EP0045762B1 - Improved clump weight for anchor lines - Google Patents

Improved clump weight for anchor lines Download PDF

Info

Publication number
EP0045762B1
EP0045762B1 EP81900437A EP81900437A EP0045762B1 EP 0045762 B1 EP0045762 B1 EP 0045762B1 EP 81900437 A EP81900437 A EP 81900437A EP 81900437 A EP81900437 A EP 81900437A EP 0045762 B1 EP0045762 B1 EP 0045762B1
Authority
EP
European Patent Office
Prior art keywords
clump weight
elongate member
weights
weight device
clump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81900437A
Other languages
German (de)
French (fr)
Other versions
EP0045762A1 (en
Inventor
Peter Bruce
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brupat Ltd
Original Assignee
Brupat Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brupat Ltd filed Critical Brupat Ltd
Publication of EP0045762A1 publication Critical patent/EP0045762A1/en
Application granted granted Critical
Publication of EP0045762B1 publication Critical patent/EP0045762B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • B63B21/24Anchors
    • B63B21/26Anchors securing to bed
    • B63B21/29Anchors securing to bed by weight, e.g. flukeless weight anchors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • B63B21/20Adaptations of chains, ropes, hawsers, or the like, or of parts thereof

Definitions

  • the present invention relates to a weighting device for marine anchor lines, such a device being generally referred to as a clump weight.
  • a clump weight is attached to an anchor line a distance upline from the anchor to cancel uplift of the anchor at high line tensions by tending to maintain the anchor line or cable horizontal at the sea bed at high line tensions.
  • the device firstly assists the anchor to give maximum holding performance, and secondly limits excess tensions in the anchor cable to thereby reduce the risk of cable breakage.
  • the guyed tower generally comprises an elongate trussed-box frame, and has a bottom column portion embedded in the sea bed, with twenty or even more guy lines arranged around the tower and attached thereto for lateral support of the tower.
  • the guy lines are attached to the tower at a selected elevation defined by the centre of pressure of the applied forces so that large overturning moments are not transmitted through the structure to the base, and each line is attached to a clump weight located on the sea bed.
  • a further length of chain stretching along the sea bed connect the clump weight to an anchoring device which may be for example a pile or drag-type anchor.
  • the clump weights serve the important function of providing a stiff guying system for normal sea conditions but soften the system during severe storm conditions by raising from the sea bed, thereby providing compliance in the system.
  • the tower is consequently restricted to a sway of around 2° and has a fundamental period greater than the wave period so that the total wave force is not transmitted to the structure supports.
  • One previous clump weight has taken the form of a single block weight, but this has had the disadvantage of (a) deep embedment in soft bottoms, with high suction resistance to lifting, and (b) creation of shock loads in the cable when pounding on the sea bottom.
  • Alternative known clump weights have been constituted by multiple block weights articulated in tandem and by arrays of parallel chains (sometimes with added weight blocks) examples of which are shown in US-A-3903705. These have had the disadvantage of (a) significant embedment with high suctional resistance to initial lifting, and (b) wear at the articulated joints or at the contact point between chains links. Additionally the chain clump system is costly.
  • a clump weight device for use with marine mooring lines comprises a heavy bendable elongate member with means at each end of the member for attaching the member to respective sections of a mooring line.
  • a description might be applied to the devices of US-A-3903705; however, the invention is characterised in that the elongate member is made from flexible sheet material.
  • the clump weight comprises at least one continuous elongate plate.
  • the elongate member can comprise a plurality of successive plate sections rigidly joined together, e.g. by welding.
  • the elongate member is capable of being bowed over its length as much as 20° without suffering permanent bending.
  • weights are attached to and spaced along the length of the elongate member, and preferably the weights are located on the upper side of said elongate member.
  • the elongate member is sufficiently thick to maintain bending moment stresses less than 20 per cent of the yield stress of the sheet material.
  • the sheet material is preferably steel.
  • a clump weight device which can have very low ground pressure thereby reducing the instance of deep embedment and suction resistance to lifting.
  • the device can raise from the sea bed by a peeling action at high mooring line tensions in storm conditions with a smooth progression of a water wedge between the clump sheet and the sea bed thereby preventing suction effects. Further, there need be no rubbing or articulated surfaces to cause wear and the device can be relatively cheaply manufactured.
  • a clump weight 1 (Fig. 1) comprises an elongate plate member 2, having spreader plates 3, at each end and holes 4, 5 to receive respective sections 6a, 6b, of a mooring line. Spaced along the length of the member 2 and attached thereto are transverse weights 7.
  • the plate member 2 is designed to have a desired degree of flexure, and can comprise a long continuous plate or alternatively may comprise a plurality of sheet sections 2a (Fig. 2) joined together by welding chevron form indents 8 between successive sections.
  • British Standard 4360 grade 50B steel can be used for the plate member 2.
  • the weights 7 are preferably simple cast iron elements which are attached to the member 2 by bolts 9 the nuts 9a of which can be locked by welding. As will be appreciated other materials could be used for the weights 7, e.g. concrete or steel.
  • the weight 7 could be welded to plate 2.
  • Fig. 5 shows the above clump weight device 1 used in a guy line 6 of an offshore guyed tower 10: the line section 6a being attached to the tower 10 and the section 6b to an anchoring device 11 e.g. pile or drag anchor.
  • the figure illustrates the clump device 1 peeling from the sea bed 12 with section 6a tensionted during storm conditions to provide a soft compliant system. Normally the device 1 rests fully on the sea bed to provide a stiff mooring system.
  • each member 2 could be 45 m. (150 ft.) long by approx 2.5 m. (8 ft.) wide with a thickness of approx. 3.5 cm. (1.38 ins.), and up to 16 weights 7 could be employed.
  • the total weight of the device 1 could be approximately 180 tons (with each weight 7 approx. 6 ton), and this provides a relatively low gravity pressure on the sea bed of approximately 10.7 kN. M - 2 (1.75 p.s.i.).
  • the plate member 2 could be made up of separate sheets of a length between 4 m. and 6 m. (13 to 20 ft.).
  • the member 2 could be non- parallel sided e.g. trapezoidal.
  • the weights 7 are spaced along the member 7 to provide optimum clump characteristics and the spacing can be uniform or non-uniform.
  • the weights 7 are preferably identical and located above the member 2 to give a smooth underside to promote water wedge progression during peeling off the sea bed.
  • the weights 7 are not uniformally positioned on the plate member 2 but in this case the spacing (pitch) between successive weights increases towards the anchor end 5 of the member 2.
  • the spacing pitch varies between groups of weights; thus the group (four in number) nearest the end 4 remote from the anchor has the smallest pitch (1.2 m. (48 ins.) for a clump size as set out above), whilst the pitch of the remaining four groups have increasing pitch (of 1.57 m. (62 ins.); 1.9 m. (76 ins.); 2.25 m. (90 ins.); and 2.6 m. (104 ins.) respectively).
  • This arrangement will give more effective operation of the clump weight for a given number and weight of weight members.
  • the above clump device 1 has the following beneficial characteristics:-
  • these plates can be arranged in abutting relationship or alternatively could be arranged to overlap at adjacent edges.
  • apertures may be provided in the plate to relieve the water weight during plate lifting but it is preferable that these are restricted in number to reduce the risk of the plate member sinking into a soft mud bed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Earth Drilling (AREA)
  • Bridges Or Land Bridges (AREA)

Abstract

Anchor line damping device known as a clump weight; the device is attached to the anchor line 6b) and is located on the sea bed upline of the anchor. The clump weight maintains the anchor line horizontal at high line tension but limits excess line tension to avoid cable breakage. The clump weight of the present invention comprises an elongate flexible sheet metal plate (2) on which are mounted suitable weights (7) with cable attachment means (3) at each end of the plate, and this structure provides economies over previous clump weights which comprised multiple strands of heavy chain or a series of articulated weight members.

Description

  • The present invention relates to a weighting device for marine anchor lines, such a device being generally referred to as a clump weight.
  • A clump weight is attached to an anchor line a distance upline from the anchor to cancel uplift of the anchor at high line tensions by tending to maintain the anchor line or cable horizontal at the sea bed at high line tensions. The device firstly assists the anchor to give maximum holding performance, and secondly limits excess tensions in the anchor cable to thereby reduce the risk of cable breakage.
  • One significant area of use of clump weights is in marine guyed towers designed as offshore drilling and production platforms. These tower platforms provide very considerable advantages, particularly as regards costs, over other forms of offshore platform. The guyed tower generally comprises an elongate trussed-box frame, and has a bottom column portion embedded in the sea bed, with twenty or even more guy lines arranged around the tower and attached thereto for lateral support of the tower. The guy lines are attached to the tower at a selected elevation defined by the centre of pressure of the applied forces so that large overturning moments are not transmitted through the structure to the base, and each line is attached to a clump weight located on the sea bed. A further length of chain stretching along the sea bed connect the clump weight to an anchoring device which may be for example a pile or drag-type anchor. The clump weights serve the important function of providing a stiff guying system for normal sea conditions but soften the system during severe storm conditions by raising from the sea bed, thereby providing compliance in the system. The tower is consequently restricted to a sway of around 2° and has a fundamental period greater than the wave period so that the total wave force is not transmitted to the structure supports.
  • One previous clump weight has taken the form of a single block weight, but this has had the disadvantage of (a) deep embedment in soft bottoms, with high suction resistance to lifting, and (b) creation of shock loads in the cable when pounding on the sea bottom. Alternative known clump weights have been constituted by multiple block weights articulated in tandem and by arrays of parallel chains (sometimes with added weight blocks) examples of which are shown in US-A-3903705. These have had the disadvantage of (a) significant embedment with high suctional resistance to initial lifting, and (b) wear at the articulated joints or at the contact point between chains links. Additionally the chain clump system is costly.
  • It is an object of the present invention to provide an improved clump weight obviating or mitigating the above disadvantages.
  • According to the present invention a clump weight device for use with marine mooring lines comprises a heavy bendable elongate member with means at each end of the member for attaching the member to respective sections of a mooring line. Such a description might be applied to the devices of US-A-3903705; however, the invention is characterised in that the elongate member is made from flexible sheet material.
  • Preferably the clump weight comprises at least one continuous elongate plate. Ater- natively the elongate member can comprise a plurality of successive plate sections rigidly joined together, e.g. by welding.
  • Preferably the elongate member is capable of being bowed over its length as much as 20° without suffering permanent bending.
  • Preferably weights are attached to and spaced along the length of the elongate member, and preferably the weights are located on the upper side of said elongate member.
  • Preferably the elongate member is sufficiently thick to maintain bending moment stresses less than 20 per cent of the yield stress of the sheet material. The sheet material is preferably steel.
  • By the present invention there is provided a clump weight device which can have very low ground pressure thereby reducing the instance of deep embedment and suction resistance to lifting. The device can raise from the sea bed by a peeling action at high mooring line tensions in storm conditions with a smooth progression of a water wedge between the clump sheet and the sea bed thereby preventing suction effects. Further, there need be no rubbing or articulated surfaces to cause wear and the device can be relatively cheaply manufactured.
  • An embodiment of the present invention will now be described by way of example with reference to the accompanying drawings in which:
    • Fig. 1 shows a plan view of a clump weight device according to the present invention;
    • Fig. 2 shows a plan view of a detail to a larger scale;
    • Fig. 3 shows a transverse section of the device;
    • Fig. 4 shows an end view of a weight used with the device of Fig. 6;
    • Fig. 5 shows the use of the clump weight device in an offshore guyed tower structure;
    • Fig. 6 shows a plan view of a modified form of the clump weight device of Fig. 1; and
    • Fig. 7 shows a side view of the clump weight device of Fig. 6.
  • A clump weight 1 (Fig. 1) comprises an elongate plate member 2, having spreader plates 3, at each end and holes 4, 5 to receive respective sections 6a, 6b, of a mooring line. Spaced along the length of the member 2 and attached thereto are transverse weights 7. The plate member 2 is designed to have a desired degree of flexure, and can comprise a long continuous plate or alternatively may comprise a plurality of sheet sections 2a (Fig. 2) joined together by welding chevron form indents 8 between successive sections. British Standard 4360 grade 50B steel can be used for the plate member 2.
  • The weights 7 (Figs. 3, 4) are preferably simple cast iron elements which are attached to the member 2 by bolts 9 the nuts 9a of which can be locked by welding. As will be appreciated other materials could be used for the weights 7, e.g. concrete or steel. The weight 7 could be welded to plate 2.
  • Fig. 5 shows the above clump weight device 1 used in a guy line 6 of an offshore guyed tower 10: the line section 6a being attached to the tower 10 and the section 6b to an anchoring device 11 e.g. pile or drag anchor. The figure illustrates the clump device 1 peeling from the sea bed 12 with section 6a tensionted during storm conditions to provide a soft compliant system. Normally the device 1 rests fully on the sea bed to provide a stiff mooring system.
  • For the tower 10, approximately 20 guy lines may be necessary, and the clump devices 1 are designed to give the desired compliance to the system. By way of example, each member 2 could be 45 m. (150 ft.) long by approx 2.5 m. (8 ft.) wide with a thickness of approx. 3.5 cm. (1.38 ins.), and up to 16 weights 7 could be employed. The total weight of the device 1 could be approximately 180 tons (with each weight 7 approx. 6 ton), and this provides a relatively low gravity pressure on the sea bed of approximately 10.7 kN.M-2 (1.75 p.s.i.).
  • The plate member 2 could be made up of separate sheets of a length between 4 m. and 6 m. (13 to 20 ft.). The member 2 could be non- parallel sided e.g. trapezoidal. The weights 7 are spaced along the member 7 to provide optimum clump characteristics and the spacing can be uniform or non-uniform. The weights 7 are preferably identical and located above the member 2 to give a smooth underside to promote water wedge progression during peeling off the sea bed.
  • In the embodiment shown in Figs. 6 and 7, the weights 7 are not uniformally positioned on the plate member 2 but in this case the spacing (pitch) between successive weights increases towards the anchor end 5 of the member 2. In particular, it is arranged that the spacing pitch varies between groups of weights; thus the group (four in number) nearest the end 4 remote from the anchor has the smallest pitch (1.2 m. (48 ins.) for a clump size as set out above), whilst the pitch of the remaining four groups have increasing pitch (of 1.57 m. (62 ins.); 1.9 m. (76 ins.); 2.25 m. (90 ins.); and 2.6 m. (104 ins.) respectively). This arrangement will give more effective operation of the clump weight for a given number and weight of weight members.
  • Any known steps can be taken to minimise corrosion of the member in the sea e.g. coating.
  • The above clump device 1 has the following beneficial characteristics:-
    • 1) Sufficiently flexible to peel progressively from the sea bed to avoid or minimise suction effects and provide an acceptable transition from a stiff to a compliant mooring system;
    • 2) Provides a sufficient weight per unit length to give satisfactory mooring elasticity (i.e. energy absorption);
    • 3) Provides low pressure on the sea bed to minimise embedment of the device into soft soils;
    • 4) Obviate articulations and rubbing surfaces.
    • 5) Relatively cheap to manufacture.
  • Where a series of plates are used to form the plate member 2, these plates can be arranged in abutting relationship or alternatively could be arranged to overlap at adjacent edges.
  • Further modifications are of course possible for example, apertures may be provided in the plate to relieve the water weight during plate lifting but it is preferable that these are restricted in number to reduce the risk of the plate member sinking into a soft mud bed.

Claims (13)

1. A clump weight for use with marine mooring lines comprising a heavy bendable elongate member (1), with means (3) at each end of the member (1) for attaching the member to respective sections (6a, 6b) of mooring line, characterised in that the elongate member (1) is made from flexible sheet material.
2. A clump weight device as claimed in claim 1, characterised in that the elongate member (1) comprises at least one continuous elongate plate (2).
3. A clump weight device as claimed in claim 1, characterised in that the elongate member (1) comprises a plurality of successive plate sections (2a, 2b etc) rigidly joined together.
4. A clump weight device as claimed in any one of the preceding claims, characterised in that the elongate member (1) is capable of being bowed over its length as much as 20° without suffering permanent bending.
5. A clump weight device as claimed in any one of the preceding claims, characterised in that weights (7) are attached to and spaced along the length of the elongate member (2).
6. A clump weight device as claimed in claim 5, characterised in that the weights (7) are located on the upper side of said elongate member (2).
7. A clump weight device as claimed in any one of the preceding claims, characterised in that the elongate member (2) is sufficiently thick to maintain bending moment stresses less than 20 per cent of the yield stress of the sheet material (2).
8. A clump weight device as claimed in any one of the preceding claims, characterised in that the sheet material is steel.
9. A clump weight device as claimed in claim 5 or 6, characterised in that the weights (7) are uniformly spaced along the elongate member (1).
10. A clump weight device as claimed in claim 5 or 6, characterised in that the weights (7) are non-uniformally spaced along the elongate member (1).
11. A clump weight device as claimed in claim 10, wherein the spacing of the weights (7) at one end (5) of the elongate member is greater than at the other end (4).
12. A clump weight device as claimed in claim 11, characterised in that the spacing progressively increases from one end (4) of the elongate member (1) to the other (5).
13. A clump weight device as claimed in any one of claims 10 to 12, characterised in that groups of weights are provided (Fig. 6) the spacing of the weights (7) in a particular group being the same but the spacing between the groups varying.
EP81900437A 1980-02-21 1981-02-20 Improved clump weight for anchor lines Expired EP0045762B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB8006129 1980-02-21
GB8006129 1980-02-21

Publications (2)

Publication Number Publication Date
EP0045762A1 EP0045762A1 (en) 1982-02-17
EP0045762B1 true EP0045762B1 (en) 1984-04-11

Family

ID=10511605

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81900437A Expired EP0045762B1 (en) 1980-02-21 1981-02-20 Improved clump weight for anchor lines

Country Status (5)

Country Link
EP (1) EP0045762B1 (en)
AU (1) AU547262B2 (en)
IE (1) IE50734B1 (en)
NO (1) NO153127C (en)
WO (1) WO1981002413A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2132149B (en) * 1982-12-22 1986-03-19 Blohm Voss Ag Anchor system for floating structures
JP4623390B2 (en) * 2008-10-03 2011-02-02 ソニー株式会社 Playback apparatus, playback method, and playback program
EP2955097B1 (en) 2014-04-24 2017-03-22 Lars-Olof Jansson A weight device for an anchor line
GB2538085A (en) * 2015-05-06 2016-11-09 Scotrenewables Tidal Power Ltd Gravity anchor device
CN112858624A (en) * 2021-01-19 2021-05-28 浙江大学 Multi-node sensor array structure and data acquisition and disaster early warning device thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3576171A (en) * 1969-04-04 1971-04-27 Merritt Division Of Murphy Pac Mooring apparatus
US3903705A (en) * 1974-01-24 1975-09-09 Exxon Production Research Co Apparatus for anchoring marine structures
FR2274501A1 (en) * 1974-06-14 1976-01-09 Eca Submarine depth control system - cable with weighted end wound onto drum housed in compartment at centre of gravity
SE411032B (en) * 1976-02-11 1979-11-26 Soderberg Gunnar ANCHOR ADDITION

Also Published As

Publication number Publication date
IE810351L (en) 1981-08-21
AU547262B2 (en) 1985-10-10
WO1981002413A1 (en) 1981-09-03
AU6778881A (en) 1981-09-11
NO153127C (en) 1986-01-22
NO153127B (en) 1985-10-14
NO813521L (en) 1981-10-19
IE50734B1 (en) 1986-06-25
EP0045762A1 (en) 1982-02-17

Similar Documents

Publication Publication Date Title
CN100999247B (en) Truss semi-submersible offshore floating structure
US6612781B1 (en) Method of transporting and installing an offshore structure
US4321882A (en) Interconnecting system for marine floats
US3903705A (en) Apparatus for anchoring marine structures
US4715744A (en) Floating breakwater
CA1039520A (en) Bridge beam tower erection method and apparatus
GB2183705A (en) Compliant offshore platform
US4684292A (en) Oscillating platform on flexible piles for work at sea
EP0045762B1 (en) Improved clump weight for anchor lines
CN115733433A (en) Flexible connection structure of waterborne photovoltaic power station
EP0179776B1 (en) Offshore multi-stay platform structure
CN110106759B (en) Coastal highway subgrade anti-floating pile system
US20220411026A1 (en) System and method for mooring and anchoring of floating solar arrays on water surface
US20220063774A1 (en) Offshore semi-submersible platform for supporting a wind turbine and offshore electrical energy production facility
CN114000459B (en) Method for erecting platform for high-pile wharf cast-in-place pile construction
EP0152232A2 (en) Stabilisation mat
NO161429B (en) DEVICE FOR COMPENSATION FOR TENSION CHANGES IN A TENSION.
US4797034A (en) Oscillating marine platform with a rigid base
US4674919A (en) Off-shore platform structure
GB2327449A (en) Method of transporting and installing a substructure
SE2000207A1 (en) Mooring system
CN215407763U (en) Stay cable type power transmission tower
CN217883272U (en) Multi-span multi-column single-cable structure offshore photovoltaic supporting system
SU1411367A1 (en) Offshore stationary platform
CN218617108U (en) Floating type photovoltaic buoy fixing anchor structure

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): FR GB

17P Request for examination filed

Effective date: 19820224

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): FR GB

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19871030

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881118