EP0051623B1 - Coal preparation - Google Patents
Coal preparation Download PDFInfo
- Publication number
- EP0051623B1 EP0051623B1 EP81901210A EP81901210A EP0051623B1 EP 0051623 B1 EP0051623 B1 EP 0051623B1 EP 81901210 A EP81901210 A EP 81901210A EP 81901210 A EP81901210 A EP 81901210A EP 0051623 B1 EP0051623 B1 EP 0051623B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- coal
- agglomerates
- steam
- particles
- hydrocarbon liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03B—SEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
- B03B9/00—General arrangement of separating plant, e.g. flow sheets
- B03B9/005—General arrangement of separating plant, e.g. flow sheets specially adapted for coal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03D—FLOTATION; DIFFERENTIAL SEDIMENTATION
- B03D3/00—Differential sedimentation
- B03D3/06—Flocculation
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L9/00—Treating solid fuels to improve their combustion
Definitions
- This invention relates to an improved method of preparing mined coal for its end use and in particular to the preparation of mined coal as a feedstock for power generating stations.
- Co-pending patent application 55574/80 relates to a process of deashing coal which comprises crushing mined coal into small sized particles, subjecting said mined coal to wetting with a hydrocarbon liquid and forming agglomerates of carbonaceous material in said coal, separating said carbonaceous agglomerates from non carbonaceous material present in said coal, subjecting said carbonaceous agglomerates to vapour separation treatment in the absence of oxidizing gases to separate the hydrocarbon liquid from said carbonaceous material to produce the deashed coal product and recycling said hydrocarbon liquid for use in wetting said mined coal.
- the present invention provides a method of separating an agglomerated mixture of coal particles and a liquid hydrocarbon to form finely divided coal and recover the hydrocarbon liquid which comprises disintegrating said agglomerates and subsequently and/or simultaneously subjecting agglomerates to vapourphase separation in the presence of steam and in the absence of oxidizing gases to recover the liquid hydrocarbon from the finely divided coal particles.
- all of said agglomerates are above 1 mm in size, said steam temperature is above 200°C, the residence time of the coal particles in the steam stripping zone is less than 5 seconds and at least 70% of the coal product comprises particles less than 0.3 mm and final product oil content less than 2.5%.
- Comminution of the agglomerates prior to the vapour phase separation may be carried out in any conventional comminution device.
- the agglomerates are subjected to initial attrition to reduce the particle size of the agglomerates and subsequently passing said agglomerates into the path of a high velocity stream of steam to further reduce the coal particle size and to separate such hydrocarbon liquid into a vapour phase.
- the velocity and the internal shape of the particle entrainer may be chosen to be sufficient to disintegrate the agglomerates.
- said agglomerates are passed into a high velocity stream of steam to simultaneously separate the hydrocarbon liquid and to form the finely divided coal particles.
- the system at a commercial scale would still utilize underwater storage (tanks or ponds) of the coal-oil agglomeration stage product and the slurry reclamation and de-watering systems as specified in the prior process of 55574/80.
- This feed material would be then fed to the front end of a conveying pipe to which superheated steam would also be fed.
- An initial short section of the conveying pipe would be used to achieve disintegration of the feed and the remainder to accomplish removal of the oil from the coal surfaces to the gas stream.
- Disengagement of the solids from the dry vapours would be achieved in a high efficiency cyclone system with the solids discharging to a storage hopper prior to independent delivery of the fuel to the burners. This then could be performed in lean or dense or phases in steam or air.
- the cyclone overhead vapours are then totally condensed, and the hydrocarbon liquids separated and returned to the agglomeration system.
- Control of the residual oil level of the particulate coal product may be achieved in this system by control of the inlet steam temperature and steam to oil mass ratio both of which strongly influence the kinetics of mass transfer of the oil from the coal surfaces. Further, the product is steam blanketed throughout the stripping and storage systems and no oxidation of the particulate material or spontaneous combustion prior to the burners need be risked.
- the present invention provides a method of preparing mined coal for use as fuel in steam generation comprising crushing mined coal into small sized particles subjecting said mined coal to wetting with a hydrocarbon liquid and forming agglomerates of carbonaceous material, separating said carbonaceous material from non carbonaceous material present in said coal and subsequently disintegrating said agglomerates and simultaneously and/or subsequently subjecting the disintegrated agglomerates to a vapour phase separation in the presence of steam and in the absence of oxidizing gases to recover said hydrocarbon liquid and form finely divided coal particles as steam generating fuel.
- a plant for preparing and delivering fuel to a steam generator comprising a storage for a slurry of crushed, mined coal, apparatus for agglomerating said coal with a hydrocarbon liquid, separation means for separating said coal agglomerates from the water phase of said slurry, comminution apparatus to disintegrate said agglomerates, means to dispense said disintegrated agglomerates into a stripper through which steam is passed at vapour phase separating conditions to vaporize said hydrocarbon liquid from said coal particles, separation apparatus to separate said coal particles and recover said hydrocarbon liquid and means to convey said coal particles to said steam generator.
- said comminution apparatus is omitted, and the velocity of steam and the internal shape of the particle entrainer which constitutes said stripper is selected to disintegrate said agglomerate.
- FIG. 1 An example of one configuration of such a system at the pilot plant or commercial scale is shown in Figure 1.
- unstripped agglomerates are recovered from a storage pond or tank 3 and pumped to a set of dewatering screens 4.
- Dewatered agglomerates are then fed to a small hopper/feeder 5 at the front end of the stripper and waste water is pumped out through line 6.
- Agglomerates fed to the stripping tube 7 are picket up by the conveying steam 12 and pass through an initial short length of pipe constructed internally to disintegrate the agglomerate material as it passes through. The remainder of the tube provides the additional residence time for oil vapourisation.
- Stripped solids then pass with the steam and hydrocarbon vapours to a cyclone 8 where the solids are disengaged.
- a sample of coal was treated to the oil agglomeration process as set out in pending application 55574/80.
- the agglomerating oil used was a light gas oil with a boiling range of 240-340°C.
- the ash content was reduced form 26% on the feed coal (DCB, dry coal basis), to 13.6% on the agglomerate (DCB).
- the particle size of the agglomerates is given in Table 1 and the particle size of the coal particles within the agglomerates is shown in Table 2.
- the oil and water contents of the agglomerates were 12.3% (total agglomerate basis - TAB) and 4.8% respectively.
- a continuous steam stripping rig was utilized in these examples.
- the rig is shown in Figure 2.
- Saturated steam generated in boiler 21 at 791 kPa (100 psig) passes through a pressure reducing valve 22 dropping the pressure into the 0-27,6 kPa (0-4 psig) range.
- the steam then passes into a superheater 23 and from the superheater through a jet 24 into an entrainer 25.
- Agglomerates are also fed from Hopper 27 to the entrainer 25 through a rotary valve 28. Breakdown of the agglomerates occurs under action of the steam jet within the entrainer 25 and the particles are then transported through a carrier pipe 29 of approximately 1 m in length within which oil is vapourized from the agglomerate surface.
- the stripped solids are separated from the steam and oil in a cyclone 30.
- the steam and oil are passed through a water cooled condenser 31 from which the oil and water can be separated as distinct liquid phases.
- the agglomerates Prior to feeding to the steam stripping unit, the agglomerates were part broken up in a rod mill and screened to a top size of 1.18 mm.
- TAB residual oil levels
- Evaporation of hydrocarbon from the films on coal particles and of the water droplets is accomplished by contacting the disintegrated agglomerate material with superheated steam.
- the model monitors heat and mass transfer as a function of time thus determining the rates of hydrocarbon stripping from the coal particles, water evaporation and degree of solids heating. Requires mass ratios of steam to hydrocarbon and the initial degree of superheat in the steam are predicted.
- the physical system represented by the model is that of pneumatic conveying of agglomerate material in a steam atmosphere. A number of stages can be identified in the system.
- the model considers (i) and (ii) to be instantaneous and examines stripping as a function of contact time with steam i.e. operations (iii) and (iv) are included. Condensation is not included in the model.
- the stripping model was run with the following input conditions.
- Particular size after disintegration ranged from 6 to 100 microns.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Solid Fuels And Fuel-Associated Substances (AREA)
Abstract
Description
- This invention relates to an improved method of preparing mined coal for its end use and in particular to the preparation of mined coal as a feedstock for power generating stations.
- Co-pending patent application 55574/80 relates to a process of deashing coal which comprises crushing mined coal into small sized particles, subjecting said mined coal to wetting with a hydrocarbon liquid and forming agglomerates of carbonaceous material in said coal, separating said carbonaceous agglomerates from non carbonaceous material present in said coal, subjecting said carbonaceous agglomerates to vapour separation treatment in the absence of oxidizing gases to separate the hydrocarbon liquid from said carbonaceous material to produce the deashed coal product and recycling said hydrocarbon liquid for use in wetting said mined coal.
- This prior application was primarily concerned with recovery of oil from agglomerated coal pellets in a fluidized bed in which the integrity of the pellet is retained. This addresses the end use of the product as coke oven feed or similar application in which product handleability is of importance.
- In applications within both the coking and steaming coal industries where charging or firing systems handling fine sized material are in use, the disintegration of the agglomerate pellet is necessary at some stage.
- Further the residence times required and the heat input required were substantial in the disclosures of the prior patent application.
- It is an object of this invention to provide a method in which low residence times are achieved in the steam stripping operation. To this end the present invention provides a method of separating an agglomerated mixture of coal particles and a liquid hydrocarbon to form finely divided coal and recover the hydrocarbon liquid which comprises disintegrating said agglomerates and subsequently and/or simultaneously subjecting agglomerates to vapourphase separation in the presence of steam and in the absence of oxidizing gases to recover the liquid hydrocarbon from the finely divided coal particles.
- In a preferred form all of said agglomerates are above 1 mm in size, said steam temperature is above 200°C, the residence time of the coal particles in the steam stripping zone is less than 5 seconds and at least 70% of the coal product comprises particles less than 0.3 mm and final product oil content less than 2.5%.
- The exposure of the relatively high specific surface area of the particles after disintegration of the agglomerate pellet during the stripping process in this case offers the potential for the achievement of greatly enhanced heat and mass transfer rates.
- Comminution of the agglomerates prior to the vapour phase separation may be carried out in any conventional comminution device. In a preferred method the agglomerates are subjected to initial attrition to reduce the particle size of the agglomerates and subsequently passing said agglomerates into the path of a high velocity stream of steam to further reduce the coal particle size and to separate such hydrocarbon liquid into a vapour phase.
- Application of this invention to the use of coal-oil agglomerates offers several advantages over the alternative method of steam stripping in a fluidized bed. Foremost among these is the potentially large reduction in solids hold-up in the stripping system and subsequent improvement of response times due to the reduction in residence time in the steam stripping zone. Much of the complexity of the fluid bed system is removed and control functions are related to steam flow and inlet temperature and pressure alone.
- Where the steam is introduced as a jet the velocity and the internal shape of the particle entrainer may be chosen to be sufficient to disintegrate the agglomerates. In this embodiment said agglomerates are passed into a high velocity stream of steam to simultaneously separate the hydrocarbon liquid and to form the finely divided coal particles.
- The system at a commercial scale would still utilize underwater storage (tanks or ponds) of the coal-oil agglomeration stage product and the slurry reclamation and de-watering systems as specified in the prior process of 55574/80. This feed material would be then fed to the front end of a conveying pipe to which superheated steam would also be fed. An initial short section of the conveying pipe would be used to achieve disintegration of the feed and the remainder to accomplish removal of the oil from the coal surfaces to the gas stream. Disengagement of the solids from the dry vapours would be achieved in a high efficiency cyclone system with the solids discharging to a storage hopper prior to independent delivery of the fuel to the burners. This then could be performed in lean or dense or phases in steam or air. The cyclone overhead vapours are then totally condensed, and the hydrocarbon liquids separated and returned to the agglomeration system.
- Control of the residual oil level of the particulate coal product may be achieved in this system by control of the inlet steam temperature and steam to oil mass ratio both of which strongly influence the kinetics of mass transfer of the oil from the coal surfaces. Further, the product is steam blanketed throughout the stripping and storage systems and no oxidation of the particulate material or spontaneous combustion prior to the burners need be risked.
- Integration of the stripper as a conveyor into the boiler control systems of power stations should be more readily achieved with this system than the prior fluid bed system.
- In another aspect the present invention provides a method of preparing mined coal for use as fuel in steam generation comprising crushing mined coal into small sized particles subjecting said mined coal to wetting with a hydrocarbon liquid and forming agglomerates of carbonaceous material, separating said carbonaceous material from non carbonaceous material present in said coal and subsequently disintegrating said agglomerates and simultaneously and/or subsequently subjecting the disintegrated agglomerates to a vapour phase separation in the presence of steam and in the absence of oxidizing gases to recover said hydrocarbon liquid and form finely divided coal particles as steam generating fuel.
- The method of agglomeration is as described in co-pending application 55574/80.
- A plant for preparing and delivering fuel to a steam generator comprising a storage for a slurry of crushed, mined coal, apparatus for agglomerating said coal with a hydrocarbon liquid, separation means for separating said coal agglomerates from the water phase of said slurry, comminution apparatus to disintegrate said agglomerates, means to dispense said disintegrated agglomerates into a stripper through which steam is passed at vapour phase separating conditions to vaporize said hydrocarbon liquid from said coal particles, separation apparatus to separate said coal particles and recover said hydrocarbon liquid and means to convey said coal particles to said steam generator. In an alternative embodiment said comminution apparatus is omitted, and the velocity of steam and the internal shape of the particle entrainer which constitutes said stripper is selected to disintegrate said agglomerate.
- An example of one configuration of such a system at the pilot plant or commercial scale is shown in Figure 1. In this scheme unstripped agglomerates are recovered from a storage pond or
tank 3 and pumped to a set of dewateringscreens 4. Dewatered agglomerates are then fed to a small hopper/feeder 5 at the front end of the stripper and waste water is pumped out through line 6. Agglomerates fed to the stripping tube 7 are picket up by the conveyingsteam 12 and pass through an initial short length of pipe constructed internally to disintegrate the agglomerate material as it passes through. The remainder of the tube provides the additional residence time for oil vapourisation. Stripped solids then pass with the steam and hydrocarbon vapours to acyclone 8 where the solids are disengaged. The overhead vapours are then totally condensed in condenser 9, hydrocarbon liquids separated with any coal fines from the water and returned to the agglomeration plant. Solids exit from the cyclone to a surge hopper 10 from which they are then air conveyed byline 13 to the burners 11 of the power generator plant. - The following is set out as an example of a preferred form of the invention.
- A sample of coal was treated to the oil agglomeration process as set out in pending application 55574/80. The agglomerating oil used was a light gas oil with a boiling range of 240-340°C. The ash content was reduced form 26% on the feed coal (DCB, dry coal basis), to 13.6% on the agglomerate (DCB).
-
- A continuous steam stripping rig was utilized in these examples. The rig is shown in Figure 2. Saturated steam generated in
boiler 21 at 791 kPa (100 psig) passes through apressure reducing valve 22 dropping the pressure into the 0-27,6 kPa (0-4 psig) range. The steam then passes into asuperheater 23 and from the superheater through ajet 24 into an entrainer 25. Agglomerates are also fed from Hopper 27 to the entrainer 25 through arotary valve 28. Breakdown of the agglomerates occurs under action of the steam jet within the entrainer 25 and the particles are then transported through acarrier pipe 29 of approximately 1 m in length within which oil is vapourized from the agglomerate surface. The stripped solids are separated from the steam and oil in acyclone 30. The steam and oil are passed through a water cooledcondenser 31 from which the oil and water can be separated as distinct liquid phases. The solids are passed through ball valve 32. - Prior to feeding to the steam stripping unit, the agglomerates were part broken up in a rod mill and screened to a top size of 1.18 mm.
-
- The data show that a considerable degree of breakdown occurs in the entrainer. Variations to the design geometry of the entrainer will effect the degree of breakdown as will the velocity of steam at the jet. The examples given are indicative of process performance only and should not be taken as limiting the scope of entrainment device claimed in the patent.
- Analysis of the data shows that residual oil levels of 0.5 to 2.5% (TAB) may be achieved at residence times of less than 1 second.
- As a comparative example, a sample of the total agglomerates of the size shown in Table 1, were stripped using the alternative fluidized bed steam stripping technique disclosed in pending application 55574/80. Comparative data are given in Table 5. The data show that comparable oil removal can be achieved using the fast stripping technique in less than 1 second, compared to the 5 minute residence time required when using the fluidized bed technique.
- Studies of the structure of agglomerated material with respect to internal voidage and the location of both hydrocarbon and water within the structure has indicated that,
- (i) hydrocarbon is present in the agglomerate as surface film on coal particles and in interparticle bridges as shown in Figure 2,
- (ii) micropores within individual particles are water filled but that this would account for less than 2wt.% water on dry coal basis,
- (iii) the bulk of the water present occupies a portion of the remaining interparticle voidage not occupied by hydrocarbon.
- In translating the relative location of hydrocarbons and water in an agglomerate structure to that obtained on 'instantaneous' disintegration of the original structure, it is reasonable to assume that all hydrocarbon remains as an even surface film on individual particles. Assignment of the location of the water is to a large extent arbitrary and it has been assumed to exist as free droplets on a one to one basis with coal particles at the equivalent bulk water composition. That is, each coal particle in a representative size distribution is associated with a hydrocarbon film, typically 15 wt.%, and a water droplet typically 8 wt%. Although this is an unlikely occurrance in a practical sense it reflects the approximate distribution of water within the original agglomerate structure and the order of magnitude of water surface available for heat and mass transfer. Other forms of drop size distribution are also examined in the model.
- Evaporation of hydrocarbon from the films on coal particles and of the water droplets is accomplished by contacting the disintegrated agglomerate material with superheated steam.
- The model monitors heat and mass transfer as a function of time thus determining the rates of hydrocarbon stripping from the coal particles, water evaporation and degree of solids heating. Requires mass ratios of steam to hydrocarbon and the initial degree of superheat in the steam are predicted.
- The physical system represented by the model, with a number of simplifying assumptions, is that of pneumatic conveying of agglomerate material in a steam atmosphere. A number of stages can be identified in the system.
- (i) induction of agglomerates at ambient conditions into a conveying pipe,
- (ii) breakdown of this material to its constituent particles,
- (iii) movement of the particles down the length of conveying pipe using superheated steam as a carrier, (iv) disengagement of solids from steam and hydrocarbon vapours in a cyclone,
- (v) total condensation of cycloned vapours to recover hydrocarbon.
- The model considers (i) and (ii) to be instantaneous and examines stripping as a function of contact time with steam i.e. operations (iii) and (iv) are included. Condensation is not included in the model.
- The stripping model was run with the following input conditions.
- (i) agglomerate feed composition: 15 wt.% gas oil and 8 wt.% water on a dry, oil free coal basis,
- (ii) steam to gas oil ratios of 2 and 3 kg steam/kg gas oil,
- (iii) steam inlet temperatures of 650°C and 450°C. Feed inlet temperatures were taken as 15°C.
- Particular size after disintegration ranged from 6 to 100 microns.
- An initial run was performed such that total vaporization of both water and gas oil was achieved. The total time required for stripping was 1.67 secs. for a steam/oil ratio of 3 kg/kg and inlet steam temperature of 650°C. Steam and solids at the end of this time were at 138°C.
- The results are summarized in Table 6.
- Some of the advantages of the system of this invention over the current method of fluid bed stripping are,
- (i) in the case of fluid bed stripping residence times of 3-4 minutes requires hold-up of large amounts of material in the bed. Here the hold-up is equivalent to solids content of the lean phase stripper tube,
- (ii) virtually instantaneous shut-off of the stripper can be achieved by control of the steam flow only,
- (iii) separation and recovery problems are minimised,
- (iv) residual oil levels can be controlled via the steam inlet temperature.
- Subsequent usage of the de-oiled particulate coal is independent of the stripping system and lean or dense phase conveying to burners may be applied.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT81901210T ATE9593T1 (en) | 1980-05-13 | 1981-05-12 | COAL PROCESSING. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU3515/80 | 1980-05-13 | ||
AUPE351580 | 1980-05-13 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0051623A1 EP0051623A1 (en) | 1982-05-19 |
EP0051623A4 EP0051623A4 (en) | 1982-09-15 |
EP0051623B1 true EP0051623B1 (en) | 1984-09-26 |
Family
ID=3768528
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP81901210A Expired EP0051623B1 (en) | 1980-05-13 | 1981-05-12 | Coal preparation |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP0051623B1 (en) |
JP (1) | JPS57500929A (en) |
CA (1) | CA1158439A (en) |
WO (1) | WO1981003337A1 (en) |
ZA (1) | ZA813167B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2121433B (en) * | 1982-05-14 | 1985-12-11 | American Minechem Corp | Converting a carbonaceous material into an improved feedstock |
AU2282183A (en) * | 1982-12-24 | 1984-06-28 | Bp Australia Limited | Method of preparing a slurry feed for combustion by agglomeration of coal particles |
WO2007020508A1 (en) * | 2005-08-12 | 2007-02-22 | Ferring International Center S.A. | Method and device for dividing granules |
EP1752209A1 (en) * | 2005-08-12 | 2007-02-14 | Ferring International Center S.A. | Method and device for dividing granules |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2769537A (en) * | 1951-11-06 | 1956-11-06 | Bergwerksverband Gmbh | Production of high-grade products, especially fuels, from raw material containing pit coal or brown coal |
US3051644A (en) * | 1959-07-01 | 1962-08-28 | Texaco Inc | Method for recovering oil from oil shale |
GB1300499A (en) * | 1970-06-04 | 1972-12-20 | Ishikawajima Harima Heavy Ind | Stave cooling device |
US3863327A (en) * | 1972-12-27 | 1975-02-04 | Roland Arthur Legate | Method of lining metal pipes |
EP0016536A1 (en) * | 1979-02-23 | 1980-10-01 | Bp Australia Limited | Method of removing hydrocarbon liquids from carbonaceous solid material with which they are mixed and using this method for deashing coal |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4008054A (en) * | 1975-01-10 | 1977-02-15 | Consolidation Coal Company | Process for making low-sulfur and low-ash fuels |
JPS52121007A (en) * | 1976-04-05 | 1977-10-12 | Mitsubishi Heavy Ind Ltd | Pretreatment of coal of lower leachability |
CA1101349A (en) * | 1977-03-12 | 1981-05-19 | Yukio Nakako | Method for thermal dehydration of brown coal |
US4224038A (en) * | 1978-06-19 | 1980-09-23 | Atlantic Richfield Company | Process for removing sulfur from coal |
US4270927A (en) * | 1979-06-19 | 1981-06-02 | Atlantic Richfield Company | Process for removal of sulfur and ash from coal |
AU530284B2 (en) * | 1979-07-20 | 1983-07-07 | Mitsui Kozan Chemicals Co. Ltd. | Treating water containing coal |
-
1981
- 1981-05-12 WO PCT/AU1981/000055 patent/WO1981003337A1/en active IP Right Grant
- 1981-05-12 JP JP56501548A patent/JPS57500929A/ja active Pending
- 1981-05-12 EP EP81901210A patent/EP0051623B1/en not_active Expired
- 1981-05-13 ZA ZA00813167A patent/ZA813167B/en unknown
- 1981-05-13 CA CA000377518A patent/CA1158439A/en not_active Expired
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2769537A (en) * | 1951-11-06 | 1956-11-06 | Bergwerksverband Gmbh | Production of high-grade products, especially fuels, from raw material containing pit coal or brown coal |
US3051644A (en) * | 1959-07-01 | 1962-08-28 | Texaco Inc | Method for recovering oil from oil shale |
GB1300499A (en) * | 1970-06-04 | 1972-12-20 | Ishikawajima Harima Heavy Ind | Stave cooling device |
US3863327A (en) * | 1972-12-27 | 1975-02-04 | Roland Arthur Legate | Method of lining metal pipes |
EP0016536A1 (en) * | 1979-02-23 | 1980-10-01 | Bp Australia Limited | Method of removing hydrocarbon liquids from carbonaceous solid material with which they are mixed and using this method for deashing coal |
Also Published As
Publication number | Publication date |
---|---|
JPS57500929A (en) | 1982-05-27 |
WO1981003337A1 (en) | 1981-11-26 |
CA1158439A (en) | 1983-12-13 |
EP0051623A4 (en) | 1982-09-15 |
ZA813167B (en) | 1982-06-30 |
EP0051623A1 (en) | 1982-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4145274A (en) | Pyrolysis with staged recovery | |
US4415335A (en) | Coal preparation | |
US4085030A (en) | Pyrolysis of carbonaceous materials with solvent quench recovery | |
US4344839A (en) | Process for separating oil from a naturally occurring mixture | |
CA1145936A (en) | Particulate coal-in-liquid mixture and process for the production thereof | |
US2735787A (en) | Process for pulverizing solid materials | |
US3004898A (en) | Shale retorting process | |
US2396036A (en) | Shale distillation | |
US4412839A (en) | Coal treatment process | |
EP0016536B1 (en) | Method of removing hydrocarbon liquids from carbonaceous solid material with which they are mixed and using this method for deashing coal | |
WO1980002153A1 (en) | Improved method of removing gangue materials from coal | |
EP0051623B1 (en) | Coal preparation | |
US3496094A (en) | Apparatus and method for retorting solids | |
US4288231A (en) | Coal treatment process | |
AU539589B2 (en) | Coal preparation | |
US4854940A (en) | Method for providing improved solid fuels from agglomerated subbituminous coal | |
US3455789A (en) | Process for continuous carbonization of coal | |
EP0082470B1 (en) | Upgrading method of low-rank coal | |
US2914391A (en) | Treating solid materials | |
US3120474A (en) | Process for preparing hydrocarbonaceous products from coal | |
US2015085A (en) | Method of thermolizing carbonizable materials | |
US3551322A (en) | Conversion of oil shale retorting gases | |
US4539010A (en) | Coal preparation | |
US4707248A (en) | Process for the retorting of hydrocarbon-containing solids | |
US2431499A (en) | Settling catalysts from oil having an inert gas thereabove |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19820111 |
|
AK | Designated contracting states |
Designated state(s): AT CH DE FR GB LU NL SE |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): AT CH DE FR GB LI LU NL SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19840926 Ref country code: CH Effective date: 19840926 |
|
REF | Corresponds to: |
Ref document number: 9593 Country of ref document: AT Date of ref document: 19841015 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 3166275 Country of ref document: DE Date of ref document: 19841031 |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19850513 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19850531 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19860528 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19860531 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Effective date: 19870512 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19871201 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19880129 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19880202 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee | ||
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19881118 |
|
EUG | Se: european patent has lapsed |
Ref document number: 81901210.5 Effective date: 19860728 |