EP0053413B1 - Device for the continuous control of the phase angle in electric energy transmission installations - Google Patents

Device for the continuous control of the phase angle in electric energy transmission installations Download PDF

Info

Publication number
EP0053413B1
EP0053413B1 EP19810201254 EP81201254A EP0053413B1 EP 0053413 B1 EP0053413 B1 EP 0053413B1 EP 19810201254 EP19810201254 EP 19810201254 EP 81201254 A EP81201254 A EP 81201254A EP 0053413 B1 EP0053413 B1 EP 0053413B1
Authority
EP
European Patent Office
Prior art keywords
transformer
phase
phase angle
voltage
energy transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP19810201254
Other languages
German (de)
French (fr)
Other versions
EP0053413A1 (en
Inventor
Josip Dipl.-Ing. Dobsa
Peter Eglin
Gerhard Dipl.-Ing. Güth
Jiri Dr. Ing. Mastner
Herbert Dr. Dipl.-Ing. Stemmler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BBC Brown Boveri AG Switzerland
Original Assignee
BBC Brown Boveri AG Switzerland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BBC Brown Boveri AG Switzerland filed Critical BBC Brown Boveri AG Switzerland
Publication of EP0053413A1 publication Critical patent/EP0053413A1/en
Application granted granted Critical
Publication of EP0053413B1 publication Critical patent/EP0053413B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/12Regulating voltage or current wherein the variable actually regulated by the final control device is ac
    • G05F1/24Regulating voltage or current wherein the variable actually regulated by the final control device is ac using bucking or boosting transformers as final control devices
    • G05F1/26Regulating voltage or current wherein the variable actually regulated by the final control device is ac using bucking or boosting transformers as final control devices combined with discharge tubes or semiconductor devices
    • G05F1/30Regulating voltage or current wherein the variable actually regulated by the final control device is ac using bucking or boosting transformers as final control devices combined with discharge tubes or semiconductor devices semiconductor devices only
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/12Regulating voltage or current wherein the variable actually regulated by the final control device is ac
    • G05F1/14Regulating voltage or current wherein the variable actually regulated by the final control device is ac using tap transformers or tap changing inductors as final control devices
    • G05F1/16Regulating voltage or current wherein the variable actually regulated by the final control device is ac using tap transformers or tap changing inductors as final control devices combined with discharge tubes or semiconductor devices
    • G05F1/20Regulating voltage or current wherein the variable actually regulated by the final control device is ac using tap transformers or tap changing inductors as final control devices combined with discharge tubes or semiconductor devices semiconductor devices only

Definitions

  • the present invention relates to a device for the continuous control of the phase angle in electrical energy transmission devices according to the preamble of claim 1.
  • the aim should be that the phase angles of the interconnected AC voltages match. This reduces undesirable effects on the generators. This endeavor is made more difficult because the phase angle of a voltage fed into a transmission line is rotated along this line and by the load at the end of the line, provided this is not a purely ohmic resistance.
  • transverse transformers are therefore used to adjust the phase angle of the voltage in the various network parts.
  • the transverse transformer induces in each conductor of the line a transverse voltage superimposed on the input voltage, the phase angle of which is offset by 90 ° with respect to that of the input voltage, so that an output voltage arises whose phase angle is shifted with respect to that of the input voltage.
  • phase shifter with at least two reactive impedances connected in series is known (DE-A 2 853 358).
  • a tap is provided between the impedances and at least one electrically controlled current switch, preferably a bidirectional thyristor, in series with this.
  • This phase shifter enables the phase angle of the tapped voltage to be rotated in small steps in both possible directions.
  • the rotation of the phase angle is generated by the reactive power in the reactive impedances, which is why the amount of this rotation determines the required nominal power of the impedances.
  • the nominal power for a rotation of 60 ° reaches about a quarter of the throughput.
  • the described phase shifter can therefore only be used for energy transmission lines to a limited extent, despite its technical advantages.
  • the invention solves the problem of creating a device with which the phase angle in an electrical energy transmission device can be shifted over a large angular range. This shift should be low-loss and should not be caused by reactive power.
  • phase angles can be set in a simple manner.
  • the embodiment according to claim 3 is particularly economical.
  • the input voltage of a high-voltage line is denoted by U.
  • the phase angle of this input voltage U has a phase angle ( p , which can be leading (capacitive load) or lagging (inductive load) due to various loads applied to the high-voltage line.
  • the high-voltage line HL is symbolized with its input voltage U and its output voltage U '.
  • the voltages U and U ' relate to the secondary side of an additional transformer ZT.
  • the voltage source 1 is formed from an additional voltage source 3, a downstream rectifier circuit 2 and a self-commutated inverter or power electronics LE.
  • a measurement / control signal S is fed to the power electronics.
  • the mode of operation of this circuit arrangement is based on the fact that an additional voltage UZ is added inductively, via the additional transformer ZT, to the input voltage U, which results in the output voltage U '.
  • an additional voltage UZ is added inductively, via the additional transformer ZT, to the input voltage U, which results in the output voltage U '.
  • a constant alternating voltage UK shifted by a fixed phase angle with respect to the voltage U, and a variable alternating voltage UV connected in series are connected via an excitation transformer ET.
  • the AC voltage UV is varied in its phase position and in its amplitude by the measurement / control signal S.
  • the circuit arrangement according to FIG. 3 in turn has an excitation transformer ET, to which an input voltage UK o is applied on the primary side.
  • the output voltage UK at the transformer ET is led to a bridge circuit with thyristors 4-7 'connected in anti-parallel.
  • This bridge circuit commutates an additional current IZ formed therein, which flows through the primary winding of an additional transformer ZT.
  • the current I of a high-voltage line HL which has an input voltage U, flows through the secondary winding of the additional transformer ZT.
  • the inductive addition of the additional voltage UZ sets the high-voltage line HL to a voltage U 'which is compensated for in phase and amplitude.
  • the transformer ZT is wound in opposite directions, which, as in the following drawings, is symbolized by points on the primary and secondary windings.
  • the thyristors 4-7 'each have their own quenching circuit known per se and allow the additional voltage UZ to be set continuously for any phase angle between the output voltage UK of the transformer ET and the additional current IZ.
  • thyristors 4, 4 'connected in anti-parallel can be provided with their own quenching circuit, while the other thyristors 5-7' quench at the zero crossing of the current.
  • the quenching device can be dispensed with in all thyristors; the power is transferred through natural commutation.
  • a high-voltage line HL has the phases R, S, T.
  • An excitation transformer ET is connected in a triangle between these phases, so that the voltage pointers can be added in the transverse direction.
  • the compensated phases are labeled R ', S', T '.
  • phase currents IR, IS, IT are determined by ammeters 8-10 and the voltages UST and URS are determined by voltmeters 11 and 12 connected between the phases.
  • the resulting signals S1 (IR, IS, IT) and S2 (UST, URS) control a previously described power electronics LE with thyristor bridge circuits.
  • the power electronics shown for the voltage UER, are connected to a step winding on the secondary side of the excitation transformer ET.
  • An additional voltage UZR and an additional current IZ are set at the output of the power electronics LE, which, as described above, also achieve a compensated phase voltage here by inductive addition in the additional transformer ZT.
  • the remaining phases are compensated in the same way.
  • the secondary gradation of the winding in the excitation transformer ET allows the required control or regulation stroke in the power electronics LE to be reduced by suitable interconnection.
  • the circuit arrangement according to FIG. 5 shows an excitation transformer ET which has a secondary winding (Vernier Winding) graded on a secondary side according to a power series (3 ").
  • the bridge circuits 14-16 in turn have anti-parallel connected thyristors and are fed by the voltages UK1-UK3.
  • the required control area in the thyristor bridge circuit 13 with quenching circuits, fed by the alternating voltage UV, can be kept very small. This enables a very inexpensive solution; the additional voltage UZ or the additional current IZ can be optimally adapted to the operating conditions of energy transmission devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Ac-Ac Conversion (AREA)
  • Control Of Electrical Variables (AREA)

Description

Die vorliegende Erfindung bezieht sich auf eine Vorrichtung zur kontinuierlichen Steuerung des Phasenwinkels in elektrischen Energie-Übertragungseinrichtungen nach dem Oberbegriff des Patentanspruchs 1.The present invention relates to a device for the continuous control of the phase angle in electrical energy transmission devices according to the preamble of claim 1.

Beim Zusammenschalten von beispielsweise mehreren Energie-Übertragungsleitungen ist anzustreben, dass die Phasenwinkel der zusammengeschalteten Wechselspannungen übereinstimmen. Dadurch werden unerwünschte Rückwirkungen auf die Generatoren vermindert. Dieses Bestreben wird erschwert, weil der Phasenwinkel einer in eine Übertragungsleitung eingespeisten Spannung längs dieser Leitung und von der Last am Ende der Leitung, sofern diese kein rein ohmscher Widerstand ist, gedreht wird.When interconnecting several energy transmission lines, for example, the aim should be that the phase angles of the interconnected AC voltages match. This reduces undesirable effects on the generators. This endeavor is made more difficult because the phase angle of a voltage fed into a transmission line is rotated along this line and by the load at the end of the line, provided this is not a purely ohmic resistance.

Bei Verbundnetzen werden darum zum Anpassen der Phasenwinkel der Spannung in den verschiedenen Netzteilen sogenannte Quertransformatoren eingesetzt. Der Quertransformator induziert in jedem Leiter der Leitung eine der Eingangsspannung überlagerte Querspannung, deren Phasenwinkel gegenüber dem der Eingangsspannung um 90° versetzt ist, so dass eine Ausgangsspannung entsteht, deren Phasenwinkel gegenüber dem der Eingangsspannung verschoben ist.In the case of interconnected networks, so-called transverse transformers are therefore used to adjust the phase angle of the voltage in the various network parts. The transverse transformer induces in each conductor of the line a transverse voltage superimposed on the input voltage, the phase angle of which is offset by 90 ° with respect to that of the input voltage, so that an output voltage arises whose phase angle is shifted with respect to that of the input voltage.

Im weiteren ist ein steuerbarer Phasenschieber mit mindestens zwei in Serie geschalteten reaktiven Impedanzen bekannt (DE-A 2 853 358). Zwischen den Impedanzen ist ein Abgriff vorgesehen sowie in Serie dazu mindestens ein elektrisch gesteuerter Stromschalter, vorzugsweise ein bidirektionaler Thyristor. Dieser Phasenschieber ermöglicht eine Drehung des Phasenwinkels der abgegriffenen Spannung in kleinen Schritten, in beiden möglichen Richtungen. Die Drehung des Phasenwinkels wird durch die Blindleistung in den reaktiven Impedanzen erzeugt, weshalb der Betrag dieser Drehung die erforderliche Nennleistung der Impedanzen bestimmt. Dabei erreicht die Nennleistung für eine Drehung um 60° etwa ein Viertel der Durchgangsleistung. Der beschriebene Phasenschieber ist daher trotz seiner technischen Vorteile aus wirtschaftlichen Gründen für Energie-Übertragungsleitungen nur beschränkt verwendbar.Furthermore, a controllable phase shifter with at least two reactive impedances connected in series is known (DE-A 2 853 358). A tap is provided between the impedances and at least one electrically controlled current switch, preferably a bidirectional thyristor, in series with this. This phase shifter enables the phase angle of the tapped voltage to be rotated in small steps in both possible directions. The rotation of the phase angle is generated by the reactive power in the reactive impedances, which is why the amount of this rotation determines the required nominal power of the impedances. The nominal power for a rotation of 60 ° reaches about a quarter of the throughput. The described phase shifter can therefore only be used for energy transmission lines to a limited extent, despite its technical advantages.

Durch die US-PS 3 444 457 ist es ferner bei Spannungsreglern bekannt, Spannungen induktiv über einen Übertrager zu addieren.From US-PS 3 444 457 it is also known in voltage regulators to add voltages inductively via a transformer.

Die Erfindung, wie sie im Anspruch 1 gekennzeichnet ist, löst die Aufgabe, eine Vorrichtung zu schaffen, mit welcher der Phasenwinkel in einer elektrischen Energie-Übertragungseinrichtung über einen grossen Winkelbereich verschoben werden kann. Diese Verschiebung soll verlustarm sein und nicht durch eine Blindleistung erfolgen.The invention, as characterized in claim 1, solves the problem of creating a device with which the phase angle in an electrical energy transmission device can be shifted over a large angular range. This shift should be low-loss and should not be caused by reactive power.

Daraus resultiert eine vektorielle Addition zweier Spannungen, welche für jede Phase getrennt gesteuert oder geregelt werden kann.This results in a vectorial addition of two voltages, which can be controlled or regulated separately for each phase.

Durch die erfindungsgemässe Vorrichtung lassen sich Energiesysteme auch bei stark ändernder Blindleistungsbelastung stetig kompensieren.By means of the device according to the invention, energy systems can be constantly compensated even in the case of strongly changing reactive power loads.

In den nachfolgenden Unteransprüchen sind vorteilhafte Weiterbildungen beschrieben.Advantageous further developments are described in the following subclaims.

Durch einen selbstgeführten Wechselrichter nach Anspruch 2 lassen sich in einfacher Weise beliebig gewählte Phasenwinkel einstellen.By a self-commutated inverter according to claim 2, arbitrarily chosen phase angles can be set in a simple manner.

Die Ausgestaltung nach Anspruch 3 ist besonders wirtschaftlich.The embodiment according to claim 3 is particularly economical.

Die Weiterbildung gemäss Anspruch 4 erlaubt eine nochmalige Verringerung des steuerungstechnischen Aufwandes, da der kontinuierlich zu steuernde oder zu regelnde Bereich nahezu beliebig klein gewählt werden kann.The further development according to claim 4 allows a further reduction in the technical control effort, since the area to be continuously controlled or regulated can be chosen to be almost arbitrarily small.

Nachfolgend werden anhand von schematischen Zeichnungen Ausführungsbeispiele der Erfindung näher beschrieben; es zeigen:

  • Fig. 1 das Prinzip der vektoriellen Addition einer Zusatzspannung zur Eingangsspannung in beliebiger Richtung;
  • Fig. 2 eine Prinzipdarstellung einer Schaltungsanordnung zur vektoriellen Addition einer Kompensationsspannung in einer Phase eines Leitungsnetzes;
  • Fig. 3 eine Variante zur Schaltungsanordnung nach Fig. 2 nach einer Gleichrichter-Brückenschaltung;
  • Fig. 4 eine Schaltungsanordnung für ein Dreiphasen-System mit einer vektoriellen Addition in Querrichtung zur Eingangsspannung;
  • Fig. 5 eine weitere Schaltungsanordnung mit einer nach einer Potenzreihe abgestuften Sekundärwicklung eines Erregertransformators.
Exemplary embodiments of the invention are described in more detail below with the aid of schematic drawings; show it:
  • 1 shows the principle of vectorial addition of an additional voltage to the input voltage in any direction;
  • 2 shows a basic illustration of a circuit arrangement for vectorial addition of a compensation voltage in one phase of a line network;
  • 3 shows a variant of the circuit arrangement according to FIG. 2 after a rectifier bridge circuit;
  • 4 shows a circuit arrangement for a three-phase system with a vectorial addition in the transverse direction to the input voltage;
  • 5 shows a further circuit arrangement with a secondary winding of an excitation transformer graded according to a power series.

Gemäss Fig. 1 ist die Eingangsspannung einer Hochspannungsleitung mit U bezeichnet. Die Phasenlage dieser Eingangsspannung U weist einen Phasenwinkel (p auf, der aufgrund verschiedener an der Hochspannungsleitung anliegender Lasten in einem bestimmten Zeitintervall voreilend (kapazitive Last) oder nacheilend (inductive Last) sein kann. Durch eine induktive Zuschaltung einer Zusatzspannung UZ mit einem Phasenwinkel (p entsteht eine Phasendrehung um 6.1f!. Die resultierende Ausgangsspannung ist mit U' bezeichnet.1, the input voltage of a high-voltage line is denoted by U. The phase angle of this input voltage U has a phase angle ( p , which can be leading (capacitive load) or lagging (inductive load) due to various loads applied to the high-voltage line. By inductive connection of an additional voltage UZ with a phase angle (p there is a phase shift of 6.1f! The resulting output voltage is designated U '.

In einer Schaltungsanordnung, Fig. 2, ist die Hochspannungsleitung HL symbolisiert mit ihrer Eingangsspannung U und ihrer Ausgangsspannung U' dargestellt. Die Spannungen U bzw. U' beziehen sich auf die Sekundärseite eines Zusatztransformators ZT. An der Primärwicklung des Zusatztransformators ZT liegt eine Zusatzspannung UZ, welche einerseits durch einen Erregertransformator ET und andererseits durch eine Spannungsquelle 1 entstanden ist. Die Spannungsquelle 1 wird gebildet aus einer Zusatzspannungsquelle 3, einer nachgeschalteten Gleichrichterschaltung 2 und einem selbstgeführten Wechselrichter bzw. einer Leistungselektronik LE. Der Leistungselektronik ist ein Mess/Steuersignal S zugeführt.In a circuit arrangement, FIG. 2, the high-voltage line HL is symbolized with its input voltage U and its output voltage U '. The voltages U and U 'relate to the secondary side of an additional transformer ZT. There is an additional voltage UZ on the primary winding of the additional transformer ZT, which is generated on the one hand by an excitation transformer ET and on the other hand by a voltage source 1. The voltage source 1 is formed from an additional voltage source 3, a downstream rectifier circuit 2 and a self-commutated inverter or power electronics LE. A measurement / control signal S is fed to the power electronics.

Die Wirkungsweise dieser Schaltungsanordnung beruht darauf, dass induktiv, über den Zusatztransformator ZT zur Eingangsspannung U eine Zusatzspannung UZ addiert wird, woraus die Ausgangsspannung U' resultiert. Dabei wird über einen Erregertransformator ET eine, um einen festen Phasenwinkel gegenüber der Spannung U verschobene, konstante Wechselspannung UK sowie eine dazu in Serie geschaltete variable Wechselspannung UV zugeschaltet. Die Wechselspannung UV wird in ihrer Phasenlage und in ihrer Amplitude durch das Mess/ Steuersignal S variiert.The mode of operation of this circuit arrangement is based on the fact that an additional voltage UZ is added inductively, via the additional transformer ZT, to the input voltage U, which results in the output voltage U '. In this case, a constant alternating voltage UK, shifted by a fixed phase angle with respect to the voltage U, and a variable alternating voltage UV connected in series are connected via an excitation transformer ET. The AC voltage UV is varied in its phase position and in its amplitude by the measurement / control signal S.

Der Vorteil einer derartigen Schaltungsanordnung besteht darin, dass nur die momentane Phasenwinkeländerung 6.1f! gesteuert oder geregelt werden muss. Über grössere Zeitintervalle anliegende Blindleistungen können durch den Erregertransformator ET mit seiner konstanten Wechselspannung UK wenigstens annähernd kompensiert werden.The advantage of such a circuit arrangement is that only the current phase angle change 6.1f! must be controlled or regulated. Reactive powers present over longer time intervals can be at least approximately compensated for by the excitation transformer ET with its constant AC voltage UK.

Die Schaltungsanordnung gemäss Fig. 3 weist wiederum einen Erregertransformator ET auf, an welchem primärseitig eine Eingangsspannung UKo anliegt. Die Ausgangsspannung UK am Transformator ET ist zu einer Brückenschaltung mit antiparallel geschalteten Thyristoren 4-7' geführt. In dieser Brückenschaltung erfolgt eine Kommutierung eines darin gebildeten Zusatzstromes IZ, welcher durch die Primärwicklung eines Zusatztransformators ZT fliesst. Durch die Sekundärwicklung des Zusatztransformators ZT fliesst der Strom I einer Hochspannungsleitung HL, welche eine Eingangsspannung U aufweist. Durch die induktive Addition der Zusatzspannung UZ stellt sich die Hochspannungsleitung HL auf eine in Phase und Amplitude kompensierte Spannung U' ein. Der Transformator ZT ist gegensinnig gewickelt, was, wie auch in den nachfolgenden Zeichnungen, durch Punkte an den Primär-und Sekundärwicklungen symbolisiert ist.The circuit arrangement according to FIG. 3 in turn has an excitation transformer ET, to which an input voltage UK o is applied on the primary side. The output voltage UK at the transformer ET is led to a bridge circuit with thyristors 4-7 'connected in anti-parallel. This bridge circuit commutates an additional current IZ formed therein, which flows through the primary winding of an additional transformer ZT. The current I of a high-voltage line HL, which has an input voltage U, flows through the secondary winding of the additional transformer ZT. The inductive addition of the additional voltage UZ sets the high-voltage line HL to a voltage U 'which is compensated for in phase and amplitude. The transformer ZT is wound in opposite directions, which, as in the following drawings, is symbolized by points on the primary and secondary windings.

Die Thyristoren 4-7' weisen je einen an sich bekannten eigenen Löschkreis auf und erlauben eine kontinuierliche Einstellung der Zusatzspannung UZ für beliebige Phasenwinkel zwischen der Ausgangsspannung UK des Transformators ET und dem Zusatzstrom IZ.The thyristors 4-7 'each have their own quenching circuit known per se and allow the additional voltage UZ to be set continuously for any phase angle between the output voltage UK of the transformer ET and the additional current IZ.

Als Variante hierzu kann auch nur ein einziges Paar antiparallel geschalteter Thyristoren 4, 4' mit eigenem Löschkreis vorgesehen werden, während die übrigen Thyristoren 5-7' im Nulldurchgang des Stromes löschen.As a variant, only a single pair of thyristors 4, 4 'connected in anti-parallel can be provided with their own quenching circuit, while the other thyristors 5-7' quench at the zero crossing of the current.

Als weitere Variante kann bei sämtlichen Thyristoren auf die Löscheinrichtung verzichtet werden; die Stromübergabe erfolgt hierbei durch natürliche Kommutierung.As a further variant, the quenching device can be dispensed with in all thyristors; the power is transferred through natural commutation.

In einem Dreiphasen-System, Fig. 4, weist eine Hochspannungsleitung HL die Phasen R, S, T auf. Zwischen diesen Phasen ist ein Erregertransformator ET in Dreieck geschaltet, so dass eine Addition der Spannungszeiger in Querrichtung erfolgen kann. Die kompensierten Phasen sind mit R', S', T' bezeichnet.In a three-phase system, FIG. 4, a high-voltage line HL has the phases R, S, T. An excitation transformer ET is connected in a triangle between these phases, so that the voltage pointers can be added in the transverse direction. The compensated phases are labeled R ', S', T '.

Hierzu werden durch Strommesser 8-10 die Phasenströme IR, IS, IT und durch zwischen die Phasen geschaltete Spannungsmesser 11 und 12 die Spannungen UST und URS bestimmt. Die resultierenden Signale S1 (IR, IS, IT) und S2 (UST, URS) steuern eine vorgängig beschriebene Leistungselektronik LE mit Thyristor-Brückenschaltungen. Eingangsseitig ist die Leistungselektronik, für die Spannung UER dargestellt, mit einer Stufenwicklung der Sekundärseite des Erregertransformators ET verbunden. Am Ausgang der Leistungselektronik LE stellen sich eine Zusatzspannung UZR und ein Zusatzstrom IZ ein, welche, wie vorgängig beschrieben, hier ebenfalls durch induktive Addition im Zusatztransformator ZT eine kompensierte Phasenspannung erzielen.For this purpose, the phase currents IR, IS, IT are determined by ammeters 8-10 and the voltages UST and URS are determined by voltmeters 11 and 12 connected between the phases. The resulting signals S1 (IR, IS, IT) and S2 (UST, URS) control a previously described power electronics LE with thyristor bridge circuits. On the input side, the power electronics, shown for the voltage UER, are connected to a step winding on the secondary side of the excitation transformer ET. An additional voltage UZR and an additional current IZ are set at the output of the power electronics LE, which, as described above, also achieve a compensated phase voltage here by inductive addition in the additional transformer ZT.

Die übrigen Phasen werden in derselben Weise kompensiert. Die sekundärseitige Abstufung der Wicklung im Erregertransformator ET erlaubt durch geeignetes Zusammenschalten den erforderlichen Steuerungs- bzw. Regelungshub in der Leistungselektronik LE zu reduzieren.The remaining phases are compensated in the same way. The secondary gradation of the winding in the excitation transformer ET allows the required control or regulation stroke in the power electronics LE to be reduced by suitable interconnection.

Die Schaltungsanordnung nach Fig. 5 zeigt einen Erregertransformator ET, welcher auf einer Sekundärseite eine nach einer Potenzreihe (3") abgestufte Sekundärwicklung (engl. Vernier Winding) aufweist.The circuit arrangement according to FIG. 5 shows an excitation transformer ET which has a secondary winding (Vernier Winding) graded on a secondary side according to a power series (3 ").

Die Brückenschaltungen 14-16 weisen wiederum antiparallel geschaltete Thyristoren auf und werden durch die Spannungen UK1-UK3 gespeist. Durch geeignetes Zusammenschalten - mit positiver und negativer Phasenlage, je nach Wicklungssinn - lässt sich der erforderliche Steuerungsbereich in der Thyristor-Brückenschaltung 13 mit Löschkreisen, gespeist durch die Wechselspannung UV, sehr klein halten. Dies ermöglicht eine sehr kostengünstige Lösung; die Zusatzspannung UZ bzw. der Zusatzstrom IZ lassen sich optimal den Betriebsbedingungen von Energie-Übertragungseinrichtungen anpassen.The bridge circuits 14-16 in turn have anti-parallel connected thyristors and are fed by the voltages UK1-UK3. By suitable interconnection - with positive and negative phase position, depending on the winding direction - the required control area in the thyristor bridge circuit 13 with quenching circuits, fed by the alternating voltage UV, can be kept very small. This enables a very inexpensive solution; the additional voltage UZ or the additional current IZ can be optimally adapted to the operating conditions of energy transmission devices.

Claims (4)

1. A device for the continuous control of the phase angle in electric energy transmission installations
a) comprising a controllable rectifier switching facility for continuously controlling this phase angle, characterised in
b) that the energy transmission line (HL), the phase angle of which is to be influenced, is carried through the secondary winding of an add-transformer (ZT),
c) that the primary side of this add-transformer is effectively connected via a phase-control facility (1; 4, 4' ... 7, 7'; 13 ... 16) for continuously adjusting the phase angle between the output voltage (UK) of an exciter transformer and the current or additional current (IZ) supplied to the primary winding of the add-on transformer (ZT) to the output of this exciter transformer (EZ),
d) that the phase-control device is provided with a bridge circuit comprised of thyristors (4, 4' ... 7, 7') which are connected in antiparallel,
e) and that the thyristors are controlled by a meas- urement/control signal (S) which determines the amplitude and phase relationship of the additional voltage (UZ), supplied to the primary side of the add-on transformer (ZT).
2. A device according to Claim 1, characterised in that the phase-control device is a self-commutated inverter which is fed by an additional voltage source (3) via a rectifier circuit (2) (Figure 2.).
3. A device according to Claim 1, characterised in thatthe phase-control facility is fed by one of several secondary windings of the exciter transformer.
4. A device according to Claim 3, characterised in that the secondary winding of the exciter transformer (ET) is graduated in accordance with a power series (Figure 5.).
EP19810201254 1980-12-03 1981-11-10 Device for the continuous control of the phase angle in electric energy transmission installations Expired EP0053413B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH893180 1980-12-03
CH8931/80 1980-12-03

Publications (2)

Publication Number Publication Date
EP0053413A1 EP0053413A1 (en) 1982-06-09
EP0053413B1 true EP0053413B1 (en) 1984-10-24

Family

ID=4346438

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19810201254 Expired EP0053413B1 (en) 1980-12-03 1981-11-10 Device for the continuous control of the phase angle in electric energy transmission installations

Country Status (3)

Country Link
EP (1) EP0053413B1 (en)
CA (1) CA1181806A (en)
DE (1) DE3166863D1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3029034A1 (en) * 2014-11-24 2016-05-27 Thales Sa DEVICE FOR CONVERTING ELECTRIC ENERGY WITH IMPROVED CHARACTERISTICS

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3566333D1 (en) * 1984-02-10 1988-12-22 Bbc Brown Boveri & Cie Phase-shifter
DE4135059A1 (en) * 1991-10-24 1993-04-29 Asea Brown Boveri Continuous voltage controller with magnetically decoupled single transformers - employs thyristors in controlled inverter between additional windings of main transformer and sections of additional transformer
US5469044A (en) 1995-01-05 1995-11-21 Westinghouse Electric Corporation Transmission line power flow controller with unequal advancement and retardation of transmission angle
AT409691B (en) * 1997-11-11 2002-10-25 Croce Wolfgang CIRCUIT TO REDUCE LOSSES IN FORMING, SWITCHING OR CONTROLLING ELECTRICAL PERFORMANCE
BRPI0802444A8 (en) 2008-07-15 2017-02-21 Siemens Ltda SYSTEM FOR REGULATION OF LOAD VOLTAGE IN POWER DISTRIBUTION CIRCUITS AND METHOD FOR REGULATION OF LOAD VOLTAGE IN POWER DISTRIBUTION CIRCUITS
DE102010015276A1 (en) * 2010-04-15 2011-10-20 A. Eberle Gmbh & Co. Kg Control / regulation of the secondary voltage of local power transformers through the use of line-commutated inverters

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3475624A (en) * 1967-03-23 1969-10-28 Westinghouse Electric Corp Firing circuit for controlling two circuit parameters
FR2155839B1 (en) * 1971-10-08 1975-04-18 Alsthom Cgee
DE2609697C2 (en) * 1976-03-05 1978-04-13 Nieke Elektroapparate Kg, 1000 Berlin Variable transformer with electronic control
DE2730010C2 (en) * 1977-07-02 1985-05-30 Brown, Boveri & Cie Ag, 6800 Mannheim Circuit arrangement for generating reactive currents that can be changed quickly according to size and curve shape
DE2902514C2 (en) * 1979-01-23 1982-12-16 Siemens AG, 1000 Berlin und 8000 München Arrangement for keeping the voltage constant in a single or multi-phase network

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3029034A1 (en) * 2014-11-24 2016-05-27 Thales Sa DEVICE FOR CONVERTING ELECTRIC ENERGY WITH IMPROVED CHARACTERISTICS
WO2016083411A1 (en) * 2014-11-24 2016-06-02 Thales Device for converting electric energy with improved characteristics

Also Published As

Publication number Publication date
DE3166863D1 (en) 1984-11-29
EP0053413A1 (en) 1982-06-09
CA1181806A (en) 1985-01-29

Similar Documents

Publication Publication Date Title
EP0152002B1 (en) Phase-shifter
DE3608704C2 (en)
EP0227924A2 (en) Reactive power regulation device for controlling reactive power and correcting power factor
EP3168708B1 (en) Continuously variable saturation compensation choke coil
DE3225285A1 (en) METHOD FOR OPERATING A HIGH VOLTAGE DC TRANSFER SYSTEM WITH ANY MANY TRANSFORMER STATIONS
DE2644553C3 (en) Circuit arrangement for regulating the electrical power delivered to a consumer by an alternating current network
DE2350778C2 (en) Multi-phase converter station for an HVDC system
EP0023366B1 (en) Transformer for the controlled shifting of the phase angles of output voltages with respect to the phase angles of input voltages
EP0053413B1 (en) Device for the continuous control of the phase angle in electric energy transmission installations
DE2538493A1 (en) HIGH VOLTAGE DC TRANSMISSION SYSTEM
DE2643934C2 (en) Device for compensating the reactive power of a consumer that is fed from a multiphase AC voltage network and / or for reducing the asymmetry in this AC voltage network
DE4323290A1 (en) Arrangement having an oblique transformer
DE691729C (en) Method and device for operating a direct current transmission line
EP3599711A1 (en) Dc-dc converter and use of same
DE686021C (en) Device for superimposing alternating current power distribution networks with low currents of non-network frequency
EP0967109A1 (en) Substation for power supply to two sections of an electrified railway network
DE3242426C2 (en) Central on-board power supply system at airports
EP0165898A2 (en) Device for compensating AC network power failure
DE2542205A1 (en) CONTROLLABLE MULTI-PHASE TRANSFORMER SYSTEM FOR COUPLING TWO DISTRIBUTION GRIDS
DE3231945C2 (en)
WO2023217505A1 (en) Device and method for adapting a phase angle of a voltage in a transmission line
DE2710031C2 (en) Device for contactless commutation of the taps of a loaded transformer
DE2017933C3 (en) Converter system
DE683433C (en) Device for the automatic control of the energy transfer between alternating current networks or between direct and alternating current networks
DE1804430A1 (en) DC transformer with variable transmission ratio

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE FR SE

17P Request for examination filed

Effective date: 19820426

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH DE FR LI SE

REF Corresponds to:

Ref document number: 3166863

Country of ref document: DE

Date of ref document: 19841129

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 81201254.0

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19971112

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19971114

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19971117

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19971126

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990730

EUG Se: european patent has lapsed

Ref document number: 81201254.0

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990901