EP0051540B1 - Method for the thermal treatment of fine solid particles - Google Patents

Method for the thermal treatment of fine solid particles Download PDF

Info

Publication number
EP0051540B1
EP0051540B1 EP81401731A EP81401731A EP0051540B1 EP 0051540 B1 EP0051540 B1 EP 0051540B1 EP 81401731 A EP81401731 A EP 81401731A EP 81401731 A EP81401731 A EP 81401731A EP 0051540 B1 EP0051540 B1 EP 0051540B1
Authority
EP
European Patent Office
Prior art keywords
particles
gaseous stream
heavy
light
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81401731A
Other languages
German (de)
French (fr)
Other versions
EP0051540A1 (en
Inventor
Maurice A. Bergougnou
Georges Meunier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tunzini Nessi Entreprises d'Equipements SA TNEE
Original Assignee
Tunzini Nessi Entreprises d'Equipements SA TNEE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tunzini Nessi Entreprises d'Equipements SA TNEE filed Critical Tunzini Nessi Entreprises d'Equipements SA TNEE
Priority to AT81401731T priority Critical patent/ATE5613T1/en
Publication of EP0051540A1 publication Critical patent/EP0051540A1/en
Application granted granted Critical
Publication of EP0051540B1 publication Critical patent/EP0051540B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C3/00Other direct-contact heat-exchange apparatus
    • F28C3/10Other direct-contact heat-exchange apparatus one heat-exchange medium at least being a fluent solid, e.g. a particulate material
    • F28C3/12Other direct-contact heat-exchange apparatus one heat-exchange medium at least being a fluent solid, e.g. a particulate material the heat-exchange medium being a particulate material and a gas, vapour, or liquid
    • F28C3/14Other direct-contact heat-exchange apparatus one heat-exchange medium at least being a fluent solid, e.g. a particulate material the heat-exchange medium being a particulate material and a gas, vapour, or liquid the particulate material moving by gravity, e.g. down a tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D19/00Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium
    • F28D19/02Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium using granular particles

Definitions

  • the invention relates to a method of heat treatment of fine or light solid particles. It relates more particularly to a process for the thermal treatment of fine or light solid particles using dripping gas-solid exchangers.
  • the present invention performs these same heat treatments in relatively small devices, easy to use and good thermal efficiency. It uses dripping gas / solid exchangers, which seemed a priori unusable for these materials, and performs a double thermal transfer, carried out by means of a flow of recyclable solid particles, the density and particle size of which have been chosen so appropriate.
  • these light particles that is to say of low terminal speed of free fall (due to their particle size and / or their density) are transported pneumatically by the gaseous current from bottom to top, for example in a packed column traversed against the current, in runoff, by a flow of "heavy" solid particles (of particle size, density and mechanical characteristics chosen).
  • the light particles are introduced cold and the heavy particles hot, there is thus a heating of the light particles and a simultaneous cooling of the heavy particles.
  • the carrier gas heats up at the same time as the light particles it carries.
  • the heavy particles, recovered cold, are then heated again in a second exchanger, and recycled, that is to say reintroduced into the first exchanger, which makes it possible to continuously carry out the heat transfer leading to the heating of the particles. light.
  • the present invention obviously makes it possible, in a similar manner, to obtain the cooling of hot light particles using heavy recyclable cold particles.
  • the heavy recycled particles will preferably be chosen from materials resistant to attrition, of high density and of approximately spherical shape: sand beads of molten zircon or glass-ceramic, with a particle size of 1 to 2 mm and a density of 2.5 to 3.8 have given good results, these values not being limiting.
  • figs. 1 to 4 represent various variants of installations for implementing the method according to the present invention.
  • the installation shown in fig. 1 is intended to cool hot light particles, such as cement or alumina having undergone a calcination treatment in a rotating tube or a fluidized bed for example.
  • the hot fine particles (at a temperature of, for example, between 700 and 1100 ° C.) are collected in a hopper 1 and taken up by a rotary airlock, a worm, a vibrating corridor or any other system of dis volumetric contribution 2 to supply a venturi system 3 responsible for ensuring pneumatic transport by means of a current of hot air coming from a recovery device which will be described later.
  • the hot fines dispersed in the hot air are then brought through a conduit 4 to the lower part of an exchanger 5.
  • This consists of a cylindrical (or cylindrical-conical) container lined with horizontal stages of filling such as rings, gratings or profiles.
  • the hot air, charged with light fines rises against a flow of heavy particles chosen so that their limit speed of free fall is of the order of 10 to 100 times that of "fines".
  • a methodical type heat exchange takes place between these two flows during their displacement, against the current, and in direct contact.
  • the fines and their carrier air once cooled, escape to the upper part of the exchanger 5 through a conduit 6 and are collected in a cyclone 7 which separates them.
  • the cooled fines are delivered to the base of the cyclone via a rotary airlock 8, while the carrier air, also cooled, escapes to the atmosphere through an exhaust fan 9 possibly after filtration.
  • the heavy particles thus heated are then collected in the conical hopper 11 forming the bottom of the exchanger 5, then they reach a rotary distributor 12 of the same type as the distributor 10, but possibly constructed of refractory alloy if necessary and disposed at the upper part of a second exchanger 13.
  • the distributor 12 also acts as an airlock between the exchanger 5 already described and the second exchanger 13.
  • the heavy particles trickle through the exchanger 13, constituted in a similar way to the exchanger 5, and meet there against the current a flow of cold air, coming from the base, which gradually heats up there.
  • the heavy particles are collected in a fluidized siphon 14, the bottom 15 of which, provided with a fluidization grid, receives air through a conduit 16, and is evacuated in overflow by a conduit 17 to a storage tank 18 before being recycled by an elevator 19, for example with buckets, to the distributor 10.
  • the cold air is brought to the lower part of the exchanger 13 by a conduit 20 under the action of a fan 21 and heats up there in contact with the hot heavy particles.
  • this heated air is divided into two fractions: one of them is used to ensure the pneumatic transport of hot fines at the entrance of Venri 3 and the other can be, for example, to supply the burners of a calciner or for any other use: drying of the products at the start of the manufacturing cycle, etc.
  • the mass flow rates per unit area of the exchanger can be pushed to very high levels, from l '' from 5 to 10 T / h per m2 which allows relatively moderate sections of apparatus.
  • the installation shown in fig. 2 is intended for reheating light particles, for example before their introduction into a calcination oven, or even with a view to their drying (internal humidity).
  • the cold light particles stored in a hopper 22 are admitted via a device 23 for volumetric distribution at a controlled flow rate in a venturi 24 responsible for ensuring their dispersion and their transport by a conduit 25 in an air flow cold from a fan 26. They penetrate the lower part of an exchanger 27 comprising packing stages of the type similar to that which has been described for FIG. 1.
  • the air charged with light particles rises to meet a flow of hot heavy particles which descend through the exchanger.
  • the heat exchange between these two flows takes place from stage to stage, against the current and in direct contact.
  • the fines and their heated carrier air escape the upper part of the exchanger 27 by a conduit 28 to a cyclone separator 29.
  • the fines are collected at the base of the cyclone via a rotary airlock 30 and can then be directed, suitably preheated, to the device ensuring their subsequent treatment, for example a calciner, while the carrier air, also hot, is taken up by a conduit 31 to be reused as indicated below.
  • the path of the heavy particles is as follows: collected cold at the bottom of the exchanger 27 in a fluidized siphon 32, similar to the siphon 14, of FIG. 1, which separates, by elutriation, the few fine particles which could have been entrained, they are discharged through a conduit 33 into a storage tank 34, and are taken up by an elevator 35, for example with buckets, to be sent to the atmospheric separation rotary distributor 36 which distributes them to the upper part of the exchanger 37, similar to the exchanger 27. They are heated there against the current by a hot gas flow introduced through a conduit 38 to the part bottom of the exchanger 37, for example from a calciner and the air heated in the exchanger 27, air which has been taken up by the conduit 31, as indicated above.
  • the heavy particles are collected hot, at the bottom of the exchanger 37, to come directly to feed the rotary distributor with separation of atmosphere 39 which feeds the exchanger 27, while the cooled gases escape at the top of the exchanger 37 are discharged to the atmosphere by a fan 40 after passing through a cyclone separator 41.
  • the circulation of hot gases in the exchanger 37 of FIG. 2 is provided by the fan 40 located at the discharge of cold air at the top of the exchanger.
  • the lifting of heavy particles for recycling is always carried out at low temperature, allowing the empbi of a simple device, such as a bucket elevator.
  • the installation shown in fig. 3 is an installation intended for a relatively brief treatment of light particles, such as a "flash" calcination or drying, that is to say a duration of the order of a second, therefore much shorter than what was aimed with the installations of fig. 1 and 2.
  • the cold fine particles to be treated stored in a hopper 42 are admitted via a device 43 for volumetric distribution in a venturi system 44 responsible for their dispersion and their transport by a duct 45 in a flow of cold air carrier coming from a fan 46. They penetrate the lower part of the exchanger 47, similar to the exchangers 13 and 27, to meet heavy and hot particles falling in rain.
  • the mixture of treated fines and hot carrier gases enters the base of a second exchanger 49 constituted like the previous ones.
  • the mixture there meets, against the current, a flow of heavy particles introduced cold at the upper part of the exchanger 49.
  • the cooled treated fines are evacuated by a conduit 50 and separated from their carrier gases in a cyclone 51.
  • the fines are removed by a rotary airlock 52 and the gases are sent to the atmosphere, possibly by means of an extractor fan 53.
  • the closed circuit route for heavy particles is similar to the previous case. They are introduced cold at the upper part of the exchanger 49 by the rotary distributor 54 with airtightness. Heated during the passage of the exchanger 49, they are transferred directly by the distributor 55 to the upper part of the exchanger 47, from which they are evacuated by the siphon 56 to a storage tank 57 and the recycling elevator 58.
  • the installation shown in fig. 4 is a simplified fine treatment installation, usable when said treatment requires only a few fractions of a second, for example when the fines are polluted with combustible particles, or sensitive to heat.
  • the fines to be treated are transported pneumatically as above and admitted to the base of an exchanger 59 which has three sections.
  • the fines gradually heat up to meet hot heavy particles which descend.
  • the exchanger which is a combustion zone, they are brought into contact with hot gases coming from burners 62, annular for example, which allows them to reach the desired temperature, for example 800 ° C. .
  • the fines gradually cool in contact with the cold heavy particles which flow down in rain from the distributor 64 Finally, they are evacuated by a conductor 65 and separated by a cyclone 66 from their carrier air, and finally evacuated by the rotary airlock 67.
  • the heavy particles flow from the distributor 64, through the exchange assembly 63, 61, 60, then, evacuated by the siphon 68, they are recycled by the elevator 69, after intermediate storage in the tank 70.
  • the movement of the gases through the exchange column is ensured by a fan 71 supplying the venturi 72 for introducing fines.
  • the invention which is applicable in the most diverse industries having to deal with large tonnages of fine solids, can advantageously be used for the calcination of hydrated alumina , both for the heating of hydrated product and for the cooling of the calcined product.
  • a particle size of the alumina of 50 to 80, am corresponding to a terminal speed of free fall of the order of 10 to 50 cm / s, using, for example, as recyclable heavy particles, zircon beads 1.2 to 1.6 mm in diameter, with an average terminal speed of the order of 10 m / s.

Abstract

The invention discloses a process and apparatus for the heating or cooling of light solid particles having a low free-fall speed, by means of flowing gas-solid exchangers. The process makes it possible to heat or cool light solid particles dispersed in a gas flow by contacting them with a countercurrent flow of heavy solid particles having a greater final free-fall speed and that are hot or cool in relation to the light particles, thus effecting a heat transfer between the particles.

Description

L'invention concerne un procédé de traitement thermique de particules solides fines ou légères. Elle concerne plus particulièrement un procédé de traitement thermique de particules solides fines ou légères utilisant des échangeurs gaz-solides ruisselants.The invention relates to a method of heat treatment of fine or light solid particles. It relates more particularly to a process for the thermal treatment of fine or light solid particles using dripping gas-solid exchangers.

Des échangeurs de ce type ont été déjà décrits dans le brevet FR-A-24 36 954 et permettent, d'une manière générale, de mettre en contact suivant un trajet chicané un courant gazeux se déplaçant de bas en haut et des particules solides circulant à contre-courant en écoulement lâche par gravité. Cette technique n'est cependant guère applicable économiquement pour des particules dont les vitesses terminales de chute libre sont trop faibles, ou trop grandes, c'est-à-dire pratiquement hors de la fourchette 0,20-20 m/seconde environ. Cette contrainte revient à exclure de son domaine d'application les particules de densité ou de granulométrie trop faible ou trop forte. Dans le cas de sable, par exemple, une granulométrie de 60 µrn constitue pratiquement une limite inférieure qu'il convient généralement des respecter. En effet, la réduction des granulométries (ou/et des densités) s'accompagne de l'abaissement de la vitesse terminale de chute libre et entraîne l'augmentation des dimensions des appareillages, qui elle-même conduit à des difficultés technologiques de mise en oeuvre et à des coûts excessifs.Exchangers of this type have already been described in patent FR-A-24 36 954 and make it possible, in general, to bring into contact, along a chicaned path, a gas stream moving from bottom to top and solid particles circulating against the current in loose gravity flow. This technique is however hardly applicable economically for particles whose terminal free fall velocities are too low, or too large, that is to say practically outside the range 0.20-20 m / second approximately. This constraint amounts to excluding from its field of application particles of too low or too high density or particle size. In the case of sand, for example, a particle size of 60 μ rn is substantially a lower limit is generally well of respect. In fact, the reduction in particle sizes (or / and densities) is accompanied by the lowering of the terminal speed of free fall and leads to the increase in the dimensions of the devices, which itself leads to technological difficulties in setting up work and at excessive costs.

Or, un certain nombre d'industries ont à réaliser des traitements thermiques sur des quantités très importantes de solides de très faibles granulométries. C'est le cas notamment dans les industries du plâtre, des ciments, de l'alumine, des bentonites, du kieselguhr, ou dans le traitement des sables bitumineux, etc. Jusqu'à présent, ces industries étaient contraintes de mettre en oeuvre des installations extrêmement volumineuses et délicates à conduire, et les échangeurs gaz/solides ruisselants ne leur semblaient par utilisables.However, a certain number of industries have to carry out heat treatments on very large quantities of solids of very small particle size. This is particularly the case in the plaster, cement, alumina, bentonite, kieselguhr, or in the treatment of oil sands, etc. Until now, these industries have been forced to set up extremely bulky and difficult-to-drive installations, and the dripping gas / solid exchangers did not seem usable to them.

La présente invention, au contraire, réalise ces mêmes traitements thermiques dans des appareils relativement peu volumineux, d'emploi aisé et de bon rendement thermique. Elle met en oeuvre des échangeurs gaz/solides ruisselants, qui semblaient à priori inutilisables pour ces matières, et effectue un double transfert thermique, réalisé au moyen d'un flux de particules solides recyclables, dont la densité et la granulométrie ont été choisies de manière appropriée.The present invention, on the contrary, performs these same heat treatments in relatively small devices, easy to use and good thermal efficiency. It uses dripping gas / solid exchangers, which seemed a priori unusable for these materials, and performs a double thermal transfer, carried out by means of a flow of recyclable solid particles, the density and particle size of which have been chosen so appropriate.

La présente invention a ainsi pour objet un procédé de traitement thermique de particules à faible vitesse limite de chute libre, dites particules légères, caractérisé en ce que

  • a) on disperse les particules légères dans un premier courant gazeux,
  • b) on met en contact, suivant un premier trajet chicané, le premier courant gazeux, contenant les particules légères et se déplaçant de bas en haut, avec des particules solides ayant une plus grande vitesse limite de chute libre, dites particules lourdes, ces particules circulant à contre-courant et en écoulement lâche par gravité, de façon à effectuer un premier tranfert thermique entre, d'une part, les particules solides légères et le premier courant gazeux et, d'autre part, les particules solides lourdes,
  • c) on met en contact suivant un second trajet chicané les particules solides lourdes ayant subi le premier transfert thermique et circulant à contre-courant et en écoulement lâche par gravité avec un second courant gazeux se déplaçant de bas en haut de façon à effectuer un second transfert thermique entre, d'une part, les particules lourdes et, d'autre part, le second courant gazeux, et
  • d) on réutilise les particules lourdes ayant subi le second transfert thermique dans le stade (b).
The subject of the present invention is therefore a process for the thermal treatment of particles with a low limit speed of free fall, called light particles, characterized in that
  • a) dispersing the light particles in a first gas stream,
  • b) the first gas stream, containing the light particles and moving from bottom to top, is brought into contact, along a first baffled path, with solid particles having a higher limit free fall velocity, called heavy particles, these particles flowing against the current and in loose flow by gravity, so as to carry out a first thermal transfer between, on the one hand, the light solid particles and the first gas stream and, on the other hand, the heavy solid particles,
  • c) the heavy solid particles having undergone the first heat transfer and flowing in counter-current and in loose flow by gravity are brought into contact along a second baffled path with a second gas stream moving from bottom to top so as to perform a second heat transfer between, on the one hand, the heavy particles and, on the other hand, the second gas stream, and
  • d) the heavy particles having undergone the second thermal transfer in stage (b) are reused.

Ainsi, après une dispersion des particules légères dans un premier courant gazeux, ces particules légères, c'est-à-dire de faible vitesse terminale de chute libre (du fait de leur granulométrie et/ou de leur densité) sont transportées pneumatiquement par le courant gazeux de bas en haut, par exemple dans une colonne à garnissage parcourue à contre-courant, en ruissellement, par un flux de particules solides "lourdes" (de granulométrie, densité et caractéristiques mécaniques choisies). Si, par exemple, les particules légères sont introduites froides et les particules lourdes chaudes, il se produit ainsi un échauffement des particules légères et un refroidissement simultané des particules lourdes. Le gaz porteur, bien évidement, s'échauffe en même temps que les particules légères qu'il transporte. Les particules lourdes, récupérées froides, sont ensuite chauffées à nouveau dans un second échangeur, et recyclées, c'est-à-dire réintroduites dans le premier échangeur, ce qui permet de réaliser en continu le transfert thermique conduisant à l'échauffement des particules légères.Thus, after a dispersion of the light particles in a first gas stream, these light particles, that is to say of low terminal speed of free fall (due to their particle size and / or their density) are transported pneumatically by the gaseous current from bottom to top, for example in a packed column traversed against the current, in runoff, by a flow of "heavy" solid particles (of particle size, density and mechanical characteristics chosen). If, for example, the light particles are introduced cold and the heavy particles hot, there is thus a heating of the light particles and a simultaneous cooling of the heavy particles. The carrier gas, of course, heats up at the same time as the light particles it carries. The heavy particles, recovered cold, are then heated again in a second exchanger, and recycled, that is to say reintroduced into the first exchanger, which makes it possible to continuously carry out the heat transfer leading to the heating of the particles. light.

La présente invention permet évidemment, da manière analogue, d'obtenir le refroidissement de particules légères chaudes à l'aide de particules lourdes recyclables froides.The present invention obviously makes it possible, in a similar manner, to obtain the cooling of hot light particles using heavy recyclable cold particles.

On utilise avantageusement des particules lourdes ayant une vitesse limite de chute libre de valeur 10 à 100 fois supérieure à celle des particules légères.It is advantageous to use heavy particles having a limit speed of free fall of a value 10 to 100 times greater than that of light particles.

Pour le traitement de particules légères ayant une vitesse limite de chute libre à la température ambiante inférieure à 0,2 m/s, on peut ainsi utiliser des particules lourdes ayant des vitesses limites de chute libre à la température ambiante de 2 à 20 m/s et de préférence de 5 à 1 5 m/s.For the treatment of light particles having a limit rate of free fall at room temperature below 0.2 m / s, it is thus possible to use heavy particles having limit rates of free fall at room temperature of 2 to 20 m / s and preferably from 5 to 1 5 m / s.

Selon un premier mode de réalisation, pour le refroidissement de particules solides légères et chaudes .

  • a) on disperse les particules légères dans un premier courant gazeux,
  • b) on met en contact suivant un premier trajet chicané le premier courant gazeux contenant les particules légères et se déplaçant de bas en haut, avec des particules solides lourdes plus froides circulant à contre-courant et en écoulement lâche par gravité, de façon à effectuer un premier transfert thermique entre, d'une part, les particules solides légères et le premier courant gazeux et, d'autre part, les particules solides lourdes, obtenant ainsi des particules légères refroidies, un premier courant gazeux refroidi et des particules lourdes réchauffées,
  • c) on met en contact suivant un second trajet chicané les particules solides lourdes réchauffées et circulant à contre-courant et en écoulement lâche par gravité avec un second courant gazeux, plus froid, se déplaçant de bas en haut de façon à effectuer un second transfert thermique entre, d'une part, les particules lourdes et, d'autre part, le second courant gazeux, obtenant ainsi des particules lourdes refroidies et un second courant gazeux réchauffé,
  • d) on réutilise les particules lourdes refroidies dans le stade (b), et
  • e) on utilise une partie du second courant gazeux réchauffé comme premier courant gazeux, le reste demeurant disponible pour toute autre utilisation.
According to a first embodiment, for the cooling of light and hot solid particles.
  • a) dispersing the light particles in a first gas stream,
  • b) the first gaseous stream containing the light particles and moving from bottom to top is brought into contact along a first baffled path, with cooler heavy solid particles circulating against the current and in loose flow by gravity, so as to effect a first heat transfer between, on the one hand, the light solid particles and the first gas stream and, on the other hand, the heavy solid particles, thus obtaining cooled light particles, a first cooled gas stream and warmed heavy particles,
  • c) the heavy solid particles heated and circulating against the current and in loose flow by gravity are brought into contact along a second chicaned path with a second, cooler gas stream, moving from bottom to top so as to effect a second transfer thermal between, on the one hand, the heavy particles and, on the other hand, the second gas stream, thereby obtaining cooled heavy particles and a second heated gas stream,
  • d) the heavy particles cooled in stage (b) are reused, and
  • e) part of the second heated gas stream is used as the first gas stream, the rest remaining available for any other use.

Selon un second mode dé réalisation, pour le réchauffement de particules solides légères et froides

  • a) on disperse les particules légères dans un premier courant gazeux,
  • b) on met en contact suivant un premier trajet chicané le premier courant gazeux, contenant les particules légères et se déplaçant de bas en haut, avec des particules solides lourdes plus chaudes, circulant à contre-courant et en écoulement lâche par gravité, de façon à effectuer un premier transfert thermique entre, d'une part, les particules solides légères et le premier courant gazeux et, d'autre part, les particules solides lourdes, obtenant ainsi des particules solides légères réchauffées, un premier courant gazeux réchauffé et des particules solides lourdes refroidies,
  • c) on met en contact suivant un second trajet chicané les particules solides lourdes refroidies et circulant à contre-courant et en écoulement lâche par gravité avec un second courant gazeux, plus chaud, se déplaçant de bas en haut de façon à effectuer un second transfert thermique entre, d'une part, les particules lourdes et, d'autre part, le second courant gazeux, obtenant ainsi des particules lourdes réchauffées et un second courant gazeux refroidi,
  • d) on réutilise les particules lourdes réchauffées dans le stade (b), et
  • e) on utilise le premier courant gazeux réchauffé pour constituer au moins en partie le second courant gazeux.
According to a second embodiment, for the heating of light and cold solid particles
  • a) dispersing the light particles in a first gas stream,
  • b) the first gas stream, containing the light particles and moving from bottom to top, is brought into contact along a first baffled path, with hotter heavy solid particles, circulating against the current and in loose flow by gravity, so performing a first heat transfer between, on the one hand, the light solid particles and the first gas stream and, on the other hand, the heavy solid particles, thereby obtaining reheated light solid particles, a reheated first gas stream and particles cooled heavy solids,
  • c) the heavy solid particles cooled and circulating against the current and in loose flow by gravity are brought into contact along a second baffled path with a second gas stream, hotter, moving from bottom to top so as to effect a second transfer thermal between, on the one hand, the heavy particles and, on the other hand, the second gaseous stream, thus obtaining heavy particles reheated and a second gaseous stream cooled,
  • d) the heavy particles reheated in stage (b) are reused, and
  • e) the first heated gas stream is used to constitute at least in part the second gas stream.

Selon une variante de ce dernier mode de réalisation, pour effectuer un traitement thermique rapide, ou "flash", de particules solides légères et froides,

  • a) on disperse les particules légères dans un courant gazeux,
  • b) on met en contact suivant un premier trajet chicané le courant gazeux, contenant les particules légères et se déplaçant de bas en haut, avec des particules solides lourdes plus chaudes, circulant à contre-courant et en écoulement lâche par gravité, de façon à effectuer un premier transfert thermique, entre, d'une part, les particules solides légères et le courant gazeux et, d'autre part, les particules solides lourdes, obtenant ainsi d'une part un courant gazeux réchauffé contenant des particules solides légères réchauffées et d'autre part des particules solides lourdes refroidies,
  • c) on fait subir au courant gazeux réchauffé contenant les particules solides légères réchauffées un traitement thermique rapide,
  • d) on met en contact suivant un second trajet chicané le courant gazeux, ainsi traité, se déplaçant de bas en haut, avec des particules solides lourdes refroidies et circulant à contre-courant et en écoulement lâche par gravité, de façon à effectuer un second transfert thermique entre, d'une part, les particules lourdes et, d'autre part, le courant gazeux porteur des particules légères traitées, obtenant ainsi des particules lourdes réchauffées, et un courant gazeux refroidi contenant les particules légères traitées refroidies, et
  • e) on réutilise les particules lourdes réchauffées dans le stade (b).
According to a variant of this latter embodiment, for carrying out a rapid heat treatment, or "flash", of light and cold solid particles,
  • a) dispersing the light particles in a gas stream,
  • b) the gas stream, containing the light particles and moving from bottom to top, is brought into contact along a first baffled path, with hotter heavy solid particles, circulating against the current and in loose flow by gravity, so as to perform a first heat transfer, between, on the one hand, the light solid particles and the gas stream and, on the other hand, the heavy solid particles, thus obtaining on the one hand a heated gas stream containing heated light solid particles and on the other hand, cooled heavy solid particles,
  • c) the heated gas stream containing the heated light solid particles is subjected to a rapid heat treatment,
  • d) the gaseous current, thus treated, moving from bottom to top, is brought into contact along a second baffled path, with cooled solid solid particles circulating against the current and in loose flow by gravity, so as to effect a second heat transfer between, on the one hand, the heavy particles and, on the other hand, the gas stream carrying the treated light particles, thus obtaining heavy reheated particles, and a cooled gaseous stream containing the cooled treated light particles, and
  • e) the heavy particles reheated in stage (b) are reused.

Dans certains cas, on peut opérer dans une seule colonne comprenant dans sa partie inférieure le premier trajet chicané, dans sa partie médiane des moyens pour apporter de l'énergie tels que des brûleurs et dans sa partie supérieure de deuxième trajet chicané.In some cases, it is possible to operate in a single column comprising in its lower part the first baffled path, in its middle part means for supplying energy such as burners and in its upper part of second baffled path.

Les particules lourdes recyclées seront de préférence choisies en matériaux résistant à l'attrition, de densité élevée et de forme approximativement sphérique: des billes de sable de zircon fondu ou de vitrocéramique, de granulométrie de 1 à 2 mm et de densité 2,5 à 3,8 ont donné de bons résultats, ces valeurs n'étant pas limitatives.The heavy recycled particles will preferably be chosen from materials resistant to attrition, of high density and of approximately spherical shape: sand beads of molten zircon or glass-ceramic, with a particle size of 1 to 2 mm and a density of 2.5 to 3.8 have given good results, these values not being limiting.

Sur les dessins, les fig. 1 à 4 représentent diverses variantes d'installations pour la mise en oeuvre de procédé selon la présente invention.In the drawings, figs. 1 to 4 represent various variants of installations for implementing the method according to the present invention.

L'installation représentée sur la fig. 1 est destinée à refroidir des particules légères chaudes, telles que du ciment ou de l'alumine ayant subi un traitement de calcination dans un tube tournant ou un lit fluidisé par exemple.The installation shown in fig. 1 is intended to cool hot light particles, such as cement or alumina having undergone a calcination treatment in a rotating tube or a fluidized bed for example.

Les particules fines chaudes (à une température comprise par exemple entre 700 et 1100°C) sont recueillies dans une trémie 1 et reprises par un sas rotatif, une vis sans fin, un couloir vibrant ou tout autre système de distribution volumétrique 2 pour alimenter un système venturi 3 chargé d'assurer un transport pneumatique au moyen d'un courant d'air chaud provenant d'un dispositif de récupération qui sera décrit plus loin.The hot fine particles (at a temperature of, for example, between 700 and 1100 ° C.) are collected in a hopper 1 and taken up by a rotary airlock, a worm, a vibrating corridor or any other system of dis volumetric contribution 2 to supply a venturi system 3 responsible for ensuring pneumatic transport by means of a current of hot air coming from a recovery device which will be described later.

Les fines chaudes dispersées dans l'air chaud sont alors amenées par un conduit 4 à la partie inférieure d'un échangeur 5. Celui-ci est constitué d'un récipient cylindrique (ou cylindro- conique) garni d'étages horizontaux de corps de remplissage tels qu'anneaux, grillages ou profilés. L'air chaud, chargé de fines légères s'élève à l'encontre d'un flux de particules lourdes choisies de manière que leur vitesse limite de chute libre soit de l'ordre de 10 à 100 fois celle des "fines". Un échange thermique de type méthodique intervient entre ces deux flux lors de leur déplacement, à contre-courant, et en contact direct. Les fines et leur air porteur, une fois refroidis, s'échappent à la partie haute de l'échangeur 5 par un conduit 6 et sont collectés dans un cyclone 7 qui les sépare. Les fines refroidies sont délivrées à la base du cyclone par l'intermédiaire d'un sas rotatif 8, tandis que l'air porteur lui aussi refroidi, s'échappe à l'atmosphère au travers d'un ventilateur d'extraction 9 éventuellement après filtration.The hot fines dispersed in the hot air are then brought through a conduit 4 to the lower part of an exchanger 5. This consists of a cylindrical (or cylindrical-conical) container lined with horizontal stages of filling such as rings, gratings or profiles. The hot air, charged with light fines rises against a flow of heavy particles chosen so that their limit speed of free fall is of the order of 10 to 100 times that of "fines". A methodical type heat exchange takes place between these two flows during their displacement, against the current, and in direct contact. The fines and their carrier air, once cooled, escape to the upper part of the exchanger 5 through a conduit 6 and are collected in a cyclone 7 which separates them. The cooled fines are delivered to the base of the cyclone via a rotary airlock 8, while the carrier air, also cooled, escapes to the atmosphere through an exhaust fan 9 possibly after filtration.

Le parcours des particules lourdes est décrit maintenant. Le flux de particules lourdes froides est admis à la partie supérieure de l'échangeur 5 par un distributeur rotatif 10 à étanchéité atmosphérique et ruisselle au travers des étages de garnissage de l'échangeur 5.The path of heavy particles is now described. The flow of cold heavy particles is admitted to the upper part of the exchanger 5 by a rotary distributor 10 with atmospheric seal and trickles through the packing stages of the exchanger 5.

Il y croise le flux de particules légères chaudes transportées pneumatiquement en sens inverse et les deux flux sont le siège d'un échange thermique méthodique.It crosses there the flow of hot light particles transported pneumatically in opposite direction and the two flows are the seat of a methodical heat exchange.

Les particules lourdes ainsi échauffées sont alors recueillies dans la trémie conique 11 formant le fond de l'échangeur 5, puis elles parviennent à un distributeur rotatif 12 de même type que le distributeur 10, mais éventuellement construit en alliage réfractaire si nécessaire et disposé à la partie supérieure d'un second échangeur 13. Le distributeur 12 joue également le rôle de sas de séparation d'atmosphère entre l'échangeur 5 déjà décrit et le second échangeur 13.The heavy particles thus heated are then collected in the conical hopper 11 forming the bottom of the exchanger 5, then they reach a rotary distributor 12 of the same type as the distributor 10, but possibly constructed of refractory alloy if necessary and disposed at the upper part of a second exchanger 13. The distributor 12 also acts as an airlock between the exchanger 5 already described and the second exchanger 13.

Les particules lourdes traversent en ruissellement l'échangeur 13, constitué d'une façon analogue à l'échangeur 5, et y rencontrent à contre-courant un flux d'air froid, venant de la base, qui s'y réchauffe progressivement. Une fois refroidies, les particules lourdes sont recueillies dans un siphon fluidisé 14 dont le fond 15, muni d'une grille de fluidisation, reçoit de l'air par un conduit 16, et sont évacuées en trop-plein par un conduit 17 vers un réservoir de stockage 18 avant d'être recyclées par un élévateur 19, à godets par exemple, vers le distributeur 10.The heavy particles trickle through the exchanger 13, constituted in a similar way to the exchanger 5, and meet there against the current a flow of cold air, coming from the base, which gradually heats up there. Once cooled, the heavy particles are collected in a fluidized siphon 14, the bottom 15 of which, provided with a fluidization grid, receives air through a conduit 16, and is evacuated in overflow by a conduit 17 to a storage tank 18 before being recycled by an elevator 19, for example with buckets, to the distributor 10.

L'air froid est amené à la partie inférieure de l'échangeur 13 par un conduit 20 sous l'action d'un ventillateur 21 et s'y réchauffe au contact des particules lourdes chaudes. A la sortie, cet air réchauffé est divisé en deux fractions: l'une d'elles est utilisée pour assurer le transport pneumatique des fines chaudes à l'entrée du venri 3 et l'autre peut l'être, par exemple, pour alimenter les brûleurs d'un calcinateur ou pour tout autre usage:séchage des produits à l'entrée du cycle de fabrication, etc.The cold air is brought to the lower part of the exchanger 13 by a conduit 20 under the action of a fan 21 and heats up there in contact with the hot heavy particles. At the outlet, this heated air is divided into two fractions: one of them is used to ensure the pneumatic transport of hot fines at the entrance of Venri 3 and the other can be, for example, to supply the burners of a calciner or for any other use: drying of the products at the start of the manufacturing cycle, etc.

En admettant, en première approximation, que les chaleurs spécifiques de l'air, des particules légères et des particules lourdes sont de même ordre de grandeur, que le transport pneumatique des fines (particules légères) demande poids pour poids d'air, et que les pertes, de même que les apports gazeux provenant des siphons fluidisés, peuvent être tenues pour négligeables, on remarque que les flux massiques permettent un bilan thermique équilibré, pour une unité de particules légères à refroidir, présentent les valeurs suivantes:

  • -une unité d'air de transport (qui doit être chaud pour ne pas dégrader le niveau thermique),
  • -deux unités de particules lourdes recyclables,
  • -deux unités d'air frais de refroidissement, ce dernier fournissant, à la sortie de l'échangeur 13:
  • -une unité d'air chaud, utilisé pour le transport des particules légères mentionné ci- dessus,
  • -une unité d'air chaud disponible représentant, aux pertes près, la chaleur sensible contenue dans les particules légères.
Assuming, as a first approximation, that the specific heat of air, light particles and heavy particles are of the same order of magnitude, that the pneumatic transport of fines (light particles) requires weight for weight of air, and that the losses, as well as the gaseous contributions coming from the fluidized siphons, can be considered as negligible, it is noted that the mass flows allow a balanced thermal balance, for a unit of light particles to be cooled, have the following values:
  • -a transport air unit (which must be hot so as not to degrade the thermal level),
  • - two units of recyclable heavy particles,
  • -two fresh air cooling units, the latter providing, at the outlet of the exchanger 13:
  • -a hot air unit, used to transport the light particles mentioned above,
  • - an available hot air unit representing, except for the losses, the sensible heat contained in the light particles.

Compte tenu de la vitesse limite de chute libre relativement élevée possible des particules lourdes (par exemple 5 à 15 m/s), les débits massiques par unité de surface de l'échangeur peuvent être poussés jusqu'à des niveaux très élevés, de l'ordre de 5 à 10 T/h par m2 ce qui autorise des sections d'appareils relativement modérées.Given the relatively high possible free fall limit speed of heavy particles (for example 5 to 15 m / s), the mass flow rates per unit area of the exchanger can be pushed to very high levels, from l '' from 5 to 10 T / h per m2 which allows relatively moderate sections of apparatus.

L'installation représentée sur la fig. 2 est destinée au réchauffage des particules légères, par exemple avant leur introduction dans un four de calcination, ou encore en vue de leur séchage (humidité interne).The installation shown in fig. 2 is intended for reheating light particles, for example before their introduction into a calcination oven, or even with a view to their drying (internal humidity).

Les particules légères froides stockées dans une trémie 22 sont admises par l'intermédiaire d'un dispositif 23 de distribution volumétrique sous un débit contrôlé dans un venturi 24 chargé d'assurer leur dispersion et leur transport par un conduit 25 dans un flux d'air froid venant d'un ventilateur 26. Elles pénétrant à la partie inférieure d'un échangeur 27 comportant des étages de garnissage de type analogue à ce qui a été décrit pour la fig. 1. L'air chargé de particules légères s'élève à la rencontre d'un flux de particules lourdes chaudes qui descendent à travers l'échangeur. L'échange thermique entre ces deux flux s'effectue d'étage en étage, à contre-courant et en contact direct. Les fines et leur air porteur réchauffés s'échappent à la partie haute de l'échangeur 27 par un conduit 28 vers un séparateur cyclone 29. Les fines sont recueillies à la base du cyclone par l'intermédiaire d'un sas rotatif 30 et peuvent alors être dirigées, convenablement préchauffées, vers l'appareil assurant leur traitement ultérieur, par exemple un calcinateur, tandis que l'air porteur, chaud lui aussi, est repris par un conduit 31 pour être réutilisé comme indiqué plus loin.The cold light particles stored in a hopper 22 are admitted via a device 23 for volumetric distribution at a controlled flow rate in a venturi 24 responsible for ensuring their dispersion and their transport by a conduit 25 in an air flow cold from a fan 26. They penetrate the lower part of an exchanger 27 comprising packing stages of the type similar to that which has been described for FIG. 1. The air charged with light particles rises to meet a flow of hot heavy particles which descend through the exchanger. The heat exchange between these two flows takes place from stage to stage, against the current and in direct contact. The fines and their heated carrier air escape the upper part of the exchanger 27 by a conduit 28 to a cyclone separator 29. The fines are collected at the base of the cyclone via a rotary airlock 30 and can then be directed, suitably preheated, to the device ensuring their subsequent treatment, for example a calciner, while the carrier air, also hot, is taken up by a conduit 31 to be reused as indicated below.

La parcours des particules lourdes est le suivant: recueillies froides au bas de l'échangeur 27 dans un siphon fluidisé 32, analogue au siphon 14, de la fig. 1, qui sépare, par élutria- tion, les quelques particules fines qui auraient pu être entraînées, elles se déversent par un conduit 33 dans un réservoir de stockage 34, et sont reprises par une élévateur 35, à godets par exemple, pour être envoyées au distributeur rotatif à séparation d'atmosphère 36 qui les répartit à la partie supérieure de l'échangeur 37, analogue à l'échangeur 27. Elles y sont réchauffées à contre-courant par un flux gazeux chaud introduit par un conduit 38 à la partie inférieure de l'échangeur 37, provenant par exemple d'un calcinateur et de l'air réchauffé dans l'échangeur 27, air qui a été repris par le conduit 31, comme indiqué plus haut.The path of the heavy particles is as follows: collected cold at the bottom of the exchanger 27 in a fluidized siphon 32, similar to the siphon 14, of FIG. 1, which separates, by elutriation, the few fine particles which could have been entrained, they are discharged through a conduit 33 into a storage tank 34, and are taken up by an elevator 35, for example with buckets, to be sent to the atmospheric separation rotary distributor 36 which distributes them to the upper part of the exchanger 37, similar to the exchanger 27. They are heated there against the current by a hot gas flow introduced through a conduit 38 to the part bottom of the exchanger 37, for example from a calciner and the air heated in the exchanger 27, air which has been taken up by the conduit 31, as indicated above.

Les particules lourdes sont collectées chaudes, en bas de l'échangeur 37, pour venir directement alimenter le distributeur rotatif à séparation d'atmosphère 39 qui alimente l'échangeur 27, tandis que les gaz refroidis s'échappent au sommet de l'échangeur 37 sont évacués vers l'atmosphère par un ventilateur 40 après passage dans un séparateur cyclone 41.The heavy particles are collected hot, at the bottom of the exchanger 37, to come directly to feed the rotary distributor with separation of atmosphere 39 which feeds the exchanger 27, while the cooled gases escape at the top of the exchanger 37 are discharged to the atmosphere by a fan 40 after passing through a cyclone separator 41.

Comme dans le cas de l'installation représentée sur la fig. 1, et pour des hypothèses identiques, les flux massiques à mettre en oeuvre seront les suivants:

  • -particules fines à réchauffer 1 unité
  • -air porteur froid, puis recyclé chaud 1 unité
  • -air ou gaz chaud supplémentaire 1 unité
  • -particules lourdes en circulation 2 unités
  • -air froid évacué de l'échangeur 37 2 unités
As in the case of the installation shown in fig. 1, and for identical hypotheses, the mass flows to be implemented will be the following:
  • - fine particles to reheat 1 unit
  • -carrier air cold, then recycled hot 1 unit
  • - additional hot air or gas 1 unit
  • - heavy particles in circulation 2 units
  • - cold air exhausted from heat exchanger 37 2 units

On voit que dans les dispositifs représentés sur les fig. 1 et 2, les introductions et évacuations motrices de fluides gazeux sont toujours effectuées à basse température et ne nécessitent donc pas de matériel spécial. Les pertes de charges relativement faibles des échangeurs permettent un fonctionnement à des pressions ou dépressions inférieures à 1 mètre d'eau, ne faisant appel qu'à de simples ventilateurs.It can be seen that in the devices represented in FIGS. 1 and 2, the motor introductions and evacuations of gaseous fluids are always carried out at low temperature and therefore do not require any special equipment. The relatively low pressure drops of the exchangers allow operation at pressures or depressions of less than 1 meter of water, using only simple fans.

Ainsi, la circulation des gaz chauds dans l'échangeur 37 de la fig. 2 est assurée par le ventilateur 40 situé à l'évacuation de l'air froid au sommet de l'échangeur.Thus, the circulation of hot gases in the exchanger 37 of FIG. 2 is provided by the fan 40 located at the discharge of cold air at the top of the exchanger.

L'étanchéité aux entrées et sorties de solides est assurée par des sas rotatifs, pour les fines, et par des siphons fluidisés et les distributeurs eux-mêmes pour les particules lourdes.Watertightness at the entrances and exits of solids is ensured by rotary airlocks, for fines, and by fluidized siphons and the distributors themselves for heavy particles.

La remontée des particules lourdes en vue de leur recyclage s'effectue toujours à basse température, permettant l'empbi d'un appareillage simple, tel qu'un élévateur à godets.The lifting of heavy particles for recycling is always carried out at low temperature, allowing the empbi of a simple device, such as a bucket elevator.

L'installation représentée sur la fig. 3 est une installation destinée à un traitement relativement bref des particules légères, tel qu'une calcination ou un séchage "flash", c'est-à-dire d'une dur de l'ordre de la seconde, donc beaucoup plus courte que ce qui était visé avec les installations des fig. 1 et 2.The installation shown in fig. 3 is an installation intended for a relatively brief treatment of light particles, such as a "flash" calcination or drying, that is to say a duration of the order of a second, therefore much shorter than what was aimed with the installations of fig. 1 and 2.

Les particules fines froides à traiter stockées dans une trémie 42 sont admises par l'intermédiaire d'un dispositif 43 de distribution volumétrique dans un système venturi 44 chargé d'assurer leur dispersion et leur transport par un conduit 45 dans un flux d'air froid porteur venant d'un ventilateur 46. Elles pénètrent à la partie inférieure de l'échangeur 47, analogue aux échangeurs 13 et 27, à la rencontre de particules lourdes et chaudes descendant en pluie. Les fines réchauffées, ainsi que l'air porteur, s'échappent à la partie supérieure de l'échangeur 47 pour traverser le système 48 de traitement "flash" qui peut être un lit transporté, une boucle d'entraînement à co-courant, etc. et dans lequel un apport d'énergie est effectué, par exemple au moyen d'un brûleur dit "de veine d'air". Après parcours de ce système, le mélange de fines traitées et de gaz porteurs chauds pénètre à la base d'un second échangeur 49 constitué comme les précédents. Le melange y rencontre, à contre-courant, un flux de particules lourdes introduites froides à la partie supérieure de l'échangeur 49. Enfin, les fines traitées refroidies sont évacuées par un conduit 50 et séparées de leurs gaz porteurs dans un cyclone 51. Les fines sont évacuées par un sas rotatif 52 et les gaz sont envoyés à l'atmosphère, éventuellement au moyen d'un ventilateur extracteur 53.The cold fine particles to be treated stored in a hopper 42 are admitted via a device 43 for volumetric distribution in a venturi system 44 responsible for their dispersion and their transport by a duct 45 in a flow of cold air carrier coming from a fan 46. They penetrate the lower part of the exchanger 47, similar to the exchangers 13 and 27, to meet heavy and hot particles falling in rain. The reheated fines, as well as the carrier air, escape to the upper part of the exchanger 47 to pass through the “flash” treatment system 48 which can be a transported bed, a co-current drive loop, etc. and in which an energy supply is made, for example by means of a so-called "air stream" burner. After this system has passed through, the mixture of treated fines and hot carrier gases enters the base of a second exchanger 49 constituted like the previous ones. The mixture there meets, against the current, a flow of heavy particles introduced cold at the upper part of the exchanger 49. Finally, the cooled treated fines are evacuated by a conduit 50 and separated from their carrier gases in a cyclone 51. The fines are removed by a rotary airlock 52 and the gases are sent to the atmosphere, possibly by means of an extractor fan 53.

Le parcours en circuit fermé des particules lourdes est analogue au cas précédent. Elles sont introduites froides à la partie supérieure de l'échangeur 49 par le distributeur rotatif 54 à étanchéité d'atmosphère. Réchauffées au cours de la traversée de l'échangeur 49, elles sont transférées directement par le distributeur 55 à la partie supérieure de l'échangeur 47, dont elles sont évacuées par le siphon 56 vers un réservoir de stockage 57 et l'élévateur de recyclage 58.The closed circuit route for heavy particles is similar to the previous case. They are introduced cold at the upper part of the exchanger 49 by the rotary distributor 54 with airtightness. Heated during the passage of the exchanger 49, they are transferred directly by the distributor 55 to the upper part of the exchanger 47, from which they are evacuated by the siphon 56 to a storage tank 57 and the recycling elevator 58.

L'installation représentée sur la fig. 4 est une installation de traitement de fines simplifiée, utilisable lorsque ledit traitement n'exige que quelques fractions de seconde, par exemple lorsque les fines sont polluées de particules combustibles, ou sensibles à la chaleur.The installation shown in fig. 4 is a simplified fine treatment installation, usable when said treatment requires only a few fractions of a second, for example when the fines are polluted with combustible particles, or sensitive to heat.

Les fines à traiter sont transportées pneumatiquement comme plus haut et admises à la base d'un échangeur 59 qui comporte trois sections. Dans la partie basse 60 qui comporte des étages de garnissage du type mentionné plus haut, les fines s'échauffent progressivement à la rencontre de particules lourdes chaudes qui descendent.The fines to be treated are transported pneumatically as above and admitted to the base of an exchanger 59 which has three sections. In the lower part 60 which has stages of packing of the type mentioned higher, the fines gradually heat up to meet hot heavy particles which descend.

Dans la partie médiane 61 de l'échangeur qui est une zone de combustion, elles sont mises en contact avec des gaz chauds provenant de brûleurs 62, annulaires par exemple, ce qui leur permet d'atteindre la température voulue, par exemple 800°C.In the middle part 61 of the exchanger which is a combustion zone, they are brought into contact with hot gases coming from burners 62, annular for example, which allows them to reach the desired temperature, for example 800 ° C. .

Dans la partie haute 63 de l'échangeur et qui comporte des étages de garnissage analogues à ceux de la partie basse 60, les fines se refroidissent graduellement au contact des particules lourdes froides qui s'écoulent en pluie vers le bas à partir du distributeur 64. Enfin, elles sont évacuées par un conduct 65 et séparées par un cyclone 66, de leur air porteur, et finalement évacuées par le sas rotatif 67.In the upper part 63 of the exchanger and which has packing stages similar to those of the lower part 60, the fines gradually cool in contact with the cold heavy particles which flow down in rain from the distributor 64 Finally, they are evacuated by a conductor 65 and separated by a cyclone 66 from their carrier air, and finally evacuated by the rotary airlock 67.

Les particules lourdes s'écoulent à partir du distributeur 64, au travers de l'ensemble d'échange 63, 61, 60, puis, évacuées par le siphon 68, elles sont recyclées par l'élévateur 69, après stockage intermédiaire dans le réservoir 70.The heavy particles flow from the distributor 64, through the exchange assembly 63, 61, 60, then, evacuated by the siphon 68, they are recycled by the elevator 69, after intermediate storage in the tank 70.

Le mouvement des gaz au travers de la colonne d'echange est assuré par un ventilateur 71 alimentant le venturi 72 d'introduction des fines.The movement of the gases through the exchange column is ensured by a fan 71 supplying the venturi 72 for introducing fines.

On peut noter que, comme pour les dispositifs représentés sur les Fig. 1 et 2, les installations représentées sur les Fig. 3 et 4 ne nécessitent pas de matériels spéciaux pour l'introduction et l'extraction des fluides gazeux, ou pour le recyclage des particules lourdes, puisque les opérations peuvent être mises en oeuvre à température voisine de l'ambiante.It can be noted that, as for the devices shown in FIGS. 1 and 2, the installations shown in FIGS. 3 and 4 do not require special equipment for the introduction and extraction of gaseous fluids, or for the recycling of heavy particles, since the operations can be carried out at a temperature close to ambient.

On observe par ailleurs qui l'énergie calorifique à fournir dans ces dispositifs est très faible puisque le transfert d'énergie réalisé au moyen des particules lourdes recyclables permet, aux pertes près, la conservation de niveau thermique, pour les hypothèses admises précédemment.It is also observed that the heat energy to be supplied in these devices is very low since the transfer of energy carried out by means of heavy recyclable particles allows, apart from losses, the conservation of thermal level, for the hypotheses previously admitted.

C'est d'ailleurs dans cette même perspective de l'obtention d'un transfert de chaleur sensible avec conservation du niveau thermique qu'il est indiqué, dans le dispositif représenté sur la Fig. 1, d'alimenter le venturi 3 avec un gaz pré-' sentant une température au moins de l'ordre de celle des particules chaudes à traiter, et par conséquent de prélever à cet effet, une partie de l'air chaud s'échappant de l'échangeur 13.It is moreover in this same perspective of obtaining a sensible heat transfer with conservation of the thermal level that it is indicated, in the device shown in FIG. 1, to supply the venturi 3 with a gas having a temperature at least of the order of that of the hot particles to be treated, and consequently to take for this purpose, part of the hot air escaping of the exchanger 13.

A titre d'exemple, on peut indiquer que l'invention, qui trouve à s'appliquer dans les industries les plus diverses ayant à traiter de gros tonnages de solides fins, peut avantageusement être mise en oeuvre pour la calcination de l'alumine hydratée, aussi bien pour l'échauffement de produit hydraté que pour le refroidissement du produit calciné.By way of example, it may be indicated that the invention, which is applicable in the most diverse industries having to deal with large tonnages of fine solids, can advantageously be used for the calcination of hydrated alumina , both for the heating of hydrated product and for the cooling of the calcined product.

Pour une granulométrie de l'alumine de 50 à 80 ,am, correspondant à une vitesse terminale de chute libre de l'ordre de 10 à 50 cm/s, on utilise par exemple, à titre de particules lourdes recyclables, des billes de zircon de 1,2 à 1,6 mm de diamètre, de vitesse terminale moyenne de l'ordre de 10 m/s.For a particle size of the alumina of 50 to 80, am, corresponding to a terminal speed of free fall of the order of 10 to 50 cm / s, using, for example, as recyclable heavy particles, zircon beads 1.2 to 1.6 mm in diameter, with an average terminal speed of the order of 10 m / s.

Claims (18)

1. Method of heat treatment of particles having a low terminal velocity in free fall, called "light particles", characterised in that
(a) the light particles are dispersed in a first gaseous stream,
(b) the first gaseous stream, containing the light particles and moving upwardly, is put in contact, in a first path provided with baffles, with solid particles having a greater terminal velocity in free fall, called "heavy particles", these particles moving counter-current in free flow under gravity so as to allow a first heat transfer between, on the one hand, the light solid particles and the first gaseous stream and, on the other hand, the heavy solid particles,
(c) the heavy solid particles which have been subjected to the first heat transfer, moving counter-current and in free flow under gravity, are put in contact in a second path provided with baffles with a second gaseous stream moving upwardly so as to cause a second heat transfer between, on the one hand, the heavy particles and, on the other hand, the second gaseous stream, and
(d) the heavy particles which have been subjected to the second heat transfer in stage (b) are re-used.
2. Method according to claim 1, characterised in that the terminal velocity in free fall of the heavy particles is from 10 to 100 times that of the light particles.
3. Method according to claim 1 or claim 2, characterised in that for the treatment of light particles having a terminal velocity in free fall at ambient temperature less than 0.2 m/s, there are used heavy particles having a terminal velocity in free fall at ambient temperature from 2 to 20 m/s.
4. Method according to claim 3, characterised in that the heavy particles have a terminal velocity in free fall at ambient temperature from 5 to 15 m/s.
5. Method according to any one of claims 1 to 4, characterised in that the heavy particles are balls of sand, zircon or vitro-ceramic having a size from 1 to 2 mm and a density from 2.5 to 3.8.
6. Method according to claim 1 for cooling of light solid particles, characterised in that:
(a) the light particles are dispersed in a first gaseous stream,
(b) the first gaseous stream containing the light particles moving upwardly is put in contact, in a path provided with baffles, with cooler heavy solid particles moving counter-current in free flow under gravity so as to cause a first heat transfer between, on the one hand, the light solid particles and the first gaseous stream and, on the other hand, the heavy solid particles, thus obtaining cooled light particles, a cooled first gaseous stream and heated heavy particles,
(c) the heated heavy solid particles moving counter-current in free flow under gravity are put in contact, in a second path provided with baffles, with a second gaseous stream which is cooler moving upwardly so as to cause a second heat transfer between, on the one hand, the heavy particles and, on the other hand, the second gaseous stream, thus obtaining cooled heavy particles and a heated second gaseous stream,
(d) the heavy particles cooled in stage (b) are re-used, and
(e) a part of the heated second gaseous stream is used as the first gaseous stream.
7. Method according to claim 1 for heating light solid particles, characterised in that:
(a) the light particles are dispersed in a first gaseous stream,
(b) the first gaseous stream containing the light particles and moving upwardly is put in contact, in a first path provided with baffles, with hotter heavy solid particles moving counter-current and in free flow under gravity so as to cause a first heat transfer between, on the one hand, the light solid particles and the first gaseous stream and, on the other hand, the heavy solid particles thus obtaining heated light solid particles, a heated first gaseous stream and cooled heavy solid particles,
(c) the cooled heavy solid particles moving counter-current and in free flow under gravity are put in contact, in a second path provided with baffles, with a second gaseous stream which is hotter and moves upwardly so as to carry out a second heat transfer between on the one hand, the heavy particles and, on the other hand, the second gaseous stream, thus obtaining heated heavy particles and a cooled second gaseous stream,
(d) the heated heavy particles are re-used in stage (b), and
(e) the heated first gaseous stream is used to form at least in part the second gaseous stream.
8. Method according to Claim 1 for rapid heat treatment of light solid particles, characterised in that:
(a) the light particles are dispersed in a gaseous stream,
(b) the gaseous stream containing the light particles and moving upwardly is put in contact in a first path provided with baffles with hotter heavy solid particles, moving counter-current and in free flow under gravity, so as to carry out a first heat transfer between, on the one hand, the light solid particles and the gaseous stream and, on the other hand, the heavy solid particles thus obtaining a heated gaseous stream containing the heated light solid particles and cooled heavy solid particles,
(c) the heated gaseous stream containing the heated light solid particles is subjected to a rapid heat treatment,
(d) the gaseous stream, thus treated, moving upwardly, is put into contact in a second path provided with baffles with cool heavy solid particles moving counter-current and in free flow under gravity, so as to carry out a second heat transfer between on the one hand, the heavy particles and, on the other hand, the gaseous stream carrying the treated light particles, thus obtaining heated heavy particles and a cooled gaseous stream, containing cooled treated light particles, and
(e) the heated heavy particles are re-used in stage (b).
9. Method according to claim 8, characterised in that it is carried out in a single column comprising the first path provided with baffles in its lower part, means for supplying energy in its middle part and the second path provided with baffles in its upper part.
10. Device for heat treatment of particles having a low speed of free fall, called "light particles", characterised in that, in order to use the method according to claim 1, it comprises in combination the following different elements:
(a) means (2, 3, 23, 24, 4, 25 ...) for putting in suspension and transporting pneumatically the light particles in a first gaseous stream, comprising for example a system for volumetric distribution (2, 23 ...) a venturi system (3, 24 ...) and a duct (4, 25) connected to the lower part of the following element (b):
(b) a first column (5, 27 ...) having stages of packing elements, in which the first gaseous stream, containing the light particles and moving upwardly is put into contact with solid particles having a greater speed in free fall, called "heavy particles", moving counter-current and in free flow under gravity so as to cause a first heat transfer between, on the one hand, the light solid particles and the first gaseous stream and, on the other hand, the heavy particles and, connected to its lower part,
(c) means (11, 12, 32, 34, 35 ...) for recovering said heavy particles and transferring them to the upper part of the following element (d):
(d) a second column (13, 37 ...) having stages of packing elements in which the heavy solid particles which have been subjected to the first heat transfer, moving counter-current and in free flow under gravity are put in contact with a second gaseous stream moving upwardly so as to carry out a second heat transfer between, on the one hand, the heavy particles and, on the other hand, the second gaseous stream and, connected to its lower part,
(e) means (14, 17, 18, 19, 39 ...) for recovering said heavy particles and transferring them to the upper part of the first column (5, 27 .. .) in order to recycle them, and (f) means (6, 7, 8, 9, 28, 29, 30 ...) for recovering said treated particles, connected to the upper part of the first column (5, 27 ...).
11. Device according to claim 10, for cooling of hot light particles, characterised in that in order to operate the method of claim 6 it comprises in combination the following different elements:
(a) means (2, 3, 4) for putting into suspension and pneumatically transferring the light particles in a first gaseous stream, conprising for example a system of volumetric distribution (2), a venturi system (3) and a duct (4) connected at its lower part to the following element (b):
(b) a first column (5) having stages of packing elements in which the first gaseous stream, containing the light particles and moving upwardly, is put into contact with the heavy, cooler solid particles moving counter-current and in free flow under gravity thus obtaining, by a first heat transfer, cooled light particles, a cooled first gaseous stream and heated heavy particles and, connected to its lower part,
(c) means (11, 12) for recovering said heavy particles and transferring them to the upper part of the following element (d):
(d) a second column (13) having stages of stacking elements in which the heated heavy particles move in free flow under gravity counter-current to a second, cooler gaseous stream moving upwardly thus obtaining, by a second heat transfer, cooled heavy particles and a heated second gaseous stream and, connected to its lower part,
(e) means (14, 17, 18, 19, 10) for recovering said cooled heavy particles and transferring them to the upper part of the first column (5) in order to recycle them,
(f) means (6, 7, 8, 9) for recovering said cooled light particles, connected to the upper part of the first column (5) and separating them from the first, cooled, gaseous stream, and
(g) means (20, 21) for circulating in the second column (13) the second gaseous stream and removing part of said second stream, heated in said second column (13) to form the first gaseous stream.
12. Device according to claim 10, for heating of cold light solid particles characterised in that, in order to carry out the method of claim 7, it comprises in combination the following elements:
(a) means (23, 24, 25, 26) for putting in suspension and pneumatically transferring the light particles in a first gaseous stream, comprising for example a system for volumetric distribution (23), a venturi (24) an impeller (26) and a duct (25) connected to the lower part of the following element (b):
(b) a first column (27) having stages of packing elements in which the first gaseous stream, containing the light cool particles and moving upwardly, is put in contact with the hotter heavy solid particles moving counter-current in free flow under gravity thus obtaining, by a first heat transfer, heated light particles, a heated first gaseous stream and cooled heavy particles and, connected to its lower part,
(c) means (32, 33, 34, 35, 36) for recovering said cooled heavy particles and transferring them to the upper part of the following element (d):
(d) a second column (37) having stages of packing elements in which the cooled heavy particles move in free flow under gravity counter-current to a hotter second gaseous stream moving upwardly thus obtaining, by a second heat transfer, heated heavy particles and a cooled second gaseous stream and, connected to its lower part,
(e) means (39) for recovering, transferring and distributing said heated heavy particles to the upper part of the first column (27) to recycle them,
(f) means (28, 29, 30) for recovering said heated light particles, connected to the upper part of the first column (27), and separating them from the heated first gaseous stream, and
(g) means (31, 38, 40, 41) for circulating in the second column (37) the second gaseous stream and using the heated first gaseous stream to form, at least in part, the second gaseous stream.
13. Device according to claim 10 for rapid heat treatment of light solid particles characterised in that, in order to carry out the method of claim 8, it comprises in combination the following elements:
(a) means (43, 44, 45, 46) for putting in suspension and penumatically transferring the cooled light particles in a gaseous stream, comprising particularly a duct (45) connected to the lower part of the following element (b):
(b) a first column (47) having stages of packing elements in which the gaseous stream containing the cold light particles and moving upwardly is put into contact with the hotter heavy particles, moving counter-current and in free flow under gravity thus obtaining, by a first heat transfer, heated light particles, a heated gaseous stream and cooled heavy particles, and connected at its upper part to an entry of:
(c) a system 1(48) for rapid treatment, such as a transport bed, or parallel-flow transporting loop, for treating the gaseous stream and the heated light particles, of which the output is connected to the lower part of the following element (d):
(d) a second column (49) having stages of stacking elements in which the cooled heavy particles move in free flow under gravity counter-current to the gaseous stream and the treated light particles leaving the system (48) move upwardly thus obtaining by a second heat transfer, on the one hand heated heavy particles withdrawn at its lower part to be introduced at the upper part of the first column (47) by the distributor (55), on the other hand, a cooled gaseous stream containing cooled treated light particles, at its upper part, from which it is extracted by:
(e) means (50, 51, 52, 53) for aspiration (53) and separation (51) of the treated light particles; and
(f) means (56, 57, 58, 54) for recovering at the bottom of the first exchanger (47) cooled heavy particles and transferring them to the upper part of the second exchanger (49).
14. Device according to claim 10, for rapid heat treatment of light solid particles, characterised in that, in order to carry out the method of claim 9, it comprises, arranged in one and the same enclosure (59) of substantially cylindrical shape and arranged vertically,
(a) a first exchanger (60) having stages of packing elements, provided at its lower part with,
(b) means (62) such as burners, for supplying energy, in its middle part,
(c) a second exchanger (63) having stages of stacking elements, at its upper part; and also,
(d) means (71, 72) for putting in suspension and pneumatically transferring in a gaseous stream the cold light particles to be treated towards the bottom and through the first exchanger (60), then successively through the middle part and the second exchanger (63), in which said gaseous stream and said light particles are displaced upwardly to encounter the heavy particles moving counter-current and in free flow under gravity and are subjected successively to a first and a second heating followed by cooling,
(e) means (68, 69, 70) for recovering at the bottom of the first exchanger (60) the cooled heavy particles, and recycling them by an elevator (69) to the upper part of the second exchanger (63) where they are distributed by a distributor (64); and finally, connected to the upper part,
(f) means (65, 66, 67) for extraction of the cooled gaseous stream and separation of the cooled, treated light particles which it transports.
15. Device according to one of claim 10 to 14, characterised in that it comprises dense fluidised siphon systems for ensuring imperviosity at the input, distribution (10, 12, 36, 39, 54, 55, 64) and output (14, 32, 56, 68) of the heavy particles from the various exchangers (5, 18, 27, 37, 47, 49) or enclosures (59) for exchange.
16. Device according to one of claims 10 to 15, characterised in that it comprises rotating hoppers for ensuring imperviosity at the input (2, 23, 43) and the output (8, 52, 67) for fine particles from the different exchangers or enclosures.
17. Device according to one of claims 10 to 16, characterised in that it comprises a mechanical elevator (19, 35, 58, 69) of the bucket type, for example for raking the heavy particles to the top of the column, to recycle them.
EP81401731A 1980-11-05 1981-10-29 Method for the thermal treatment of fine solid particles Expired EP0051540B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT81401731T ATE5613T1 (en) 1980-11-05 1981-10-29 PROCESS FOR THE THERMAL TREATMENT OF VERY SMALL SOLID PARTICLES.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8023570A FR2493495B1 (en) 1980-11-05 1980-11-05 PROCESS FOR THE HEAT TREATMENT OF FINE SOLID PARTICLES USING RUNOFF GAS-SOLID EXCHANGERS
FR8023570 1980-11-05

Publications (2)

Publication Number Publication Date
EP0051540A1 EP0051540A1 (en) 1982-05-12
EP0051540B1 true EP0051540B1 (en) 1983-12-14

Family

ID=9247682

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81401731A Expired EP0051540B1 (en) 1980-11-05 1981-10-29 Method for the thermal treatment of fine solid particles

Country Status (12)

Country Link
US (1) US4450895A (en)
EP (1) EP0051540B1 (en)
JP (1) JPS57136929A (en)
AT (1) ATE5613T1 (en)
AU (1) AU545520B2 (en)
BR (1) BR8107157A (en)
CA (1) CA1187282A (en)
DE (1) DE3161655D1 (en)
ES (1) ES506851A0 (en)
FR (1) FR2493495B1 (en)
OA (1) OA06936A (en)
ZA (1) ZA817459B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2554221B1 (en) * 1983-08-04 1986-01-03 Tunzini Nessi Entreprises Equi TRIM ELEMENTS FOR AN EXCHANGE DEVICE, ESPECIALLY THERMAL, BY COUNTER-CURRENT BETWEEN SOLID PARTICLES AND A GAS CURRENT
NL191304C (en) * 1992-07-15 1995-05-16 Cooeperatie Abc B A Method and device for cooling feed.
US6263958B1 (en) 1998-02-23 2001-07-24 William H. Fleishman Heat exchangers that contain and utilize fluidized small solid particles
US6843785B2 (en) 2001-08-20 2005-01-18 Kimberly-Clark Worldwide, Inc. System and method for attaching absorbent articles
CN2684967Y (en) * 2004-01-07 2005-03-16 朱旭东 Sand heating device for casting
US20090114567A1 (en) * 2007-11-07 2009-05-07 Maxwell James F Cracking hydrocarbonaceous materials with heating bodies

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2739994A (en) * 1952-04-21 1956-03-27 Union Oil Co Acetylene process
US3051466A (en) * 1956-01-03 1962-08-28 Socony Mobil Oil Co Inc Method for heating granular solids
FR1201476A (en) * 1957-05-16 1959-12-30 Air Preheater heat exchanger for granules
US3029484A (en) * 1960-01-04 1962-04-17 Kutny Istvan Sand regenerating and cupola preheating apparatus
FR1469109A (en) * 1965-12-27 1967-02-10 Saint Gobain Intermediate product for the manufacture of glass and other silicates, and process and apparatus for its manufacture
DE1601146A1 (en) * 1967-12-22 1971-02-04 Siemens Ag Method and arrangement for the supply and / or discharge of mass particles in heat exchangers
US3630501A (en) * 1970-08-21 1971-12-28 Air Prod & Chem Thermal treatment of powder
US3831668A (en) * 1972-05-17 1974-08-27 P Weissenburg Tower type heat exchangers for heat interchange between gases heated to different temperatures
FR2429046A1 (en) * 1978-06-19 1980-01-18 Saint Gobain SOLID PARTICLE DELIVERY APPARATUS
FR2452689A1 (en) * 1979-03-27 1980-10-24 Saint Gobain PROCESS FOR RECOVERING HEAT FROM FUMES

Also Published As

Publication number Publication date
OA06936A (en) 1983-07-31
AU7709581A (en) 1982-05-13
ES8207636A1 (en) 1982-10-01
ATE5613T1 (en) 1983-12-15
US4450895A (en) 1984-05-29
ES506851A0 (en) 1982-10-01
CA1187282A (en) 1985-05-21
ZA817459B (en) 1982-10-27
JPH0210692B2 (en) 1990-03-09
FR2493495B1 (en) 1985-06-28
BR8107157A (en) 1982-07-20
DE3161655D1 (en) 1984-01-19
AU545520B2 (en) 1985-07-18
EP0051540A1 (en) 1982-05-12
JPS57136929A (en) 1982-08-24
FR2493495A1 (en) 1982-05-07

Similar Documents

Publication Publication Date Title
US9359556B2 (en) Biomass torrefaction system and method
FR2563118A1 (en) METHOD AND PLANT FOR TREATING FLUIDIZED BED MATERIAL CIRCULATING
EP0051540B1 (en) Method for the thermal treatment of fine solid particles
US4280415A (en) Method and apparatus for drying and processing moisture-containing solids
EP0016713B1 (en) Method of recuperating heat from a current of warm gas and apparatus for carrying out the method
FR2818918A1 (en) PROCESS AND DEVICE FOR REMOVING NEFAST VOLATIVE ELEMENTS, ESPECIALLY CHLORIDES AND / OR SULFATES, CONTAINED IN A FLOW OF SMOKE.
EP0485255B1 (en) Process and apparatus for the production of a solid fuel from combustible wastes
EP0125973B2 (en) Installation for the heat treatment of minerals in pulverulent form
JPH02293516A (en) Ash grader.cooler.burner
FR2489295A1 (en) METHOD AND APPARATUS FOR PREHEATING PULVERULENT MATERIALS BEFORE THEY ARE INTRODUCED IN A FUSION OVEN
CA1040855A (en) Heat exchanger and process for transferring heat between a heat carryin gas and a powdery fluidized material
EP0009455B1 (en) Apparatus for the heat exchange between solid particles and a gas current
EP0972562B1 (en) Apparatus to eliminate carbon deposits on solid objects
CA1185075A (en) Process and apparatus for purifying gases
EP0068943A1 (en) Equipment for recovering heat from molten slags
EP0491611A1 (en) Method for treatment of silica fumes with a view to bleaching them and apparatus for carrying out this method
FR2524628A1 (en) METHOD AND DEVICE FOR RECOVERING THE HEAT OF SOLID PARTICLES
US4335663A (en) Thermal processing system
SU748099A1 (en) Method and plant for heat-treatment of dispersed materials
WO1987005687A1 (en) Gas-gas heat exchanger
EP0498731A1 (en) Process and installation for the thermic treatment of pulverulent minerals
FR2507207A1 (en) Heat energy recovery from slag - in granular form in fluidised beds
FR2619806A1 (en) Process and system for producing clinker and product thus obtained
FR2644565A2 (en) Improvements to a method and to a device for dehydrating a powdered mineral, particularly for manufacturing plaster
FR2702392A1 (en) Process and device for regeneration of regenerable absorbent

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LU NL SE

17P Request for examination filed

Effective date: 19821029

ITF It: translation for a ep patent filed

Owner name: DR. ING. A. RACHELI & C.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 5613

Country of ref document: AT

Date of ref document: 19831215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3161655

Country of ref document: DE

Date of ref document: 19840119

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19850628

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19920904

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920916

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19920924

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19921001

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19921012

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19921028

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19921031

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19921215

Year of fee payment: 12

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19931029

Ref country code: GB

Effective date: 19931029

Ref country code: AT

Effective date: 19931029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19931030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19931031

Ref country code: CH

Effective date: 19931031

Ref country code: BE

Effective date: 19931031

BERE Be: lapsed

Owner name: TUNZINI-NESSI ENTREPRISES D'EQUIPEMENTS

Effective date: 19931031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940501

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19931029

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940701

EUG Se: european patent has lapsed

Ref document number: 81401731.5

Effective date: 19940510