EP0053947B1 - Ultraschallwandler - Google Patents
Ultraschallwandler Download PDFInfo
- Publication number
- EP0053947B1 EP0053947B1 EP81305827A EP81305827A EP0053947B1 EP 0053947 B1 EP0053947 B1 EP 0053947B1 EP 81305827 A EP81305827 A EP 81305827A EP 81305827 A EP81305827 A EP 81305827A EP 0053947 B1 EP0053947 B1 EP 0053947B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- diaphragm
- ultrasonic transducer
- housing
- laminated piezo
- buffer member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000002745 absorbent Effects 0.000 claims description 6
- 239000002250 absorbent Substances 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 5
- 230000005540 biological transmission Effects 0.000 description 12
- 230000035945 sensitivity Effects 0.000 description 11
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000010358 mechanical oscillation Effects 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 2
- 229910010293 ceramic material Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 239000012858 resilient material Substances 0.000 description 2
- 241000220317 Rosa Species 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K9/00—Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers
- G10K9/12—Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers electrically operated
- G10K9/122—Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers electrically operated using piezoelectric driving means
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R17/00—Piezoelectric transducers; Electrostrictive transducers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R17/00—Piezoelectric transducers; Electrostrictive transducers
- H04R17/10—Resonant transducers, i.e. adapted to produce maximum output at a predetermined frequency
Definitions
- This invention relates to an ultrasonic transducer using a laminated piezo-electric element, and more particularly to an ultrasonic transducer with improved sensitivity characteristics and improved pulse characteristics (transition characteristics).
- Ultrasonic transducers for use in the air have been proposed and include laminated piezo-electric ceramic elements which are designed to work at resonance or anti-resonance points. Further, because the mechanical impedance of air is substantially smaller than that of the piezo-electric ceramic element, the laminated element is bonded to a diaphragm in an attempt to reduce mechanical impedance.
- Patent US-A-3786202 discloses an acoustic transducer in which a piezo electric element is supported at its central portion by a conical diaphragm which is contacted at its rim by the transducer housing.
- the present invention provides an ultrasonic transducer comprising a laminated piezo-electric disc-shaped element, a conical diaphragm connected at its apex to the centre of said element and thereby supporting said element, and a housing for accommodating said laminated piezo-electric element therein, characterised in that a buffer member is disposed between and in contact with the periphery of said diaphragm and an inner side wall of said housing, wherein said diaphragm is flexibly fixed and held within said housing through the use of said buffer member.
- An advantage of a preferred form of the transducer is that response time of the transducer is shorter. Further, the transducer exhibits excellent transmission sensitivity and directivity.
- the diaphragm is disposed at the centre of the laminated piezo-electric element and the periphery of the diaphragm is flexibly secured on a housing by way of a buffer member made of elastic rubber or the like so as to suppress mechanical oscillation.
- an end of a coupling shaft 2 is fixed to pass through a central portion of a laminated piezo-electric element 1 with the remaining end thereof being secured to a diaphragm 3.
- the laminated piezo-electric element 1 is mounted at nodes of oscillation via a flexible adhesive 5 on tips of supports 4.
- terminals 6 and 6' There is further provided terminals 6 and 6', a housing 7 for protecting the laminated piezo-electric element 1 and so forth against the outside world, a protective mesh 8 disposed at a top portion of the housing and lead wires 9 and 9' for electrically connecting the laminated piezo-electric element 1 to the terminals 6 and 6'.
- Figure 2 depicts the waveform of radiation transmitted when the ultrasonic transducer is supplied with a plurality of pulses. It will be noted that the response of the transducer, i.e. the rise time and fall time, is of the order of 2 milliseconds for each response.
- FIG. 3 is a cross sectional view of an ultrasonic transducer according to a first embodiment of the present invention.
- a diaphragm 13 typically of metal or plastics is fixed to a coupling shaft 12 which is disposed at a central portion of a laminated piezo-electric element 11 made of a suitable piezo-electric ceramic material.
- the diaphragm 13 is of a conical configuration and the laminated piezo-electric element 11 is in the shape of a disc.
- a peripheral portion of the diaphragm 13 is flexibly secured to an inner side wall of a cylindrical housing 17 through the use of an annular buffer member 20 of a resilient material such as rubber or the like in order to suppress mechanical oscillation.
- the diaphragm 13 and the laminated piezo-electric element 11 are disposed at the centre of the housing 17 through the buffer member 20.
- a pair of terminals 16 and 16' are electrically connected to the laminated piezo-electric element 11 via lead wires 19 and 19'.
- Figure 4 depicts the pulse characteristics of the ultrasonic transducer of the above described structure, indicating that the rise time and fall time of a pulse were less than 0.2 millisecond.
- Figure 5 indicates the rise time and directivity (acoustic pressure half-angle) as a function of the inner diameter of the annular buffer member 20.
- the diameter of the diaphragm 3 was 16 mm.
- Figure 6 is a graph showing the relationship between the diameter of the diaphragm 13 provided for the disc-like laminated piezo-electric element (diameter: 10 mm) and transmission sensitivity, indicating that the greater the diameter of the diaphragm 13 the greater transmission sensitivity.
- Figure 7 is a graph showing the relationship between the diameter of the diaphragm 13 and directivity (acoustic pressure half-angle). It is clear from Figure 7 that the ultrasonic transducer manifests acute directivity when the diaphragm of a diameter becomes greater.
- Figure 8 shows the relationship between the angle of the top of the conical diaphragm 13 and directivity. The sharpest directivity was obtained when the conical diaphragm with 0.3-0.5 of height(h)-to-bottom diameter (R) ratio was used.
- FIG. 9 is a cross sectional view of an ultrasonic transducer according to another embodiment of the present invention.
- a diaphragm 21 typically of metal or plastics is fixed to a coupling shaft 23 which is disposed at a central portion of a laminated piezo-electric element 22 made of a proper piezo-electric ceramic material.
- a peripheral portion of the diaphragm 21 is fixedly secured in an inner side wall of a cylindrical housing 25 through the use of an annular buffer member 24 of resilient material such as rubber or the like to suppress mechanical oscillation.
- an acoustic absorbent material 26 is disposed at the bottom of the housing 25.
- a pair of terminals 27 and 27' are connected electrically to the laminated piezo-electric element 22 via lead wires 28 and 28'.
- the distinction of the ultrasonic transducer as shown in Figure 9 from that of Figure 3 is the provision of the acoustic absorbent material 26 on the bottom wall of the housing 25.
- the provision of the acoustic absorbent material 26 assures further improvement in the pulse characteristics.
- Figure 10 The pulse characteristics of the ultrasonic transducer of the above detailed structure are depicted in Figure 10, which indicates that the rise time and fall time of a pulse were shorter than 0.1 ms. It is noted that Figure 10 was plotted with pulse envelop lines although there were in fact three or four waves before the pulse rose completely.
- Figure 11 shows the effect of the above described acoustic absorbent material 26 on the pulse characteristics, indicating a remarkable improvement in the rise time.
- Figure 12 represents the relationship between the inner diameter of the annular buffer member 24 and the rise time and fall time.
- the diaphragm 21 used had a bottom diameter of 16 mm and the laminated piezo-electric element 22 was of a diameter of 10 mm and a thickness of 0.5 mm.
- Figure 14 depicts the temperature dependency of the pulse characteristics and transmission sensitivity. As compared with those at 20°C, the rise time showed no substantial variation at -20°C and increased by 12% at 60°C while the transmission sensitivity declined by 5% at -20°C and increased by 5% at 60°C. It is understood that the pulse characteristics showed no variation even when the protective mesh was disposed at the front of the housing 17.
- the ultrasonic transducer shows improved pulse characteristics and improved transmission sensitivity as well as a shortened pulse rise time and fall time. Furthermore, it is stronger and simpler in structure with a lower profile and is easier to assemble than the previously proposed device, all as a result of flexibly fixing and holding the diaphragm within the housing.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Acoustics & Sound (AREA)
- Signal Processing (AREA)
- Multimedia (AREA)
- Transducers For Ultrasonic Waves (AREA)
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
Claims (3)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP174328/80 | 1980-12-10 | ||
JP17432880A JPS6025956B2 (ja) | 1980-12-10 | 1980-12-10 | 超音波送受波器 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0053947A1 EP0053947A1 (de) | 1982-06-16 |
EP0053947B1 true EP0053947B1 (de) | 1985-10-30 |
Family
ID=15976713
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP81305827A Expired EP0053947B1 (de) | 1980-12-10 | 1981-12-10 | Ultraschallwandler |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0053947B1 (de) |
JP (1) | JPS6025956B2 (de) |
CA (1) | CA1180100A (de) |
DE (1) | DE3172788D1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7241207B2 (en) | 2002-08-21 | 2007-07-10 | Jurgen Heesemann | Grinding machine and method for grinding a workpiece |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5851697A (ja) * | 1981-09-22 | 1983-03-26 | Matsushita Electric Ind Co Ltd | 超音波送受波器 |
US4607186A (en) * | 1981-11-17 | 1986-08-19 | Matsushita Electric Industrial Co. Ltd. | Ultrasonic transducer with a piezoelectric element |
DE8712014U1 (de) * | 1987-09-04 | 1987-10-29 | Chen, Ding Pang, Taipeh/T'ai-pei | Umfangselement für einen Lautsprecher |
GB2215049B (en) * | 1988-02-02 | 1991-08-21 | Stc Plc | Acoustic devices |
IT1262971B (it) * | 1992-08-05 | 1996-07-23 | Imapo Srl | Piezomembrana vincolata al centro e suo impiego per la realizzazione di avvisatore acustico. |
CN1107831C (zh) * | 1997-02-03 | 2003-05-07 | 斯瓦戈洛克公司 | 流量控制装置 |
DE102016117879B4 (de) * | 2016-09-22 | 2019-06-13 | Valeo Schalter Und Sensoren Gmbh | Sensorsystem, Kraftfahrzeug und Verfahren zum Reinigen eines Ultraschallsensors |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4190783A (en) * | 1978-07-25 | 1980-02-26 | The Stoneleigh Trust, Fred M. Dellorfano, Jr. & Donald P. Massa, Trustees | Electroacoustic transducers of the bi-laminar flexural vibrating type with an acoustic delay line |
US4190784A (en) * | 1978-07-25 | 1980-02-26 | The Stoneleigh Trust, Fred M. Dellorfano, Jr. & Donald P. Massa, Trustees | Piezoelectric electroacoustic transducers of the bi-laminar flexural vibrating type |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1301808A (fr) * | 1960-09-06 | 1962-08-24 | Vega | Haut-parleur perfectionné pour fréquences aiguës |
US3360664A (en) * | 1964-10-30 | 1967-12-26 | Gen Dynamics Corp | Electromechanical apparatus |
GB1316811A (en) * | 1969-05-22 | 1973-05-16 | Matsushita Electric Ind Co Ltd | Microphone |
US3786202A (en) * | 1972-04-10 | 1974-01-15 | Motorola Inc | Acoustic transducer including piezoelectric driving element |
US4011473A (en) * | 1974-08-26 | 1977-03-08 | Fred M. Dellorfano, Jr. & Donald P. Massa, Trustees Of The Stoneleigh Trust | Ultrasonic transducer with improved transient response and method for utilizing transducer to increase accuracy of measurement of an ultrasonic flow meter |
-
1980
- 1980-12-10 JP JP17432880A patent/JPS6025956B2/ja not_active Expired
-
1981
- 1981-12-09 CA CA000391822A patent/CA1180100A/en not_active Expired
- 1981-12-10 EP EP81305827A patent/EP0053947B1/de not_active Expired
- 1981-12-10 DE DE8181305827T patent/DE3172788D1/de not_active Expired
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4190783A (en) * | 1978-07-25 | 1980-02-26 | The Stoneleigh Trust, Fred M. Dellorfano, Jr. & Donald P. Massa, Trustees | Electroacoustic transducers of the bi-laminar flexural vibrating type with an acoustic delay line |
US4190784A (en) * | 1978-07-25 | 1980-02-26 | The Stoneleigh Trust, Fred M. Dellorfano, Jr. & Donald P. Massa, Trustees | Piezoelectric electroacoustic transducers of the bi-laminar flexural vibrating type |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7241207B2 (en) | 2002-08-21 | 2007-07-10 | Jurgen Heesemann | Grinding machine and method for grinding a workpiece |
Also Published As
Publication number | Publication date |
---|---|
JPS5797798A (en) | 1982-06-17 |
DE3172788D1 (en) | 1985-12-05 |
JPS6025956B2 (ja) | 1985-06-21 |
EP0053947A1 (de) | 1982-06-16 |
CA1180100A (en) | 1984-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4458170A (en) | Ultrasonic transmitter-receiver | |
US4127749A (en) | Microphone capable of cancelling mechanical generated noise | |
US5789844A (en) | Acoustic transducer | |
US4607186A (en) | Ultrasonic transducer with a piezoelectric element | |
JPS6133519B2 (de) | ||
EP0142215A3 (de) | Ultraschallwandler mit verbesserten Schwingungsweisen | |
EP0053947B1 (de) | Ultraschallwandler | |
GB2063006A (en) | Directional transducer | |
GB1513530A (en) | Piezoelectric transducers | |
WO1989005199A1 (en) | An acoustic emission transducer and an electrical oscillator | |
US4456848A (en) | Ultrasonic transmitting and receiving device | |
US3253674A (en) | Ceramic microphone | |
JP2623643B2 (ja) | 超音波セラミックマイクロホン | |
JPS6055798A (ja) | 超音波送受波器 | |
JPS5884600A (ja) | 超音波送受波器 | |
JPS6025957B2 (ja) | 超音波送受波器 | |
SU997833A1 (ru) | Электроакустический преобразователь | |
JPS58124400A (ja) | 超音波送受波器 | |
JPS642320B2 (de) | ||
JPS6321582A (ja) | 超音波送受波器 | |
JPS58124398A (ja) | 超音波送受波器 | |
JPS5851698A (ja) | 超音波送受波器 | |
JPS6126397A (ja) | 超音波送受波器 | |
JPS58124399A (ja) | 超音波送受波器 | |
JPS5797799A (en) | Ultrasonic wave transmitter and receiver |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): DE FR GB |
|
17P | Request for examination filed |
Effective date: 19821129 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): DE FR GB |
|
REF | Corresponds to: |
Ref document number: 3172788 Country of ref document: DE Date of ref document: 19851205 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19941130 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19941208 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19941209 Year of fee payment: 14 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19951210 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19951210 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19960830 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19960903 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |