EP0060167A1 - Method of manufacturing metal articles by moulding and sintering alloyed metal powder - Google Patents

Method of manufacturing metal articles by moulding and sintering alloyed metal powder Download PDF

Info

Publication number
EP0060167A1
EP0060167A1 EP82400294A EP82400294A EP0060167A1 EP 0060167 A1 EP0060167 A1 EP 0060167A1 EP 82400294 A EP82400294 A EP 82400294A EP 82400294 A EP82400294 A EP 82400294A EP 0060167 A1 EP0060167 A1 EP 0060167A1
Authority
EP
European Patent Office
Prior art keywords
preform
mold
sintering
isostatic pressure
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP82400294A
Other languages
German (de)
French (fr)
Inventor
Jean-Pierre Trottier
Michel Jeandin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Association pour la Recherche et le Developpement des Methodes et Processus Industriels
Safran Aircraft Engines SAS
Original Assignee
Association pour la Recherche et le Developpement des Methodes et Processus Industriels
Societe Nationale dEtude et de Construction de Moteurs dAviation SNECMA
SNECMA SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Association pour la Recherche et le Developpement des Methodes et Processus Industriels, Societe Nationale dEtude et de Construction de Moteurs dAviation SNECMA, SNECMA SAS filed Critical Association pour la Recherche et le Developpement des Methodes et Processus Industriels
Publication of EP0060167A1 publication Critical patent/EP0060167A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/1208Containers or coating used therefor
    • B22F3/1258Container manufacturing

Definitions

  • the invention relates to a method of manufacturing shaped metal parts by molding and sintering a metal alloy powder.
  • the expression "of shape” means that the parts obtained by the process are in the desired shapes and dimensions and do not have to then undergo a shaping treatment by mechanical deformation.
  • the expression "metal alloy powder” means that the powder used is a powder of alloy grains whose composition is not substantially modified by the execution of the process.
  • Processes of this kind are already known. In principle, they can advantageously be substituted for obtaining metal parts of complex shape made of superalloys or titanium alloys, to processes using mass machining or isothermal forging in the superplastic phase because they do not have the drawbacks thereof, such as significant losses of material, or else number and duration of operations, cost and complexity of tools, etc.
  • the heating temperature during the shaping phase must reach a value such that a liquid phase appears in the contact zones of the grains. But if this temperature becomes too high, the proportion of molten and resolidified alloy becomes too high, the resistance to deformation by compression of the preform becomes too high and isostatic pressing is ineffective.
  • the range of suitable temperatures is therefore very narrow and difficult to respect.
  • the densification during this conformation phase reaches a significant value and causes a shrinkage whose value is very close to the total shrinkage due to the two phases. In other words, it is during the conformation phase that most of the withdrawal occurs.
  • said preform no longer follows the shapes of the mold. Indentation cracks may also appear. It is therefore not possible to obtain sound parts which must have both a complex shape and precise dimensions.
  • the object of the invention is to avoid these drawbacks.
  • the process of the invention which includes, like the process of the prior art which has just been described, the shaping phase and the compacting and sintering phase which have been defined at the beginning of this description, is characterized in that the temperature and duration conditions of the shaping phase are such that the preform is not only porous, but that its pores remain open and in that, for the execution of the compacting and sintering phase, the preform is previously housed in a waterproof and deformable metal envelope on which the isostatic pressure is applied.
  • the temperature and duration conditions are such that the grains of alloy powder are bonded to each other by their initial contact points, for example by intersolid diffusion. There is no merger, and therefore no consolidation.
  • the range of permissible temperatures is much wider than in the method of the aforementioned prior art.
  • the temperature can be adjusted between a lower limit above which diffusion begins and an upper limit above which melting begins.
  • the conformation conditions are therefore much less critical.
  • the shrinkage during this shaping phase is much lower and most of the total shrinkage is carried out during the compaction and sintering phase.
  • the preform faithfully follows the walls of the mold and there is no risk of cracks appearing while the withdrawal during the second phase is practically isotropic. It is sufficient that the envelope is deformable enough to apply against all the parts of the preform.
  • Compaction deforms the mold (whether it is metallic or ceramic) and one must therefore use a mold by roughing.
  • the mold must also meet contradictory requirements since it must be rigid enough to withstand the deformation phase without deformation and sufficiently deformable to apply against the preform during the compacting and sintering phase. This is why said method of the prior art allows only blanks to be produced.
  • the process of the invention makes it possible to produce parts of complex shape and to reuse, if desired, the shaping mold.
  • the method of the invention excludes the presence of a binder (such as zinc stearate) due to the use of a sealed envelope during isostatic pressing.
  • a binder such as zinc stearate
  • the method of the invention finds particular application for the production of parts from titanium powders for which heat treatment is necessary. Indeed, in this particular case, it is possible to carry out a treatment of the powders at high temperature, with respect to the compaction temperature, when the preform is produced, for example under vacuum in a ceramic mold. This high-temperature treatment can be carried out at the same time or after the powder bonding phase. This is made possible by the fact that the ranges of bonding temperatures and heat treatment are similar.
  • FIG. 1 shows the conformation mold 10 made of ceramic, in which the molding imprint 11 is formed, into which the filling funnel 12 opens, through which the charge of alloy powder 20 is introduced.
  • the filling is made uniform. for example by. mold vibration.
  • the quantity of alloy powder to be introduced is measured by weighing and is such that, when the filling is complete, the powder charge is flush with the upper limit 13 of the imprint.
  • the mold 10 can be non-removable and non-recoverable or, as in Figure 1, removable and recoverable. It is here constituted by a lower part of mold 14 and by an upper part of mold 15 separated by a joint plane 16.
  • the filled mold 10 is then placed in an oven, not shown, to undergo heating therein intended to agglomerate the grains of powder in order to obtain the preform.
  • the heating temperature is, for information, from 1100 to 1250 * C, the heating time being for example 1 hour.
  • FIG. 2 shows the preform 20 produced and removed from the mold.
  • FIG. 3 shows the preform 20 housed in the casing 30 intended to apply the isostatic pressure during the compaction treatment.
  • the casing 30 is a thin casing made of waterproof metallic material and easily deformable under the conditions of treatment, for example made of extra mild steel strip.
  • this envelope consists of two envelope parts 31 and 32 each in the form of a plate. They are provided with circular flanges 33 and 34 allowing a tight assembly by welding.
  • two pipes 35 which are possibly present to ensure after welding the pumping of air and the introduction of an inert atmosphere (for example nitrogen) not likely to form with the alloy used an altering compound substantially the mechanical properties of the part obtained.
  • an inert atmosphere for example nitrogen
  • Figure 4 shows the envelope 30 and the preform 20 housed in the autoclave (not shown) used for compaction and sintering. Isostatic pressure that applies the envelope containing the preform is symbolized by arrows.
  • FIG. 5 shows the part 40 obtained after ablation of the envelope 30, this ablation being for example carried out by selective chemical attack.
  • the mold 10 is used only during the shaping phase and the casing 30 is used only during the compacting and sintering phase, their production and the choice of the materials which constitute them do not pose any particular problems.
  • the mold 10 can be made of ceramic, whether it is monolithic or removable.
  • the envelope 30, it can in most cases be made of extra-mild steel strip.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)

Abstract

Procédé de fabrication de pièces métalliques par moulage et frittage d'une poudre d'alliage métallique, du genre comprenant deux phases, à savoir une phase de conformation au cours de laquelle une charge de poudre est chauffée dans un moule de forme pour réaliser une préforme (20) rigide et poreuse et une phase de compactage et de frittage au cours de laquelle la préforme est chauffée sous une pression isostatique. Ledit procédé est caractérisé en ce que la phase de conformation est conduite de telle sorte que la préforme (20) est à pores ouverts et en ce que la pression isostatique est appliquée par l'intermédiaire d'une enveloppe (30) déformable étanche. Ledit procédé s'applique avantageusement à la réalisation de pièces de forme compliquée en superalliage ou en alliage de titane.Method for manufacturing metal parts by molding and sintering a metal alloy powder, of the type comprising two phases, namely a shaping phase during which a powder charge is heated in a shaped mold to produce a preform (20) rigid and porous and a compacting and sintering phase during which the preform is heated under isostatic pressure. Said method is characterized in that the shaping phase is carried out in such a way that the preform (20) is open pore and in that the isostatic pressure is applied via a sealed deformable envelope (30). Said method advantageously applies to the production of parts of complicated shape in superalloy or in titanium alloy.

Description

L'invention concerne un procédé de fabrication de pièces métalliques de forme par moulage et frittage d'une poudre d'alliage métallique. L'expression "de forme" signifie que les pièces obtenues par le procédé sont aux formes et aux cotes désirées et n'ont pas à subir ensuite un traitement de mise en forme par déformation mécanique. L'expression "poudre d'alliage métallique" signifie que la poudre mise en oeuvre est une poudre de grains d'alliage dont la composition n'est pas substantiellement modifiée par l'exécution du procédé.The invention relates to a method of manufacturing shaped metal parts by molding and sintering a metal alloy powder. The expression "of shape" means that the parts obtained by the process are in the desired shapes and dimensions and do not have to then undergo a shaping treatment by mechanical deformation. The expression "metal alloy powder" means that the powder used is a powder of alloy grains whose composition is not substantially modified by the execution of the process.

Le procédé de l'invention s'applique notamment à la réalisation de pièces en superalliages à base de cobalt et/ou de nickel ou encore en alliages à base de titane. Il est du genre comprenant :

  • - une phase de conformation qui inclut les opérations suivantes : introduction d'une charge de poudre d'alliage métallique dans un moule de forme, chauffage du moule dans des conditions de température et de durée permettant d'obtenir un élément solide mais poreux (que l'on dénommera "préforme"),
  • - une phase de compactage et de frittage au cours de laquelle la préforme est soumise à un traitement thermique sous pression isostatique dans des conditions de température, de durée et de pression permettant d'obtenir une pièce compacte, c'est-à-dire substantiellement sans porosités.
The process of the invention applies in particular to the production of parts made of superalloys based on cobalt and / or nickel or else made of alloys based on titanium. It is of the type comprising:
  • a shaping phase which includes the following operations: introduction of a charge of metal alloy powder into a shaped mold, heating of the mold under temperature and duration conditions making it possible to obtain a solid but porous element (that we will call it "preform"),
  • - A compacting and sintering phase during which the preform is subjected to a heat treatment under isostatic pressure under conditions of temperature, duration and pressure making it possible to obtain a compact part, that is to say substantially without porosities.

Des procédés de ce genre sont déjà connus. Ils peuvent en principe se substituer avantageusement, pour l'obtention de pièces métalliques de forme complexe en superalliages ou en alliages de titane, aux procédés mettant en oeuvre l'usinage dans la masse ou le forgeage isotherme en phase superplastique car ils n'en présentent pas les inconvénients tels que pertes importantes de matière, ou encore nombre et durée des opérations, coût et complexité des outillages, etc...Processes of this kind are already known. In principle, they can advantageously be substituted for obtaining metal parts of complex shape made of superalloys or titanium alloys, to processes using mass machining or isothermal forging in the superplastic phase because they do not have the drawbacks thereof, such as significant losses of material, or else number and duration of operations, cost and complexity of tools, etc.

Un exemple d'application d'un procédé du genre précité est décrit sommairement dans la publication de Louis J. FIEDLER intitulée "Advancements in superalloy powder production and consolidation" et parue dans "Agard Conférence Proceedings n° 200, April 1976", pages 4B-1 à 4B-9. Cet exemple concerne la réalisation de pièces en superalliage de nickel. La phase de conformation est réalisée dans un moule rigide de forme, chauffé à 1246*C de telle sorte que la préforme réalisée est poreuse mais que ses pores sont fermés ; autrement dit les pores ne communiquent pas entre eux et ne débouchent pas vers l'extérieur. Lors de la phase de compactage et de frittage, la préforme est soumise directement à une pression isostatique. Ce procédé présente en fait deux inconvénients, dûs tous deux à ce que les pores doivent être fermés, faute de quoi la pression isostatique ne pourrait pas être appliquée directement à la préforme.An example of the application of a process of the aforementioned kind is briefly described in the publication by Louis J. FIEDLER entitled "Advancements in superalloy powder production and consolidation" and published in "Agard Conférence Proceedings n ° 200, April 1976", pages 4B -1 to 4B-9. This example concerns the production of parts made of nickel superalloy. The shaping phase is performed in a form of a rigid mold, heated to 1246 ° C so that the preform is made porous but the pores are closed; in other words, the pores do not communicate with each other and do not open to the outside. During the compaction and sintering phase, the preform is subjected directly to an isostatic pressure. This process has in fact two drawbacks, both due to the fact that the pores must be closed, otherwise the isostatic pressure could not be applied directly to the preform.

D'une part, pour obtenir l'assurance que les pores sont fermés, la température de chauffage durant la phase de conformation doit atteindre une valeur telle qu'une phase liquide apparaisse dans les zones de contact des grains. Mais si cette température devient trop élevée, la proportion d'alliage fondu et resolidifié devient trop importante, la résistance à la déformation par compression de la préforme devient trop élevée et le pressage isostatique est inefficace. La fourchette des températures convenables est donc très étroite et difficile à respecter.On the one hand, to obtain the assurance that the pores are closed, the heating temperature during the shaping phase must reach a value such that a liquid phase appears in the contact zones of the grains. But if this temperature becomes too high, the proportion of molten and resolidified alloy becomes too high, the resistance to deformation by compression of the preform becomes too high and isostatic pressing is ineffective. The range of suitable temperatures is therefore very narrow and difficult to respect.

D'autre part, la densification durant cette phase de conformation atteint une valeur importante et provoque un retrait dont la valeur est très proche du retrait total dû aux deux phases. Autrement dit, c'est au cours de la phase de conformation que se produit la majeure partie du retrait. Dans certaines parties de la préforme et notamment dans les parties concaves, ladite préforme n'épouse plus les formes du moule. Des criques de retrait peuvent aussi apparaître. Il n'est donc pas possible d'obtenir des pièces saines devant avoir à la fois une forme complexe et des cotes précises.On the other hand, the densification during this conformation phase reaches a significant value and causes a shrinkage whose value is very close to the total shrinkage due to the two phases. In other words, it is during the conformation phase that most of the withdrawal occurs. In certain parts of the preform and in particular in the concave parts, said preform no longer follows the shapes of the mold. Indentation cracks may also appear. It is therefore not possible to obtain sound parts which must have both a complex shape and precise dimensions.

L'objet de l'invention est d'éviter ces inconvénients. Le procédé de l'invention, qui comprend comme le procédé de l'art antérieur que l'on vient de décrire la phase de conformation et la phase de compactage et de frittage qui ont été définies au début de la présente description, est caractérisé en ce que les conditions de température et de durée de la phase de conformation sont telles que la préforme est non seulement poreuse, mais que ses pores demeurent ouverts et en ce que, pour l'exécution de la phase de compactage et de frittage, la préforme est au préalable logée dans une enveloppe métallique étanche et déformable sur laquelle est appliquée la pression isostatique.The object of the invention is to avoid these drawbacks. The process of the invention, which includes, like the process of the prior art which has just been described, the shaping phase and the compacting and sintering phase which have been defined at the beginning of this description, is characterized in that the temperature and duration conditions of the shaping phase are such that the preform is not only porous, but that its pores remain open and in that, for the execution of the compacting and sintering phase, the preform is previously housed in a waterproof and deformable metal envelope on which the isostatic pressure is applied.

Ainsi, il suffit pour l'exécution de la phase de conformation que les conditions de température et de durée soient telles que les grains de poudre d'alliage soient liés entre eux par leurs points de contact initiaux, par exemple par diffusion intersolide. Il n'y a ni fusion, ni par conséquent, resolidification. La fourchette des températures admissibles est beaucoup plus large que dans le procédé de l'art antérieur précité. En effet, en ajustant la durée de chauffage, on peut régler la température entre une limite inférieure au-dessus de laquelle commence la diffusion et une limite supérieure au-dessus de laquelle commence la fusion. Les conditions de conformation sont donc beaucoup moins critiques. En outre, le retrait durant cette phase de conformation est beaucoup plus faible et la majeure partie du retrait total est réalisée pendant la phase de compactage et de frittage. La préforme épouse fidèlement les parois du moule et il n'y a pas de risque d'apparition de criques tandis que le retrait durant la deuxième phase est pratiquement isotrope. Il suffit que l'enveloppe soit assez déformable pour s'appliquer contre toutes les parties de la préforme.Thus, it is sufficient for the execution of the shaping phase that the temperature and duration conditions are such that the grains of alloy powder are bonded to each other by their initial contact points, for example by intersolid diffusion. There is no merger, and therefore no consolidation. The range of permissible temperatures is much wider than in the method of the aforementioned prior art. In fact, by adjusting the heating time, the temperature can be adjusted between a lower limit above which diffusion begins and an upper limit above which melting begins. The conformation conditions are therefore much less critical. In addition, the shrinkage during this shaping phase is much lower and most of the total shrinkage is carried out during the compaction and sintering phase. The preform faithfully follows the walls of the mold and there is no risk of cracks appearing while the withdrawal during the second phase is practically isotropic. It is sufficient that the envelope is deformable enough to apply against all the parts of the preform.

Il est à remarquer que l'on a déjà proposé de réaliser des ébauches en superalliages (et non pas des pièces de forme aux cotes) par métallurgie des poudres en mettant en oeuvre, après la consolidation, une phase de compactage et de frittage sous pression isostatique par l'intermédiaire d'une enveloppe. On en trouvera des exemples dans la publication de Dennis J. Evans intitulée "Manufacture of low cost P/M Astroloy Turbine Disks" parue également dans "Agard Conférence Proceedings n• 200, April 1976" pages 4A-1 à 4A-6. Mais,

  • - d'une part, ces exemples s'appliquent comme on l'a dit à la réalisation d'ébauches destinées au forgeage et la phase de consolidation n'est pas une phase de conformation,
  • - d'autre part, c'est le moule de consolidation qui est utilisé comme enveloppe durant la phase de compactage sous pression isostatique.
It should be noted that it has already been proposed to produce blanks in superalloys (and not shaped parts at the sides) by powder metallurgy by implementing, after consolidation, a phase of compacting and sintering under pressure. isostatic via an envelope. Examples can be found in Dennis J. Evans' publication "Manufacture of low cost P / M Astroloy Turbine Disks" also published in " A gard Conférence Proceedings n • 200, April 1976" pages 4A-1 to 4A-6. But,
  • - on the one hand, these examples apply as we said to the production of blanks intended for forging and the consolidation phase is not a conformation phase,
  • - on the other hand, it is the consolidation mold which is used as an envelope during the compaction phase under isostatic pressure.

Le compactage déforme le moule (que celui-ci soit métallique ou céramique) et l'on doit donc utiliser un moule par ébauche. Le moule doit en outre répondre à des exigences contradictoires puisqu'il doit être suffisamment rigide pour supporter sans déformation la phase de conformation et suffisamment déformable pour s'appliquer contre la préforme au cours de la phase de compactage et de frittage. C'est pourquoi ledit procédé de l'art antérieur ne permet de réaliser que des ébauches. Le procédé de l'in- vention permet au contraire de réaliser des pièces de forme complexe et de réutiliser, si on le désire, le moule de conformation.Compaction deforms the mold (whether it is metallic or ceramic) and one must therefore use a mold by roughing. The mold must also meet contradictory requirements since it must be rigid enough to withstand the deformation phase without deformation and sufficiently deformable to apply against the preform during the compacting and sintering phase. This is why said method of the prior art allows only blanks to be produced. The process of the invention, on the contrary, makes it possible to produce parts of complex shape and to reuse, if desired, the shaping mold.

On remarque que le procédé de l'invention exclut la présence d'un liant (tel que le stéarate de zinc) du fait de l'utilisation d'une enveloppe étanche lors du pressage isostatique.Note that the method of the invention excludes the presence of a binder (such as zinc stearate) due to the use of a sealed envelope during isostatic pressing.

Le procédé de l'invention trouve notamment application pour la réalisation de pièces à partir de poudres de titane pour lesquelles un traitement thermique est nécessaire. En effet, dans ce cas particulier, il est possible d'effectuer un traitement des poudres à haute température, par rapport à la température de compactage, au moment de la réalisation de la préforme, par exemple sous vide en moule céramique. Ce traitement à haute température peut être effectué en même temps ou après la phase de collage des poudres. Ceci est rendu possible du fait que les domaines des températures de collage et de traitement thermique sont voisins.The method of the invention finds particular application for the production of parts from titanium powders for which heat treatment is necessary. Indeed, in this particular case, it is possible to carry out a treatment of the powders at high temperature, with respect to the compaction temperature, when the preform is produced, for example under vacuum in a ceramic mold. This high-temperature treatment can be carried out at the same time or after the powder bonding phase. This is made possible by the fact that the ranges of bonding temperatures and heat treatment are similar.

On va maintenant décrire un exemple de mise en oeuvre du procédé de l'invention en se référant aux dessins annexés dans lesquels :

  • - la figure 1 est une coupe d'un moule de conformation contenant une charge de poudre d'alliage,
  • - la figure 2 est une coupe de la préforme correspondante obtenue,
  • - la figure 3 est une coupe de ladite préforme logée dans l'enveloppe déformable, avant exécution de la phase de compactage et de frittage,
  • - la figure 4 est une coupe de la pièce réalisée encore logée dans l'enveloppe,
  • - la figure 5 est une coupe de la pièce réalisée extraite de l'enveloppe.
We will now describe an example of implementation of the method of the invention with reference to the accompanying drawings in which:
  • FIG. 1 is a section through a shaping mold containing a charge of alloy powder,
  • FIG. 2 is a section through the corresponding preform obtained,
  • FIG. 3 is a section of said preform housed in the deformable envelope, before execution of the compacting and sintering phase,
  • FIG. 4 is a section of the part produced still housed in the envelope,
  • - Figure 5 is a section of the part produced extracted from the envelope.

Etant donné que les paramètres de mise en oeuvre ne sont pas critiques, notamment en ce qui concerne la phase de conformation, cet exemple est valable quelle que soit la composition désirée. Il s'applique notamment à la réalisation de pièces en superalliages à base de nickel et/ou de cobalt et de pièces en alliages à base de titane.Since the processing parameters are not critical, in particular with regard to the shaping phase, this example is valid whatever the desired composition. It applies in particular to the production of parts made of superalloys based on nickel and / or cobalt and parts made of alloys based on titanium.

La figure 1 montre le moule de conformation 10 en céramique dans lequel est ménagée l'empreinte de moulage 11 dans laquelle débouche l'entonnoir de remplissage 12 par lequel est introduite la charge de poudre d'alliage 20. L'homogénéité du remplissage est réalisée par exemple par . vibration du moule. La quantité de poudre d'alliage à introduire est mesurée par pesée et est telle que, lorsque le remplissage est terminé, la charge de poudre affleure la limite supérieure 13 de l'empreinte. Ainsi qu'on l'a déjà indiqué, le moule lO peut être non démontable et non récupérable ou, comme dans la figure 1, démontable et récupérable. Il est ici constitué par une partie inférieure de moule 14 et par une partie supérieure de moule 15 séparées par un plan de joint 16.FIG. 1 shows the conformation mold 10 made of ceramic, in which the molding imprint 11 is formed, into which the filling funnel 12 opens, through which the charge of alloy powder 20 is introduced. The filling is made uniform. for example by. mold vibration. The quantity of alloy powder to be introduced is measured by weighing and is such that, when the filling is complete, the powder charge is flush with the upper limit 13 of the imprint. As already indicated, the mold 10 can be non-removable and non-recoverable or, as in Figure 1, removable and recoverable. It is here constituted by a lower part of mold 14 and by an upper part of mold 15 separated by a joint plane 16.

Le moule 10 rempli est alors placé dans un four non représenté pour y subir le chauffage destiné à agglomérer les grains de poudre pour obtenir la préforme. Selon les alliages, la température de chauffage est, à titre indicatif, de 1100 à 1250*C, la durée de chauffage étant par exemple 1 heure.The filled mold 10 is then placed in an oven, not shown, to undergo heating therein intended to agglomerate the grains of powder in order to obtain the preform. Depending on the alloys, the heating temperature is, for information, from 1100 to 1250 * C, the heating time being for example 1 hour.

La figure 2 montre la préforme 20 réalisée et démoulée. La figure 3 montre la préforme 20 logée dans l'enveloppe 30 destinée à appliquer la pression isostatique durant le traitement de compactage. L'enveloppe 30-est une enveloppe mince en matériau métallique étanche et facilement déformable dans les conditions de traitement, par exemple en feuillard d'acier extra-doux. Dans la figure-3, cette enveloppe est constituée par deux parties d'enveloppe 31 et 32 chacune en forme d'assiette. Elles sont munies de rebords circulaires 33 et 34 permettant un assemblage étanche par soudage. On voit également deux queusots 35 qui sont éventuellement présents pour assurer après soudage le pompage de l'air et l'introduction d'une atmosphère inerte (par exemple de l'azote) ne risquant pas de former avec l'alliage utilisé un composé altérant sensiblement les propriétés mécaniques de la pièce obtenue. Si le compactage est fait sous vide, un seul queusot 35, destiné à l'aspiration, est présent. Mais la solution la plus élégante consiste à placer l'enveloppe et la préforme dans une enceinte mise sous vide. Les queusots 35 ne sont plus nécessaires puisque l'air s'échappe entre les deux bords 33 et 34. Le soudage des bords est assuré dans l'enceinte au moyen d'un faisceau d'électrons.FIG. 2 shows the preform 20 produced and removed from the mold. FIG. 3 shows the preform 20 housed in the casing 30 intended to apply the isostatic pressure during the compaction treatment. The casing 30 is a thin casing made of waterproof metallic material and easily deformable under the conditions of treatment, for example made of extra mild steel strip. In Figure-3, this envelope consists of two envelope parts 31 and 32 each in the form of a plate. They are provided with circular flanges 33 and 34 allowing a tight assembly by welding. We also see two pipes 35 which are possibly present to ensure after welding the pumping of air and the introduction of an inert atmosphere (for example nitrogen) not likely to form with the alloy used an altering compound substantially the mechanical properties of the part obtained. If the compacting is done under vacuum, only one queusot 35, intended for suction, is present. But the most elegant solution consists in placing the envelope and the preform in a vacuum chamber. The pipes 35 are no longer necessary since the air escapes between the two edges 33 and 34. The edges are welded in the enclosure by means of an electron beam.

La figure 4 montre l'enveloppe 30 et la préforme 20 logées dans l'autoclave (non représenté) utilisé pour le compactage et le frittage. La pression isostatique qui applique l'enveloppe contenant la préforme est symbolisée par des flé- ches.Figure 4 shows the envelope 30 and the preform 20 housed in the autoclave (not shown) used for compaction and sintering. Isostatic pressure that applies the envelope containing the preform is symbolized by arrows.

Enfin la figure 5 montre la pièce 40 obtenue après ablation de l'enveloppe 30, cette ablation étant par exemple réalisée par attaque chimique sélective.Finally, FIG. 5 shows the part 40 obtained after ablation of the envelope 30, this ablation being for example carried out by selective chemical attack.

Du fait que le moule 10 est utilisé seulement pendant la phase de conformation et que l'enveloppe 30 est utilisée seulement pendant la phase de compactage et de frittage, leur réalisation et le choix des matériaux qui les constituent ne posent pas de problèmes particuliers. Ainsi qu'on l'a déjà indiqué, le moule 10 peut être réalisé en céramique, qu'il soit monolithique ou démontable. Quant à l'enveloppe 30, elle peut être dans la plupart des cas réalisée en feuillard d'acier extra-doux.Because the mold 10 is used only during the shaping phase and the casing 30 is used only during the compacting and sintering phase, their production and the choice of the materials which constitute them do not pose any particular problems. As already indicated, the mold 10 can be made of ceramic, whether it is monolithic or removable. As for the envelope 30, it can in most cases be made of extra-mild steel strip.

Claims (9)

1. Procédé de préparation d'une pièce métallique, du genre comprenant les opérations suivantes : - introduction d'une charge métallique de composition convenable dans un moule de forme (10), - chauffage du moule dans des conditions de température et de durée permettant d'obtenir une préforme poreuse (20) à pores 'ouverts, - démoulage de la préforme, - chauffage de la préforme sous pression isostatique afin de réaliser une pièce de forme (40) parcompacification et frittage,caractérisé en ce que, afin de permettre l'application de ladite pression isostatique à la préforme, celle-ci est introduite après démoulage dans un boîtier étanche (32) réalisé en feuillard métallique soudé dont le matériau et l'épaisseur sont tels que ledit boîtier se déforme sous l'action de la pression isostatique et vient s'appliquer étroitement contre la préforme pour transmettre à celle-ci ladite pression isostatique.1. A method of preparing a metal part, of the kind comprising the following operations: - introduction of a metallic filler of suitable composition into a form mold (10), - heating the mold under conditions of temperature and time for obtaining a porous preform (20) in pores of open, - release of the preform, - heating the preform under isostatic pressure in order to produce a shape part (40) by compacting and sintering, characterized in that, in order to allow the application of said isostatic pressure to the preform, the latter is introduced after demolding in a sealed housing (32) made of welded metal strip whose material and thickness are such that said housing deforms under the action of isostatic pressure and is applied closely against the preform to transmit thereto said isostatic pressure. 2. Procédé selon la revendication 1, caractérisé en ce que le moule de conformation (10) est démontable de telle sorte que la préforme (20) puisse être démoulée sans détruire ce moule.2. Method according to claim 1, characterized in that the shaping mold (10) is removable so that the preform (20) can be removed from the mold without destroying this mold. 3. Procédé selon la revendication 1, caractérisé en ce que, dans le cas de poudres de titane, un traitement thermique à haute température est effectué au moment de la réalisation de la préforme, en même temps ou après la phase de collage des poudres.3. Method according to claim 1, characterized in that, in the case of titanium powders, a high temperature heat treatment is carried out at the time of the production of the preform, at the same time or after the bonding phase of the powders. 4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que l'enveloppe métallique (30) contient une atmosphère.4. Method according to one of claims 1 to 3, characterized in that the metal casing (30) contains an atmosphere. 5. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que le vide est fait dans l'enveloppe métallique (30).5. Method according to one of claims 1 to 3, characterized in that the vacuum is created in the metal casing (30). 6. Procédé selon la revendication 5, caractérisé en ce que l'enveloppe métallique (30) est fermée par un joint de soudage réalisé sous vide.6. Method according to claim 5, characterized in that the metal casing (30) is closed by a welding joint produced under vacuum. 7. Procédé selon la revendication 6, caractérisé en ce que le joint de soudage est réalisé par bombardement électronique.7. Method according to claim 6, characterized in that the welding joint is produced by electronic bombardment. 8. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que la poudre d'alliage (20) est une poudre de superalliage à base de nickel et/ou de cobalt ou une poudre d'alliage de titane.8. Method according to any one of claims 1 to 7, characterized in that the alloy powder (20) is a superalloy powder based on nickel and / or cobalt or a titanium alloy powder. 9. Pièce métallique, caractérisée en ce qu'elle est réalisée par un procédé selon l'une quelconque des revendications 1 à 8.9. Metal part, characterized in that it is produced by a method according to any one of claims 1 to 8.
EP82400294A 1981-02-27 1982-02-19 Method of manufacturing metal articles by moulding and sintering alloyed metal powder Withdrawn EP0060167A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8103904A FR2500774A1 (en) 1981-02-27 1981-02-27 PROCESS FOR PRODUCING METALLIC PARTS BY MOLDING AND SINKING A METALLIC ALLOY POWDER
FR8103904 1981-02-27

Publications (1)

Publication Number Publication Date
EP0060167A1 true EP0060167A1 (en) 1982-09-15

Family

ID=9255673

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82400294A Withdrawn EP0060167A1 (en) 1981-02-27 1982-02-19 Method of manufacturing metal articles by moulding and sintering alloyed metal powder

Country Status (4)

Country Link
US (1) US4435360A (en)
EP (1) EP0060167A1 (en)
JP (1) JPS57203702A (en)
FR (1) FR2500774A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4752424A (en) * 1986-01-30 1988-06-21 Kabushiki Kaisha Toshiba Method of manufacturing a rare earth oxysulfide ceramic
US5147086A (en) * 1990-08-08 1992-09-15 Kabushiki Kaisha Kobe Seiko Sho Preparation of capsule for use in isostatic pressing treatment
CN108480643A (en) * 2018-03-05 2018-09-04 北京科技大学 A kind of method that cold printings of 3D prepare the hardware of complicated shape

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3343210C1 (en) * 1983-11-30 1985-01-10 Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt e.V., 5000 Köln Method and device for the production of compacted shaped bodies
JPS62278240A (en) * 1986-05-23 1987-12-03 Agency Of Ind Science & Technol Compacting method for ti-al intermetallic compound member
US4961767A (en) * 1987-05-20 1990-10-09 Corning Incorporated Method for producing ultra-high purity, optical quality, glass articles
US5096518A (en) * 1989-02-22 1992-03-17 Kabushiki Kaisha Kobe Seiko Sho Method for encapsulating material to be processed by hot or warm isostatic pressing
JPH0730201U (en) * 1993-11-05 1995-06-06 博 岡本 Storage box for collecting used paper
US9101984B2 (en) 2011-11-16 2015-08-11 Summit Materials, Llc High hardness, corrosion resistant PM Nitinol implements and components
CN103130678A (en) * 2013-03-12 2013-06-05 东力(南通)化工有限公司 Method for increasing concentration of methylhydrazine aqueous solution from 40% to 98%

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH316476A (en) * 1952-06-13 1956-10-15 Ici Ltd Process for protecting bodies formed from metal powder against oxidation
FR2258921A1 (en) * 1974-01-25 1975-08-22 Krupp Gmbh
GB1434930A (en) * 1972-10-13 1976-05-12 Progressive Research Services Powder metallurgy
FR2424783A1 (en) * 1978-05-02 1979-11-30 Asea Ab PROCESS FOR THE MANUFACTURE OF AN OBJECT FROM METALLIC OR CERAMIC MATERIAL
FR2432358A2 (en) * 1978-08-03 1980-02-29 Howmet Turbine Components PROCESS FOR PRODUCING SHAPED METAL PARTS BY POWDER METALLURGY

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH316476A (en) * 1952-06-13 1956-10-15 Ici Ltd Process for protecting bodies formed from metal powder against oxidation
GB1434930A (en) * 1972-10-13 1976-05-12 Progressive Research Services Powder metallurgy
FR2258921A1 (en) * 1974-01-25 1975-08-22 Krupp Gmbh
FR2424783A1 (en) * 1978-05-02 1979-11-30 Asea Ab PROCESS FOR THE MANUFACTURE OF AN OBJECT FROM METALLIC OR CERAMIC MATERIAL
FR2432358A2 (en) * 1978-08-03 1980-02-29 Howmet Turbine Components PROCESS FOR PRODUCING SHAPED METAL PARTS BY POWDER METALLURGY

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4752424A (en) * 1986-01-30 1988-06-21 Kabushiki Kaisha Toshiba Method of manufacturing a rare earth oxysulfide ceramic
US5147086A (en) * 1990-08-08 1992-09-15 Kabushiki Kaisha Kobe Seiko Sho Preparation of capsule for use in isostatic pressing treatment
CN108480643A (en) * 2018-03-05 2018-09-04 北京科技大学 A kind of method that cold printings of 3D prepare the hardware of complicated shape
CN108480643B (en) * 2018-03-05 2019-07-09 北京科技大学 A kind of method that the cold printing of 3D prepares the hardware of complicated shape

Also Published As

Publication number Publication date
JPS57203702A (en) 1982-12-14
US4435360A (en) 1984-03-06
FR2500774B1 (en) 1984-11-09
FR2500774A1 (en) 1982-09-03
JPH0143001B2 (en) 1989-09-18

Similar Documents

Publication Publication Date Title
FR2464772A1 (en) PROCESS FOR AGGLOMERATING AND HOT COMPRESSING POWDER USING A RECYCLABLE CONTAINER
US4023966A (en) Method of hot isostatic compaction
EP2066598B1 (en) Method for assembling refractory ceramic parts by means of spark plasma sintering (sps)
WO2013013814A2 (en) Method of manufacturing a component by hot isostatic pressing
FR2619331A1 (en) PROCESS FOR MANUFACTURING INTEGRAL FINLET ROTORS, IN PARTICULAR FOR GAS TURBINE ENGINES
US10272495B2 (en) HIP can manufacture process
FR2712218A1 (en) Metal or ceramic part with dense outer shell and porous core, as well as its manufacturing process.
EP0060167A1 (en) Method of manufacturing metal articles by moulding and sintering alloyed metal powder
FR2641995A1 (en) FRITTE LIGHT METALLIC CONSTRUCTION MATERIAL AND METHOD FOR MANUFACTURING THE SAME
FR2944721A1 (en) Fabricating metallic piece e.g. turbomachine blade by metallic powder injection molding, comprises preparing mixture of metallic particles and thermoplastic binder, producing raw preform, and debinding and sintering the preform
WO2016030654A1 (en) A mould for use in a hot isostatic press
WO2015185578A1 (en) Method for manufacturing a part out of a metal matrix composite material, and related device
EP3121659B1 (en) Assembly of a part made of fragile material
WO1999067047A1 (en) Method for assembling by diffusion welding a martensite stainless steel and a copper alloy and resulting bimetal element
FR3086567A1 (en) METHOD FOR PRODUCING A COUNTER SHAPE AND METHOD FOR MANUFACTURING A COMPLEX SHAPE PART USING SUCH A COUNTER SHAPE
FR2571992A1 (en) COMPRESSION SINTERING PROCESS FOR COMPACT BLANKS, AND INSTALLATION FOR CARRYING OUT SAID METHOD
EP1459818B1 (en) Assembly for manufacturing a hollow metallic workpiece by diffusion bonding and superplastic forming, use thereof and method of manufacturing of such a metallic workpiece
FR2711330A1 (en) Method for manufacturing components reinforced with long fibers.
FR3037514B1 (en) METHOD FOR MANUFACTURING A THREE-DIMENSIONAL PIECE FRYED FROM A POWDER AND INSTALLATION FOR CARRYING OUT SAID METHOD
FR2504425A1 (en) Sintered metal parts prodn. - by pressing mixt. of metal powder and binder in die contg. holes, so binder is forced through holes to leave metal compact which is sintered
EP0119939B1 (en) Process for pressure-sintering aluminium alloy powder
EP3657113B1 (en) Method for manufacturing a heat exchanger module with at least one fluid circulation circuit
BE885152A (en) PROCESS FOR AGGLOMERATING AND HOT COMPRESSING A POWDER USING A RECYCLABLE CONTAINER
EP3774303B1 (en) Tool for implementing a method for flash sintering a natural powder
EP3657115B1 (en) Method for manufacturing a heat exchanger module with at least one fluid circulation circuit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19820301

AK Designated contracting states

Designated state(s): DE FR GB SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19841019

RIN1 Information on inventor provided before grant (corrected)

Inventor name: TROTTIER, JEAN-PIERRE

Inventor name: JEANDIN, MICHEL