EP0061525B1 - Flat picture display tube - Google Patents

Flat picture display tube Download PDF

Info

Publication number
EP0061525B1
EP0061525B1 EP81109051A EP81109051A EP0061525B1 EP 0061525 B1 EP0061525 B1 EP 0061525B1 EP 81109051 A EP81109051 A EP 81109051A EP 81109051 A EP81109051 A EP 81109051A EP 0061525 B1 EP0061525 B1 EP 0061525B1
Authority
EP
European Patent Office
Prior art keywords
tube
conductors
storage space
cathode
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81109051A
Other languages
German (de)
French (fr)
Other versions
EP0061525A1 (en
Inventor
Hinrich Dr. Dipl.-Phys. Heynisch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Lucent Deutschland AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0061525A1 publication Critical patent/EP0061525A1/en
Application granted granted Critical
Publication of EP0061525B1 publication Critical patent/EP0061525B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/10Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes
    • H01J31/12Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes with luminescent screen
    • H01J31/123Flat display tubes
    • H01J31/125Flat display tubes provided with control means permitting the electron beam to reach selected parts of the screen, e.g. digital selection
    • H01J31/126Flat display tubes provided with control means permitting the electron beam to reach selected parts of the screen, e.g. digital selection using line sources

Definitions

  • the invention relates to a flat tube according to the preamble of claim 1.
  • a display tube is known from DE-A-25 02852.
  • gas discharge-based panels is relatively advanced; a variant in which the plasma serves as a large-volume electron source from which the electron beams are selectively drawn off, post-accelerated and directed onto a phosphor layer appears particularly promising (see, for example, DE-PS 24 12 869).
  • a screen already provides television pictures with acceptable display qualities, but has not yet gone beyond the laboratory stage, mainly because the plasma-related problems (cathode sputtering, pressure fluctuations, ignitions in the post-acceleration space) have not yet been satisfactorily resolved.
  • the above-mentioned shortcomings are eliminated if a thermal (quasi) surface cathode is used as the 'electron reservoir'.
  • the most well-known representative of this type of display which is described in SID 78 Digest (1978) 88, has the following structure:
  • the cathode consists of a plurality of heated wires which are parallel to one another and each surrounded by a field-shaping electrode. It supplies a forward-facing, large-area electron current that is sent into a control structure made up of several perforated conductor tracks placed one behind the other.
  • the invention is based on the object of developing a plasma-free flat electron beam tube which has a high degree of efficiency, is relatively simple in structure and in particular can also display good quality (color) television images in any format. This object is achieved by an image display tube with the features of claim 1.
  • the electrons entering the electron storage space are relatively slow; their kinetic energy comes essentially from the difference between the cathode and the pull anode potential, which normally has values between 1 V and 2 V; in addition to this amount there is also a thermal component, which is relatively small for the vast majority of electrons and is, for example at a cathode temperature of 1000 ° K, on average around 1/10 eV.
  • These electrons therefore have time to spread out and distribute evenly in the 'electron storage space' before they are sucked off by a controlled line. during their time in the store, they cannot reach the walls or the uncontrolled lines, since all these parts are normally at a potential which is slightly negative with respect to the train anode potential.
  • D f • means that the cathodes generally only have to supply electrons in an amount that is removed from the electronic fuse by a single line.
  • a rough calculation shows that one can easily bring electron currents on a line in which a post-acceleration voltage of a few kV (reference value: 3 kV) leads to bright images. With these moderate potential differences there are no serious high voltage problems; above all, no peak discharges are to be feared, so that under normal conditions one can do without additional shielding electrodes in the post-acceleration space.
  • a tube according to the invention is characterized by a construction which does not require voluminous, heavy components in the vacuum space and which can be produced without any particular effort.
  • Proven technologies from the field of high vacuum tubes can be used for practically every detail, such as the electron generator system.
  • the electron cloud in the electron storage space has such a homogeneous density distribution that the brightness fluctuations on the screen are kept within acceptable limits.
  • the rows located away from the cathodes are supplied with electrons significantly worse than the rows near the cathode.
  • simple compensation measures are available, which are specified in claims 7 to 9. Should there be any marginal disturbances from the side walls of the memory, the number and / or the length of the line conductors could simply be made somewhat larger than required for the image structure.
  • the screen of FIG. 1 contains a vacuum envelope with a flat front plate 1 and a rear plate 2, which is hermetically sealed to the front plate via a molded-on side web 3.
  • the inside of the front plate is coated with an electrode (post-acceleration anode) 4, which in turn carries a phosphor layer 6.
  • the inside of the vacuum envelope is divided by a carrier plate 7 into a front space (post-acceleration space) 8 and a rear space (efectron storage space) 9.
  • the support plate 7 is provided on both sides with a family of conductors which are parallel to one another (row conductors 11, column conductors 12).
  • the Le i termatrix as well as the support plate are in the Kreu-wetting points of the conductors (not shown) provided electron passage openings.
  • the back plate 2 is coated with an electrically conductive covering 13 where it delimits the electron storage space 9.
  • This coating has a recess in the four narrow sides of the hiectron storage space, in each case at a central point, in which a cathode 14, 15 with a flat emission surface is embedded.
  • a cathode 14, 15 with a flat emission surface is embedded in front of each cathode is a grid-shaped pull anode 16 or 17, which extends in a plane parallel to the emission surface.
  • the display is operated with the following voltages: At a cathode potential of 0 V, the pull anodes are at + 1 V to + 2V, the electrically conductive rear and side walls of the electron storage space 9 are at 0 V to -2 V, the controlled line at +20 V up to +50 V and the remaining lines to -2 V.
  • the display variant shown in FIG. 2 differs from the embodiment of FIG. 1 primarily in three details: the four electron generators arranged on the side are replaced by a generator system with a rod cathode 18 and a hollow cylindrical pull anode 19, and a further electrode plate 20 is located in the post-acceleration chamber ; and the electrically conductive rear wall of the electron storage space is divided into a plurality of strips 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32 which are parallel to one another. _.
  • the rod cathode is located approximately in the middle of the electron storage space, extends parallel to the row conductors and slightly projects above them at both ends. It consists of a directly retained nickel tube, which can be quickly brought to the required operating temperatures, and has a diameter of approximately 1 mm. The cross section of the pull anode surrounding the rod cathode should be approximately 2 mm.
  • the cathode could also be designed as a wire, coil or double coil, but a tubular cathode is preferred for reasons of mechanical strength.
  • the plate 20 carries strip conductors 33 on its side facing the control matrix, which are aligned with the row conductors of the control matrix, and a continuous surface electrode 34 on its side facing the post-acceleration anode.
  • the entire unit is perforated at the same locations as the carrier plate.
  • the strip conductors 33 are in the operation of the tube at approx. 10 ... 100 V, the surface electrode 34 at 100 ... 300 V.
  • Such a pentode structure allows much higher post-acceleration voltages and is recommended if you want to get by with a small total emission area and / or strives for a very bright display.
  • the strips in the rear wall which, like the rod cathode, extend parallel to the row conductors, lie alternately at raised and lowered potentials, in order to transport part of the electrons emitted by the central cathode to the edge regions of the electron storage space by a type of electrostatic periodic focusing .
  • Strip potential and geometry are adapted to the electron speed in such a way that even the marginal lines have a similar intensity Electron current such as those in the immediate vicinity of the cathode receive. If necessary, the strip potential could also be synchronized with the line scanning, for example by line or line group sequential switching. Uniform illumination of the display field can also be achieved by connecting the train anode voltage and / or distributing several cathodes in the electron storage space, as shown in FIG. 3.
  • the display modification of FIG. 3 differs from the example shown in FIG. 2 in three details: the electron generator system contains three rod cathodes 18, 36, 37 and three pull anodes 19, 38, 39, the electrode plate 20 as well as the carrier plate 7 have been omitted and the matrix conductors are in the form of wires.
  • the cathodes are at a distance from each other that is approximately twice as large as the distance between the back of the memory and the row conductors. This distance corresponds approximately to the distance that the outer cathodes maintain from the adjacent storage side walls.
  • a version with a wire-grid-shaped control matrix offers small-format screens, such as a television with an image diagonal of e.g. 12 cm to 14 cm or a miniature data display screen in small computers, special advantages: Each pixel is made up of four partial points that are clearly separated by the wire cross, so that a viewer cannot resolve the point grid even from the shortest distance.
  • the production of the control grid, the rows and columns of which could each be wound as a parallel wire grid on frames and thereby have to have a slope of the order of 100 m, is unproblematic.
  • the invention is not limited to the exemplary embodiments shown. This leaves a considerable amount of design freedom, above all in terms of design, because the only important thing is that slow electrons are generated, distributed and kept loss-free in an 'electron box' and that electrons are drawn, accelerated and sequentially from this electron source by a control matrix be led onto a phosphor.

Landscapes

  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)

Description

Die Erfindung betrifft eine Flachbildröhre nach dem Oberbegriff des Anspruchs 1. Eine solche Bildwiedergaberöhre ist aus der DE-A- 25 02852 bekannt.The invention relates to a flat tube according to the preamble of claim 1. Such a display tube is known from DE-A-25 02852.

Seit Jahren arbeitet man an der Realisierung eines flachen Bildschirms, der die klassische Kathodenstrahlröhre ersetzen könnte. Diesen Bemühungen waren bisher nur Teilerfolge beschieden: Auf dem Gebiet der nieder- bis mittelinformativen Anzeigen bis hin zu Datensichtgeräten ist es gelungen, konkurrenzfähige Flachdisplays auf den Markt zu bringen. In Fällen jedoch, in denen größere Informationsmengen wie Fernseh-Video-Signale verarbeitet werden müssen, ist die Kathodenstrahlröhre nach wie vor unangefochten.For years, people have been working on the realization of a flat screen that could replace the classic cathode ray tube. These efforts have so far been only partially successful: in the field of low to medium-sized information displays and data display devices, it has been possible to bring competitive flat displays onto the market. However, in cases where large amounts of information, such as television video signals, have to be processed, the cathode ray tube is still unchallenged.

Relativ weit fortgeschritten ist die Entwicklung bei Panels auf Gasentladungsbasis, Besonders aussichtsreich erscheint dabei eine Variante, bei der das Plasma als großvolumige Elektronenquelle dient, aus der selektiv Elektronenstrahlen abgezogen, nachbeschleunigt und auf eine Leuchtstoffschicht gelenkt werden (vergl. hierzu beispielsweise die DE-PS 24 12 869). Ein solcher Bildschirm liefert bereits heute Fernsehbilder mit akzeptablen Darstellungsqualitäten, ist allerdings noch nicht über das Laborstadium hinausgekommen, und zwar vor allem deshalb, weil die plasmabedingten Probleme (Kathodensputtern, Druckschwankungen, Durchzündungen im Nachbeschleunigungsraum) noch nicht befriedigend gelöst sind.The development of gas discharge-based panels is relatively advanced; a variant in which the plasma serves as a large-volume electron source from which the electron beams are selectively drawn off, post-accelerated and directed onto a phosphor layer appears particularly promising (see, for example, DE-PS 24 12 869). Such a screen already provides television pictures with acceptable display qualities, but has not yet gone beyond the laboratory stage, mainly because the plasma-related problems (cathode sputtering, pressure fluctuations, ignitions in the post-acceleration space) have not yet been satisfactorily resolved.

Die genannten Mängel entfallen, wenn man als 'Elektronenreservoir' eine thermische (Quasi-)Flächenkathode verwendet. Der wohl bekannteste Vertreter dieses Displaytyps, der in SID 78 Digest (1978) 88 beschrieben wird, hat folgenden Aufbau: Die Kathode besteht aus einer Vielzahl von zueinander parallelen, jeweils von einer Feldformerelektrode umgebenen, geheizten Drahten. Sie liefert einen nach vorne gerichteten großflächigen Elektronenstrom, der in eine Steuerstruktur aus mehreren hintereinandergesetzten, perforierten Leiterbahnen geschickt wird.The above-mentioned shortcomings are eliminated if a thermal (quasi) surface cathode is used as the 'electron reservoir'. The most well-known representative of this type of display, which is described in SID 78 Digest (1978) 88, has the following structure: The cathode consists of a plurality of heated wires which are parallel to one another and each surrounded by a field-shaping electrode. It supplies a forward-facing, large-area electron current that is sent into a control structure made up of several perforated conductor tracks placed one behind the other.

Beim Passieren dieses Plattenstapels werden aus dem Elektronenstrom ständig Teilströme ausgeblendet, bis schließlich nur noch die gewünschten Punktstrahlen übrigbleiben, die dann auf einer phosphorbeschichteten, auf einem Potential von etwa 18 kV liegenden Anode Leuchtflecke erzeugen. Eine solche Ausführung hat eine nur mäßige Elektronenausbeute und verlangt bei größeren Bildpunktdichten eine Vielzahl von äußerst präzise gelochten und zueinander ausgerichteten Blenden; sie ist daher für Fernsehzwecke nicht geeignet.When passing through this plate stack, partial currents are continuously masked out from the electron current until finally only the desired spot beams remain, which then produce light spots on a phosphor-coated anode lying at a potential of approximately 18 kV. Such a design has only a moderate electron yield and requires a large number of extremely precisely perforated and aligned diaphragms with larger pixel densities; it is therefore not suitable for television purposes.

Man kommt mit einer einzigen Steuerebene aus, wenn man, wie in der eingangs zitierten Offenlegungsschrift vorgesehen, diese Ebene durch ein Raster aus einzeln ansteuerbaren Plattenkondensatoren realisiert, die je nach Schaltzustand die eintretenden Elektronen abfangen oder hindurchlassen. Es liegt auf der Hand, daß eine solche Kondensstormatrix noch immer erhebliche technologische Probleme aufwirft und nach wie vor nur einen kleinen Teil der erzeugten Elektronen nutzt.You can get by with a single control level if, as provided for in the above-mentioned laid-open publication, this level is realized by a grid of individually controllable plate capacitors, which, depending on the switching state, intercept or pass the incoming electrons. It is obvious that such a capacitor matrix still poses considerable technological problems and still uses only a small part of the electrons generated.

Die Elektronenverluste bleiben vergleichsweise gering, wenn man von der Seite her einen punkt- oder bandförmigen Elektronenstrahl einschießt und diesen Strahl nach vorne auf einen Phosphor umlenkt. Bei diesem auf den ersten Blick bestechenden Konzept bereitet die Strahlfübrung in der Praxis beträchtliche Schwierigkeiten. So ist eine vergleichsweise einfache Fokussierung mit noch tolerierbaren Bildverzerrungen nur bei kleinsten Bildformaten möglich ('Electronics' v. 19.07.1979, S. 67 f); bei größeren Anzeigefeldern ist man auf hochkomplizierte, filigrane Längssysteme angewiesen (DE-A-26 38 308).The electron losses remain comparatively low if one shoots in a point-shaped or band-shaped electron beam from the side and deflects this beam forward onto a phosphor. With this concept, which is impressive at first glance, the beam application creates considerable difficulties in practice. Comparatively simple focusing with tolerable image distortion is only possible with the smallest image formats ('Electronics' from July 19, 1979, p. 67 f); larger display fields rely on highly complicated, filigree longitudinal systems (DE-A-26 38 308).

Der Erfindung liegt die Aufgabe zugrunde, eine plasmafreie flache Elektfonenstrahlröhre zu entwickeln, die einen hohen Wirkungsgrad hat, dabei relativ einfach aufgebaut ist und insb. auch (Farb)-Fernsehbilder guter Qualität in beliebigen Formaten zur Darstellung bringen kann. Diese Aufgabe wird erfindungsgemäß durch eine Bildwiedergaberöhre mit den Merkmalen des Patentanspruchs 1 gelöst.The invention is based on the object of developing a plasma-free flat electron beam tube which has a high degree of efficiency, is relatively simple in structure and in particular can also display good quality (color) television images in any format. This object is achieved by an image display tube with the features of claim 1.

Bei dem vorgeschlagenen Bildschirm sind die in den Elektronenspeicherraum eintretenden Elektronen relativ langsam; ihre kinetische Energie stammt im wesentlichen aus der Differenz zwischen dem Kathoden- und dem Zuganodenpotental, die normalerweise Werte zwischen 1 V und 2 V hat; zu diesem Betrag kommt dann noch ein thermischer Anteil hinzu, der für die allermeisten Elektronen relativ gering ist und beispielsweise bei einer Kathodentemperatur von 1000°K im Mittel bei etwa 1/10 eV liegt. Diese Elektronen haben also Zeit, sich im 'Elektronenspeicherraum' auszubreiten und gleichmäßig zu verteilen, ehe sie durch eine angesteuerte Zeile abgesaugt werden. während ihrer Verweilzeit im Speicher können sie weder auf die Wände noch auf die nichtangesteuerten Zeilen gelangen, da sich alle diese Teile normalerweise auf einem gegenüber Zuganodenpotential schwach negativen Potential befinden. Df• bedeutet, daß die Kathoden grundsätzlich nur Elektronen in einer Menge nachliefern müssen, die dem Etektnnenspsicher durch eine einzige Zeile entnommen wird. Eine überschlägige Rechnung ergibt, daß man ohne weiteres Elektronenströme auf eine Zeile bringen kann, bei denen eine Nachbeschleunigungsspannung von wenigen kV (Richtwert: 3 kV) zu hellen Bildern führt. Bei diesen maßvollen Potentialunterschieden gibt es keine gravierenden Hochspannungsprobleme; vor allem sind keine Spitzenentladungen zu befürchten, so daß man unter normalen Bedingungen ohne zusätzliche Abschirmelektroden im Nachbeschleunigungsraum auskommt.In the proposed screen, the electrons entering the electron storage space are relatively slow; their kinetic energy comes essentially from the difference between the cathode and the pull anode potential, which normally has values between 1 V and 2 V; in addition to this amount there is also a thermal component, which is relatively small for the vast majority of electrons and is, for example at a cathode temperature of 1000 ° K, on average around 1/10 eV. These electrons therefore have time to spread out and distribute evenly in the 'electron storage space' before they are sucked off by a controlled line. during their time in the store, they cannot reach the walls or the uncontrolled lines, since all these parts are normally at a potential which is slightly negative with respect to the train anode potential. D f • means that the cathodes generally only have to supply electrons in an amount that is removed from the electronic fuse by a single line. A rough calculation shows that one can easily bring electron currents on a line in which a post-acceleration voltage of a few kV (reference value: 3 kV) leads to bright images. With these moderate potential differences there are no serious high voltage problems; above all, no peak discharges are to be feared, so that under normal conditions one can do without additional shielding electrodes in the post-acceleration space.

Als weiterer Vorteil kommt hinzu, daß man das 'Elektronengas' mit extrem geringen Spannungsunterschieden 'einsperren' und sauber auf die jeweils angesteuerte Zeile lenken kann. Die Fokussierfehler sind so gering, daß es zu keinen störenden Untergrundsaufhellungen, Übersprecheffekten oder Strahlaufspreitzungen kommt. Darüber hinaus läßt sich durch geringe Variation der Zuganodenspannung der Elektronenstrom pro Zeile in weiten Grenzen verändern. Bei einer ebenen Kathode gilt für den Zusammenhang zwischen dem Kathodenstrom 1 und der Zuganodenspannung U bekanntlich die Beziehung I~ (F/d2)xU3/2 (F = Kathodenfläche, d = Abstand zwischen Kathode und Zuganode).Another advantage is that you can 'lock in' the 'electron gas' with extremely small voltage differences and steer it cleanly to the line you are controlling. The focusing errors are so small that there are no disturbing brightening of the background, crosstalk effects or beam spreading. In addition, the electron current per line can be varied within wide limits by slightly varying the tension of the train anode. In a planar cathode is well known, the relationship I ~ applies to the relationship between the cathode current 1 and the Zuganodenspannung U (F / d 2) xU 3/2 (F = cathode surface, d = the distance between the cathode and Zuganode).

Im übrigen zeichnet sich eine erfindungsgemäße Röhre durch eine Konstruktion aus, die ohne voluminöse, schwere Bauteile im Vakuumraum auskommt und sich ohne besonderen Aufwand fertigen läßt. Für praktisch jede Einzelheit, etwa das Elektronenerzeugersystem, kann man auf bewährte Technologien aus dem Gebiet der Hochvakuumröhren zurückgreifen.In addition, a tube according to the invention is characterized by a construction which does not require voluminous, heavy components in the vacuum space and which can be produced without any particular effort. Proven technologies from the field of high vacuum tubes can be used for practically every detail, such as the electron generator system.

Normalerweise hat die im Elektronenspeicherraum befindliche Elektronenwolke eine derart homogene Dichteverteilung, daß sich die Helligkeitsschwankungen auf dem Bildschirm in akzeptablen Grenzen halten. Unter bestimmten Umständen, etwa bei einem sehr flach gehaltenen Elektronenspeicherraum, kann es jedoch vorkommen, daß die von den Kathoden entfernt liegenden Zeilen deutlich schlechter mit Elektronen versorgt werden als die kathodennahen Zeilen. Für diese Fälle stehen einfache Kompensationsmaßnahmen zur Verfügung, die in den Ansprüchen 7 bis 9 angegeben sind. Sollten sich Randstörungen, die von den Seitenwänden des Speichers ausgehen, bemerkbar machen, so könnte man einfach die Anzahl und/oder die Länge der Zeilenleiter etwas größer als zum Bildaufbau erforderlich machen.Normally, the electron cloud in the electron storage space has such a homogeneous density distribution that the brightness fluctuations on the screen are kept within acceptable limits. In certain circumstances, for example in the case of a very flat electron storage space, it can happen that the rows located away from the cathodes are supplied with electrons significantly worse than the rows near the cathode. For these cases, simple compensation measures are available, which are specified in claims 7 to 9. Should there be any marginal disturbances from the side walls of the memory, the number and / or the length of the line conductors could simply be made somewhat larger than required for the image structure.

Der Lösungsvorschlag soll nun anhand bevorzugter Ausführungsbeispiele, die in der beigefügten Zeichnung dargestellt sind, näher erläutert werden. In den Figuren sind einander entsprechende Teile mit gleichen Bezugszeichen versehen. Es zeigen:

  • Fig. 1 einen Seitenschnitt durch ein erstes Ausführungsbeispiel,
  • Fig. 2 ein zweites Ausführungsbeispiel in der gleichen Darstellungsweise und
  • Fig. 3 ein weiteres Ausführungsbeispiel, ebenfalls im Seitenschnitt.
The proposed solution will now be explained in more detail on the basis of preferred exemplary embodiments which are illustrated in the accompanying drawing. Corresponding parts in the figures are provided with the same reference symbols. Show it:
  • 1 shows a side section through a first embodiment,
  • Fig. 2 shows a second embodiment in the same representation and
  • Fig. 3 shows another embodiment, also in side section.

Die Figuren sind der Ubersicht halber sehr schematisch gehalten. So fehlen vielfach Displayteile wie Zuleitungen, Abdichtungen und Durchführungen, die für ein Verständnis der Erfindung nicht unbedingt erforderlich sind.For the sake of clarity, the figures are kept very schematic. Thus, display parts such as supply lines, seals and bushings are often missing, which are not absolutely necessary for an understanding of the invention.

Der Bildschirm der Fig. 1 enthält eine Vakuumhülle mit einer ebenen Frontplatte 1 und einer Rückplatte 2, die über einen angeformten Seitensteg 3 mit der Frontplatte hermetisch dicht verbunden ist. Die Frontplatte ist auf ihrer Innenseite mit einer Elektrode (Nachbeschleunigungsanode) 4 besehichtet, die ihrerseits eine Leuchtstoffschicht 6 trägt. Das Innere der Vakuumhülle wird durch eine Trägerplatte 7 in einen vorderen Raum (Nachbeschleunigungsraum) 8 und einen rückwärtigen Raum (Efektronenspeicherraum) 9 unterteilt. Auf ihren beiden Seiten ist die Trägerplatte 7 jeweils mit einer Schar aus zueinander pärallelen Leitern (Zeilenleitern 11, Spaltenleitern 12) versehen. Die Leitermatrix wie auch die Trägerplatte sind in den Kreu-zungspunkten der Leiter mit (nicht dargestellten) Elektronendurchtrittsöffnungen versehen. Die Rückplatte 2 ist dort, wo sie den Elektronenspeicherraum 9 begrenzt, mit einem elektrisch leitenden Belag 13 beschichtet. Dieser Belag hat in den vier Schmalseiten des Hiektronenspeicherraums, und zwar jeweils an zentraler Stelle eine Aussparung, in der eine Kathode 14,15 mit ebener Emissionsfläche eingelassen ist. Vor jeder Kathode befindet sich eine gitterförmige Zuganode 16 bzw. 17, die sich in einer zur Emissionsfläche parallelen Ebene erstreckt.The screen of FIG. 1 contains a vacuum envelope with a flat front plate 1 and a rear plate 2, which is hermetically sealed to the front plate via a molded-on side web 3. The inside of the front plate is coated with an electrode (post-acceleration anode) 4, which in turn carries a phosphor layer 6. The inside of the vacuum envelope is divided by a carrier plate 7 into a front space (post-acceleration space) 8 and a rear space (efectron storage space) 9. The support plate 7 is provided on both sides with a family of conductors which are parallel to one another (row conductors 11, column conductors 12). The Le i termatrix as well as the support plate are in the Kreu-wetting points of the conductors (not shown) provided electron passage openings. The back plate 2 is coated with an electrically conductive covering 13 where it delimits the electron storage space 9. This coating has a recess in the four narrow sides of the hiectron storage space, in each case at a central point, in which a cathode 14, 15 with a flat emission surface is embedded. In front of each cathode is a grid-shaped pull anode 16 or 17, which extends in a plane parallel to the emission surface.

Das Display wird mit folgenden Spannungen betrieben: Bei einem Kathodenpotential von 0 V liegen doe Zuganoden auf + 1 V bis +2V, die elektrisch leitenden Rück- und Seitenwände des Elektronenspeicherraums 9 auf 0 V bis -2 V, die angesteuerte Zeile auf +20 V bis +50 V und die übrigen Zeilen auf -2 V.The display is operated with the following voltages: At a cathode potential of 0 V, the pull anodes are at + 1 V to + 2V, the electrically conductive rear and side walls of the electron storage space 9 are at 0 V to -2 V, the controlled line at +20 V up to +50 V and the remaining lines to -2 V.

Für die Displayteile wurden folgende Materialien verwendet:

  • Für Front- Rück- und Trägerplatte 'Glas, wobei die Rückplatte ihr wannenartiges Profil durch einen Preßvorgang erhalten hat, für die Nachbeschleunigungsanode Zinnoxid, die Leiter der Steuermatrix Ti, Pt, Vacovit, die Kathode z.B. Ni (Oxidkath) und die Zuganode Cu, Mo etc. Der Leuchtstoff besteht aus handelsüblichen Phosphoren, die bei einer Farbdarstellung in bekannter Weise ein Streifen- oder Punktemuster aus den Farben Rot, Grün und Blau bilden.
The following materials were used for the display parts:
  • For front, back and carrier plate 'glass, the back plate having its trough-like profile obtained by a pressing process, for the post-acceleration anode tin oxide, the conductors of the control matrix Ti, Pt, Vacovit, the cathode eg Ni (oxide cathode) and the pull anode Cu, Mo etc. The phosphor consists of commercially available phosphors which form a stripe or dot pattern from the colors red, green and blue in a known manner in a color representation.

Die in Fig. 2 dargestellte Displayvariante unterscheidet sich von der Ausführung der Fig. 1 vor allem in drei Einzelheiten: Die vier seitlich angeordneten Elektronenerzeuger sind durch ein Erzeugersystem mit einer Stabkathode 18 und einer hohlzylindrischen Zuganode 19 ersetzt, im Nachbeschleunigungsraum befindet sich eine weitere Elektrodenplatte 20; und die elektrisch leitende Rückwand des Elektronenspeicherraums ist in mehrere zueinander parallele Streifen 21,22,23,24,25,26,27,28,29,31,32 unterteilt. _.The display variant shown in FIG. 2 differs from the embodiment of FIG. 1 primarily in three details: the four electron generators arranged on the side are replaced by a generator system with a rod cathode 18 and a hollow cylindrical pull anode 19, and a further electrode plate 20 is located in the post-acceleration chamber ; and the electrically conductive rear wall of the electron storage space is divided into a plurality of strips 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32 which are parallel to one another. _.

Die Stabkathode ist etwa in der Mitte des Elektronenspeicherraums plaziert, erstreckt sich parallel zu den Zeilenleitern und überragt sie an beiden Enden geringfügig. Sie besteht aus einem direkt behalten Nickel-Rohr, das sich schnell auf die erforderlichen Betriebstemperaturen bringen läßt, und hat einen Durchmesser von etwa 1 mm. Der Querschnitt der die Stabkathode umgebenden Zuganode sollte dabei ungefähr 2 mm betragen. Die Kathode könnte auch als Draht, Wendel oder Doppelwendel gestaltet sein, aus Gründen der mechanischen Festigkeit ist allerdings eine rohrförmige Kathode vorzuziehen.The rod cathode is located approximately in the middle of the electron storage space, extends parallel to the row conductors and slightly projects above them at both ends. It consists of a directly retained nickel tube, which can be quickly brought to the required operating temperatures, and has a diameter of approximately 1 mm. The cross section of the pull anode surrounding the rod cathode should be approximately 2 mm. The cathode could also be designed as a wire, coil or double coil, but a tubular cathode is preferred for reasons of mechanical strength.

Die Platte 20 trägt auf ihrer der Steuermatrix zugewandten Seite Streifenleiter 33, die zu den Zeilenleitern der Steuermatrix fluchten, und auf ihrer der Nachbeschleunigungsanode zugewandten Seite eine durchgehende Flächenelektrode 34. Die gesamte Einheit ist an den gleichen Stellen wie die Trägerplatte gelocht. Die Streifenleiter 33 liegen im Betrieb der Röhre auf ca. 10...100 V, die Flächenelektrode 34 auf 100...300 V. Eine solche Pentodenstruktur erlaubt wesentlich höhere Nachbeschleunigungsspannungen und empfiehlt sich dann, wenn man mit einer geringen Gesamtemissionsfläche auskommen will und/oder eine sehr leuchtstarke Darstellung anstrebt.The plate 20 carries strip conductors 33 on its side facing the control matrix, which are aligned with the row conductors of the control matrix, and a continuous surface electrode 34 on its side facing the post-acceleration anode. The entire unit is perforated at the same locations as the carrier plate. The strip conductors 33 are in the operation of the tube at approx. 10 ... 100 V, the surface electrode 34 at 100 ... 300 V. Such a pentode structure allows much higher post-acceleration voltages and is recommended if you want to get by with a small total emission area and / or strives for a very bright display.

Die Streifen in der Rückwand, die sich wie die Stabkathode parallel zu den Zeilenleitern erstrecken, liegen abwechseind auf angehobenen und abgesenkten Potentialen, um einen Teil der von der zentralen Kathode abgegebenen Elektronen durch eine Art von elektrostatischer periodischer Fokussierung bis in die Randbereiche des Elektronenspeicherraums zu befördern. Streifenpotential und -geometrie sind dabei so an die Elektronengeschwindigkeit angepaßt, daß auch die randständlgen Zeilen einen ähnlich intensiven Elektronenstrom wie die in unmittelbarer Nachbarschaft zur Kathode liegenden Zeiien erhaiten. Bei Bedarf könnte man auch noch das Streifenpotential mit der Zeilenabtastung synchronisieren, etwa durch zeilen- oder zeilengruppenweises Nachschalten. Eine gleichmäßige Ausieuchtung des Anzeigenfeldes läßt sich auch dadurch erreichen, daß man die Zuganodenspannung nachschaltet und/oder mehrere Kathoden im Elektronenspeicherraum verteilt, wie dies in Fig. 3 dargestellt ist. Bei der Nachführung der Zuganodenspannung wird man darauf achten, daß dann, wenn kathodeuferne Zeilen bzw. Zeilengruppen adressiert werden, eine höhere Spannung anliegen muß als bei Adressierung kathodennaher Zeilen bzw. Zeilengruppen. Befinden sich mehrere Kathoden im Speicherraum so kann man sich damit begnügen, nur diejenige Zuganode auf positives Potential zu legen, deren Kathode der gerade angesteuerten Zeile am nächsten liegt, denn die übrigen Kathoden iiefern deutlich geringere Elektronenbeiträge für diese Zeile.The strips in the rear wall, which, like the rod cathode, extend parallel to the row conductors, lie alternately at raised and lowered potentials, in order to transport part of the electrons emitted by the central cathode to the edge regions of the electron storage space by a type of electrostatic periodic focusing . Strip potential and geometry are adapted to the electron speed in such a way that even the marginal lines have a similar intensity Electron current such as those in the immediate vicinity of the cathode receive. If necessary, the strip potential could also be synchronized with the line scanning, for example by line or line group sequential switching. Uniform illumination of the display field can also be achieved by connecting the train anode voltage and / or distributing several cathodes in the electron storage space, as shown in FIG. 3. When tracking the train anode voltage, care will be taken to ensure that when addresses or rows of rows remote from the cathode are addressed, a higher voltage must be present than when addressing rows or rows of rows near the cathode. If there are several cathodes in the storage space, one can be satisfied with setting only the pulling anode to positive potential whose cathode is closest to the line just controlled, because the other cathodes provide significantly lower electron contributions for this line.

Die Displaymodifikation der Fig. 3 weicht von dem in Fig. 2 dargestellten Beispiel in drei Einzelheiten ab: Das Elektronenerzeugersystem enthält drei Stabkathoden 18,36,37 und drei Zuganoden 19,38,39, die Elektrodenplatte 20 wie auch die Trägerplatte 7 sind weggefallen und die Matrixleiter haben die Form von Drähten. Die Kathoden haben dabei einen Abstand voneinander, der etwa doppelt so groß ist wie die Distanz zwischen der Speicherrückwand und den Zeilenleitern. Diese Distanz entspricht etwa dem Abstand, den die äußeren Kathoden zu den ihnen jeweils benachbarten Speicherseitenwänden einhalten.The display modification of FIG. 3 differs from the example shown in FIG. 2 in three details: the electron generator system contains three rod cathodes 18, 36, 37 and three pull anodes 19, 38, 39, the electrode plate 20 as well as the carrier plate 7 have been omitted and the matrix conductors are in the form of wires. The cathodes are at a distance from each other that is approximately twice as large as the distance between the back of the memory and the row conductors. This distance corresponds approximately to the distance that the outer cathodes maintain from the adjacent storage side walls.

Eine Ausführung mit drahtgitterförmiger Steuermatrix bietet bei kleinformatigen Bildschirmen, etwa einem Fernsehgerät mit einer Bilddiagonalen von z.B. 12 cm bis 14 cm oder einem Miniatur-Datensichtschirm in Kleinrechnern, besondere Vorteile: Jeder Bildpunkt setzt sich aus vier, durch das Drahtkreuz deutlich voneinander getrennten Teilpunkten zusammen, so daß ein Betrachter das Punkteraster auch aus kürzester Entfernung nicht auflösen kann. Zudem ist die Herstellung des Steuergitters, dessen Zeilen und Spalten jeweils als Paralleldrahtgitter auf Rahmen gewickelt werden könnten und dabei eine Steigung in der Größenordnung 100 m erhalten müssen, unproblematisch.A version with a wire-grid-shaped control matrix offers small-format screens, such as a television with an image diagonal of e.g. 12 cm to 14 cm or a miniature data display screen in small computers, special advantages: Each pixel is made up of four partial points that are clearly separated by the wire cross, so that a viewer cannot resolve the point grid even from the shortest distance. In addition, the production of the control grid, the rows and columns of which could each be wound as a parallel wire grid on frames and thereby have to have a slope of the order of 100 m, is unproblematic.

Die Erfindung beschränkt sich nicht auf die dargestellten Ausführungsbeispiele. So bleibt vor allem in konstruktiver Hinsicht noch ein erheblicher Gestaltungsspielraum, denn es kommt im wesentlichen nur darauf an, daß in einem 'Elektronenkasten' langsame Elektronen erzeugt, verteilt und verlustfrei gehalten werden und daß aus dieser Elektronenquelle durch eine Steuermatrix zeilensequentiell Elektronen abgezogen, beschleunigt und auf einen Phosphor geführt werden.The invention is not limited to the exemplary embodiments shown. This leaves a considerable amount of design freedom, above all in terms of design, because the only important thing is that slow electrons are generated, distributed and kept loss-free in an 'electron box' and that electrons are drawn, accelerated and sequentially from this electron source by a control matrix be led onto a phosphor.

Claims (12)

1. A flat picture display tube comprising an evacuating sleeve comprising:
(1) a front plate (1) and a rear plate (2) which is connected to the front plate so as to be vacuum-tight;
(2) a control matrix consisting of row conductors (11) arid column conductors (12) which extend in respective planes (row conductor plane, column conductor plane) parallel to the plane of the front plate, and divide the inside of the sleeve into a rear chamber (9) and a front chamber (3) and are provided with electron passages in the region of their intersections;
(3) at least one thermal cathode (14,15,16,36,37) and one accelerating anode (16,17,19,36,39) assigned to the cathode, in the rear chamber (9);
(4) an electrically conductive coating (13, 21-32) arranged on the rear plate (2) to form the rear wall of the rear chamber;
(5) at least one anode (4) (post acceleration anode) arranged in the front chamber (6) and provided with a fluorescent layer (6) which can be excited by electrons;
(6) a first voltage source connected to the coating of the rear plate (2), which connects the coating to a potential at which the coating does not absorb the electrons emitted into the rear chamber (9);
(7) a second voltage source connected to the postacceleration anode (4) which connects the post-acceleration anode to a positive potential of several kV relative to the cathode potential;
(8) a first control unit which successively provides the conductors of the control matrix (row conductor), which face the rear chamber, with a control voltage and connects the row conductors (11), which are not controlled, to potentials at which they do not absorb the electrons emitted into the rear chamber (9) or do not allow them to pass, as the case may be; and
(9) a second control unit which simultaneously provides all column conductors (12) with the information voltages for the currently controlled row conductor (11); characterised in that
(10) the accelerating anode (16,17,19,38,39) is gridshaped and covers the emission surface of the assigned cathode (14,15,18,36,37) at an approximately constant distance;
(11) the lateral walls of the rear chamber (electron storage chamber 9) have electrically conductive coatings;
(12) connected to a third voltage source which connects the coatings to potentials at which they do not absorb the electrons emitted into the electron storage space (9); and that
(13) the potentials of the accelerating anode (16,17, 19,38,39), of the coatings which form the rear wall and the lateral walls of the electron storage space (9), and of the row conductors (11) which are not controlled, differ from the cathode potential to such a small extent that the electrons emitted by the cathode (14,15,18,36,37) are spread out and evenly distributed in the electron storage space (9) before they are attracted away by the controlled row conductor (11).
2. A tube as claimed in Claim 1, characterised in that the cathode (14,15) is strip-shaped and arranged in one of the lateral walls of the electron storage space (9).
3. A tube as claimed in Claim 1, characterised in that the cathode (18,36,37) has the,shape of a round bar and extends parallel to the row conductors (11) and is arranged inside the electron storage space (9) and coaxially surrounded by its accelerating anode (19,38,39).
4. A tube as claimed in Claim 3, characterised in that a plurality of equidistant rod cathodes (18,36,37) is provided, where the two outer rod cathodes (36,37) maintain a distance from the lateral walls of the electron storage space (9) adjacent thereto, which distance is approximately half as large as the distance between adjacent rod cathodes and approximately has the same length as the distance between the rear wall of the electron storage space (9) and the control matrix.
5. A tube as claimed in one of Claims 1 to 4, characterised in that the conductors (11,12) of the control matrix are wire-shaped.
6. A tube as claimed in one of Claims 1 to 5, in particular Claim 4, characterised in that during operation of the tube only one acclerating anode (15,17,19,38,39) is respectively connected to a positive potential.
7. A tube as claimed in one of Claims 1 to 6, characterised in that during operation of the tube the potential of the accelerating anode (16,17,19,38,39) is synchronized with the row control in such a manner that the connected accelerating anode voltage increases with the distance from the accelerating anode of the currently controlled row conductors or row conductor groups.
8. A tube as claimed in one of Claims 1 to 7, characterised in that the rear wall of the electron storage space (9) is divided into a plurality of strips (21,22,23,24,25.26,27,28,29,31,32) electrically insulated from one another and parallel to the row conductors (11) and which are connected to different potentials during operation of the tube in such a manner that they propel the electrons, emitted into the electron storage space (9) into the regionof the lateral walls of the electron storage space (9) so as to be reinforced by electrostatic periodic focussing.
9. A tube as claimed in Claim 8, characterised in that during operation of the tube the potentials of the rear wall strips (21,22,23, 24,25,26,27,28,29,31,32) are synchronised with the row control in such a manner that they propel the electrons which are emitted into the electron storage space (9) into the region of the currently controlled row conductor so as to be reinforced by electrostatic periodic focussing.
10. A tube as claimed in one of Claims 1 to 9, characterised in that strip conductors (33), which lie in a plane parallel to the plane of the control matrix and are in alignment with the row conductors (11) of the control matrix, are arranged in the postacceleration chamber (9), and that a continuous surface electrode (34) that extends parallel to the plane of the control matrix is placed between the strip conductors (33) and the post-acceleration anode (4), where the strip conductors (33) and the surface electrode (34) possess electron passages which are respectively in alignment with an electron passage of the control matrix.
11. A tube as claimed in one of Claims 1 to 10, characterised in that during operation of the tube at a cathode potential of OV the accelerating anode (16,17,18,19,38,39) in circuit is connected to a potential of between + 1V and + 2V, the rear wall and the lateral walls of the electron storage space (9) have a potential r Detween OV and -2V, the row conductors, which are not controlled, are connected to a potential of between -1V .ind -2V and the currently controlled row conductor is raised to a positive potential of between 10V and 100V.
12. Use of a tube as claimed in one of Claims 1 to 11, in particular as claimed in Claim 5, characterised by the display of television pictures with a picture diagonal of a maximum of 14 cm, preferably a maximum of 12 cm.
EP81109051A 1981-03-27 1981-10-27 Flat picture display tube Expired EP0061525B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3112200 1981-03-27
DE19813112200 DE3112200A1 (en) 1981-03-27 1981-03-27 FLAT IMAGE EYE AND THEIR USE

Publications (2)

Publication Number Publication Date
EP0061525A1 EP0061525A1 (en) 1982-10-06
EP0061525B1 true EP0061525B1 (en) 1986-02-05

Family

ID=6128507

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81109051A Expired EP0061525B1 (en) 1981-03-27 1981-10-27 Flat picture display tube

Country Status (4)

Country Link
US (1) US4435672A (en)
EP (1) EP0061525B1 (en)
JP (1) JPS57172640A (en)
DE (2) DE3112200A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4563613A (en) * 1984-05-01 1986-01-07 Xerox Corporation Gated grid structure for a vacuum fluorescent printing device
US4736139A (en) * 1984-11-19 1988-04-05 Matsushita Electric Industrial Co., Ltd. Flat type cathode ray tube and color image display apparatus utilizing same
US4719388A (en) * 1985-08-13 1988-01-12 Source Technology Corporation Flat electron control device utilizing a uniform space-charge cloud of free electrons as a virtual cathode
JPH01100854A (en) * 1987-10-12 1989-04-19 Mitsubishi Electric Corp Fluorescent character display
JPH02114437A (en) * 1988-10-25 1990-04-26 Furukawa Electric Co Ltd:The Fluorescent character display panel
NL9000060A (en) * 1989-06-01 1991-01-02 Philips Nv IMAGE DISPLAY DEVICE OF THE THIN TYPE.
FR2647580B1 (en) * 1989-05-24 1991-09-13 Clerc Jean ELECTROLUMINESCENT DISPLAY DEVICE USING GUIDED ELECTRONS AND ITS DRIVING METHOD
US5386175A (en) * 1990-05-24 1995-01-31 U.S. Philips Corporation Thin-type picture display device
US5424605A (en) * 1992-04-10 1995-06-13 Silicon Video Corporation Self supporting flat video display
US5477105A (en) * 1992-04-10 1995-12-19 Silicon Video Corporation Structure of light-emitting device with raised black matrix for use in optical devices such as flat-panel cathode-ray tubes
US5686790A (en) * 1993-06-22 1997-11-11 Candescent Technologies Corporation Flat panel device with ceramic backplate
US5697827A (en) * 1996-01-11 1997-12-16 Rabinowitz; Mario Emissive flat panel display with improved regenerative cathode
CN1110835C (en) * 2000-03-03 2003-06-04 清华大学 Capacitor-stored field-assisted thermal electron-emitting panel display and its drive method
US20060205313A1 (en) * 2005-03-10 2006-09-14 Nano-Proprietary, Inc. Forming a grid structure for a field emission device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2858464A (en) * 1955-09-26 1958-10-28 Westinghouse Electric Corp Cathode ray tube
US4103204A (en) * 1975-08-25 1978-07-25 Rca Corporation Flat display device with beam guide
GB2031220B (en) * 1978-10-04 1983-01-06 English Electric Valve Co Ltd Evacuated display tubes
DE2902852C2 (en) * 1979-01-25 1983-04-07 Siemens AG, 1000 Berlin und 8000 München Flat electron beam display tube

Also Published As

Publication number Publication date
DE3112200A1 (en) 1982-10-14
JPS57172640A (en) 1982-10-23
EP0061525A1 (en) 1982-10-06
US4435672A (en) 1984-03-06
DE3173736D1 (en) 1986-03-20

Similar Documents

Publication Publication Date Title
DE69025800T2 (en) Thin-type display device
DE2412869C3 (en) Display device with a gas discharge space as electron source, with an electron post-acceleration space and with a luminescent screen and method for operating this display device
DE3235724C2 (en) Fluorescent display device
EP0061525B1 (en) Flat picture display tube
DE69910979T2 (en) LARGE AREA FIELD EMISSION IMAGE PLAYER AND METHOD FOR PRODUCING IT
DE2418199A1 (en) ELECTRON MULTIPLE
DE69108997T2 (en) Flat image display device.
DE3318590A1 (en) COLOR IMAGE TUBE
EP0097304B1 (en) Flat electron beam tube with a gas discharge as an electron source
DE69418734T2 (en) Method for controlling an image forming device
WO1992019005A1 (en) Electron-optical terminal image device based on a cold cathode
EP0109010A2 (en) Flat imaging device
DE2653812A1 (en) FLAT PICTURE PLAYBACK EARS
DE2243716A1 (en) SINGLE-BEAM COLOR TV PLAYBACK EARS
DE69420483T2 (en) Illuminated screen for color video display device and its driving system, and color video display device using the same
DE69021523T2 (en) Flat image display device.
DE1464388B2 (en) cathode ray tube
DE69119206T2 (en) Thin-type display device
DE69303069T2 (en) Flat panel display device
DE3883931T2 (en) Playback arrangement.
DE2338902C2 (en) Charge storage disk
DE69225124T2 (en) Flat screen display device with electron transport channels and a double selection structure
DE1101494B (en) Multi-beam picture tube with focus mask and a mosaic screen
DE3036219A1 (en) Flat TV screen with cold cathode matrix - has bi-metal face column conductors with insulator separation from line conductors
DD218726A5 (en) FARBWIEDERGABEGERAET

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB IT NL

17P Request for examination filed

Effective date: 19811027

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB IT NL

REF Corresponds to:

Ref document number: 3173736

Country of ref document: DE

Date of ref document: 19860320

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

ITPR It: changes in ownership of a european patent

Owner name: CESSIONE;STANDARD ELEKTRIK LORENZ AG

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732

NLS Nl: assignments of ep-patents

Owner name: STANDARD ELEKTRIK LORENZ AKTIENGESELLSCHAFT TE STU

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19890930

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19891018

Year of fee payment: 9

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19891031

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19891218

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19901027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19910501

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19910628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19910702

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST