EP0065084B1 - Device for controlling the motion of an oscillating chute, and shaft furnace charging installation with such a device - Google Patents

Device for controlling the motion of an oscillating chute, and shaft furnace charging installation with such a device Download PDF

Info

Publication number
EP0065084B1
EP0065084B1 EP82101942A EP82101942A EP0065084B1 EP 0065084 B1 EP0065084 B1 EP 0065084B1 EP 82101942 A EP82101942 A EP 82101942A EP 82101942 A EP82101942 A EP 82101942A EP 0065084 B1 EP0065084 B1 EP 0065084B1
Authority
EP
European Patent Office
Prior art keywords
spout
axis
control device
pivoting
movement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82101942A
Other languages
German (de)
French (fr)
Other versions
EP0065084A1 (en
Inventor
Edouard Legille
Pierre Mailliet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Paul Wurth SA
Original Assignee
Paul Wurth SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Paul Wurth SA filed Critical Paul Wurth SA
Priority to AT82101942T priority Critical patent/ATE10949T1/en
Publication of EP0065084A1 publication Critical patent/EP0065084A1/en
Application granted granted Critical
Publication of EP0065084B1 publication Critical patent/EP0065084B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/18Bell-and-hopper arrangements
    • C21B7/20Bell-and-hopper arrangements with appliances for distributing the burden

Definitions

  • the present invention relates to a device for controlling the movement of an oscillating chute which can pivot around two orthogonal axes, the first axis being the axis of suspension of the chute between two branches of a fork, the second axis being the axis longitudinal of the fork around which the latter can pivot in block with the chute, the device comprising an oscillating control member having the same degrees of freedom as the chute, a drive mechanism for imparting movement to the control member that the chute and a transmission device must perform to reproduce the movement of the control member on the chute and vice versa.
  • the invention also relates to a loading installation of a tank furnace equipped with such a device.
  • the object of the present invention is to provide a new control device of the aforementioned type in which the control member and its drive mechanism are no longer subjected to the stresses and stresses resulting from their action on the chute and its suspension fork.
  • the device proposed by the invention is essentially characterized by a first means for pivoting the chute around the first axis, a second means for pivoting the fork and the chute around the second axis and a servo drive controlled by the movement of the control member and by the movement of the chute, in order to coordinate the actions of said first and second means and to control these according to relative changes in position and orientation between the control member and the chute.
  • Said first and second means for pivoting the chute around the first and second axis are respectively a first and a second hydraulic cylinder.
  • control member is an arm mounted by one of its ends on a rotary shaft mounted, in turn, on the suspension fork of the chute, parallel to the first pivot axis and connected to the latter by the transmission device so as to pivot in synchronism with the pivoting of the chute around the first axis and with the movement of the first jack, the second end of the arm undergoing the action of the drive mechanism designed to print to the control member a conical movement of circular precession with variable angle of inclination.
  • the control member is mounted on the rotary shaft by means of a universal joint.
  • This control member cooperates with two feelers integral with the rotary shaft and designed to detect any pivoting authorized by said articulation and occurring, around two axes respectively parallel to the first and second pivot axis, between the arm and its rotary shaft , with a view to generating, independently of one another, correction signals intended to compensate for the pivotings thus detected by a corresponding action on the first and second actuator.
  • the assembly is such that the control member occupies a neutral orientation, parallel to the axis of the chute and that any deviation from this parallelism, permitted by said articulation and occasioned by the chute or the drive mechanism, is immediately detected by the probes and compensated by a pivoting of the chute under the action of one or the other, or of the two jacks at the same time.
  • the chute therefore always remains parallel to the control shaft and follows the movement imparted to it by its drive mechanism, in particular a conical precession movement around a vertical axis.
  • the drive mechanism of the control member can be a "miniaturized" mechanism, since the only force which it must develop is the very low force necessary for pivoting of the control member in its universal articulation with its rotary shaft, while the forces necessary for the pivoting of the chute and of its suspension fork are generated by the two hydraulic cylinders.
  • the first cylinder is mounted by pins on the suspension fork of the chute, while the second cylinder is mounted by pins on a fixed frame supporting the fork.
  • a safety device with elastic interlocking is provided, in a preferred embodiment, between the control member and the transmission device and intended to come into action to prevent deterioration in the event of failure of the drive mechanism or of the system. hydraulic cylinders.
  • This device is preferably associated with one or more limit switches intended to detect deviations in the universal joint greater than those permitted by the probes.
  • the control member is completely independent of the device, while remaining mounted so as to be able to perform the same movements as the chute.
  • the servo control is essentially constituted by first electronic means associated with the control member and designed to measure the pivotings of the control member around two perpendicular axes and generate two sets of reference signals respectively representative of the amplitude of these pivotings, second electronic means for measuring the pivotings of the chute around the first and second axes and generating two series of effective signals respectively representative of the amplitude of the effective pivoting of the chute around its axes, comparators for comparing the series setpoint signals to the series of effective signals and generate correction signals representative of the difference between the setpoint signals and the actual signals and used to actuate the first and second cylinders so as to vary the effective signals by the movement of the chute so that the correction signals are maintained us equal to zero or they become equal to zero.
  • the invention also relates to a loading installation of a shaft furnace comprising a vertical supply channel mounted in the head of the furnace and connecting one or more external loading locks inside the furnace, an oscillating chute for distributing the loading material mounted immediately downstream of the channel and a suspension and control device for the oscillating chute with a control device of the kind described above.
  • FIG. 1 schematically shows the device for suspending and driving the chute corresponding to FIG. 1 of the aforementioned European patent application EP-A-0062769.
  • EP-A-0062769 European patent application
  • the rules set out in this patent application are also valid for the present application, that is to say that, although the various embodiments are described with reference to their application to a blast furnace, the invention is just as well applicable to other loading systems and other types of enclosure ovens and more particularly enclosures where conditions similar to those existing in a blast furnace prevail.
  • the reference 20 designates the head of a blast furnace under pressure, in which the loading material must be charged from an upper airlock, not shown, through a vertical supply channel 22 arranged along the axis vertical 0 or top of the blast furnace.
  • the distribution of the loading material introduced through the channel 22 is carried out using an oscillating chute 24 whose shape is preferably frustoconical, as shown in the figure.
  • This oscillating chute 24 is suspended between two branches (of which only the branch 28 is visible) of a fork 26 which is mounted in the side wall of a carcass 34 of the head 20 of the oven so as to be able to pivot around its axis longitudinal Y. Independently of this possibility of pivoting of the fork 26 around the axis Y, the oscillating chute 24 can pivot around its suspension axis X between the two branches of the fork 26.
  • the fork 26 is mounted in a sealed manner in a wall 36 separating a casing 32 for controlling and driving the interior of the head 20 of the furnace, casing 32 being mounted, in a removable manner, on a flange 38 of the carcass 34.
  • the fork 26 is housed in a bearing 40 provided in the partition wall 36.
  • This bearing can be associated with a sealing device 42 to prevent pressure leaks towards the casing 32.
  • This sealing device 42 can however be relieved by providing in the casing 32 a pressure approximately equal to that prevailing inside the head 20 of the furnace.
  • a control member 46 mounted on a rotary shaft 48 passing through the fork 26 and able to rotate about its axis X '.
  • This shaft 48 is mounted so that its axis X 'is strictly parallel to the axis of pivoting of the chute 24.
  • This control member 46 can pivot with the shaft 48 around the axis X' as well as around of the Y axis, together with the fork 26, therefore has the same degrees of freedom as the chute 24 and vice versa.
  • the basic idea of the aforementioned patent application is to animate this control member 46 with the movement that is desired that the chute 24 performs.
  • a movement transmission device 50 connected, on the one hand, directly or indirectly to the axis X of pivoting of the chute 24 and, on the other hand, by means of a lever to the control member 46 so as to constitute a system in the form of a parallelogram which transforms the pivotings of the control member 46 around the axis X 'into pivoting of the chute 24 around the axis X .
  • the aforementioned patent application proposes several embodiments for animating the control member 46 with the desired movement.
  • This mechanism comprises, in this case, a drive unit 60 mounted outside, preferably in a removable manner, on the casing 32.
  • Two coaxial control shafts 62, 64 penetrate from the drive unit 60 through bearings and possibly seals inside the casing 32.
  • One of these control shafts, in this case the external control shaft 62 carries inside the casing 32 a curved slide 66, in an arc of a circle, the angle of which corresponds substantially to twice the maximum angle of inclination of the chute with respect to the axis O.
  • a toothed sector 72 forming a rack with a pinion 70 integral with the internal control shaft 64 is maintained so sliding on the concave side of this slide 66.
  • a rotary connection 68 is provided between the end of the control member 46 and one of the two ends of this toothed sector 72.
  • the rotation of the external control shaft 62 consequently rotates the slide 66 and the toothed sector 72 around the axis 0 'parallel to the axis 0 of the furnace and generates a conical precession movement of the control member 46 around this same axis O '.
  • This movement of the control member 46 is possible thanks to coordinated pivoting of the fork 26 around the axis Y and of the member 46 around the axis X ', pivoting reproducing the conical precession movement of the member 46 exactly on the chute 24.
  • the rotation of the internal control shaft 64 is used to move the toothed sector 72 and to modify the angle of inclination of the control member 46 relative to the axis O '.
  • control member 46 therefore exerts a control function and a motor function insofar as this control member 46 actuates the chute 24 directly by a set of levers.
  • this control member 46 and its connection with its drive mechanism can expose this member to high mechanical stresses.
  • the present invention proposes to withdraw the driving functions from the control member 46 so that it exerts exclusively a control function.
  • an assisted control is proposed in which the power necessary for the pivoting of the fork 26 and of the chute 24 is obtained by means of hydraulic cylinders instead of deriving this power from the drive mechanisms of the control member. 46.
  • a first hydraulic cylinder 74 can be seen, the piston rod 76 of which acts on a lever 58 secured to the rotary shaft 48 to which the control member 46 is connected.
  • On this lever 58 is also articulated the transmission device 50 so that the action of the jack 74 causes the control member 46 to pivot about the axis X 'and the simultaneous pivoting of the chute 24 around its suspension axis X.
  • the cylinder 74 Since the 'end of the piston rod 76 which is articulated on the lever 58 must perform a pendulum movement around the axis X' the cylinder 74 must be able to pivot about an axis parallel to the axis X '. To this end, the jack 74 is mounted by means of pins 78 on the rear end of the fork 26.
  • a second hydraulic cylinder 80 acts perpendicular to the first cylinder 74.
  • This cylinder 80 is mounted by pins, not visible, on the wall of the casing 32 and its rod 82 is directly articulated on the fork 26 in order to pivot the latter, by means of the bearing 40, about the Y axis.
  • the fork 26 is in fact a double fork comprising, in addition to the two branches between which the chute 24 is suspended, two branches at the opposite end for mounting the rotary shaft 48.
  • This fork 26 is therefore similar. to that provided in the embodiment of Figure 25 of European patent application 0062769.
  • Figure 3 we see the mounting of the rotary shaft 48 between the two branches 84 and 86 of the fork. The mounting details have only been shown for the branch 86.
  • Bearings 88 allow the rotation of the shaft 48 around the axis X ', while sealing means, not shown, allow the circulation of a coolant inside the entire fork 26.
  • the pivoting movement of this shaft 48 around the axis X ' is transformed by means of levers 90 into a translational movement of the transmission mechanism 50 in the form double fork moving inside the fork 26.
  • the shaft 48 in several pieces, which, in FIG. 3, is materialized by a screw 92 passing axially through one end of the shaft and ensuring its rigidity.
  • the two parts held together at 94 by the screw 92 are preferably provided with flanges each comprising a crown of radial grooves.
  • the mounting of the shaft 48 in the branch 84 is analogous to what has been described above with reference to the branch 86.
  • the connection between the control member 46 and the shaft 48 is ensured by a universal articulation 100 allowing a certain freedom of movement of the member 46 relative to the shaft 48 and vice versa.
  • This universal joint 100 can have various shapes, in particular that of a ball joint. In the figures we have shown, by way of example, a cardan joint 100.
  • the member 46 is mounted on a shaft 102 housed in a frame 104 and allowing the pivoting of the member 46 about the axis X ' .
  • This frame 104 is carried by pivots 106 allowing it to rotate around a second axis perpendicular to the axis X '.
  • the pivoting occurring at the level of the universal joint 100 are detected by a pair of feelers 108 and 110 associated with the control member 46 and integral with the shaft 48.
  • These feelers are in fact the sensitive members of two position sensors 112, 114, signaling any deviation from a neutral position, deviation to be compensated by a coordinated action on the jacks 74 and 80.
  • the probe 108 detects the deviations by pivoting occurring at the level of the pivots 106 and controls the compensation for this pivoting, as described below, by acting on the jack 80.
  • the probe 110 which is offset by 90 ° relative to the probe 108, detects, in a similar manner, pivotings occurring around the axis X ′ and controls the compensation of these pivotings by an action on the jack 74.
  • This regulator 116 actuates a servohydraulic unit 118 comprising a slide valve, also known per se, incorporated in the hydraulic circuit of the jack 78.
  • This servohydraulic unit 118 establishes the circulation of the hydraulic fluid either in one direction or in the other, according to whether signal I is positive or negative.
  • the sign of the signal 1 determines the direction of movement of the piston rod 76 of the jack 78 and the direction of the pivoting of the chute around the axis X.
  • This action on the jack 78 is in the opposite direction of the action which caused the displacement Ax on the probe and continues until the probe occupies again its neutral position, that is to say, that the signal 1 becomes equal to zero.
  • the servohydraulic unit 118 is, moreover, designed so as to vary the flow rate of the hydraulic fluid in the circuit of the actuator 78 as a function of the amplitude of the signal I.
  • the pivoting speed around the axis X of the chute, generated by the piston 78 is a function of the magnitude of ⁇ x.
  • a control circuit similar to that of FIG. 6 is associated with the probe 108 in order to control the jack 80 and the pivoting of the chute 24 around the axis Y.
  • the probes 108 and 110 consequently undergo the double action of the control member 46 and of the chute 24 by means of the fork 26 and the shaft 48. From the control member 46, the probes 108 and 110 receive the setpoint information by the action of the drive unit 60. From the chute 24, the probes 108, 110 permanently receive the information concerning the actual position of this chute. As long as the information concerning the actual position does not correspond to the setpoint information, the sensors 112 and 114 maintain the signals for actuating the corresponding jacks and aiming at the reduction of these signals I. There is consequently a self-regulation of the position or orientation of the chute 24 around the position controlled by the drive unit 60.
  • a failure occurs upstream or downstream of the control member, that is to say, for example an electrical failure of the power unit 60, or a failure of the hydraulic circuits of the cylinders 78 or 80 , the servo control system is no longer able to cancel, by compensation, the signal I, so that ⁇ x tends to increase in an uncontrolled manner.
  • safety sensors 115, 117 have been placed alongside sensors 112 and 114 which are also position sensors similar to sensors 112 and 114. These sensors 115 and 117 trigger a signal when Ax exceeds, in obsolete value, a predetermined threshold which immediately blocks both the hydraulic circuit and the power unit.
  • the articulation 100 is provided inside a frame 120 located inside a corresponding frame 122 fixed on the rotary shaft 48.
  • These two frames 120 and 122 are held together only by four pairs of elastic fixings (124) provided at the four corners of the two frames 120 and 122.
  • Each of these fixings comprises, for example, a pair of plates 126 and 128 applied on both sides. 'other of the frames 120 and 122 so as to cover their separation.
  • These plates 126 and 128 are maintained in this arrangement according to FIG. 3 under the action of two springs 130 and 132.
  • These springs 130 and 132 are powerful enough to maintain the configuration illustrated in FIGS. 3 and 4.
  • FIG. 5 shows a second embodiment of a safety device fulfilling the functions of that of FIG. 4.
  • a frame 140 carrying the universal articulation 100 with the control member 46 is maintained in an outer frame 144 secured to the rotary shaft 48 by means of an elastic universal joint fixing.
  • an intermediate frame 142 disposed between the frames 140 and 144.
  • the inner frame 140 can pivot around an axis 146, corresponding to the axis X ', inside the intermediate frame 142 while the latter pivots inside the outer frame 144 around an axis 148 perpendicular to the axis 146.
  • This structure is held together by means of a series of elastic fasteners, similar to the fasteners 124 with plates and springs of FIGS. 3 and 4.
  • Two fasteners 150 and 152 hold the inner frame 140 relative to the intermediate frame 144 and prevent rotation about the axis 146.
  • Two other elastic fasteners 154 and 156 prevent the rotation of the intermediate frame 142 around the axis 148 to inside the outer frame 144.
  • the fasteners give way under the effect of an abnormal force and allow a dislocation of the different frames around the axes 146 and / or 148. While in the embodiment of Figures 3 and 4, a dislocation causes total release of the inner frame 120 relative to the outer frame 122, in the embodiment of Figure 5 the structure remains held together thanks to the presence of the pivot axes 146 and 148. Indeed, even in case of dislocation total, that is to say a dislocation of the inner frame 140 relative to the intermediate frame 142 and a dislocation of the latter relative to the outer frame 144, a rapid repositioning of the structure by an appropriate manual pivoting in different frames until they are held by their elastic fixings is still possible.
  • FIGS. 7 to 10 illustrate a second embodiment, the peculiarity of which is that the control member and its drive mechanism are made completely independent of the device for suspending the chute 24. Elements corresponding to those of the previous embodiment are provided with the same reference numbers and will not be described in further detail.
  • the jack which generates the rotation of the fork 26 around the axis Y has also been represented by the reference 80 although in FIG. 8 it occupies a position different from that of the jack 80 in FIG. 2. Its function nevertheless remains exactly the even.
  • the angular position of the chute 24 is continuously monitored by means of two sensors 160 and 162.
  • the sensor 160 determines the effective angular position of the chute with respect to the axis 0 and transmits signals proportional to the amplitude of pivoting of the lever 58 around the axis X ', that is to say the pivotings of the chute 24 around the axis X.
  • the sensor 162 determines the movements around the Y axis and generates and transmits signals proportional to the amplitude of rotation of the fork 26 and of the chute 24 around the Y axis.
  • FIGS. 9 and 10 show the control member 166 which can be mounted at a suitable location, for example, in an engine room, and be actuated by a suitable drive mechanism 168 which can be analogous to the mechanism used in the mode of embodiment of FIG. 1 or one of the different embodiments described in support of the European patent application EP-A-0062769.
  • control member 166 is mounted on a suitable frame 172 by means of a universal joint, in this case, a universal joint 170.
  • This joint 170 allows the control member 166 to pivot around two axes X 1 , Y 1 perpendicular to one another and corresponding respectively to the axes X and Y of pivoting of the chute 24 in the head of the furnace 20.
  • the movement of the control member 166 provides instructions for the movement of the chute in the form of set signals respectively representing the angular movements of the control member 166 around the X axis 1 and around the Y axis 1 in the universal joint 170.
  • These angular movements of the member 166 are detected by two sensors 180, 182, which correspond respectively to the sensors 160 and 162, and respectively control the pivotings around the axes X 1 and Y 1 .
  • FIG. 11 shows a block diagram illustrating the relationship between the device of Figure 9, which provides the instructions, and the device of Figure 7 which must execute them.
  • the control circuit of FIG. 11 is that associated with the jack 74 for pivoting around the X axis.
  • a similar circuit is provided for actuating the jack 80 to generate the pivoting around the Y axis.
  • control member 166 is rotated about its pivot axis X 1 by an angle equal to ⁇ .
  • This is the set value for the chute, that is to say that it should occupy an inclination a relative to the vertical axis O.
  • the chute 24 is inclined at an angle ⁇ relative to the axis O. This position is measured by the sensor 160 which determines the positions and rotations around the X 'axis.
  • the signals from the sensors 160 and 180 are sent to a regulator 174 analogous to the regulator 116 in FIG. 6. This regulator compares the signals emitted by the two sensors 160 and 180 and generates corrective signals as a function of this comparison.
  • the corrective signal generated by the regulator 174 is applied to a servo-hydraulic control valve 176 which determines the direction of circulation of the hydraulic fluid of the jack 74 as a function of the sign of the corrective signals.
  • the piston of the cylinder 74 is therefore moved to one side or the other depending on whether the corrective signals are positive or negative. This command lasts until the angle ⁇ is equal to the angel ⁇ and the corrective signals become zero.
  • the servohydraulic control 176 also determines the flow rate of the hydraulic fluid as a function of the amplitude of the corrective signals.
  • control member 166 Since in the embodiment shown in FIGS. 7 to 10, the control member 166 is separated from the system of suspension of the chute, it is not necessary to provide safety means to prevent the risk of destruction in the event of a breakdown in the hydraulic circuit or in the drive system of the control member.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Blast Furnaces (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Manufacture Of Iron (AREA)
  • Heat Treatment Of Articles (AREA)
  • Control Of Position Or Direction (AREA)
  • Specific Conveyance Elements (AREA)
  • Muffle Furnaces And Rotary Kilns (AREA)
  • Joints Allowing Movement (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)
  • Chutes (AREA)
  • Auxiliary Methods And Devices For Loading And Unloading (AREA)
  • Centrifugal Separators (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

The movements of an oscillatory member, for example the charge distribution spout of a furnace charging system, are caused to follow the movements of a remotely located control device which may be in the form of an elongated arm. The spout and arm are rotatable about respective pairs of orthogonal axes and any angular deviations between the orientation of the control device arm and spout axis are sensed. Control signals commensurate with the angular deviations are delivered to fluidic actuators which reposition the spout.

Description

La présente invention concerne un dispositif de commande du mouvement d'un goulotte oscillante pouvant pivoter autour de deux axes orthogonaux, le premier axe étant l'axe de suspension de la goulotte entre deux branches d'une fourche, le second axe étant l'axe longitudinal de la fourche autour duquel celle-ci peut pivoter en bloc avec la goulotte, le dispositif comprenant un organe de commande oscillant ayant les mêmes degrés de liberté que la goulotte, un mécanisme d'entraînement pour imprimer à l'organe de commande le mouvement que doit effectuer la goulotte et un dispositif de transmission pour reproduire le mouvement de l'organe de commande sur la goulotte et vice versa. L'invention concerne également une installation de chargement d'un four à cuve équipé d'un tel dispositif.The present invention relates to a device for controlling the movement of an oscillating chute which can pivot around two orthogonal axes, the first axis being the axis of suspension of the chute between two branches of a fork, the second axis being the axis longitudinal of the fork around which the latter can pivot in block with the chute, the device comprising an oscillating control member having the same degrees of freedom as the chute, a drive mechanism for imparting movement to the control member that the chute and a transmission device must perform to reproduce the movement of the control member on the chute and vice versa. The invention also relates to a loading installation of a tank furnace equipped with such a device.

Un nouveau dispositif de ce genre et une installation de chargement d'un four à cuve dans laquelle on actionne la goulotte de distribution au moyen d'un organe de commande prévu à l'extérieur du four, qui est disposé parallèlement à la goulotte et relié à celle-ci au moyen d'un dispositif de transmission afin que la goulotte suive constamment la position et l'orientation de cet organe de commande est décrit dans la demand de brevet européen EP-A-0062769. Par conséquent, on se référera à cette demande pour plus de détails concernant le fonctionnement de ce dispositif. Dans ce nouveau système de commande de la goulotte, le mouvement de l'organe de commande est transmis directement par voie mécanique sur la goulotte. Cet organe de commande et son mécanisme d'entraînement doivent, par conséquent, être conçus de manière à pouvoir résister aux sollicitations mécaniques relativement importantes imposées par le poids de la goulotte et de sa fourche de suspension. Quoique cette conception ne pose pas de problèmes d'ordre majeur, elle ne répond néanmoins pas aux besoins ou aux voeux de certains utilisateurs qui désirent une construction plus légère.A new device of this kind and an installation for loading a shaft furnace in which the distribution chute is actuated by means of a control member provided outside the furnace, which is arranged parallel to the chute and connected to the latter by means of a transmission device so that the chute constantly follows the position and orientation of this control member is described in European patent application EP-A-0062769. Consequently, reference will be made to this request for more details concerning the operation of this device. In this new chute control system, the movement of the control member is transmitted directly mechanically to the chute. This control member and its drive mechanism must therefore be designed so as to be able to withstand the relatively high mechanical stresses imposed by the weight of the chute and its suspension fork. Although this design does not pose major problems, it does not meet the needs or wishes of certain users who want a lighter construction.

Par conséquent, le but de la présente invention est de prévoir un nouveau dispositif de commande du genre précité dans lequel l'organe de commande et son mécanisme d'entraînement ne sont plus soumis aux sollicitations et contraintes résultant de leur action sur la goulotte et sa fourche de suspension.Consequently, the object of the present invention is to provide a new control device of the aforementioned type in which the control member and its drive mechanism are no longer subjected to the stresses and stresses resulting from their action on the chute and its suspension fork.

Pour atteindre cet objectif, le dispositif proposé par l'invention est essentiellement caractérisé par un premier moyen pour faire pivoter la goulotte autour du premier axe, un second moyen pour faire pivoter la fourche et la goulotte autour du second axe et une servocommande asservie par le mouvement de l'organe de commande et par le mouvement de la goulotte, afin de coordonner les actions desdits premiers et seconds moyens et de commander ceux-ci en fonction des changements relatifs de position et d'orientation entre l'organe de commande et la goulotte.To achieve this objective, the device proposed by the invention is essentially characterized by a first means for pivoting the chute around the first axis, a second means for pivoting the fork and the chute around the second axis and a servo drive controlled by the movement of the control member and by the movement of the chute, in order to coordinate the actions of said first and second means and to control these according to relative changes in position and orientation between the control member and the chute.

Lesdits premiers et seconds moyens pour faire pivoter la goulotte autour du premier et second axe sont respectivement un premier et un second vérin hydraulique.Said first and second means for pivoting the chute around the first and second axis are respectively a first and a second hydraulic cylinder.

Dans un premier mode de réalisation, l'organe de commande est un bras monté par l'une de ses extrémités sur un arbre rotatif monté, à son tour, sur la fourche de suspension de la goulotte, parallèlement au premier axe de pivotement et relié à celui-ci par le dispositif de transmission de manière à pivoter en synchronisme avec le pivotement de la goulotte autour du premier axe et avec le mouvement du premier vérin, la seconde extrémité du bras subissant l'action du mécanisme d'entraînement conçu pour imprimer à l'organe de commande un mouvement conique de précession circulaire à angle d'inclinaison variable.In a first embodiment, the control member is an arm mounted by one of its ends on a rotary shaft mounted, in turn, on the suspension fork of the chute, parallel to the first pivot axis and connected to the latter by the transmission device so as to pivot in synchronism with the pivoting of the chute around the first axis and with the movement of the first jack, the second end of the arm undergoing the action of the drive mechanism designed to print to the control member a conical movement of circular precession with variable angle of inclination.

L'organe de commande est monté sur l'arbre rotatif par l'intermédiaire d'une articulation universelle. Cet organe de commande coopère avec deux palpeurs solidaires de l'arbre rotatif et conçus pour détecter tout pivotement autorisé par ladite articulation et se produisant, autour de deux axes respectivement parallèles au premier et au second axe de pivotement, entre le bras et son arbre rotatif, en vue d'engendrer, indépendamment l'un de l'autre, des signaux de correction destinés à compenser les pivotements ainsi détectés par une action correspondante sur le premier et le second vérin.The control member is mounted on the rotary shaft by means of a universal joint. This control member cooperates with two feelers integral with the rotary shaft and designed to detect any pivoting authorized by said articulation and occurring, around two axes respectively parallel to the first and second pivot axis, between the arm and its rotary shaft , with a view to generating, independently of one another, correction signals intended to compensate for the pivotings thus detected by a corresponding action on the first and second actuator.

Autrement dit, le montage est tel que l'organe de commande occupe une orientation neutre, parallèle à l'axe de la goulotte et que tout écart de ce parallèlisme, permis par ladite articulation et occasionné par la goulotte ou le mécanisme d'entraînement, est immédiatement détecté par les palpeurs et compensé par un pivotement de la goulotte sous l'action de l'un, ou de l'autre, ou des deux vérins en même temps. La goulotte reste donc toujours parallèle à l'arbre de commande et suit le mouvement qui lui est imprimé par son mécanisme d'entraînement, notamment un mouvement de précession conique autour d'un axe vertical.In other words, the assembly is such that the control member occupies a neutral orientation, parallel to the axis of the chute and that any deviation from this parallelism, permitted by said articulation and occasioned by the chute or the drive mechanism, is immediately detected by the probes and compensated by a pivoting of the chute under the action of one or the other, or of the two jacks at the same time. The chute therefore always remains parallel to the control shaft and follows the movement imparted to it by its drive mechanism, in particular a conical precession movement around a vertical axis.

Le mécanisme d'entraînement de l'organe de commande, contrairement à celui proposé par la demande de brevet précitée, peut être un mécanisme "miniaturisé", étant donné que la seule force qu'il doit développer est la très faible force nécessaire au pivotement de l'organe de commande dans son articulation universelle avec son arbre rotatif, tandis que les forces nécessaires au pivotement de la goulotte et de sa fourche de suspension sont engendrées par les deux vérins hydrauliques.The drive mechanism of the control member, unlike that proposed by the aforementioned patent application, can be a "miniaturized" mechanism, since the only force which it must develop is the very low force necessary for pivoting of the control member in its universal articulation with its rotary shaft, while the forces necessary for the pivoting of the chute and of its suspension fork are generated by the two hydraulic cylinders.

Le premier vérin est monté par des tourillons sur la fourche de suspension de la goulotte, alors que le deuxième vérin est monté par des tourillons sur un châssis fixe supportant la fourche.The first cylinder is mounted by pins on the suspension fork of the chute, while the second cylinder is mounted by pins on a fixed frame supporting the fork.

Un dispositif de sécurité à emboîtement élastique est prévu, dans un mode de réalisation préfère, entre l'organe de commande et le dispositif de transmission et destiné à entrer en action pour prévenir une détérioration en cas de panne du mécanisme d'entraînement ou du système hydraulique des vérins. Ce dispositif est, de préférence, associé à un ou plusieurs interrupteurs de fin de course destinés à détecter des déviations dans l'articulation universelle supérieures à celles permises par les palpeurs.A safety device with elastic interlocking is provided, in a preferred embodiment, between the control member and the transmission device and intended to come into action to prevent deterioration in the event of failure of the drive mechanism or of the system. hydraulic cylinders. This device is preferably associated with one or more limit switches intended to detect deviations in the universal joint greater than those permitted by the probes.

Dans un second mode de réalisation, l'organe de commande est complètement indépendant du dispositif, tout en restant monté de manière à pouvoir effectuer les mêmes mouvements que la goulotte. La servocommande est essentiellement constituée par des premiers moyens électroniques associés à l'organe de commande et conçus pour mesurer les pivotements de l'organe de commande autour de deux axes perpendiculaires et engendrer deux séries de signaux de consigne respectivement représentatifs de l'amplitude de ces pivotements, des seconds moyens électroniques pour mesurer les pivotements de la goulotte autour du premier et du second axe et engendrer deux séries de signaux effectifs respectivement représentatifs de l'amplitude du pivotement effectif de la goulotte autour de ses axes, des comparateurs pour comparer les séries de signaux de consigne aux séries de signaux effectifs et engendrer des signaux de correction représentatifs de la différence entre les signaux de consigne et les signaux effectifs et utilisés pour actionner les premiers et seconds vérins de façon à varier les signaux effectifs par le mouvement de la goulotte de manière que les signaux de correction soient maintenus égal à zéro ou qu'ils deviennent égals à zéro.In a second embodiment, the control member is completely independent of the device, while remaining mounted so as to be able to perform the same movements as the chute. The servo control is essentially constituted by first electronic means associated with the control member and designed to measure the pivotings of the control member around two perpendicular axes and generate two sets of reference signals respectively representative of the amplitude of these pivotings, second electronic means for measuring the pivotings of the chute around the first and second axes and generating two series of effective signals respectively representative of the amplitude of the effective pivoting of the chute around its axes, comparators for comparing the series setpoint signals to the series of effective signals and generate correction signals representative of the difference between the setpoint signals and the actual signals and used to actuate the first and second cylinders so as to vary the effective signals by the movement of the chute so that the correction signals are maintained us equal to zero or they become equal to zero.

L'invention concerne également une installation de chargement d'un four à cuve comprenant un canal d'alimentation vertical monté dans la tête du four et reliant un ou plusieurs sas de chargement extérieurs à l'intérieur du four, une goulotte oscillante de distribution de la matière de chargement montée immédiatement en aval du canal et un dispositif de suspension et de commande de la goulotte oscillante avec un dispositif de commande genre décrit ci-dessus.The invention also relates to a loading installation of a shaft furnace comprising a vertical supply channel mounted in the head of the furnace and connecting one or more external loading locks inside the furnace, an oscillating chute for distributing the loading material mounted immediately downstream of the channel and a suspension and control device for the oscillating chute with a control device of the kind described above.

D'autres particularités et avantages de l'invention ressortiront à la lecture de la description de plusieurs modes de réalisation avantageux présentés ci-dessous, à titre d'illustration, et en référence aux dessins, dans lesquels:

  • la figure 1 montre schématiquement une coupe verticale suivant un plan diamétral à travers la tête d'un four à cuve avec un premier mode de réalisation d'une installation de chargement selon l'invention;
  • la figure 2 montre une section suivant le plan de coupe II-II de la figure 1;
  • la figure 3 montre une section suivant le plan de coupe III-III de la figure 1 ;
  • la figure 3a montre une coupe à travers une partie de la figure 3, sous un angle de 90° par rapport au plan de cette figure;
  • la figure 4 montre en coupe, suivant la ligne IV-IV de la figure 3, les détails d'un premier mode de réalisation d'un dispositif de sécurité;
  • la figure 5 illustre une variante du dispositif de sécurité montré sur les figures 3 et 4 et en coupe suivant le plan IV-IV sur cette figure 3;
  • la figure 6 montre un schéma synoptique d'un premier mode de réalisation d'un circuit du système de servocommande;
  • la figure 7 montre une vue, correspondant à celle de la figure 1, d'un second mode de réalisation du dispositif de commande du mouvement de la goulotte;
  • la figure 8 montre une section suivant le plan de coupe VIII-VIII de la figure 7;
  • la figure 9 montre schématiquement un mécanisme d'entraînement d'un organe de commande et un dispositif pour engendrer les signaux de consigne;
  • la figure 10 montre une vue en plan d'un schéma du principe de fonctionnement du dispositif de la figure 9;
  • la figure 11 montre un schéma synoptique d'un mode de réalisation d'un système de servocommande de ce second mode de réalisation selon la figure 7.
Other particularities and advantages of the invention will emerge on reading the description of several advantageous embodiments presented below, by way of illustration, and with reference to the drawings, in which:
  • Figure 1 schematically shows a vertical section along a diametrical plane through the head of a shaft furnace with a first embodiment of a loading installation according to the invention;
  • Figure 2 shows a section along the section plane II-II of Figure 1;
  • Figure 3 shows a section along the section plane III-III of Figure 1;
  • Figure 3a shows a section through part of Figure 3, at an angle of 90 ° to the plane of this figure;
  • Figure 4 shows in section, along the line IV-IV of Figure 3, the details of a first embodiment of a safety device;
  • Figure 5 illustrates a variant of the safety device shown in Figures 3 and 4 and in section along the plane IV-IV in this Figure 3;
  • Figure 6 shows a block diagram of a first embodiment of a circuit of the servo control system;
  • Figure 7 shows a view, corresponding to that of Figure 1, of a second embodiment of the device for controlling the movement of the chute;
  • Figure 8 shows a section along the section plane VIII-VIII of Figure 7;
  • FIG. 9 schematically shows a drive mechanism for a control member and a device for generating the setpoint signals;
  • Figure 10 shows a plan view of a diagram of the operating principle of the device of Figure 9;
  • FIG. 11 shows a block diagram of an embodiment of a servo-control system of this second embodiment according to FIG. 7.

La figure 1 montre schématiquement le dispositif de suspension et d'entraînement de la goulotte correspondant à la figure 1 de la demande de brevet européen précitée EP-A-0062769. Les règles énoncées dans cette demande de brevet sont également valables pour la présente demande, c'est-à-dire que, quoique les différents modes de réalisation soient décrits en référence à leur application à un haut fourneau, l'invention est tout aussi bien applicable à d'autres systèmes de chargement et d'autres types de fours du enceintes et plus particulièrement des enceintes où régnent des conditions analogues à celles existant dans un haut fourneau.FIG. 1 schematically shows the device for suspending and driving the chute corresponding to FIG. 1 of the aforementioned European patent application EP-A-0062769. The rules set out in this patent application are also valid for the present application, that is to say that, although the various embodiments are described with reference to their application to a blast furnace, the invention is just as well applicable to other loading systems and other types of enclosure ovens and more particularly enclosures where conditions similar to those existing in a blast furnace prevail.

Sur la figure 1, la référence 20 désigne la tête d'un haut fourneau sous pression, dans lequel doit être enfournée la matière de chargement depuis un sas supérieur, non représenté, à travers un canal d'alimentation vertical 22 disposé suivant l'axe vertical 0 ou sommet du haut fourneau. La répartition de la matière de chargement introduite à travers le canal 22 est effectuée à l'aide d'une goulotte oscillante 24 dont la forme est, de préférence, tronconique, comme représenté sur la figure. Cette goulotte oscillante 24 est suspendue entre deux branches (dont seule la branche 28 est visible) d'une fourche 26 qui est montée dans la paroi latérale d'une carcasse 34 de la tête 20 du four de façon à pouvoir pivoter autour de son axe longitudinal Y. Indépendamment de cette possibilité de pivotement de la fourche 26 autour de l'axe Y, la goulotte oscillante 24 peut pivoter autour de son axe de suspension X entre les deux branches de la fourche 26.In FIG. 1, the reference 20 designates the head of a blast furnace under pressure, in which the loading material must be charged from an upper airlock, not shown, through a vertical supply channel 22 arranged along the axis vertical 0 or top of the blast furnace. The distribution of the loading material introduced through the channel 22 is carried out using an oscillating chute 24 whose shape is preferably frustoconical, as shown in the figure. This oscillating chute 24 is suspended between two branches (of which only the branch 28 is visible) of a fork 26 which is mounted in the side wall of a carcass 34 of the head 20 of the oven so as to be able to pivot around its axis longitudinal Y. Independently of this possibility of pivoting of the fork 26 around the axis Y, the oscillating chute 24 can pivot around its suspension axis X between the two branches of the fork 26.

La fourche 26 est montée de façon étanche dans une paroi 36 séparant un carter 32 de commande et d'entraînement de l'intérieur de la tête 20 du four, de carter 32 étant monté, de façon démontable, sur une bride 38 de la carcasse 34.The fork 26 is mounted in a sealed manner in a wall 36 separating a casing 32 for controlling and driving the interior of the head 20 of the furnace, casing 32 being mounted, in a removable manner, on a flange 38 of the carcass 34.

Afin de pouvoir pivoter autour de l'axe longitudinal Y, la fourche 26 est logée dans un roulement 40 prévu dans la paroi de séparation 36. Ce roulement peut être associé à un dispositif d'étanchéité 42 pour éviter les fuites de pression vers le carter 32. Ce dispositif d'échan- chéité 42 peut toutefois être soulagé en prévoyant dans le carter 32 une pression approximativement égale à celle régnant à l'intérieur de la tête 20 du four.In order to be able to pivot around the longitudinal axis Y, the fork 26 is housed in a bearing 40 provided in the partition wall 36. This bearing can be associated with a sealing device 42 to prevent pressure leaks towards the casing 32. This sealing device 42 can however be relieved by providing in the casing 32 a pressure approximately equal to that prevailing inside the head 20 of the furnace.

A l'intérieur du carter 32 se trouve un organe de commande 46 monté sur un arbre rotatif 48 traversant la fourche 26 et pouvant tourner autour de son axe X'. Cet arbre 48 est monté de façon que son axe X' soit strictement parallèle à l'axe X de pivotement de la goulotte 24. Cet organe de commande 46 pouvant pivoter avec l'arbre 48 autour de l'axe X' ainsi qu'autour de l'axe Y, ensemble avec la fourche 26, possède par conséquent les mêmes degrés de liberté que la goulotte 24 et vice versa.Inside the housing 32 is a control member 46 mounted on a rotary shaft 48 passing through the fork 26 and able to rotate about its axis X '. This shaft 48 is mounted so that its axis X 'is strictly parallel to the axis of pivoting of the chute 24. This control member 46 can pivot with the shaft 48 around the axis X' as well as around of the Y axis, together with the fork 26, therefore has the same degrees of freedom as the chute 24 and vice versa.

L'idée de base de la demande de brevet précitée consiste à animer cet organe de commande 46 du mouvement que l'on désire que la goulotte 24 effectue. A cet effet, il est prévu à l'intérieur de la fourche 26 un dispositif de transmission du mouvement 50 relié, d'une part, directement ou indirectement à l'axe X de pivotement de la goulotte 24 et, d'autre part, moyennant un levier à l'organe de commande 46 de façon à constituer un système en forme de parallélogramme qui transforme les pivotements de l'organe de commande 46 autour de l'axe X' en pivotement de la goulotte 24 autour de l'axe X.The basic idea of the aforementioned patent application is to animate this control member 46 with the movement that is desired that the chute 24 performs. For this purpose, there is provided inside the fork 26 a movement transmission device 50 connected, on the one hand, directly or indirectly to the axis X of pivoting of the chute 24 and, on the other hand, by means of a lever to the control member 46 so as to constitute a system in the form of a parallelogram which transforms the pivotings of the control member 46 around the axis X 'into pivoting of the chute 24 around the axis X .

La demande de brevet précitée propose plusieurs modes de réalisation pour animer l'organe de commande 46 du mouvement souhaité. Sur la figure annexée 1, on a choisi arbitrairement le mode de réalisation correspondant à celui de la figure 1 de la demande de brevet précitée. Ce mécanisme comporte, en l'occurence, une unité motrice 60 montée à l'extérieur, de préférence de façon démontable, sur le carter 32. Deux arbres de commande coaxiaux 62, 64 pénètrent depuis l'unité motrice 60 à travers des roulements et éventuellement des joints à l'intérieur du carter 32. L'un de ces arbres de commande, en l'occurence l'arbre de commande extérieure 62, porte à l'intérieur du carter 32 une glissière 66 courbe, en arc de cercle, dont l'angle correspond sensiblement au double de l'angle d'inclinaison maximale de la goulotte par rapport à l'axe O. Un secteur denté 72 formant crémaillère avec un pignon 70 solidaire de l'arbre de commande intérieur 64 est maintenu de façon coulissante sur le côté concave de cette glissière 66. Une liaison rotative 68 est prévue entre l'extrémité de l'organe de commande 46 et l'une des deux extrémités de ce secteur denté 72.The aforementioned patent application proposes several embodiments for animating the control member 46 with the desired movement. In the appended figure 1, the embodiment corresponding to that of FIG. 1 of the aforementioned patent application has been chosen arbitrarily. This mechanism comprises, in this case, a drive unit 60 mounted outside, preferably in a removable manner, on the casing 32. Two coaxial control shafts 62, 64 penetrate from the drive unit 60 through bearings and possibly seals inside the casing 32. One of these control shafts, in this case the external control shaft 62, carries inside the casing 32 a curved slide 66, in an arc of a circle, the angle of which corresponds substantially to twice the maximum angle of inclination of the chute with respect to the axis O. A toothed sector 72 forming a rack with a pinion 70 integral with the internal control shaft 64 is maintained so sliding on the concave side of this slide 66. A rotary connection 68 is provided between the end of the control member 46 and one of the two ends of this toothed sector 72.

La rotation de l'arbre de commande extérieur 62 fait par conséquent tourner la glissière 66 et le secteur denté 72 autour de l'axe 0' parallèle à l'axe 0 du four et engendre un mouvement de précession conique de l'organe de commande 46 autour de ce même axe O'. Ce mouvement de l'organe de commande 46 est possible grâce à des pivotements coordonnés de la fourche 26 autour de l'axe Y et de l'organe 46 autour de l'axe X', pivotements reproduisant le mouvement de précession conique de l'organe 46 exactement sur la goulotte 24. La rotation de l'arbre de commande intérieur 64 sert à déplacer le secteur denté 72 et à modifier l'angle d'inclinaison de l'organe de commande 46 par rapport à l'axe O'. Pour une description plus détaillée, on se référera à la demande de brevet précitée.The rotation of the external control shaft 62 consequently rotates the slide 66 and the toothed sector 72 around the axis 0 'parallel to the axis 0 of the furnace and generates a conical precession movement of the control member 46 around this same axis O '. This movement of the control member 46 is possible thanks to coordinated pivoting of the fork 26 around the axis Y and of the member 46 around the axis X ', pivoting reproducing the conical precession movement of the member 46 exactly on the chute 24. The rotation of the internal control shaft 64 is used to move the toothed sector 72 and to modify the angle of inclination of the control member 46 relative to the axis O '. For a more detailed description, reference is made to the aforementioned patent application.

Dans le dispositif proposé par la demande de brevet précitée, l'organe de commande 46 exerce par conséquent une fonction de commande et une fonction motrice dans la mesure où cet organe de commande 46 actionne directement par un jeu de leviers la goulotte 24. Suivant l'importance du dispositif, cet organe de commande 46 et sa liaison avec son mécanisme d'entraînement peuvent exposer cet organe à de fortes sollicitations mécaniques. Pour supprimer ces sollicitations, la présente invention propose de retirer les fonctions motrices à l'organe de commande 46 de sorte qu'il exerce exclusivement une fonction de commande.In the device proposed by the aforementioned patent application, the control member 46 therefore exerts a control function and a motor function insofar as this control member 46 actuates the chute 24 directly by a set of levers. importance of the device, this control member 46 and its connection with its drive mechanism can expose this member to high mechanical stresses. To remove these stresses, the present invention proposes to withdraw the driving functions from the control member 46 so that it exerts exclusively a control function.

A cet effet, il est proposé une commande assistée dans laquelle la puissance nécessaire au pivotement de la fourche 26 et de la goulotte 24 est obtenue au moyen de verins hydrauliques au lieu de dériver cette puissance des mécanismes d'entraînement de l'organe de commande 46. Sur la figure 1, on voit un premier vérin hydraulique 74 dont la tige de piston 76 agit sur un levier 58 solidaire de l'arbre rotatif 48 auquel est relié l'organe de commande 46. Sur ce levier 58 est également articulé le dispositif de transmission 50 de sorte que l'action du vérin 74 provoque le pivotement de l'organe de commande 46 autour de l'axe X' et le pivotement simultané de la goulotte 24 autour de son axe de suspension X. Etant donné que l'extrémité de la tige de piston 76 qui est articulée sur le levier 58 doit effectuer un mouvement pendulaire autour de l'axe X' le vérin 74 doit pouvoir pivoter autour d'un axe parallèle à l'axe X'. A cet effet, le vérin 74 est monté par l'intermédiaire de tourillons 78 sur l'extrémité arrière de la fourche 26.To this end, an assisted control is proposed in which the power necessary for the pivoting of the fork 26 and of the chute 24 is obtained by means of hydraulic cylinders instead of deriving this power from the drive mechanisms of the control member. 46. In FIG. 1, a first hydraulic cylinder 74 can be seen, the piston rod 76 of which acts on a lever 58 secured to the rotary shaft 48 to which the control member 46 is connected. On this lever 58 is also articulated the transmission device 50 so that the action of the jack 74 causes the control member 46 to pivot about the axis X 'and the simultaneous pivoting of the chute 24 around its suspension axis X. Since the 'end of the piston rod 76 which is articulated on the lever 58 must perform a pendulum movement around the axis X' the cylinder 74 must be able to pivot about an axis parallel to the axis X '. To this end, the jack 74 is mounted by means of pins 78 on the rear end of the fork 26.

Un second vérin hydraulique 80, mieux visible sur la figure 2, agit perpendiculairement au premier vérin 74. Ce vérin 80 est monté par des tourillons, non visibles, sur la paroi du carter 32 et sa tige 82 est directement articulée sur la fourche 26 afin de faire pivoter celle-ci, grâce au roulement 40, autour de l'axe Y.A second hydraulic cylinder 80, better visible in FIG. 2, acts perpendicular to the first cylinder 74. This cylinder 80 is mounted by pins, not visible, on the wall of the casing 32 and its rod 82 is directly articulated on the fork 26 in order to pivot the latter, by means of the bearing 40, about the Y axis.

La fourche 26 est en fait une double fourche comportant outre les deux branches entre lesquelles est suspendue la goulotte 24 deux branches à l'extrémité opposé pour le montage de l'arbre rotatif 48. Cette fourche 26 est donc analogue. à celle prévue dans le mode de, réalisation de la figure 25 de la demande de brevet européen 0062769. Sur la figure 3, on voit le montage de l'arbre rotatif 48 entre les deux branches 84 et 86 de la fourche. Les détails du montage n'ont été montrés que pour la branche 86. Des roulements 88 permettent la rotation de l'arbre 48 autour de l'axe X', tandis que des moyens d'étanchéité, non montrés, permettent la circulation d'un liquide de refroidissement à l'intérieur de toute la fourche 26. Le mouvement de pivotement de cet arbre 48 autour de l'axe X' est transformé par l'intermédiaire de leviers 90 en un mouvement de translation du mécanisme de transmission 50 en forme de double fourche évoluant à l'intérieur de la fourche 26.The fork 26 is in fact a double fork comprising, in addition to the two branches between which the chute 24 is suspended, two branches at the opposite end for mounting the rotary shaft 48. This fork 26 is therefore similar. to that provided in the embodiment of Figure 25 of European patent application 0062769. In Figure 3, we see the mounting of the rotary shaft 48 between the two branches 84 and 86 of the fork. The mounting details have only been shown for the branch 86. Bearings 88 allow the rotation of the shaft 48 around the axis X ', while sealing means, not shown, allow the circulation of a coolant inside the entire fork 26. The pivoting movement of this shaft 48 around the axis X 'is transformed by means of levers 90 into a translational movement of the transmission mechanism 50 in the form double fork moving inside the fork 26.

Pour faciliter le démontage, il est préférable de constituer l'arbre 48 en plusieurs morceaux, ce qui, sur la figure 3, est matérialisé par une vis 92 traversant axialement une extrémité de l'arbre et assurant sa rigidité. Les deux parties maintenues ensemble en 94 par la vis 92 sont, de préférence, pourvues de flasques comprenant chacun une couronne de stries radiales. Le montage de l'arbre 48 dans la branche 84 est analogue à ce qui a été décrit ci-dessus en référence à la branche 86.To facilitate disassembly, it is preferable to constitute the shaft 48 in several pieces, which, in FIG. 3, is materialized by a screw 92 passing axially through one end of the shaft and ensuring its rigidity. The two parts held together at 94 by the screw 92 are preferably provided with flanges each comprising a crown of radial grooves. The mounting of the shaft 48 in the branch 84 is analogous to what has been described above with reference to the branch 86.

La liaison entre l'organe de commande 46 et l'arbre 48 est assurée par une articulation universelle 100 permettant une certaine liberté de mouvement de l'organe 46 par rapport à l'arbre 48 et vice versa. Cette articulation universelle 100 peut avoir diverses formes, notamment celle d'une rotule. Sur les figures on a montré, à titre d'exemple, une articulation à cardan 100. L'organe 46 est monté sur un arbre 102 logé dans un cadre 104 et permettant les pivotements de l'organe 46 autour de l'axe X'. Ce cadre 104 est porté par des pivots 106 lui permettant de tourner autour d'un deuxième axe perpendiculaire à l'axe X'.The connection between the control member 46 and the shaft 48 is ensured by a universal articulation 100 allowing a certain freedom of movement of the member 46 relative to the shaft 48 and vice versa. This universal joint 100 can have various shapes, in particular that of a ball joint. In the figures we have shown, by way of example, a cardan joint 100. The member 46 is mounted on a shaft 102 housed in a frame 104 and allowing the pivoting of the member 46 about the axis X ' . This frame 104 is carried by pivots 106 allowing it to rotate around a second axis perpendicular to the axis X '.

Les pivotements se produisant au niveau de l'articulation à cardan 100, soit sous l'action de l'unité motrice 60, soit sous l'action de la goulotte 24, sont détectés par une paire de palpeurs 108 et 110 associés à l'organe de commande 46 et solidaires de l'arbre 48. Ces palpeurs sont en fait les organes sensibles de deux capteurs de position 112, 114, signalant toute déviation d'une position neutre, déviation devant être compensée par une action coordonnée sur les vérins 74 et 80. Le palpeur 108 détecte les déviations par pivotement intervenant au niveau des pivots 106 et commande la compensation de ce pivotement, de la manière décrite par la suite, en agissant sur le vérin 80. Le palpeur 110, qui est décalé de 90° par rapport au palpeur 108, détecte, de manière analogue, des pivotements se produisant autour de l'axe X' et commande la compensation de ces pivotements par une action sur le vérin 74.The pivoting occurring at the level of the universal joint 100, either under the action of the motor unit 60, or under the action of the chute 24, are detected by a pair of feelers 108 and 110 associated with the control member 46 and integral with the shaft 48. These feelers are in fact the sensitive members of two position sensors 112, 114, signaling any deviation from a neutral position, deviation to be compensated by a coordinated action on the jacks 74 and 80. The probe 108 detects the deviations by pivoting occurring at the level of the pivots 106 and controls the compensation for this pivoting, as described below, by acting on the jack 80. The probe 110, which is offset by 90 ° relative to the probe 108, detects, in a similar manner, pivotings occurring around the axis X ′ and controls the compensation of these pivotings by an action on the jack 74.

On va décrire maintenant en référence à la figure 6 le fonctionnement de la commande effectuée par le capteur 114. De tels capteurs sont bien connus en soi et leur fonctionnement ne sera pas décrit en détail. Ils peuvent fonctionner par voie électrique, par voie mécanique, par voie hydraulique, ou par voie optique. Lorsque l'action de l'unité motrice sur l'organe de commande 46, ou l'action de la goulotte 24 sur l'arbre 48 provoque ou permet un déplacement Ax de sa position neutre, le capteur de position 114 engendre un signal électrique l=f(Δx) qui est fonction de la différence entre la position réelle du palpeur 110 et sa position neutre. Ce signal peut, en outre, être positif ou négatif suivant le sens de l'action sur le palpeur 110. Ce signal est envoyé dans un régulateur proportionnel 116, par exemple du type PID (régulateur proportionnel intégral différentiel) bien connu en soi. Ce régulateur 116 actionne une unité servohydraulique 118 comprenant une vanne tiroir, également connue en soi, incorporée dans le circuit hydraulique du vérin 78. Cette unité servohydraulique 118 établit la circulation du fluide hydraulique soit dans un sens, soit dans l'autre, suivant que le signal I est positif ou négatif. Autrement dit, le signe du signal 1 détermine le sens de déplacement de la tige de piston 76 du vérin 78 et le sens du pivotement de la goulotte autour de l'axe X. Cette action sur le vérin 78 est dans le sens contraire de l'action qui a provoqué le déplacement Ax sur le palpeur et se poursuit jusqu'à ce que le palpeur occupe à nouveau sa position neutre, c'est-à-dire, que le signal 1 devienne égal à zéro.We will now describe with reference to Figure 6 the operation of the control performed by the sensor 114. Such sensors are well known per se and their operation will not be described in detail. They can operate electrically, mechanically, hydraulically, or optically. When the action of the drive unit on the control member 46, or the action of the chute 24 on the shaft 48 causes or allows a displacement Ax from its neutral position, the position sensor 114 generates an electrical signal l = f (Δx) which is a function of the difference between the actual position of the probe 110 and its neutral position. This signal can, moreover, be positive or negative depending on the direction of action on the probe 110. This signal is sent to a proportional regulator 116, for example of the PID type (proportional integral differential regulator) well known per se. This regulator 116 actuates a servohydraulic unit 118 comprising a slide valve, also known per se, incorporated in the hydraulic circuit of the jack 78. This servohydraulic unit 118 establishes the circulation of the hydraulic fluid either in one direction or in the other, according to whether signal I is positive or negative. In other words, the sign of the signal 1 determines the direction of movement of the piston rod 76 of the jack 78 and the direction of the pivoting of the chute around the axis X. This action on the jack 78 is in the opposite direction of the action which caused the displacement Ax on the probe and continues until the probe occupies again its neutral position, that is to say, that the signal 1 becomes equal to zero.

L'unité servohydraulique 118 est, en outre, conçue de manière à varier de débit du fluide hydraulique dans le circuit du vérin 78 en fonction de l'amplitude du signal I. Autrement dit, la vitesse de pivotement autour de l'axe X de la goulotte, engendrée par le piston 78 est fonction de la grandeur de Δx.The servohydraulic unit 118 is, moreover, designed so as to vary the flow rate of the hydraulic fluid in the circuit of the actuator 78 as a function of the amplitude of the signal I. In other words, the pivoting speed around the axis X of the chute, generated by the piston 78 is a function of the magnitude of Δx.

Un circuit de commande analogue à celui de la figure 6 est associé au palpeur 108 afin de commander le vérin 80 et le pivotement de la goulotte 24 autour de l'axe Y.A control circuit similar to that of FIG. 6 is associated with the probe 108 in order to control the jack 80 and the pivoting of the chute 24 around the axis Y.

Les palpeurs 108 et 110 subissent par conséquent, la double action de l'organe de commande 46 et de la goulotte 24 par l'intermédiaire de la fourche 26 et le l'arbre 48. De la part de l'organe de commande 46, les palpeurs 108 et 110 recoivent les informations de consigne par l'action de l'unité motrice 60. De la part de la goulotte 24, les palpeurs 108, 110 recoivent en permanence les informations concernant la position réelle de cette goulotte. Tant que les informations concernant la position réelle ne correspondent pas aux informations de consigne les capteurs 112 et 114 maintiennent les signaux pour actionner les vérins correspondants et viser la diminution de ces signaux I. Il existe par conséquent une auto-régulation de la position ou orientation de la goulotte 24 autour de la position commandée par l'unité motrice 60.The probes 108 and 110 consequently undergo the double action of the control member 46 and of the chute 24 by means of the fork 26 and the shaft 48. From the control member 46, the probes 108 and 110 receive the setpoint information by the action of the drive unit 60. From the chute 24, the probes 108, 110 permanently receive the information concerning the actual position of this chute. As long as the information concerning the actual position does not correspond to the setpoint information, the sensors 112 and 114 maintain the signals for actuating the corresponding jacks and aiming at the reduction of these signals I. There is consequently a self-regulation of the position or orientation of the chute 24 around the position controlled by the drive unit 60.

S'il se produit une panne en amont ou en aval de l'organe de commande, c'est-à-dire, par exemple une panne électrique de l'unité motrice 60, ou une panne des circuits hydrauliques des vérins 78 ou 80, le système de servocommande n'est plus en mesure d'annuler, par compensation, le signal I, de sorte que Δx tend à augmenter de façon non contrôlée. Pour préventir de telles situations, on a disposé à côté des capteurs 112 et 114 des capteurs de sécurité 115, 117 qui sont également des capteurs de position analogues aux capteurs 112 et 114. Ces capteurs 115 et 117 déclenchent un signal lorsque Ax dépasse, en valeur obsolue, un seuil prédéterminé qui bloque immédiatement et le circuit hydraulique et l'unité motrice.If a failure occurs upstream or downstream of the control member, that is to say, for example an electrical failure of the power unit 60, or a failure of the hydraulic circuits of the cylinders 78 or 80 , the servo control system is no longer able to cancel, by compensation, the signal I, so that Δx tends to increase in an uncontrolled manner. To prevent such situations, safety sensors 115, 117 have been placed alongside sensors 112 and 114 which are also position sensors similar to sensors 112 and 114. These sensors 115 and 117 trigger a signal when Ax exceeds, in obsolete value, a predetermined threshold which immediately blocks both the hydraulic circuit and the power unit.

Pour éviter, malgré la présence des capteurs 115 et 117, tout risque de rupture par suite du délai de résponse constitué par le temps écoulé entre l'action sur ces capteurs 115 et 117 et le résultat de leur opération il est prévu un dispositif de sécurité supplémentaire dont les figures 3 et 4 illustrent un premier mode de réalisation et la figure 5 un second mode de réalisation.To avoid, despite the presence of sensors 115 and 117, any risk of breakage due to the response time constituted by the time elapsed between the action on these sensors 115 and 117 and the result of their operation, a safety device is provided. additional of which Figures 3 and 4 illustrate a first embodiment and Figure 5 a second embodiment.

Dans le premier mode de réalisation selon les figures 3 et 4, l'articulation 100 est prévue à l'intérieur d'un cadre 120 se trouvant à l'intérieur d'un cadre correspondant 122 fixé sur l'arbre rotatif 48. Ces deux cadres 120 et 122 ne sont maintenus ensemble que par quatre paires de fixations élastiques (124) prévues aux quatre coins des deux cadres 120 et 122. Chacune de ces fixations comporte, par exemple, une paire de plaques 126 et 128 appliquées de part et d'autre des cadres 120 et 122 de manière à couvrir leur séparation. Ces plaques 126 et 128 sont maintenues dans cette disposition selon la figure 3 sous l'action de deux ressorts 130 et 132. Ces ressorts 130 et 132 sont suffisamment puissants pour assurer le maintien de la configuration illustrée sur les figures 3 et 4.In the first embodiment according to FIGS. 3 and 4, the articulation 100 is provided inside a frame 120 located inside a corresponding frame 122 fixed on the rotary shaft 48. These two frames 120 and 122 are held together only by four pairs of elastic fixings (124) provided at the four corners of the two frames 120 and 122. Each of these fixings comprises, for example, a pair of plates 126 and 128 applied on both sides. 'other of the frames 120 and 122 so as to cover their separation. These plates 126 and 128 are maintained in this arrangement according to FIG. 3 under the action of two springs 130 and 132. These springs 130 and 132 are powerful enough to maintain the configuration illustrated in FIGS. 3 and 4.

Toutefois, lorsqu'une force exceptionnelle se produit sur l'un des deux cadres 120, 122 sans que l'autre cadre 122, 120, puisse suivre le mouvement imposé par cette force, l'une des plaquettes 126 et 128 cède contre l'action du ressort correspondant et les cadres 120 et 122 peuvent se déboîter complètement l'un par rapport à l'autre sans risque de rupture.However, when an exceptional force occurs on one of the two frames 120, 122 without the other frame 122, 120, being able to follow the movement imposed by this force, one of the pads 126 and 128 yields against the action of the corresponding spring and the frames 120 and 122 can disengage completely relative to each other without risk of rupture.

Par exemple, lorsque, par suite d'une panne dans le circuit hydraulique, par exemple, une fuite, le vérin correspondant n'est plus en mesure d'assurer la position de la goulotte en conformité avec les signaux de consigne, celle-ci, abandonnée à son propre poids, tend à culbuter dans la position verticale et entraîner normalement l'organe de commande 46 qui, lui, est maintenu par l'unité motrice. 0, l'organe de commande 46 et son mécanisme d'entraînement ne sont pas, par la nature même de l'invention, en mesure de supporter une telle force engendrée par la goulotte 24 et il se produirait forcement une rupture en l'absence de système de sécurité quelconque. Par contre, avec un tel système et dans le cas d'une telle panne, il se produit simplement un déboîtement des deux cadres 120 et 122 sui peuvent être remis facilement en place par la suite.For example, when, as a result of a breakdown in the hydraulic circuit, for example, a leak, the corresponding jack is no longer able to ensure the position of the chute in accordance with the setpoint signals, this , abandoned at its own weight, tends to tumble in the vertical position and normally drive the control member 46 which, for its part, is held by the drive unit. 0, the control member 46 and its drive mechanism are not, by the very nature of the invention, able to withstand such a force generated by the chute 24 and it would necessarily occur a rupture in the absence any security system. On the other hand, with such a system and in the event of such a breakdown, there is simply a dislocation of the two frames 120 and 122 which can then be easily replaced.

La figure 5 montre un deuxième mode de réalisation d'un dispositif de sécurité remplissant les fonctions de celui de la figure 4. Dans ce mode de réalisation, un cadre 140 portant l'articulation universelle 100 avec l'organe de commande 46 est maintenu dans un cadre extérieur 144 solidaire de l'arbre rotatif 48 moyennant une fixation élastique à cardan. A cet effet, il est prévu un cadre intermédiaire 142 disposé entre les cadres 140 et 144. Le cadre intérieur 140 peut pivoter autour d'un axe 146, correspondant à l'axe X', à l'intérieur du cadre intermédiaire 142 alors que celui-ci pivote à l'intérieur du cadre extérieur 144 autour d'un axe 148 perpendiculaire à l'axe 146. Cette structure est maintenue ensemble grâce à une série de fixations élastiques, semblables aux fixations 124 à plaquettes et ressorts des figures 3 et 4. Deux fixations 150 et 152 maintiennent le cadre intérieur 140 par rapport au cadre intermédiaire 144 et empêchent une rotation autour de l'axe 146. Deux autres fixations élastiques 154 et 156 empêchent la rotation du cadre intermédiaire 142 autour de l'axe 148 à l'intérieur du cadre extérieur 144.FIG. 5 shows a second embodiment of a safety device fulfilling the functions of that of FIG. 4. In this embodiment, a frame 140 carrying the universal articulation 100 with the control member 46 is maintained in an outer frame 144 secured to the rotary shaft 48 by means of an elastic universal joint fixing. For this purpose, there is provided an intermediate frame 142 disposed between the frames 140 and 144. The inner frame 140 can pivot around an axis 146, corresponding to the axis X ', inside the intermediate frame 142 while the latter pivots inside the outer frame 144 around an axis 148 perpendicular to the axis 146. This structure is held together by means of a series of elastic fasteners, similar to the fasteners 124 with plates and springs of FIGS. 3 and 4. Two fasteners 150 and 152 hold the inner frame 140 relative to the intermediate frame 144 and prevent rotation about the axis 146. Two other elastic fasteners 154 and 156 prevent the rotation of the intermediate frame 142 around the axis 148 to inside the outer frame 144.

Comme dans le mode de réalisation précédent, les fixations cèdent sous l'effet d'une force anormale et permettent un déboîtement des différents cadres autour des axes 146 et/ou 148. Alors que dans le mode de réalisation des figures 3 et 4, un déboîtement provoque une libération totale du cadre intérieur 120 par rapport au cadre extérieur 122, dans le mode de réalisation de la figure 5 la structure reste maintenue ensemble grâce à la présence des axes de pivotement 146 et 148. En effet, même en cas de déboîtement total, c'est-à-dire un déboîtement du cadre intérieur 140 par rapport au cadre intermédiaire 142 et un déboîtement de ce dernier par rapport au cadre extérieur 144, une remise en place rapide de la structure par un pivotement manuel approprié dans différents cadres jusqu'à ce qu'ils soient maintenus par leurs fixations élastiques reste toujours possible.As in the previous embodiment, the fasteners give way under the effect of an abnormal force and allow a dislocation of the different frames around the axes 146 and / or 148. While in the embodiment of Figures 3 and 4, a dislocation causes total release of the inner frame 120 relative to the outer frame 122, in the embodiment of Figure 5 the structure remains held together thanks to the presence of the pivot axes 146 and 148. Indeed, even in case of dislocation total, that is to say a dislocation of the inner frame 140 relative to the intermediate frame 142 and a dislocation of the latter relative to the outer frame 144, a rapid repositioning of the structure by an appropriate manual pivoting in different frames until they are held by their elastic fixings is still possible.

Il est à souligner qu'il est possible de prévoir d'autres systèmes de sécurité pouvant remplir les mêmes fonctions que les deux exemples décrits ci-dessus. Par exemple, au lieu de prévoir le système de sécurité entre l'organe de commande 46 et la fourche 26, il est possible de prévoir un système de sécurité entre l'organe de commande 46 et son mécanisme d'entraînement. Un tel système de sécurité pourrait, par exemple, être constitué par un embrayage frottant au niveau des arbres de commande 62 ou 64 ou entre ceux-ci et leur moteur respectif.It should be emphasized that it is possible to provide other security systems which can fulfill the same functions as the two examples described above. For example, instead of providing the security system between the control member 46 and the fork 26, it is possible to provide a security system between the control member 46 and its drive mechanism. Such a safety system could, for example, be constituted by a friction clutch ant at the level of the control shafts 62 or 64 or between them and their respective motor.

Les figures 7 à 10 illustrent un deuxième mode de réalisation dont la particularité est que l'organe de commande et son mécanisme d'entraînement sont rendus complètement indépendants du dispositif de suspension de la goulotte 24. Des éléments correspondant à ceux du mode de réalisation précédent sont pourvus des mêmes chiffres de référence et ne seront plus décrits en détail. Le vérin qui engendre la rotation de la fourche 26 autour de l'axe Y a également été représenté par la référence 80 quoique sur la figure 8 il occupe une position différente de celle du vérin 80 de la figure 2. Sa fonction reste néanmoins exactement la même.FIGS. 7 to 10 illustrate a second embodiment, the peculiarity of which is that the control member and its drive mechanism are made completely independent of the device for suspending the chute 24. Elements corresponding to those of the previous embodiment are provided with the same reference numbers and will not be described in further detail. The jack which generates the rotation of the fork 26 around the axis Y has also been represented by the reference 80 although in FIG. 8 it occupies a position different from that of the jack 80 in FIG. 2. Its function nevertheless remains exactly the even.

Dans ce mode de réalisation, la position angulaire de la goulotte 24 est contrôlée en permanence au moyen de deux capteurs 160 et 162. Le capteur 160 détermine la position angulaire effective de la goulotte par rapport à l'axe 0 et transmet des signaux proportionnels à l'amplitude de pivotement du levier 58 autour de l'axe X', c'est-à-dire les pivotements de la goulotte 24 autour de l'axe X.In this embodiment, the angular position of the chute 24 is continuously monitored by means of two sensors 160 and 162. The sensor 160 determines the effective angular position of the chute with respect to the axis 0 and transmits signals proportional to the amplitude of pivoting of the lever 58 around the axis X ', that is to say the pivotings of the chute 24 around the axis X.

De même, le capteur 162 détermine les mouvements autour de l'axe Y et engendre et transmet des signaux proportionnels à l'amplitude de rotation de la fourche 26 et de la goulotte 24 autour de l'axe Y.Likewise, the sensor 162 determines the movements around the Y axis and generates and transmits signals proportional to the amplitude of rotation of the fork 26 and of the chute 24 around the Y axis.

Les figures 9 et 10 montrent l'organe de commande 166 qui peut être monté à un endroit approprié, par exemple, dans une salle des machines, et être actionné par un mécanisme d'entraînement approprié 168 pouvant être analogue au mécanisme utilisé dans le mode de réalisation de la figure 1 ou l'une des différents modes de réalisation décrits à l'appui de la demande de brevet européen EP-A-0062769.FIGS. 9 and 10 show the control member 166 which can be mounted at a suitable location, for example, in an engine room, and be actuated by a suitable drive mechanism 168 which can be analogous to the mechanism used in the mode of embodiment of FIG. 1 or one of the different embodiments described in support of the European patent application EP-A-0062769.

Comme le symbolise schématiquement la figure 10, l'organe de commande 166 est monté sur un châssis approprié 172 au moyen d'une articulation universelle, en l'occurence, une articulation à cardan 170. Cette articulation 170 permet à l'organe de commande 166 de pivoter autour de deux axes X1, Y1 perpendiculaires l'un à l'autre et correspondant respectivement aux axes X et Y de pivotement de la goulotte 24 dans la tête du four 20.As symbolized schematically in Figure 10, the control member 166 is mounted on a suitable frame 172 by means of a universal joint, in this case, a universal joint 170. This joint 170 allows the control member 166 to pivot around two axes X 1 , Y 1 perpendicular to one another and corresponding respectively to the axes X and Y of pivoting of the chute 24 in the head of the furnace 20.

Le mouvement de l'organe de commande 166, par exemple, un mouvement de précession conique, fournit des instructions pour le mouvement de la goulotte sous forme de signaux de consigne représentant respectivement les mouvements angulaires de l'organe de commande 166 autour de l'axe X1 et autour de l'axe Y1 dans l'articulation à cardan 170. Ces mouvements angulaires de l'organe 166 sont détectés par deux capteurs 180, 182, qui correspondent respectivement aux capteurs 160 et 162, et contrôlent respectivement les pivotements autour des axes X1 et Y1.The movement of the control member 166, for example, a conical precession movement, provides instructions for the movement of the chute in the form of set signals respectively representing the angular movements of the control member 166 around the X axis 1 and around the Y axis 1 in the universal joint 170. These angular movements of the member 166 are detected by two sensors 180, 182, which correspond respectively to the sensors 160 and 162, and respectively control the pivotings around the axes X 1 and Y 1 .

Le fonctionnement sera décrit en référence à la figure 11 qui montre un schéma synoptique illustrant la relation entre la dispositif de la figure 9, qui fournit les instructions, et le dispositif de la figure 7 qui doit les exécuter. Le circuit de commande de la figure 11 est celui associé au vérin 74 pour le pivotement autour de l'axe X. Un circuit analogue est prévu pour actionner le vérin 80 pour engendrer le pivotement autour de l'axe Y.Operation will be described with reference to Figure 11 which shows a block diagram illustrating the relationship between the device of Figure 9, which provides the instructions, and the device of Figure 7 which must execute them. The control circuit of FIG. 11 is that associated with the jack 74 for pivoting around the X axis. A similar circuit is provided for actuating the jack 80 to generate the pivoting around the Y axis.

On supposera que l'organe de commande 166 soit tourné autour de son axe de pivotement X1 d'un angle égal à α. Ceci est la valeur de consigne pour la goulotte, c'est-à-dire que celle-ci devrait occuper une inclinaison a par rapport à l'axe vertical O. Ce pivotement de l'organe de commande 166 autour de l'axe X, est capté par le capteur 180 qui engendre un signal électrique I=f(α) fonction de l'amplitude et du sens de pivotement. En supposant que, au moment où l'organe de commande 166 vient occuper la position demandée, la goulotte 24 soit inclinée d'un angle β par rapport à l'axe O. Cette position est mesurée par le capteur 160 qui détermine les positions et rotations autour de l'axe X'. Ce capteur 160 engendre par conséquent un signal I=f(β) qui représente la position effective de la goulotte. Les signaux issus par les capteurs 160 et 1 80 sont envoyés dans un régulateur 174 analogue au régulateur 116 de la figure 6. Ce régulateur compare les signaux émis par les deux capteurs 160 et 180 et engendre des signaux correctifs en fonction de cette comparaison.It will be assumed that the control member 166 is rotated about its pivot axis X 1 by an angle equal to α. This is the set value for the chute, that is to say that it should occupy an inclination a relative to the vertical axis O. This pivoting of the control member 166 around the axis X , is picked up by the sensor 180 which generates an electrical signal I = f (α) depending on the amplitude and the direction of pivoting. Assuming that, when the control member 166 comes to occupy the requested position, the chute 24 is inclined at an angle β relative to the axis O. This position is measured by the sensor 160 which determines the positions and rotations around the X 'axis. This sensor 160 consequently generates a signal I = f (β) which represents the effective position of the chute. The signals from the sensors 160 and 180 are sent to a regulator 174 analogous to the regulator 116 in FIG. 6. This regulator compares the signals emitted by the two sensors 160 and 180 and generates corrective signals as a function of this comparison.

Si, par hasard, l'angle α est égal à l'angle β, les signaux I=f(α) et I=f(β) sont égaux et aucun signal n'est engendré par le régulateur 174. Par contre, si β est différent de α, le signal correctif engendré par le régulateur 174 est appliqué à une commande servohydraulique à tiroir 176 qui détermine le sens de circulation du fluide hydraulique du vérin 74 en fonction du signe des signaux correctifs. Le piston du vérin 74 est par conséquent déplacé d'un côté ou de l'autre suivant que les signaux correctifs sont positifs ou négatifs. Cette commande dure jusqu'à ce que l'angle β soit égal à l'angel α et que les signaux correctifs deviennent à zéro.If, by chance, the angle α is equal to the angle β, the signals I = f (α) and I = f (β) are equal and no signal is generated by the regulator 174. On the other hand, if β is different from α, the corrective signal generated by the regulator 174 is applied to a servo-hydraulic control valve 176 which determines the direction of circulation of the hydraulic fluid of the jack 74 as a function of the sign of the corrective signals. The piston of the cylinder 74 is therefore moved to one side or the other depending on whether the corrective signals are positive or negative. This command lasts until the angle β is equal to the angel α and the corrective signals become zero.

Comme dans le mode de réalisation précédent, la commande servohydraulique 176 détermine également le débit du fluide hydraulique en fonction de l'amplitude des signaux correctifs.As in the previous embodiment, the servohydraulic control 176 also determines the flow rate of the hydraulic fluid as a function of the amplitude of the corrective signals.

Lorsque l'organe de commande 166 est animé d'un mouvement de précession conique circulaire, il se produit, au niveau de l'articulation à cardan 170 des pivotements permanents autour de deux axes X, et Y,. Ces pivotements permanents actionnent par conséquent, en permanence, les circuits hydrauliques associés aux deux vérins 74 et 80 afin que les mêmes pivotements se produisent autour des axes X et Y.When the control member 166 is driven in a circular conical precession movement, there is produced, at the cardan joint 170, permanent pivoting about two axes X, and Y ,. These permanent pivotings therefore actuate, permanently, the hydraulic circuits associated with the two jacks 74 and 80 so that the same pivotings occur around the axes X and Y.

Etant donné que dans le mode de réalisation montré sur les figures 7 à 10 l'organe de commande 166 est séparé du système de suspension de la goulotte, il n'est pas nécessaire de prévoir des moyens de sécurité pour prévenir les risques d'une destruction en cas de panne dans le circuit hydraulique ou dans le système d'entraînement de l'organe de commande.Since in the embodiment shown in FIGS. 7 to 10, the control member 166 is separated from the system of suspension of the chute, it is not necessary to provide safety means to prevent the risk of destruction in the event of a breakdown in the hydraulic circuit or in the drive system of the control member.

Comme déjà mentionné plus haut, la présente invention s'applique à tous les modes de réalisations couverts par la demande de brevet européen EP-A-0062769 y compris ceux préconisant une disposition oblique du système de suspension et de commande.As already mentioned above, the present invention applies to all the embodiments covered by European patent application EP-A-0062769 including those recommending an oblique arrangement of the suspension and control system.

Claims (12)

1. Apparatus for controlling the movement of an oscillating spout capable of pivoting about two orthogonal axes, the first axis being the suspension axis (X) of the spout (24) between two branches of a fork (26) while the second axis is the longitudinal axis (Y) of the fork (26) about which latter axis the said fork can pivot integrally with the spout (24), the apparatus comprising a control device (46, 116) oscillating with the same degrees of freedom as the spout (24), a driving device (60, 168) for imparting to the control device (46, 166), the movement which the spout (24) is required to perform and a transmission device for causing the movement of the control device (46, 166) to be repeated by the spout (24) and vice versa, characterized by a first means for causing the spout to pivot about the first axis (X), a second means for causing the fork (26) and the spout (24) to pivot about the second axis (Y) and a servo device subordinated to the movement of the control device (46, 166) and to the movement of the spout (24), in order to coordinate the actions of the said first and second means and to control them in accordance with the changes in the position and orientation of the control device (46, 166), and the spout (24) in relation to each other.
2. Apparatus in accordance with Claim 1, characterized by the fact that the first means consists of a first hydraulic jack mounted by means of journals (78) on the suspension fork of the spout (24) and by the fact that the second means consists of a second hydraulic jack (80) mounted by means of journals on a fixed frame supporting the fork (26).
3. Apparatus in accordance with either of Claims 1 and 2, characterized by the fact that the control device (46) consists of an arm mounted by one of its ends on a rotary shaft (48) mounted in its turn on the suspension fork (26) on the spout (24), parallel to the first pivoting axis (X) and connected to the latter by the transmission device, in such a way as to pivot synchronously with the pivoting movement which the spout (24) performs about the first axis (X) and with the movement of the first jack (74), the second end of the arm undergoing the action of the driving mechanism (72) designed to impart to the control device (46) a conical movement of circular precession with a variable angle of inclination.
4. Apparatus in accordance with Claim 3, characterized by the fact that the control device (46) is mounted on the rotary shaft (48) by means of a universal joint (100) and by the fact that the said control device (46) interacts with two feelers (108, 110), integral with the rotary shaft (48) and designed to detect any pivoting movement rendered possible by the said universal joint ( 100) and performed about two axes respectively parallel to the first (X) and second (Y) pivoting axis, between the control device (46) and its rotary shaft (48), in order to produce correction signals which are independent of each other and of which the purpose is to ensure that the pivoting movements thus detected will be compensated by a corresponding action on the first jack (74) and a second jack (80).
5. Apparatus in accordance with Claim 4, characterized by the fact that the feelers (108, 110) are the sensitive elements of two position pick-ups (112, 114) mounted in perpendicular planes about the control device (46).
6. Apparatus in accordance with Claim 4, characterized by the fact that the said universal joint system is a cardan joint (100).
7. Apparatus in accordance with either of Claims 4-6, characterized by the fact that the pick-ups (112, 114) are associated with safety pick-ups (115, 117) of which the purpose is to detect any deviations in the universal joint system (100) which exceeds those permitted by the feelers (108, 110).
8. Apparatus in accordance with either of Claims 4-7, characterized by a safety system consisting of elastic "socketing" between the universal joint ( 100) and the rotary shaft (48).
9. Apparatus in accordance with Claim 8, characterized by the fact that the safety device consists of an inner frame (120) supporting the said universal joint (100) and of a corresponding outer frame (122) integral with the shaft (48) and of four elastic securing devices provided at the four corners of the two frames in order to hold them together.
10. Apparatus in accordance with Claim 8, characterized by the fact that the safety device consists of a cardan joint formed by an inner frame (140) bearing the universal joint and pivoting inside an intermediate frame (142) which in its turn pivots inside and outside of frame (144) integral with the rotary shaft (48), of a pair of elastic securing devices (150, 152) by which the inner frame (140) and the intermediate frame (142) are held in position in relation to each other, and by a pair of elastic securing devices (154, 156) by which the intermediate frame (142) and the outer frame (144) are held in position in relation to each other.
11. Apparatus in accordance with either of Claims 1 and 2, characterized by the fact that the control device (166) is completely independent of the fork (26) and of the spout (24) while nevertheless being mounted in such a manner that it can perform the same movements as the said spout about two axes (X1, Y1) perpendicular to each other, and by the fact that the servo-control consists of first electronic means (180, 182) associated with the control device (166) and designed to measure the pivoting movements of the control device (166) about the two perpendicular axes (X1, X2) and generate two series of control signals representing the respective amplitude of these pivoting movements, second electronic means (160, 162) serving to measure the pivoting movements of the spout about the first and second axes (X, Y) and generate two series of effective signals representing the respective actual pivoting amplitude of the spout about these two axes, comparators (174) serving to compare the series of control signals to the series of effective signals and to generate correction signals representing the difference between the control signals and the effective signals and used for the purpose of actuating the first and second jack (74, 80) in such a way as to vary the effective signals by the movement of the spout (24), so that the correction signals will be kept equal to zero or become equal to zero.
12. Shaft furnace charging installation comprising a vertical feed channel (22) mounted in the furnace head (20) and connecting one or more external charging chambers to the interior of the furnace, an oscillating distributing spout (24) for the charging material, mounted immediately downstream from the channel (22), and a suspension and control device for the oscillating spout, the latter having a control device in accordance with any one of Claims 1-11.
EP82101942A 1981-05-18 1982-03-11 Device for controlling the motion of an oscillating chute, and shaft furnace charging installation with such a device Expired EP0065084B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT82101942T ATE10949T1 (en) 1981-05-18 1982-03-11 DEVICE FOR CONTROLLING THE MOVEMENT OF AN OSCILLATING CHUTE AND STACK FURNACE CHARGER EQUIPPED WITH THIS DEVICE.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
LU83370A LU83370A1 (en) 1981-05-18 1981-05-18 DEVICE FOR CONTROLLING THE MOVEMENT OF AN OSCILLATING CHUTE AND INSTALLATION FOR LOADING A TANK OVEN EQUIPPED WITH SUCH A DEVICE
LU83370 1981-05-18

Publications (2)

Publication Number Publication Date
EP0065084A1 EP0065084A1 (en) 1982-11-24
EP0065084B1 true EP0065084B1 (en) 1984-12-27

Family

ID=19729654

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82101942A Expired EP0065084B1 (en) 1981-05-18 1982-03-11 Device for controlling the motion of an oscillating chute, and shaft furnace charging installation with such a device

Country Status (15)

Country Link
US (1) US4493600A (en)
EP (1) EP0065084B1 (en)
JP (1) JPS57192208A (en)
KR (1) KR890002651B1 (en)
AT (1) ATE10949T1 (en)
AU (1) AU545919B2 (en)
BR (1) BR8202579A (en)
CA (1) CA1173240A (en)
CS (1) CS262408B2 (en)
DE (1) DE3261667D1 (en)
IN (1) IN157546B (en)
LU (1) LU83370A1 (en)
SU (2) SU1106447A3 (en)
UA (2) UA7060A1 (en)
ZA (1) ZA821571B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10334417A1 (en) * 2003-06-20 2005-01-05 Z & J Technologies Gmbh Furnace head or gout closure

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU84303A1 (en) * 1982-07-28 1984-03-22 Wurth Paul Sa METHOD AND DEVICE FOR CONTROLLING THE MOVEMENT OF AN OSCILLATING CHUTE AND APPLICATION TO A LOADING INSTALLATION OF A TANK OVEN
LU87341A1 (en) * 1988-09-22 1990-04-06 Wurth Paul Sa LOADING SYSTEM FOR A TANK OVEN
LU87938A1 (en) * 1991-05-15 1992-12-15 Wurth Paul Sa LOADING SYSTEM FOR A TANK OVEN
LU90433B1 (en) * 1999-09-03 2001-03-05 Wurth Paul Sa Bulk material distribution device with rotating chute - variable tilt angle
LU91683B1 (en) * 2010-04-22 2011-10-24 Wurth Paul Sa Device for distributing bulk material with a distribution spout supported by a cardan suspension
JP4667528B1 (en) * 2010-05-10 2011-04-13 英生 住野 Dehumidification shape retainer for shoes and manufacturing method thereof
LU92494B1 (en) * 2014-07-07 2016-01-08 Wurth Paul Sa DEVICE FOR LOCKING THE CHUTE ON THE ENDS OF THE TRUNKS, IN A TANK OVEN LOADING SYSTEM

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2104116A1 (en) * 1971-01-29 1972-08-10 Demag Ag, 4100 Duisburg Blast-furnace burden distributor - allows dumping at any point across furnace
LU77547A1 (en) * 1977-06-16 1977-09-19
JPS5546347A (en) * 1978-09-27 1980-04-01 Ishikawajima Harima Heavy Ind Raw material distributor for vertical furnace
JPS5746545Y2 (en) * 1978-12-23 1982-10-13
JPS5671783A (en) * 1979-11-13 1981-06-15 Ishikawajima Harima Heavy Ind Stock distributor for vertical furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10334417A1 (en) * 2003-06-20 2005-01-05 Z & J Technologies Gmbh Furnace head or gout closure
US6948930B2 (en) 2003-06-20 2005-09-27 Z&J Technologies Gmbh Furnace head or furnace throat seal

Also Published As

Publication number Publication date
LU83370A1 (en) 1983-03-24
UA7060A1 (en) 1995-03-31
ATE10949T1 (en) 1985-01-15
CS262408B2 (en) 1989-03-14
ZA821571B (en) 1983-01-26
JPS57192208A (en) 1982-11-26
UA7062A1 (en) 1995-03-31
SU1138038A3 (en) 1985-01-30
KR890002651B1 (en) 1989-07-22
CA1173240A (en) 1984-08-28
IN157546B (en) 1986-04-19
AU545919B2 (en) 1985-08-08
SU1106447A3 (en) 1984-07-30
JPH0416523B2 (en) 1992-03-24
BR8202579A (en) 1983-04-19
AU8164182A (en) 1982-11-25
DE3261667D1 (en) 1985-02-07
EP0065084A1 (en) 1982-11-24
CS216182A2 (en) 1988-08-16
US4493600A (en) 1985-01-15

Similar Documents

Publication Publication Date Title
EP0065084B1 (en) Device for controlling the motion of an oscillating chute, and shaft furnace charging installation with such a device
EP0388315B1 (en) Process and device for logging using a sensor making a circumferential sweep of the wall of the borehole, in particular to calibrate this sensor
FR2657834A1 (en) DEVICE FOR CONTROLLING THE DIRECTION OF A VEHICLE.
FR2551855A1 (en) POINT MIRROR WITH STABILIZATION DEVICE
EP0362013B1 (en) Apparatus for screwing and unscrewing at least one nut at connection elements
FR2634145A1 (en) CENTRIFUGE COMPRISING MEANS FOR CONTROLLING THE IMBALANCE OF THE ROTOR
FR2595821A1 (en) METHOD AND DEVICE FOR MEASURING THE TORQUE TRANSMITTED BY A TREE SUBJECTED TO TEMPERATURE VARIATIONS
EP0513529B1 (en) Shaft furnace charging apparatus
EP0225834B1 (en) Piston and barrel rotary machine with a fixed central swivel member
FR2858680A1 (en) STABILIZED PLATFORM SYSTEM
EP0218509A1 (en) Suspension gear for a vehicle with a damping means
FR2542604A1 (en) TILT EXAMINATION CHASSIS
EP0450298B1 (en) Probe for taking gaseous samples and making thermal measurements above the charging surface of a shaft furnace
FR2459154A1 (en) INERTIA DEVICE FOR EXACTLY CORRECTING THE ORIENTATION OF A MOTOR VEHICLE PROJECTOR BY COMPRESSING THE EFFECT OF DYNAMIC MOVEMENTS OF THE SUSPENDED PART IN RELATION TO THE UNSUSPENDED PART OF THE VEHICLE.
EP0270870A1 (en) Mechanism for actuating a dosage valve
CH620033A5 (en)
FR2494196A1 (en) REMOTE CONTROL MIRROR FOR MOTOR VEHICLE
EP0448021A1 (en) Load-lifting system comprising two parallel drums rotating in synchronism
FR2466567A1 (en) JAM DEVICE FOR RAILWAY MACHINE
CH639752A5 (en) SHOOTING TURRET AND VEHICLE COMPRISING SUCH A TURRET.
FR2552506A1 (en) BEARING DEVICE FOR A TILT THAT CAN TAKE A TILT
FR2633863A1 (en) Handling robot with circular horizontal movement
EP2261588B1 (en) Device for directional angle aiming of a turret
CA2355382C (en) Machine for machining a volume, in particular an inlay, by automatic duplicating
FR2571290A1 (en) Machine for the milling and lapping of the small side of a workpiece made of hard material

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19830406

ITF It: translation for a ep patent filed

Owner name: MODIANO & ASSOCIATI S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE DE FR GB IT NL SE

REF Corresponds to:

Ref document number: 10949

Country of ref document: AT

Date of ref document: 19850115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3261667

Country of ref document: DE

Date of ref document: 19850207

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 82101942.9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960226

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19960328

Year of fee payment: 15

Ref country code: AT

Payment date: 19960328

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19960401

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19970311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19970331

BERE Be: lapsed

Owner name: PAUL WURTH S.A.

Effective date: 19970331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19971001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971128

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19971001

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19980323

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990312

EUG Se: european patent has lapsed

Ref document number: 82101942.9

EUG Se: european patent has lapsed

Ref document number: 82101942.9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010213

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010220

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20020310

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Effective date: 20020310