium. Avec un facteur de concentration sensiblement égal à 6, la composition de la solution concentrée est approximativement la suivante :

  • [Pu] = 0,56 g.l-1 ; [U] = 6,4 g.l-1; [DBP-] = 6 g.I-1 [Na+] = 3 M
In view of this table, it can be seen that for a concentration factor of 6, no precipitation of the plutonium is observed. With a concentration factor substantially equal to 6, the composition of the concentrated solution is approximately as follows:
  • [Pu] = 0.56 gl-1; [U] = 6.4 gl -1 ; [DBP-] = 6 gI- 1 [Na + ] = 3M

Enfin, on remarque que lorsqu'on effectue l'évaporation jusqu'à l'obtention d'un facteur de concentration égal à 8, la quantité de plutonium précipité ne représente qu'environ 1 % du plutonium total.Finally, it is noted that when the evaporation is carried out until a concentration factor equal to 8 is obtained, the amount of precipitated plutonium represents only about 1% of the total plutonium.

Exemple 2Example 2

Cet exemple concerne le traitement d'effluents aqueux basiques ayant la composition suivante :

  • [Na+] = 0,6 M ; [CO3 2]=0,11 M ; [HCO3 -] = 0,21 M ; [NO3 -~ ≃ 0,2 M ; [Pu] = 0,37 mg.l-1; [U] = 1,87 g.l-1; [DBP] = 10 g.l-1
This example concerns the treatment of basic aqueous effluents having the following composition:
  • [Na + ] = 0.6 M; [CO 3 2] = 0.11 M; [HCO 3 - ] = 0.21 M; [NO 3 - ~ ≃ 0.2 M; [Pu] = 0.37 mg.l -1 ; [U] = 1.87 gl -1 ; [DBP] = 10 gl -1

On concentre cette solution par évaporation en opérant sous une pression de 70875 Pa, à une température de 60 °C, et on poursuit l'évaporation jusqu'à l'obtention de facteurs de concentration allant de 2 à 8.This solution is concentrated by evaporation, operating under a pressure of 70875 Pa, at a temperature of 60 ° C., and the evaporation is continued until concentration factors ranging from 2 to 8 are obtained.

Pour ces différents facteurs de concentration, on détermine les teneurs en plutonium et en uranium présents sous forme de précipité et en solution. Les résultats obtenus sont donnés dans le tableau 4 ci-joint.For these different concentration factors, the plutonium and uranium contents present in the form of precipitate and in solution are determined. The results obtained are given in table 4 attached.

Ces résultats montrent qu'on peut atteindre un facteur de concentration de 6 sans observer la formation d'un précipité de plutonium.These results show that a concentration factor of 6 can be reached without observing the formation of a plutonium precipitate.

La concentration de la solution qui correspond à ce facteur de concentration de 6 est approximativement la suivante :

  • [Pu] = 2,2 mg.l-1; [U] = 5,3 g.l-1; [DBP-] = 60 g.l-1; [Na+] = 3 M
The concentration of the solution which corresponds to this concentration factor of 6 is approximately as follows:
  • [Pu] = 2.2 mg.l -1 ; [U] = 5.3 gl -1 ; [DBP-] = 60 gl -1 ; [Na + ] = 3M

Comme précédemment pour un facteur de concentration de 8, le plutonium précipite à raison de 1 % du plutonium total.As before for a concentration factor of 8, the plutonium precipitates at a rate of 1% of the total plutonium.

Exemple 3Example 3

Cet exemple concerne le traitement d'effluents basiques obtenus au cours du retraitement expérimental de combustibles nucléaires de type PWR (Borselle) dans la chaîne Cyrano. Ces effluents ont la composition suivante :

  • [Na+] = 0,86 M ; [CO3 2-] = 0,163 M ; [HCO3 -]= 0,045 M ; [NO3 -] ≃ 0,5 M ; [U] = 1,52 g.l-1; [Pu] = 8,0 mg.l-1 ; [DPB] 2 60 mg.I-1

et ils présentent une activité βγ de 100 µCi.l-1.This example concerns the treatment of basic effluents obtained during the experimental reprocessing of nuclear fuels of the PWR (Borselle) type in the Cyrano chain. These effluents have the following composition:
  • [Na + ] = 0.86 M; [CO 3 2- ] = 0.163 M; [HCO 3 - ] = 0.045 M; [NO 3 - ] ≃ 0.5 M; [U] = 1.52 gl -1 ; [Pu] = 8.0 mg.l- 1 ; [PBO] 2 60 mg.I- 1

and they have a βγ activity of 100 µCi.l -1 .

On sépare ces effluents en deux lots et on soumet le premier lot à une concentration par évaporation à la pression atmosphérique et le second lot à une concentration par évaporation sous pression réduite en opérant sous une pression de 72900 Pa et à une température de 62 °C.These effluents are separated into two batches and the first batch is subjected to a concentration by evaporation at atmospheric pressure and the second batch to a concentration by evaporation under reduced pressure by operating under a pressure of 72 900 Pa and at a temperature of 62 ° C. .

Pour le premier lot, on poursuit l'évaporation jusqu'à l'obtention de facteurs de concentration allant de 1 à 6 et pour le second lot on poursuit l'évaporation jusqu'à l'obtention de facteurs de concentration allant de 1 à 12.For the first batch, evaporation is continued until concentration factors ranging from 1 to 6 are obtained, and for the second batch, evaporation is continued until concentration factors ranging from 1 to 12 are obtained. .

Comme précédemment, on mesure les teneurs en uranium et en plutonium des solutions ainsi que les teneurs en uranium et plutonium des précipités. Les résultats obtenus avec le premier lot et avec le second lot sont donnés respectivement dans les tableaux 5 et 6 ci-joints.As before, the uranium and plutonium contents of the solutions are measured as well as the uranium and plutonium contents of the precipitates. The results obtained with the first batch and with the second batch are given respectively in Tables 5 and 6 attached.

Au vu de ces résultats, on constate que lorsqu'on opère sous pression atmosphérique, la précipitation du plutonium se produit quel que soit le facteur de concentration et qu'elle affecte 40 à 50 % du plutonium total.In view of these results, it can be seen that when operating at atmospheric pressure, the precipitation of plutonium occurs regardless of the concentration factor and that it affects 40 to 50% of the total plutonium.

En revanche, lorsque l'évaporation est effectuée sous pression réduite, on n'observe aucune précipitation du plutonium jusqu'à l'obtention d'un facteur de concentration de 8. On précise que la composition de la solution concentrée qui correspond à un facteur de concentration égal à 8, est approximativement la suivante :

  • [Pu] = 83 mg.l-1; [U] = 12 g.I-1 ; [DBP-] = 0,48 g.l-1; [Na+] = 6,9 M

et son activité βγ de 0,8 mCi.1-1.On the other hand, when the evaporation is carried out under reduced pressure, no precipitation of the plutonium is observed until a concentration factor of 8 is obtained. It is specified that the composition of the concentrated solution which corresponds to a factor with a concentration equal to 8, is approximately as follows:
  • [Pu] = 83 mg.l -1 ; [U] = 12 gI- 1 ; [DBP-] = 0.48 gl -1 ; [Na + ] = 6.9 M

and its βγ activity of 0.8 mCi.1- 1 .

Lorsque le facteur de concentration atteint la valeur 10, on observe la formation d'un léger précipité. Cependant, ce dernier ne contient pas de plutonium à la précision des mesures près. Enfin, pour un facteur de concentration de 12, le précipité qui se forme contient 6 % du plutonium total.When the concentration factor reaches the value 10, the formation of a slight precipitate is observed. However, the latter does not contain plutonium to the accuracy of the measurements. Finally, for a concentration factor of 12, the precipitate which forms contains 6% of the total plutonium.

Ainsi, le fait de réaliser selon l'invention la concentration des effluents par évaporation sous pression réduite, à une température inférieure à 80 °C, permet de réaliser la concentration de ces effluents jusqu'à l'obtention d'un facteur de concentration au moins égal à 6 sans qu'il se produise une précipitation du plutonium.Thus, the fact of carrying out according to the invention the concentration of the effluents by evaporation under reduced pressure, at a temperature below 80 ° C., makes it possible to carry out the concentration of these effluents until a concentration factor is obtained at less than 6 without precipitation of plutonium.

Il semble que la précipitation qui intervient ensuite est vraisemblablement due à la saturation en uranium de la solution, ce dernier élément entraînant probablement le plutonium dans sa précipitation.It seems that the precipitation which follows then is probably due to the saturation in uranium of the solution, this last element probably entraining the plutonium in its precipitation.

(Voir tableaux pages 5 à 10)(See tables pages 5 to 10)

Figure imgb0001
Figure imgb0001
Figure imgb0002
Figure imgb0002
Figure imgb0003
Figure imgb0003
Figure imgb0004
Figure imgb0004
Figure imgb0005
Figure imgb0005
Figure imgb0006
Figure imgb0006

Claims (6)

1. Process for the treatment of aqueous basic effluents containing in solution either plutonium, or both plutonium and uranium, characterized in that said effluents are concentrated by evaporation at reduced pressure, at a temperature below 80 °C.
2. Process according to Claim 1, characterized in that evaporation of the effluents is carried out at a pressure of 67500 to 72900 Pa.
3. Process according to either of Claims 1 and 2, characterized in that said effluents comprise sodium carbonate.
4. Process according to any one of Claims 1 to 3, characterized in that said effluents comprise sodium hydrogen carbonate.
5. Process according to any one of Claims 1 to 4, characterized in that said effluents comprise sodium nitrate.
6. Process according to any one of Claims 1 to 5, characterized in that evaporation by boiling under reduced pressure, permits a concentration factor of at least 6 to be achieved without detectable precipitation of plutonium.
EP82401143A 1981-06-24 1982-06-22 Process for treating aqueous basic effluents containing plutonium and possibly uranium Expired EP0070213B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8112408A FR2508693A1 (en) 1981-06-24 1981-06-24 PROCESS FOR TREATING BASIC AQUEOUS EFFLUENTS CONTAINING PLUTONIUM AND POSSIBLY URANIUM
FR8112408 1981-06-24

Publications (2)

Publication Number Publication Date
EP0070213A1 EP0070213A1 (en) 1983-01-19
EP0070213B1 true EP0070213B1 (en) 1986-01-02

Family

ID=9259833

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82401143A Expired EP0070213B1 (en) 1981-06-24 1982-06-22 Process for treating aqueous basic effluents containing plutonium and possibly uranium

Country Status (5)

Country Link
US (1) US4481135A (en)
EP (1) EP0070213B1 (en)
JP (1) JPS586494A (en)
DE (1) DE3268264D1 (en)
FR (1) FR2508693A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3639066A1 (en) * 1986-11-14 1988-05-19 Kernforschungsz Karlsruhe METHOD FOR IMPROVING CRITICALITY SECURITY IN A LIQUID-LIQUID EXTRACTION PROCESS FOR IRRADIATED FUEL AND / OR FERTILIZERS
US5253597A (en) * 1992-06-18 1993-10-19 Chemical Waste Management, Inc. Process for separating organic contaminants from contaminated soils and sludges
US7669349B1 (en) 2004-03-04 2010-03-02 TD*X Associates LP Method separating volatile components from feed material

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1228009B (en) * 1961-02-09 1966-11-03 Atomkraftwerk Rheinsberg Mit B Process for removing radioactive contaminants from liquids
NL291224A (en) * 1962-04-06
US3361649A (en) * 1965-04-05 1968-01-02 American Mach & Foundry Method and apparatus for distillation of waste liquids and separate recovery of solvent and solute
DE1228099B (en) * 1965-07-24 1966-11-03 Fichtel & Sachs Ag Tree tracing device
US4108718A (en) * 1976-01-27 1978-08-22 Purdue Research Foundation Vapor filtration process and system
US4197197A (en) * 1976-06-25 1980-04-08 Abaeva Tatyana V Method for removing oil film from water surface
JPS5423900A (en) * 1977-07-25 1979-02-22 Mitsubishi Metal Corp Recovering regeneration method of radioactive retreating waste organic solvent
US4208377A (en) * 1978-07-25 1980-06-17 The United States Of America As Represented By The United States Department Of Energy Process for recovering actinide values

Also Published As

Publication number Publication date
EP0070213A1 (en) 1983-01-19
JPH0129280B2 (en) 1989-06-08
FR2508693A1 (en) 1982-12-31
FR2508693B1 (en) 1983-10-07
JPS586494A (en) 1983-01-14
DE3268264D1 (en) 1986-02-13
US4481135A (en) 1984-11-06

Similar Documents

Publication Publication Date Title
EP2095372B1 (en) Grouped separation of actinides from a highly acidic aqueous composition a solvating extractant in a salting medium
EP2459759B1 (en) Method for selectively recovering americium from an aqueous nitric phase
WO2007118904A1 (en) Grouped separation of actinides from a highly acidic aqueous phase
EP3084773A1 (en) Method for processing spent nuclear fuel comprising a step of decontaminating the uranium (vi) into at least one actinide (iv) by complexing this actinide (iv)
FR2954354A1 (en) PROCESS FOR PURIFYING URANIUM FROM A NATURAL URANIUM CONCENTRATE
EP0070213B1 (en) Process for treating aqueous basic effluents containing plutonium and possibly uranium
CA2519056A1 (en) Method for separating uranium (vi) from actinides (iv) and/or (vi) and the use thereof
KR930006698B1 (en) Preparation of insoluble tannin and its applications for waste treatment and adsorption process
FR2551745A1 (en) PROCESS FOR THE SEPARATION OF NEPTUNIUM FORMING FROM AN ORGANIC PHASE DURING THE RETIREMENT OF IRRADIATED COMBUSTIBLE AND / OR FERTILIZED MATERIALS
EP1344228B1 (en) Method for dissolving solids formed in a nuclear installation
EP0347315B1 (en) Process for separating uranium and plutonium present in an aqueous medium resulting from the reprocessing of irradiated nuclear fuels, by means of crown-ethers
FR2520342A1 (en) PROCESS FOR PURIFYING PHOSPHORIC ACID FROM WETWAY
FR2564632A1 (en) METHOD FOR CONCENTRATING RADIOACTIVE WASTE SOLUTIONS FROM NUCLEAR PLANTS
FR2556744A1 (en) PROCESS FOR THE REDUCTIVE REPLACEMENT OF PLUTONIUM FROM AN ORGANIC RELEASE SOLUTION IN AN AQUEOUS NITRIC ACID SOLUTION USING ELECTROLYSIS CURRENT
EP2670874B1 (en) Process for separating at least one platinoid element from an acidic aqueous solution comprising, besides this platinoid element, one or more other chemical elements
EP0498743B1 (en) Process for the elimination of ruthenium from uranous solutions
US2819944A (en) Purification process
US2893824A (en) Uranium recovery process
EP0251399A1 (en) Process for separating or recovering plutonium, and plutonium obtained thereby
BE1000098A3 (en) Method for improving the efficiency of decontamination solution of nuclear fuels and / or materials contaminated with fertile zirconium.
FR2739216A1 (en) METHOD OF TREATING METALLIC ALUMINUM-BASED FUELS AND / OR NUCLEAR TARGETS WITH TETRAMETHYLAMMONIUM HYDROXIDE SOLUTIONS
WO2017067935A1 (en) Use of hydroxy-imine alkanoic acids as anti-nitrous agents in operations of reductive back-extraction of plutonium
CA1273805A (en) Process for the production of a high purity uranium bearing concentrate from zirconium contaminated liquors
FR2599271A1 (en) PROCESS FOR RECOVERING INDIUM, GERMANIUM AND / OR GALLIUM USING PHASES EXCHANGING IONS WITH PHOSPHONIC GROUP.
Bolam et al. The action of charcoal on aqueous solutions of silver nitrate

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE GB

17P Request for examination filed

Effective date: 19830606

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE DE GB

REF Corresponds to:

Ref document number: 3268264

Country of ref document: DE

Date of ref document: 19860213

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920526

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19920618

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19930630

BERE Be: lapsed

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE ETABLISSEMENT D

Effective date: 19930630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940301

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010620

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20020621

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Effective date: 20020621