EP0042913B1 - Process for the automatic setting of radio clocks aided by time signals - Google Patents

Process for the automatic setting of radio clocks aided by time signals Download PDF

Info

Publication number
EP0042913B1
EP0042913B1 EP81102235A EP81102235A EP0042913B1 EP 0042913 B1 EP0042913 B1 EP 0042913B1 EP 81102235 A EP81102235 A EP 81102235A EP 81102235 A EP81102235 A EP 81102235A EP 0042913 B1 EP0042913 B1 EP 0042913B1
Authority
EP
European Patent Office
Prior art keywords
time
transmitter
clock
receiver
radio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81102235A
Other languages
German (de)
French (fr)
Other versions
EP0042913A2 (en
EP0042913A3 (en
Inventor
Werner Dipl.-Ing. Schulz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SCHULZ, WERNER, DIPL.-ING.
Original Assignee
Schulz Werner Dipl-Ing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schulz Werner Dipl-Ing filed Critical Schulz Werner Dipl-Ing
Priority to AT81102235T priority Critical patent/ATE22359T1/en
Priority to CA000379059A priority patent/CA1167649A/en
Publication of EP0042913A2 publication Critical patent/EP0042913A2/en
Publication of EP0042913A3 publication Critical patent/EP0042913A3/en
Application granted granted Critical
Publication of EP0042913B1 publication Critical patent/EP0042913B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04RRADIO-CONTROLLED TIME-PIECES
    • G04R20/00Setting the time according to the time information carried or implied by the radio signal
    • G04R20/20Setting the time according to the time information carried or implied by the radio signal the radio signal being an AM/FM standard signal, e.g. RDS
    • G04R20/22Tuning or receiving; Circuits therefor
    • GPHYSICS
    • G04HOROLOGY
    • G04RRADIO-CONTROLLED TIME-PIECES
    • G04R40/00Correcting the clock frequency
    • G04R40/06Correcting the clock frequency by computing the time value implied by the radio signal

Definitions

  • the first category includes analog or digital clocks, the internal time base of which is corrected continuously or only temporarily by means of frequency or phase comparison (DE-B-1 773 406).
  • Applications are also known in which the time base of the clock is derived from the carrier frequency of one or more transmitters. A switchover to a second time base is then necessary so that there is a power reserve if radio control ceases to exist (Funkschau 1977, H.3, p. 137).
  • the catch range used in the phase comparison used to control the utility watch is of the order of 100 ms.
  • a counter is used to determine the mean frequency deviation between the oscillator frequency and the mains frequency during a long measurement period.
  • the oscillator frequency is readjusted as a function of the stored frequency deviation, the change of which is prevented if the mains voltage fails.
  • This is a synchronization method that requires a time-predominant, usually constant reception of the reference frequency; it is not a trigger procedure with only a short-term reception of a transmitter time signal.
  • the second category includes digital clocks that run as autonomous radio clocks with more or less accuracy without radio control and at 0 o'clock, i.e. periodically, by means of a transmitter time signal by resetting the counter to the target time (Elektor 1974, pp. 7-79, 7-80).
  • a radio-controlled clock with a midnight detector is known (“Funkschau”, number 26/1979, pp. 1527-1531), but this does not make it possible to correct the oscillator frequency or to correct the display in the sense that the display is corrected at any time can.
  • the correction of the clock deviation of a clock is only that the clock, which is a digital counter, is set to zero at midnight. Such a correction by zeroing is only possible at the point in time when the time signal delivers the zero value.
  • a real display correction must be understood to mean that the correction that is then applicable must be possible at any time.
  • the gear deviation especially shortly before midnight, can take on relatively large values; if the radio control is no longer available, the power reserve is therefore relatively short. Since the triggering always takes place at midnight, faults that also regularly occur at this time cannot be hidden.
  • the third category is divided into two methods: the time transmitter is either received continuously or the time transmitter is only used to set the clock intermittently.
  • the respective path deviation is not determined periodically.
  • the movement deviation of the watch that occurs within a time interval is determined and stored by forming the difference between two counter contents.
  • One counter contains the current display value of the clock, the other counter the received, encoded time information from a time transmitter.
  • the difference between the two counter contents is a measure for the predetermination of the next switch-on time of the receiver, at which the difference is formed again. Since the time transmitters continuously send out time signals, a catch area is also not necessary.
  • the respective time interval between the individual switch-on points of the receiver, at which the coded time signal is decoded is inversely proportional to the counter difference determined.
  • the object of the invention is therefore to provide a method of the type specified in the preamble which, both in digitally working and in quasi-analog indicating clocks, makes it possible to correct the gear deviation and the size causing it at any time, largely eliminating the effects of interference and the need is eliminated that the transmitted signal represents an encoded time information.
  • the clock deviation of the watch according to size and direction is measured with the help of a transmitter time signal within defined, constant time intervals, stored and then used to correct the clock deviation and the oscillator frequency of the watch.
  • Switching on the receiver, determining the time catch range for the transmitter time signal, generating a periodic time signal that appears in the same time rhythm as the transmitter time signal, generating the measurement pulses for determining the gear deviation and deriving the correction parameters are also carried out using this oscillator frequency. If the transmitter time signal fails, the display continues to be corrected with the most recently saved values of size and direction of the gear deviation, while the correction of the oscillator frequency is prevented. This results in the very large power reserve when radio control is no longer available. One can assume that environmental influences on the oscillator do not change abruptly.
  • the clock deviation of the watch which has already been corrected several times, is close to 0 and will have the same tendency even after the transmitter time signal has failed.
  • a transmitter time signal is to be understood as a transmitter time signal of short duration which has the task of transmitting the time reference provided by a transmitter, a reference point on a defined time scale. It is a modulation oscillation with usually several time stamps, which demodulates only an impulse that reproduces the transmitted time reference with a certain uncertainty (e.g. common on radio: "It was ... with the last tone of the time signal "). This demodulation result, as a single pulse, must not be confused with coded time information that transmits the text of a time value in the form of a pulse code.
  • Radio clocks are also to be understood as those clocks in which the transmission of the transmitter time signal is wired, for example as is customary in clock systems.
  • the short duty cycle of the receiver according to claim 2 also brings about energy savings compared to those methods in which the receiver is switched on continuously or for several minutes a day.
  • the interference immunity of the clock is increased by the defined oscillator adjustment in that the interference-prone transmitter time signal appears before the periodic time signal.
  • the calculated gear deviation until the next correction is therefore not 0, but slightly negative.
  • Interference pulses which mainly occur in the receiving channel, can only have an effect before the arrival of the transmitter time signal.
  • FIG. 1 shows the switching sequence of the most important signal lines from the block diagram according to FIG. 2 in a time flow diagram. These signal lines are with provided with circled reference numbers.
  • the block diagram according to FIG. 2 described in more detail below serves only to describe the function of the method, but is replaced in practice by a computer program.
  • the rate deviation of the clock (49) is determined by the frequency constancy of the oscillator (30). To be able to measure this, it must be possible to compare it with a time interval that is considered “correct”. Since there is no absolutely correct time scale, one has to use the “official time” for clock applications, which is currently being broadcast by radio / television stations / time transmitters with inconsistent transmitter time signals. In the following, however, it should be assumed that a uniform, automatically evaluable transmitter time signal is broadcast by all radio and television stations so that the method described here comes into its own.
  • the watch is started using the switch (f), which switches on the automatic start (48) and the time signal receiver (45). If the clock (49) is already running, it is stopped using the stop button (e). With quasi-analogue clocks, the movement is set to the reference time or stopped at this point.
  • the next time signal (3), (5) reaches the clock (49) via the automatic start (48) and sets all registers there - according to the specified time reference - to the setpoint and starts the time counter.
  • the clock (49) now runs automatically with the accuracy of its quartz oscillator (30), that is to say without influencing the transmitter, until the following time signal (3), (5) arrives.
  • the idle state is established via the reset line of the automatic starter (48): the flip-flop (47) is reset via the OR gate (41), so that the time signal output from the AND gate ( 46) is locked;
  • the clock counter (40) is set to 0 via the OR gate (36) and the flip-flop (38) is brought into the rest position, so that the clock pulse 1 cannot reach the clock counter (40) via the AND gate (39);
  • the switch-on stage (43), (44) of the time signal receiver (45) is brought into the “off” position via the OR gate (35); Furthermore, the registers in the setting logic (31) are set to the setpoint and the contents of the sign memory (23) and difference time memory (26) are set to 0.
  • time signal receiver (45) and the automatic start (48) are switched off again with the switch (f), which completes the starting process.
  • a preselected signal 1 from the clock (49) switches on the time signal receiver (45), for example after 23 hours / 59 minutes, via the switch-on stage (43), (44) and opens the AND gate (39) with the help of the flip-flop (38) so that the time clock 1 can get into the clock counter (40).
  • the next time signal (2) is supplied by the clock counter (40), releases the time signal output of the time signal receiver (45) via the flip-flop (47) and the AND gate (46), provides the register in the differential timer (24) and in the priority logic (21) and releases via the AND gates (22), (25) the transfer of the information from the priority logic (21) and difference timer (24) to the sign memory (23) and difference time memory (26).
  • the priority logic (21) now expects the time signal (3), (5) or the periodic time signal (4) from the clock counter (40).
  • the differential timer (24) is started by the priority logic (21), counting pulses of the clock cycle 2 being transmitted by the clock counter (40) to the differential timer (24) and to the correction stage ( 27), count and determine the resolution of the time measurement for the clock deviation of the watch (49).
  • the difference time measurement is ended by the last arriving signal (4) or (5) via the path of the priority logic (21).
  • the signal (7) from the clock counter (40) then locks the time signal (3), (5) via the OR gate (41), flip-flop (47) and AND gate (46).
  • the next output signal (8) of the clock counter (40) switches off the time signal receiver (45) via an OR gate (35), flip-flop (43), OR gate (44) and transmits the measured values with the same signal (8) Priority logic (21) and difference timer (24) via the AND gates (22), (25) in the sign memory (23) and difference time memory (26). After this data is stable at the correction stage (27) and has been evaluated, the start of correction can be initiated from the clock counter (40) via the signal line (9).
  • the display is corrected with the aid of pulse level 1 (29), pulse level 2 (33) and the OR gate (37) in such a way that the values of the gear deviation recorded in the sign, memory (23) and difference time memory (26) are reversed be made.
  • the pulse stage 1 (29) transforms the clock cycle 1 (FIG. 3a) of the oscillator (30) into a square wave with the pulse ratio 4 (FIG. 3b). This square wave normally reaches the clock (49) via the OR gate (37) and the interference suppression filter (42). If the clock (49) ran too fast according to the measurement result, this time cycle is suppressed by the correction stage (27) via the OR gate (28) in pulse stage 1 (29) until the measured gear deviation is compensated again.
  • the correction pulse (27) via the OR gate (32) releases the center pulse at the time pulse ( Figure 3c) in pulse level 2 (33), the sum signal with the pulse ratio 2 ( Figure 3d) via the Oder gate (37) until the clock (49) until the measured gear deviation is balanced again.
  • the oscillator frequency e.g. B. in a digital manner, as described in DE-A-2 362 470 and shown schematically in Figure 5.
  • the correction stage (27) arithmetically counteracts the rate deviation of the clock (49) in this oscillator branch, so that a closed control loop is created.
  • the completion of all correction processes is indicated by the correction stage (27) with the signal (10), which causes the clock counter (40) and the flip-flop (38) to be reset via the OR gate (36).
  • the counter in the differential timer (24) reaches its maximum value and sets the flip-flop (34) with its output signal (6).
  • the carry pulse (8) is therefore ineffective, so that the subsequent display correction is carried out with the values last stored in the sign memory (23) and difference time memory (26).
  • the oscillator correction is prevented from the flip-flop (34), so the control loop is interrupted so that the high power reserve is retained.
  • the signal line “summer-winter time” from the clock (49) to the positioning logic (31) requires that it is a computer-controlled date clock.
  • H potential corresponds to summer time, for example, L potential winter time.
  • the potential change on this signal line causes the targeted adjustment process by one hour each time using the previously described display correction method. Since this setting process takes a relatively long time and the information on the clock display is incorrect during this time, the display resolution should in any case be one second so that it can be visually recognized that the clock is running too fast or the clock is at a standstill. This signaling is sufficient for the uninitiated, even without operating instructions, to disregard the display.
  • the most susceptible to faults is the time signal (3), (5), the signal path of which has been subjected to closer examination.
  • Interference impulses outside the capture range (FIG. 1) have no effect.
  • Interference impulses within the capture range only have an effect if they occur before the time signal (3), (5) arrives. If this occurs, there is a high probability that it is a permanent disturbance, i.e. the probability of a series of interference pulses that extends over the entire capture range is high.
  • the first interference pulse that is closest to the lower tolerance limit (FIG. 1) has an effect. This means that the watch is simulated to follow up.
  • the capture range will still be within the permitted absolute time of the time signal (3), (5) even after repeated faults.
  • the time signal (3) is expected in the first half of the catch range, with a glitch only having a short effective period.
  • the catch range changes with the periodic time signal (4) in relation to the time signal 3, 5, while the time signal (3), (5) itself is to be regarded as stationary.
  • the radio receiver (61) has a simple structure, as described in the list of advantages.
  • the transmitter tuning is voltage controlled.
  • the receiver microcomputer (68) automatically adjusts the radio receiver (61) to the strongest transmitter after being switched on by the OR gate (44) and the power supply (64). This happens.
  • B. by evaluating the control voltage, which is supplied via the amplifier (62) and the A / D converter (66) to the receiver microcomputer (68).
  • the computer program first travels the entire reception frequency range with the aid of the tuning voltage converted via the D / A converter (65) and stores the associated control voltage values.
  • the radio receiver (61) is then snapped into the transmitter with the greatest field strength in order to increase the probability of undisturbed reception.
  • the transmitter time signal is broadcast by all transmitters at almost every full hour, there is also the option in time limit areas to receive a neighboring transmitter that is outside the time limit, which is not the case with coded signals is possible.
  • the receiver microcomputer (68) can simply register a repeated time signal failure, since it also has to perform the task of time signal decoding. In this case, he looks for the next strongest station.
  • the radio receiver (61) is to be used as a radio clock at the same time, it is advisable to switch to manual mode using the switch (g).
  • the currently set transmitter is then also used as a time signal transmitter.
  • the automatic start (48) must be locked via the AND gate (68) and the receiver microcomputer (68) must be switched over to another program loop.
  • the simplest and cheapest concept of a clock system using this method is obtained with a master clock according to FIG. 5 and quasi-analogue secondary clocks with a stepping motor (82).
  • the slave clocks are controlled via only one signal line, which leads the second clock with correction to each slave clock.
  • the installation of the slave clocks is therefore limited to a double wire - without power supply - so that this method is recommended, for example, in potentially explosive systems.
  • a clock system according to this method is similarly simple in accordance with FIG. 7.
  • the master clock is again designed according to FIG. 5, the slave clocks likewise, but the latter lacks the time signal receiver (45).
  • the slave clocks are now controlled using the time signal.
  • the slave clocks work more interference-free, do not have to be set after a master clock failure (utilization of the high power reserve) and can also be equipped with a digital display (81).
  • Slave clocks are often installed in hard-to-reach places and are exposed to extreme environmental influences, so service should be easy, particularly with this type of clock. Since the present method is a computer-controlled clock anyway, it is possible to provide outputs for data exchange (display value) via standardized interfaces between master clocks and slave clocks without any particular effort. An example of this is shown in FIG. 8.
  • the slave clocks are controlled again with the help of the time signal, i.e. interference-free with a high power reserve, but now there is the additional option of cyclically querying all slave clocks to indicate the faulty operation of a slave clock in the central monitoring room.
  • a targeted setting process is possible from the master clock. This requires addressing each slave clock from the master clock and simply setting and recognizing the specific address on the slave clock. This task can be solved relatively easily using coding switches (91) (FIG. 8). You then also have the option of setting summer and winter time from the master clock.
  • the uniform transmitter time signal should therefore be broadcast at two fixed times of the day, which are offset by 12 hours. From the various possibilities for a suitable transmitter time signal, which ensures automatic evaluation, a solution was developed that allows the construction of simple time signal encoders and decoders, is acoustically perceptible and only takes three seconds (Figure 9).
  • the Nf modulation frequency of 1000 Hz was chosen because it serves as a reference frequency for many parameters in communications technology and can also be made audible.
  • the selected duration of a total of three seconds represents a favorable compromise between unnecessarily long (thus prone to failure) and too short (hence insufficient selection from any LF signal). It should also be emphasized that all relevant times with binary dividers have a usual "clock frequency" , e.g. B. 2 15 Hz or 2 22 Hz can be derived, for which there are enough resonators. This advantage relates to both the time signal encoder and decoder circuit. The equally selected time periods are also suitable for computer evaluation, since program loops or subroutines can be used.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Electric Clocks (AREA)
  • Electromechanical Clocks (AREA)

Description

Die Erfindung betrifft ein Verfahren gemäss dem Oberbegriff des Patentanspruchs 1. Die Verfahren aller bekannten Funkuhren lassen sich in drei Kategorien einteilen:

  • 1. Synchronisation;
  • 2. Triggering;
  • 3. Demodulation und Direktanzeige einer codierten Zeitinformation.
The invention relates to a method according to the preamble of claim 1. The methods of all known radio clocks can be divided into three categories:
  • 1. synchronization;
  • 2. triggering;
  • 3. Demodulation and direct display of coded time information.

Zur ersten Kategorie gehören Analog- oder Digitaiuhren, deren interne Zeitbasis ständig oder nur zeitweise mittels Frequenz- bzw. Phasenvergleich korrigiert wird (DE-B-1 773 406). Es sind auch Anwendungen bekannt, bei denen die Zeitbasis der Uhr von der Trägerfrequenz eines Senders oder mehrerer Sender abgeleitet ist. Hierbei ist dann noch eine Umschaltung auf eine zweite Zeitbasis erforderlich, damit eine Gangreserve bei Wegfall der Funkkontrolle gegeben ist (Funkschau 1977, H.3, S. 137). Dabei ist der Fangbereich, der in dem zur Steuerung der Gebrauchsuhr angewandten Phasenvergleich benutzt wird, in der Grössenordnung von 100 ms.The first category includes analog or digital clocks, the internal time base of which is corrected continuously or only temporarily by means of frequency or phase comparison (DE-B-1 773 406). Applications are also known in which the time base of the clock is derived from the carrier frequency of one or more transmitters. A switchover to a second time base is then necessary so that there is a power reserve if radio control ceases to exist (Funkschau 1977, H.3, p. 137). The catch range used in the phase comparison used to control the utility watch is of the order of 100 ms.

Bei einer bekannten elektronischen Synchronuhr mit Gangreserve (CH-A-540521) dient ein Zähler zur Ermittlung der mittleren Frequenzabweichung zwischen der Oszillatorfrequenz und der Netzfrequenz während einer langen Messperiode. Die Oszillatorfrequenz wird in Abhängigkeit von der gespeicherten Frequenzabweichung nachgeregelt, deren Veränderung beim Ausfall der Netzspannung verhindert ist. Hierbei handelt es sich um ein Synchronisationsverfahren, das einen zeitlich überwiegenden, meist ständigen Empfang der Referenzfrequenz erfordert; es handelt sich nicht um ein Triggerverfahren mit nur kurzzeitigem Empfang eines Senderzeitzeichens.In a known electronic synchronous clock with a power reserve (CH-A-540521), a counter is used to determine the mean frequency deviation between the oscillator frequency and the mains frequency during a long measurement period. The oscillator frequency is readjusted as a function of the stored frequency deviation, the change of which is prevented if the mains voltage fails. This is a synchronization method that requires a time-predominant, usually constant reception of the reference frequency; it is not a trigger procedure with only a short-term reception of a transmitter time signal.

Zur zweiten Kategorie gehören Digitaluhren, die als autonome Funkuhren mit mehr oder weniger grosser Genauigkeit ohne Funkkontrolle laufen und um 0 Uhr, d.h. periodisch, mittels eines Senderzeitzeichens durch Zählerrückstellung auf Sollzeit gestellt werden (Elektor 1974, S. 7-79, 7-80).The second category includes digital clocks that run as autonomous radio clocks with more or less accuracy without radio control and at 0 o'clock, i.e. periodically, by means of a transmitter time signal by resetting the counter to the target time (Elektor 1974, pp. 7-79, 7-80).

Bekannt ist eine Funkuhr mit Mitternachtsdetektor («Funkschau», Heft 26/1979, S. 1527-1531), die jedoch keine Korrektur der Oszillatorfrequenz und auch keine Korrektur der Anzeige in dem Sinne ermöglicht, dass zu jedem beliebigen Zeitpunkt eine Korrektur der Anzeige erfolgen kann. Hier besteht die Korrektur der Gangabweichung einer Uhr nur darin, dass die Uhr, die einen digitalen Zähler darstellt, um Mitternacht auf Null gestellt wird. Eine solche Korrektur durch Nullstellen ist nur zu dem Zeitpunkt möglich, in dem das Zeitzeichen den Nullwert liefert. Unter einer echten Anzeigekorrektur muss aber verstanden werden, dass zu jedem beliebigen Zeitpunkt die dann jeweils zutreffende Korrektur möglich sein muss. Ausserdem kann die Gangabweichung, besonders kurz vor 0 Uhr, verhältnismässig grosse Werte annehmen; bei Wegfall der Funkkontrolle ist daher die Gangreserve verhältnismässig kurz. Da die Triggerung immer um 0 Uhr erfolgt, können Störungen, die regelmässig zu dieser Zeit ebenfalls auftreten, nicht ausgeblendet werden.A radio-controlled clock with a midnight detector is known (“Funkschau”, number 26/1979, pp. 1527-1531), but this does not make it possible to correct the oscillator frequency or to correct the display in the sense that the display is corrected at any time can. Here, the correction of the clock deviation of a clock is only that the clock, which is a digital counter, is set to zero at midnight. Such a correction by zeroing is only possible at the point in time when the time signal delivers the zero value. However, a real display correction must be understood to mean that the correction that is then applicable must be possible at any time. In addition, the gear deviation, especially shortly before midnight, can take on relatively large values; if the radio control is no longer available, the power reserve is therefore relatively short. Since the triggering always takes place at midnight, faults that also regularly occur at this time cannot be hidden.

Die dritte Kategorie unterteilt sich in zwei Verfahren: der Uhrzeitsender wird entweder ständig empfangen, oder der Uhrzeitsender dient nur zeitweise zum Einstellen der Uhr.The third category is divided into two methods: the time transmitter is either received continuously or the time transmitter is only used to set the clock intermittently.

Bei einem bekannten Verfahren der eingangs genannten Art, das der genannten dritten Kategorie zuzuordnen ist (DE-A-2 715 096), erfolgt die Bestimmung der jeweiligen Gangabweichung nicht periodisch. Die innerhalb eines Zeitintervalls entstandene Gangabweichung der Uhr wird durch Bilden der Differenz zweier Zählerinhalte festgestellt und gespeichert. Dabei enthält ein Zähler den aktuellen Anzeigewert der Uhr, der andere Zähler die empfangene, codierte Zeitinformation eines Uhrzeitsenders. Die Differenz der beiden Zählerinhalte ist ein Mass für die Vorherbestimmung des nächsten Einschaltzeitpunktes des Empfängers, zu dem die Differenz erneut gebildet wird. Da die Uhrzeitsender ständig Zeitsignale aussenden, ist auch ein Fangbereich nicht erforderlich. Das jeweilige Zeitintervall zwischen den einzelnen Einschaltpunkten des Empfängers, zu denen das codierte Zeitsignal decodiert wird, ist zu der ermittelten Zähler-Differenz umgekehrt proportional.In the case of a known method of the type mentioned at the outset, which is to be assigned to the third category mentioned (DE-A-2 715 096), the respective path deviation is not determined periodically. The movement deviation of the watch that occurs within a time interval is determined and stored by forming the difference between two counter contents. One counter contains the current display value of the clock, the other counter the received, encoded time information from a time transmitter. The difference between the two counter contents is a measure for the predetermination of the next switch-on time of the receiver, at which the difference is formed again. Since the time transmitters continuously send out time signals, a catch area is also not necessary. The respective time interval between the individual switch-on points of the receiver, at which the coded time signal is decoded, is inversely proportional to the counter difference determined.

Die Anwendung einer Differenzzeitmessung ist ebenfalls bekannt (DE-A-2851 223), wobei die Gangabweichung einer Uhr in Sekundenschritten innerhalb eines längeren Zeitraumes mit Hilfe eines Zeitzeichens manuell als Differenzzeit gemessen und gespeichert wird, wonach die Uhr innerhalb der nächsten, gleichen Zeitintervalle ihre gespeicherte Gangabweichung automatisch korrigiert.The use of a differential time measurement is also known (DE-A-2851 223), the rate deviation of a clock being measured and stored manually as a differential time in seconds over a longer period of time using a time signal, after which the clock saved its stored within the next, same time intervals Gear deviation automatically corrected.

Aufgabe der Erfindung ist es daher, ein Verfahren der im Oberbegriff angegebenen Art zu schaffen, das sowohl bei digital arbeitenden als auch bei quasi-analog anzeigenden Uhren zu jedem beliebigen Zeitpunkt eine Korrektur der Gangabweichung und der sie verursachenden Grösse ermöglicht, bei dem Störungseinflüsse weitgehend eliminiert werden und die Notwendigkeit entfällt, dass das gesendete Signal eine codierte Zeitinformation darstellt.The object of the invention is therefore to provide a method of the type specified in the preamble which, both in digitally working and in quasi-analog indicating clocks, makes it possible to correct the gear deviation and the size causing it at any time, largely eliminating the effects of interference and the need is eliminated that the transmitted signal represents an encoded time information.

Diese Aufgabe wird mit den kennzeichnenden Merkmalen des unabhängigen Anspruchs gelöst.This object is achieved with the characterizing features of the independent claim.

Durch die Begrenzung der Möglichkeit zum Empfang des Zeitzeichens auf einen vorgegebenen zeitlichen Fangbereich wird sichergestellt, dass während der übrigen Zeit auftretende Störungen vollständig ohne Einfluss auf den Korrekturvorgang bleiben. Durch die zeitliche Trennung von Messung und Korrektur wird die Möglichkeit der Wirkung eines Störsignals wesentlich verringert. Die erfindungsgemäss vorgesehene Speicherung der jeweils nach Grösse und Richtung ermittelten Gangabweichung ermöglicht es, auch bei dem wahrscheinlichsten Störfall, nämlich dem Ausfall eines Senderzeitzeichens, beispielsweise infolge von ungünstigen Empfangsbedingungen bei Funkübermittlung, trotzdem noch eine brauchbare Korrektur vorzunehmen, indem die Korrektur der Anzeige in Abhängigkeit von den zuletzt gespeicherten Messwerten für die Gangabweichung erfolgt. In dem hier beschriebenen Verfahren wird die Gangabweichung der Uhr nach Grösse und Richtung mit Hilfe eines Senderzeitzeichens innerhalb definierter, gleichbleibender Zeitintervalle gemessen, gespeichert und im Anschluss daran zur Korrektur der Gangabweichung sowie der Oszillatorfrequenz der Uhr benutzt. Das Einschalten des Empfängers, das Festlegen des zeitlichen Fangbereichs für das Senderzeitzeichen, das Erzeugen eines periodischen Zeitsignals, das im gleichen Zeitrhythmus wie das Senderzeitzeichen erscheint, das Erzeugen der Messimpulse zur Ermittlung der Gangabweichung sowie die Ableitung der Korrekturparameter wird ebenfalls mit Hilfe dieser Oszillatorfrequenz vorgenommen. Bei Ausfall des Senderzeitzeichens geschieht die Korrektur der Anzeige mit den zuletzt gespeicherten Werten von Grösse und Richtung der Gangabweichung weiter, während die Korrektur der Oszillatorfrequenz verhindert ist. Hieraus resultiert die sehr grosse Gangreserve bei Wegfall der Funkkontrolle. Man kann nämlich davon ausgehen, dass sich Umwelteinflüsse auf den Oszillator nicht sprunghaft ändern. Die Gangabweichung der Uhr, die bereits einige Male korrigiert wurde, ist nahe 0 und wird auch nach Ausfall des Senderzeitzeichens die gleiche Tendenz aufweisen.Limiting the possibility of receiving the time signal to a predetermined time catch range ensures that faults occurring during the remaining time remain completely without influence on the correction process. The temporal separation of measurement and correction significantly reduces the possibility of an interference signal. The storage of the gear deviation determined according to size and direction according to the invention makes it possible, even in the most probable malfunction, namely the failure of a transmitter time signal, for example as a result of unfavorable reception conditions during radio transmission, to carry out a useful correction by correcting the display as a function of the last one stored measured values for the gear deviation takes place. In the method described here, the clock deviation of the watch according to size and direction is measured with the help of a transmitter time signal within defined, constant time intervals, stored and then used to correct the clock deviation and the oscillator frequency of the watch. Switching on the receiver, determining the time catch range for the transmitter time signal, generating a periodic time signal that appears in the same time rhythm as the transmitter time signal, generating the measurement pulses for determining the gear deviation and deriving the correction parameters are also carried out using this oscillator frequency. If the transmitter time signal fails, the display continues to be corrected with the most recently saved values of size and direction of the gear deviation, while the correction of the oscillator frequency is prevented. This results in the very large power reserve when radio control is no longer available. One can assume that environmental influences on the oscillator do not change abruptly. The clock deviation of the watch, which has already been corrected several times, is close to 0 and will have the same tendency even after the transmitter time signal has failed.

Unter Senderzeitzeichen soll ein Sender-Zeitsignal kurzer Dauer verstanden werden, dem die Aufgabe zukommt, die von einem Sender bereitgestellte Zeitreferenz, einen Referenzpunkt auf einer definierten Zeitskala, zu übertragen. Es handell sich dabei um eine Modulationsschwingung mit meist mehreren Zeitmarken, die demoduliert lediglich einen Impuls darstellt, der die ausgesandte Zeitreferenz mit einer bestimmten Unsicherheit reproduziert (z.B. beim Rundfunk üblich: «Mit dem letzten Ton des Zeitzeichens war es ... Uhr»). Dieses Demodulationsergebnis, als Einzelimpuls, darf nicht mit einer codierten Zeitinformation verwechselt werden, die in Form eines Impulscodes den Text eines Uhrzeitwertes überträgt.A transmitter time signal is to be understood as a transmitter time signal of short duration which has the task of transmitting the time reference provided by a transmitter, a reference point on a defined time scale. It is a modulation oscillation with usually several time stamps, which demodulates only an impulse that reproduces the transmitted time reference with a certain uncertainty (e.g. common on radio: "It was ... with the last tone of the time signal ..."). This demodulation result, as a single pulse, must not be confused with coded time information that transmits the text of a time value in the form of a pulse code.

Unter «Funkuhren» sollen auch solche Uhren verstanden werden, bei denen die Übermittlung des Senderzeitzeichens drahtgebunden erfolgt, beispielsweise wie bei Uhrenanlagen üblich.“Radio clocks” are also to be understood as those clocks in which the transmission of the transmitter time signal is wired, for example as is customary in clock systems.

Die kurze Einschaltdauer des Empfängers gemäss Anspruch 2 bewirkt auch eine Energieeinsparung gegenüber solchen Verfahren, bei denen der Empfänger ständig oder mehrere Minuten pro Tag eingeschaltet ist.The short duty cycle of the receiver according to claim 2 also brings about energy savings compared to those methods in which the receiver is switched on continuously or for several minutes a day.

Gemäss Anspruch 3 wird durch den definierten Oszillatorabgleich die Störsicherheit der Uhr dadurch erhöht, dass das störanfällige Senderzeitzeichen vor dem periodischen Zeitsignal erscheint. Die berechnete Gangabweichung bis zur nächsten Korrektur ist daher nicht 0, sondern geringfügig negativ. Die Tendenz der Gangabweichung wird damit von den Umwelteinflüssen unabhängig gehalten. In Richtung auf eine negative Gangabweichung wird deshalb korrigiert, damit das Senderzeitzeichen in der ersten Hälfte des Fangbereichs erscheint, wodurch die Störsicherheit grösser als im umgekehrten Fall ist. Störimpulse, die hauptsächlich im Empfangskanal auftreten, können nämlich nur vor Eintreffen des Senderzeitzeichens Wirkung erzielen.According to claim 3, the interference immunity of the clock is increased by the defined oscillator adjustment in that the interference-prone transmitter time signal appears before the periodic time signal. The calculated gear deviation until the next correction is therefore not 0, but slightly negative. The tendency of the gear deviation is thus kept independent of the environmental influences. Correction in the direction of a negative gear deviation is therefore made so that the transmitter time signal appears in the first half of the catch range, which makes the interference immunity greater than in the opposite case. Interference pulses, which mainly occur in the receiving channel, can only have an effect before the arrival of the transmitter time signal.

Weitere vorteilhafte Ausgestaltungen des Erfindungsgedankens sind Gegenstand der abhängigen Ansprüche 4-7.Further advantageous refinements of the inventive concept are the subject of the dependent claims 4-7.

Im einzelnen erreicht man mit dem erfindungsgemässen Verfahren folgende Vorteile:

  • 1. Die Gangreserve bei Wegfall der Funkkontrolle ist sehr gross.
  • 2. Das Verfahren ist sowohl bei Digitaluhren als auch bei quasianalog anzeigenden Uhren mit Schrittmotor anwendbar.
  • 3. Der Empfänger ist nur wenig länger als der zeitliche Fangbereich eingeschaltet, woraus eine hohe Störsicherheit und Energieersparnis resultieren.
  • 4. Es muss kein spezieller Uhrzeitsender empfangen werden, was die Auslegung des Empfängers vereinfacht.
  • 5. Die Korrektur muss nicht um 0 Uhr erfolgen, sondern ist frei wählbar. Dadurch lassen sich Störungen, die zu bestimmten Tageszeiten auftreten, ausblenden.
  • 6. Uhrzeitgrenzen spielen keine Rolle.
  • 7. Die Verlagerung des Empfängers aus der Uhr in handelsübliche Rundfunk- oder Fernsehgeräte ist möglich. Dadurch können preiswertere Funkuhren gefertigt werden.
  • 8. In Uhrenanlagen können Nebenuhren zeitzeichengesteuert werden, wodurch auch dieser Uhrentyp störsicher und mit hoher Gangreserve arbeitet.
  • 9. Die Berücksichtigung von Sommer- und Winterzeit ist möglich.
  • 10. Bei der Uhrenfertigung kann man auf den Oszillatorabgleich verzichten.
In particular, the following advantages are achieved with the method according to the invention:
  • 1. The power reserve when radio control ceases to exist is very large.
  • 2. The method can be used both with digital clocks and with quasi-analogue clocks with a stepper motor.
  • 3. The receiver is only switched on a little longer than the time catch range, which results in high interference immunity and energy savings.
  • 4. No special time transmitter has to be received, which simplifies the design of the receiver.
  • 5. The correction does not have to be made at midnight, but is freely selectable. This allows faults that occur at certain times of the day to be hidden.
  • 6. Time limits do not matter.
  • 7. It is possible to move the receiver from the clock to commercially available radio or television sets. As a result, cheaper radio clocks can be manufactured.
  • 8. In clock systems, slave clocks can be time-signal controlled, which means that this type of clock also works in a fail-safe manner and with a high power reserve.
  • 9. The consideration of summer and winter time is possible.
  • 10. In watchmaking, you can do without oscillator adjustment.

Die Erfindung wird nachfolgend anhand der Figuren an einem Ausführungsbeispiel näher erläutert.The invention is explained in more detail below with reference to the figures using an exemplary embodiment.

  • Fig. 1 zeigt das zeitliche Ablaufdiagramm des Verfahrens;Fig. 1 shows the timing diagram of the method;
  • Fig. 2 zeigt das zu Fig. 1 gehörige Blockschaltbild des Verfahrens;FIG. 2 shows the block diagram of the method belonging to FIG. 1;
  • Fig. 3 zeigt das Impulsdiagramm zur Anzeigekorrektur;Fig. 3 shows the timing diagram for display correction;
  • Fig. 4 zeigt das Blockschaltbild des Zeitsignal-Empfängers;Fig. 4 shows the block diagram of the time signal receiver;
  • Fig. 5 zeigt ein komplettes Funkuhrkonzept;Fig. 5 shows a complete radio clock concept;
  • Fig. 6 zeigt die Verlagerung des Zeitsignal-Empfängers in handelsübliche Rundfunk-/Fernsehempfänger;Fig. 6 shows the shift of the time signal receiver into commercially available radio / television receivers;
  • Fig. 7 zeigt das Funktionsprinzip einer Uhrenanlage nach dem erfindungsgemässen Verfahren;Fig. 7 shows the principle of operation of a clock system according to the inventive method;
  • Fig. 8 zeigt die weitere Ausgestaltung einer Uhrenanlage nach dem erfindungsgemässen Verfahren und8 shows the further configuration of a clock system according to the method and
  • Fig. 9 zeigt ein geeignetes Sender-Zeitsignal für das erfindungsgemässe Verfahren.9 shows a suitable transmitter time signal for the method according to the invention.

Das Ablaufdiagramm in Figur 1 zeigt in einem zeitlichen Ablaufdiagramm die Schaltfolge der wichtigsten Signalleitungen aus dem Blockschaltbild nach Fig.2. Diese Signalleitungen sind mit eingekreisten Bezugsnummern versehen. Das nachfolgend näher beschriebene Blockschaltbild nach Fig. 2 dient lediglich der Funktionsbeschreibung des Verfahrens, wird in der Praxis aber durch ein Computerprogramm ersetzt.The flow diagram in FIG. 1 shows the switching sequence of the most important signal lines from the block diagram according to FIG. 2 in a time flow diagram. These signal lines are with provided with circled reference numbers. The block diagram according to FIG. 2 described in more detail below serves only to describe the function of the method, but is replaced in practice by a computer program.

Die Gangabweichung der Uhr (49) wird von der Frequenzkonstanz des Oszillators (30) bestimmt. Um diese messen zu können, muss der Vergleich mit einem als «richtig» geltenden Zeitintervall möglich sein. Da es keine absolut richtige Zeitskala gibt, muss man für Uhrenanwendungen die «Amtiiche Zeit» zugrunde legen, die von den Rundfunk-/Fernsehanstalten/Uhrzeitsendern zur Zeit mit uneinheitlichen Sender-Zeitsignalen verbreitet wird. Im folgenden soll jedoch angenommen werden, dass ein einheitliches, automatisch auswertbares Sender-Zeitsignal von allen Rundfunk-/Fernsehanstalten ausgestrahlt wird, damit das hier beschriebene Verfahren voll zur Geltung kommt.The rate deviation of the clock (49) is determined by the frequency constancy of the oscillator (30). To be able to measure this, it must be possible to compare it with a time interval that is considered “correct”. Since there is no absolutely correct time scale, one has to use the “official time” for clock applications, which is currently being broadcast by radio / television stations / time transmitters with inconsistent transmitter time signals. In the following, however, it should be assumed that a uniform, automatically evaluable transmitter time signal is broadcast by all radio and television stations so that the method described here comes into its own.

Die Inbetriebnahme der Uhr erfolgt mit Hilfe des Schalters (f), der die Startautomatik (48) und den Zeitsignal-Empfänger (45) einschaltet. Sollte die Uhr (49) bereits laufen, wird sie mittels der Stoptaste (e) angehalten. Bei quasianalog anzeigenden Uhren wird das Zeigerwerk auf die Referenzzeit gestellt oder an dieser Stelle angehalten. Das nächste Zeitzeichen (3), (5) gelangt über die Startautomatik (48) in die Uhr (49) und stellt dort alle Register - entsprechend der vorgegebenen Zeitreferenz - auf Sollwert und startet den Zeitzähler. Die Uhr (49) läuft jetzt mit der Genauigkeit ihres Quarzoszillators (30) selbsttätig, also ohne Senderbeeinflussung, bis zum Eintreffen des nachfolgenden Zeitzeichens (3), (5) weiter. Gleichzeitig mit dem ersten empfangenen Zeitzeichen (3), (5) wird über die Resetleitung der Startautomatik (48) der Ruhezustand hergestellt: über das Oder-Gatter (41) wird das Flipflop (47) zurückgestellt, womit der Zeitzeichenausgang vom Und-Gatter (46) verriegelt ist; über das Oder-Gatter (36) wird der Taktzähler (40) auf 0 gestellt und das Flipflop (38) in die Ruhelage gebracht, damit über das Und-Gatter (39) der Zeittakt 1 nicht in den Taktzähler (40) gelangen kann; über das Oder-Gatter (35) wird die Einschaltstufe (43), (44) des Zeitsignal-Empfängers (45) in Stellung «Aus» gebracht; weiter werden die Register in der Stellogik (31) auf Sollwert gesetzt und die Inhalte von Vorzeichenspeicher (23) und Differenzzeitspeicher (26) auf 0 gestellt. Etwas später schaltet man mit dem Schalter (f) den Zeitsignal-Empfänger (45) und die Startautomatik (48) wieder aus, womit der Startvorgang beendet ist. Ein zeitlich vorgewähltes Signal 1 von der Uhr (49) schaltet den Zeitsignal-Empfänger (45), z.B. nach 23 Stunden/59 Minuten, über die Einschaltstufe (43), (44) ein und öffnet das Und-Gatter (39) mit Hilfe des Flipflops (38), damit der Zeittakt 1 in den Taktzähler (40) gelangen kann. Das zeitlich nächste Signal (2) wird vom Taktzähler (40) geliefert, gibt über das Flipflop (47) und das Und-Gatter (46) den Zeitzeichenausgang des Zeitsignal-Empfängers (45) frei, stellt die Register im Differenzzeitmesser (24) und in der Prioritätslogik (21) zurück und gibt über die Und-Gatter (22), (25) den Übertrag der Informationen aus Prioritätslogik (21) und Differenzzeitmesser (24) zum Vorzeichenspeicher (23) und Differenzzeitspeicher (26) frei. Die Prioritätslogik (21) erwartet jetzt das Zeitzeichen (3), (5) oder das periodische Zeitsignal (4) vom Taktzähler (40). Kommt das periodische Zeitsignal (4) vor dem Zeitzeichen (5), ergibt sich ein positives Vorzeichen in der Prioritätslogik (21) (das Signal zum Vorzeichenspeicher führt z. B. das Potenzial H), im umgekehrten Fall ergibt sich ein negatives Vorzeichen (das Signal zum Vorzeichenspeicher führt z.B. das Potential L). Diese Ausdrucksweise soll als Definition aufgefasst werden. Mit Eintreffen des 1. Signals (3) oder (4) wird der Differenzzeitmesser (24) von der Prioritätslogik (21) gestartet, wobei Zählimpulse des Zeittakts 2, die vom Taktzähler (40) an den Differenzzeitmesser (24) und an die Korrekturstufe (27) führen, gezählt werden und die Auflösung der Zeitmessung für die Gangabweichung der Uhr (49) bestimmen. Die Differenzzeitmessung wird von dem zuletzt eintreffenden Signal (4) oder (5) über den Weg der Prioritätslogik (21) wieder beendet. Das Signal (7) vom Taktzähler (40) verriegelt anschliessend über Oder-Gatter (41), Flipflop (47), Und-Gatter (46) das Zeitzeichen (3), (5). Das nächste Ausgangssignal (8) des Taktzählers (40) schaltet über Oder-Gatter (35), Flipflop (43), Oder-Gatter (44) den Zeitsignal-Empfänger (45) aus und überträgt mit demselben Signal (8) die Messwerte aus Prioritätslogik (21) und Differenzzeitmesser (24) über die Und-Gatter (22), (25) in den Vorzeichenspeicher (23) und Differenzzeitspeicher (26). Nachdem diese Daten an der Korrekturstufe (27) stabil anstehen und ausgewertet wurden, kann der Korrekturbeginn über die Signalleitung (9) vom Taktzähler (40) aus eingeleitet werden. Die Korrektur der Anzeige geschieht mit Hilfe der Impulsstufe 1 (29) der Impulsstufe 2 (33) und des Oder-Gatters (37) derart, dass die im Vorzeichen- ,speicher (23) und Differenzzeitspeicher (26) festgehaltenen Werte der Gangabweichung wieder rückgängig gemacht werden. Hierbei formt die Impulsstufe 1 (29) den Zeittakt 1 (Figur 3a) des Oszillators (30) in eine Rechteckschwingung mit dem Impulsverhältnis 4 um (Figur 3b). Diese Rechteckschwingung gelangt im Normalfall über das Oder-Gatter (37) und das Entstörfilter (42) als Zeittakt zur Uhr (49). Ging die Uhr (49) laut Messergebnis zu schnell, wird dieser Zeittakt von der Korrekturstufe (27) über das Oder-Gatter (28) in der Impulsstufe 1 (29) so lange unterdrückt, bis die gemessene Gangabweichung wieder ausgeglichen ist. Ging die Uhr (49) laut Messergebnis zu langsam, wird von der Korrekturstufe (27) über das Oder-Gatter (32) der Mittenimpuls zum Zeittakt (Figur 3c) in der Impulsstufe 2 (33) freigegeben, wobei das Summensignal mit dem Impulsverhältnis 2 (Figur 3d) über das Oder-Gatter (37) so lange zur Uhr (49) gelangt, bis die gemessene Gangabweichung wieder ausgeglichen ist. Parallel zur Korrektur der Anzeige empfiehlt sich die Korrektur der Oszillatorfrequenz, z. B. auf digitale Weise, wie in der DE-A-2 362 470 beschrieben und in Figur 5 schematisch dargestellt. Die Korrekturstufe (27) wirkt rechnenderweise in diesem Oszillatorzweig der Gangabweichung der Uhr (49) entgegen, so dass ein geschlossener Regelkreis entsteht. Die Beendigung aller Korrekturvorgänge wird von der Korrekturstufe (27) mit dem Signal (10) angezeigt, welches über das Oder-Gatter (36) die Rückstellung des Taktzählers (40) und des Flipflops (38) bewirkt. Nach einem Zeitzeichenausfall erreicht der Zähler im Differenzzeitmesser (24) seinen Maximalwert und setzt mit seinem Ausgangssignal (6) das Flipflop (34). Der Übertragimpuls (8) ist dadurch wirkungslos, so dass die anschliessende Anzeigekorrektur mit den zuletzt gespeicherten Werten im Vorzeichenspeicher (23) und Differenzzeitspeicher (26) erfolgt. Die Oszillatorkorrektur ist vom Flipflop (34) aus verhindert, der Regelkreis wird also unterbrochen, damit die hohe Gangreserve erhalten bleibt. Die Signalleitung «Sommer-Winterzeit» von der Uhr (49) zur Stellogik (31) setzt voraus, dass es sich um eine computergesteuerte Datumsuhr handelt. H-Potential entspricht z.B. Sommerzeit, L-Potential Winterzeit. Der Potentialwechsel auf dieser Signalleitung verursacht den gezielten Stellvorgang um jeweils eine Stunde mit Hilfe des vorher beschriebenen Verfahrens für die Anzeigekorrektur. Da dieser Stellvorgang verhältnismässig lange dauert, und in dieser Zeit die Aussage der Uhrenanzeige unkorrekt ist, sollte die Anzeigeauflösung in jedem Fall eine Sekunde betragen, damit optisch erkennbar wird: die Uhr läuft zu schnell bzw. die Uhr steht. Diese Signalisierung genügt Uneingeweihten, auch ohne Bedienungsanleitung, um die Anzeige unberücksichtigt zu lassen.The watch is started using the switch (f), which switches on the automatic start (48) and the time signal receiver (45). If the clock (49) is already running, it is stopped using the stop button (e). With quasi-analogue clocks, the movement is set to the reference time or stopped at this point. The next time signal (3), (5) reaches the clock (49) via the automatic start (48) and sets all registers there - according to the specified time reference - to the setpoint and starts the time counter. The clock (49) now runs automatically with the accuracy of its quartz oscillator (30), that is to say without influencing the transmitter, until the following time signal (3), (5) arrives. Simultaneously with the first received time signal (3), (5), the idle state is established via the reset line of the automatic starter (48): the flip-flop (47) is reset via the OR gate (41), so that the time signal output from the AND gate ( 46) is locked; The clock counter (40) is set to 0 via the OR gate (36) and the flip-flop (38) is brought into the rest position, so that the clock pulse 1 cannot reach the clock counter (40) via the AND gate (39); The switch-on stage (43), (44) of the time signal receiver (45) is brought into the “off” position via the OR gate (35); Furthermore, the registers in the setting logic (31) are set to the setpoint and the contents of the sign memory (23) and difference time memory (26) are set to 0. A little later, the time signal receiver (45) and the automatic start (48) are switched off again with the switch (f), which completes the starting process. A preselected signal 1 from the clock (49) switches on the time signal receiver (45), for example after 23 hours / 59 minutes, via the switch-on stage (43), (44) and opens the AND gate (39) with the help of the flip-flop (38) so that the time clock 1 can get into the clock counter (40). The next time signal (2) is supplied by the clock counter (40), releases the time signal output of the time signal receiver (45) via the flip-flop (47) and the AND gate (46), provides the register in the differential timer (24) and in the priority logic (21) and releases via the AND gates (22), (25) the transfer of the information from the priority logic (21) and difference timer (24) to the sign memory (23) and difference time memory (26). The priority logic (21) now expects the time signal (3), (5) or the periodic time signal (4) from the clock counter (40). If the periodic time signal (4) comes before the time signal (5), there is a positive sign in the priority logic (21) (the signal to the sign memory leads, for example, the potential H), in the opposite case there is a negative sign (the The signal to the sign memory carries, for example, the potential L). This expression should be understood as a definition. When the first signal (3) or (4) arrives, the differential timer (24) is started by the priority logic (21), counting pulses of the clock cycle 2 being transmitted by the clock counter (40) to the differential timer (24) and to the correction stage ( 27), count and determine the resolution of the time measurement for the clock deviation of the watch (49). The difference time measurement is ended by the last arriving signal (4) or (5) via the path of the priority logic (21). The signal (7) from the clock counter (40) then locks the time signal (3), (5) via the OR gate (41), flip-flop (47) and AND gate (46). The next output signal (8) of the clock counter (40) switches off the time signal receiver (45) via an OR gate (35), flip-flop (43), OR gate (44) and transmits the measured values with the same signal (8) Priority logic (21) and difference timer (24) via the AND gates (22), (25) in the sign memory (23) and difference time memory (26). After this data is stable at the correction stage (27) and has been evaluated, the start of correction can be initiated from the clock counter (40) via the signal line (9). The display is corrected with the aid of pulse level 1 (29), pulse level 2 (33) and the OR gate (37) in such a way that the values of the gear deviation recorded in the sign, memory (23) and difference time memory (26) are reversed be made. The pulse stage 1 (29) transforms the clock cycle 1 (FIG. 3a) of the oscillator (30) into a square wave with the pulse ratio 4 (FIG. 3b). This square wave normally reaches the clock (49) via the OR gate (37) and the interference suppression filter (42). If the clock (49) ran too fast according to the measurement result, this time cycle is suppressed by the correction stage (27) via the OR gate (28) in pulse stage 1 (29) until the measured gear deviation is compensated again. If the clock (49) ran too slowly according to the measurement result, the correction pulse (27) via the OR gate (32) releases the center pulse at the time pulse (Figure 3c) in pulse level 2 (33), the sum signal with the pulse ratio 2 (Figure 3d) via the Oder gate (37) until the clock (49) until the measured gear deviation is balanced again. In parallel to correcting the display, we recommend correcting the oscillator frequency, e.g. B. in a digital manner, as described in DE-A-2 362 470 and shown schematically in Figure 5. The correction stage (27) arithmetically counteracts the rate deviation of the clock (49) in this oscillator branch, so that a closed control loop is created. The completion of all correction processes is indicated by the correction stage (27) with the signal (10), which causes the clock counter (40) and the flip-flop (38) to be reset via the OR gate (36). After a time signal failure, the counter in the differential timer (24) reaches its maximum value and sets the flip-flop (34) with its output signal (6). The carry pulse (8) is therefore ineffective, so that the subsequent display correction is carried out with the values last stored in the sign memory (23) and difference time memory (26). The oscillator correction is prevented from the flip-flop (34), so the control loop is interrupted so that the high power reserve is retained. The signal line “summer-winter time” from the clock (49) to the positioning logic (31) requires that it is a computer-controlled date clock. H potential corresponds to summer time, for example, L potential winter time. The potential change on this signal line causes the targeted adjustment process by one hour each time using the previously described display correction method. Since this setting process takes a relatively long time and the information on the clock display is incorrect during this time, the display resolution should in any case be one second so that it can be visually recognized that the clock is running too fast or the clock is at a standstill. This signaling is sufficient for the uninitiated, even without operating instructions, to disregard the display.

Am störanfälligsten ist das Zeitzeichen (3), (5), dessen Signalweg einer genaueren Untersuchung unterzogen wurde. Störimpulse ausserhalb des Fangbereichs (Figur 1) wirken sich nicht aus. Störimpulse innerhalb des Fangbereichs wirken sich nur aus, wenn sie vor Eintreffen des Zeitzeichens (3), (5) entstehen. Tritt dieser Fall ein, so ist die Wahrscheinlichkeit gross, dass es sich um eine Dauerstörung handelt, d.h., die Wahrscheinlichkeit einer Störimpulsreihe, die sich über den gesamten Fangbereich erstreckt, ist gross. Dabei wirkt sich aber nur der erste Störimpuls aus, der der unteren Toleranzgrenze (Figur 1) am nächsten liegt. Es wird also ein Nachgehen der Uhr simuliert. Sorgt man nun beim automatischen Oszillatorabgleich dafür, dass die Uhr tatsächlich nachgeht, dann wird - trotz falsch interpretierter Zeitzeichen - sich der Fangbereich auch nach mehrmaligen Störungen noch innerhalb der erlaubten Absolutzeit des Zeitzeichens (3), (5) befinden. Anders ausgedrückt: das Zeitzeichen (3) wird in der ersten Hälfte des Fangbereichs erwartet, wobei einem Störimpuls nur ein kleiner Wirkungszeitraum zur Verfügung steht. Zu beachten ist, dass sich der Fangbereich mit dem periodischen Zeitsignal (4) in Bezug auf das Zeitzeichen 3, 5 ändert, während das Zeitzeichen (3), (5) selbst als stillstehend zu betrachten ist.The most susceptible to faults is the time signal (3), (5), the signal path of which has been subjected to closer examination. Interference impulses outside the capture range (FIG. 1) have no effect. Interference impulses within the capture range only have an effect if they occur before the time signal (3), (5) arrives. If this occurs, there is a high probability that it is a permanent disturbance, i.e. the probability of a series of interference pulses that extends over the entire capture range is high. However, only the first interference pulse that is closest to the lower tolerance limit (FIG. 1) has an effect. This means that the watch is simulated to follow up. If you now ensure that the clock actually runs during the automatic oscillator adjustment, then - despite incorrectly interpreted time signals - the capture range will still be within the permitted absolute time of the time signal (3), (5) even after repeated faults. In other words, the time signal (3) is expected in the first half of the catch range, with a glitch only having a short effective period. It should be noted that the catch range changes with the periodic time signal (4) in relation to the time signal 3, 5, while the time signal (3), (5) itself is to be regarded as stationary.

In Fig. 4 ist das detaillierte Blockschaltbild des Zeitsignal-Empfängers (45) dargestellt. Der Rundfunkempfänger (61) ist, wie bei der Aufzählung der Vorteile beschrieben, einfach aufgebaut. Die Senderabstimmung erfolgt spannungsgesteuert. Der Empfänger-Mikrocomputer (68) stellt den Rundfunkempfänger (61) nach Einschalten durch das Oder-Gatter (44) und der Stromzufuhr (64) automatisch auf den stärksten Sender ein. Dies geschiehtz. B. durch Auswerten der Regelspannung, die über den Verstärker (62) und über den A/D-Wandler (66) dem Empfänger-Mikrocomputer (68) zugeführt wird. Das Computerprogramm fährt zunächst den gesamten Empfangsfrequenzbereich mit Hilfe der über den D/A-Wandler (65) umgeformten Abstimmspannung ab und speichert die zugehörigen Regelspannungswerte. Anschliessend wird der Rundfunkempfänger (61) bei dem Sender mit der grössten Feldstärke eingerastet, um die Wahrscheinlichkeit eines ungestörten Empfangs zu erhöhen. Wird, wie zur Zeit, das Sender-Zeitsignal von allen Sendern zu fast jeder vollen Stunde ausgestrahlt, besteht auch in Uhrzeit-Grenzgebieten die Möglichkeit, einen benachbarten Sender, der ausserhalb der Uhrzeit-Grenze liegt, zu empfangen, was mit codiert gesendeten Signalen nicht möglich ist. Einen mehrmaligen Zeitzeichenausfall kann der Empfänger-Mikrocomputer (68) einfach registrieren, da er ausserdem die Aufgabe der Zeitzeichendecodierung wahrzunehmen hat. In diesem Fall sucht er sich den nächst starken Sender.4 shows the detailed block diagram of the time signal receiver (45). The radio receiver (61) has a simple structure, as described in the list of advantages. The transmitter tuning is voltage controlled. The receiver microcomputer (68) automatically adjusts the radio receiver (61) to the strongest transmitter after being switched on by the OR gate (44) and the power supply (64). This happens. B. by evaluating the control voltage, which is supplied via the amplifier (62) and the A / D converter (66) to the receiver microcomputer (68). The computer program first travels the entire reception frequency range with the aid of the tuning voltage converted via the D / A converter (65) and stores the associated control voltage values. The radio receiver (61) is then snapped into the transmitter with the greatest field strength in order to increase the probability of undisturbed reception. If, as is currently the case, the transmitter time signal is broadcast by all transmitters at almost every full hour, there is also the option in time limit areas to receive a neighboring transmitter that is outside the time limit, which is not the case with coded signals is possible. The receiver microcomputer (68) can simply register a repeated time signal failure, since it also has to perform the task of time signal decoding. In this case, he looks for the next strongest station.

Soll der Rundfunkempfänger (61) gleichzeitig als Radiouhr verwendet werden, empfiehlt sich eine Umschaltung auf Handbetrieb mittels des Schalters (g). Der gerade eingestellte Sender wird dann auch als Zeitsignal-Sender verwendet. In dieser Betriebsart muss die Startautomatik (48) über das Und-Gatter (68) verriegelt sein, und der Empfänger-Mikrocomputer (68) auf eine andere Programmschleife umgeschaltet werden. Es kann evtl. die Notwendigkeit bestehen, einen bestimmten Sender (z.B. Uhrzeitsender) als Zeitsignal-Sender von Hand zu suchen. Dieser kann dann mit der Taste (h) gespeichert werden, wonach gewährleistet ist, dass der Empfänger-Mikrocomputer (68) diesen Sender immer automatisch anwählt. MitTaste (i) istdiese Betriebsart wieder rückgängig zu machen: Wenn das Programm bei Abfrage der Speicherstelle für vorgegebenen Sender eine 0 erkennt, wird wieder der Sender mit der grössten Feldstärke angewählt. Das zu decodierende Sender-Zeitsignal (Nf) (Figur 9) wird im Verstärker (63) so hoch verstärkt, dass es als Rechteckspannung mit definierten Logikpegeln zu verwenden ist. Das Flipflop (67) verbessert die Decodierbarkeit, da es die Zeichenirequenz (Nf) halbiert und für ein exaktes Impulsverhältnis von 2 sorgt.If the radio receiver (61) is to be used as a radio clock at the same time, it is advisable to switch to manual mode using the switch (g). The currently set transmitter is then also used as a time signal transmitter. In this operating mode, the automatic start (48) must be locked via the AND gate (68) and the receiver microcomputer (68) must be switched over to another program loop. There may be a need to manually search for a specific transmitter (e.g. time transmitter) as a time signal transmitter. This can then be saved with the (h) key, after which it is ensured that the receiver microcomputer (68) always selects this transmitter automatically. Use the (i) key to cancel this operating mode: If the program detects a 0 when querying the memory location for the specified station, the station with the greatest field strength is selected again. The transmitter time signal (Nf) to be decoded (FIG. 9) is amplified in the amplifier (63) to such an extent that it can be used as a square-wave voltage with defined logic levels. The flip-flop (67) improves the decodability, since it halves the character sequence (Nf) and ensures an exact pulse ratio of 2.

Das einfachste und preisgünstigste Konzept einer Uhrenanlage nach diesem Verfahren erhält man mit einer Hauptuhr nach Figur 5 und quasi- analog anzeigenden Nebenuhren mit Schrittmotor (82). Die Steuerung der Nebenuhren erfolgt über nur eine Signalleitung, die den Sekundentakt mit Korrektur an jede Nebenuhr führt. Die Installation der Nebenuhren beschränkt sich also auf eine Doppelader - ohne Stromversorgung -, so dass sich dieses Verfahren z.B. in explosionsgefährdeten Anlagen empfiehlt.The simplest and cheapest concept of a clock system using this method is obtained with a master clock according to FIG. 5 and quasi-analogue secondary clocks with a stepping motor (82). The slave clocks are controlled via only one signal line, which leads the second clock with correction to each slave clock. The installation of the slave clocks is therefore limited to a double wire - without power supply - so that this method is recommended, for example, in potentially explosive systems.

Ähnlich einfach ist eine Uhrenanlage nach diesem Verfahren entsprechend Figur7. Die Hauptuhr ist wieder nach Figur 5 konzipiert, die Nebenuhren ebenso, jedoch fehlt bei letzteren der Zeitsignal-Empfänger (45). Die Steuerung der Nebenuhren erfolgt jetzt mit Hilfe des Zeitzeichens. Im Gegensatz zu vorigem Konzept arbeiten die Nebenuhren störsicherer, müssen nach einem Hauptuhrenausfall nicht gestellt werden (Ausnutzung der hohen Gangreserve) und können auch mit Digitalanzeige (81) ausgerüstet sein.A clock system according to this method is similarly simple in accordance with FIG. 7. The master clock is again designed according to FIG. 5, the slave clocks likewise, but the latter lacks the time signal receiver (45). The slave clocks are now controlled using the time signal. In contrast to the previous concept, the slave clocks work more interference-free, do not have to be set after a master clock failure (utilization of the high power reserve) and can also be equipped with a digital display (81).

Nebenuhren sind oft an schlecht zugängigen Stellen angebracht und extremen Umwelteinflüssen ausgesetzt, so dass besonders bei diesem Uhrentyp der Service einfach sein sollte. Da es sich bei dem vorliegenden Verfahren ohnehin um eine computergesteuerte Uhr handelt, ist es ohne besonderen Aufwand möglich, Ausgänge für den Datenaustausch (Anzeigewert) über genormte Schnittstellen zwischen Haupt- und Nebenuhren vorzusehen. Ein solches Beispiel zeigt Figur 8. Die Steuerung der Nebenuhren geschieht auch hier wieder mit Hilfe des Zeitzeichens, also störsicher mit hoher Gangreserve, nur ist jetzt noch zusätzlich die Möglichkeit gegeben, durch zyklische Abfrage aller Nebenuhren das fehlerhafte Arbeiten einer Nebenuhr im zentralen Überwachungsraum anzuzeigen. Nach erfolgtem Service ist ein gezielter Stellvorgang von der Hauptuhr aus möglich. Voraussetzung hierfür ist die Adressierung jeder Nebenuhr von der Hauptuhr aus und das einfache Einstellen und Erkennen der spezifischen Adresse an der Nebenuhr. Diese Aufgabenstellung lässt sich verhältnismässig einfach durch Codierschalter (91) (Figur 8) lösen. Man hat dann auch die Möglichkeit, Stellvorgänge für Sommer- und Winterzeit von der Hauptuhr aus vorzunehmen.Slave clocks are often installed in hard-to-reach places and are exposed to extreme environmental influences, so service should be easy, particularly with this type of clock. Since the present method is a computer-controlled clock anyway, it is possible to provide outputs for data exchange (display value) via standardized interfaces between master clocks and slave clocks without any particular effort. An example of this is shown in FIG. 8. The slave clocks are controlled again with the help of the time signal, i.e. interference-free with a high power reserve, but now there is the additional option of cyclically querying all slave clocks to indicate the faulty operation of a slave clock in the central monitoring room. After the service has been completed, a targeted setting process is possible from the master clock. This requires addressing each slave clock from the master clock and simply setting and recognizing the specific address on the slave clock. This task can be solved relatively easily using coding switches (91) (FIG. 8). You then also have the option of setting summer and winter time from the master clock.

Automatische Nachstellverfahren für autonome Funkuhren müssen für den ungünstigsten Fall dimensioniertsein. Ein grosser Fangbereich bedeutet aber Störanfälligkeit und höheren Energiebedarf der Funkuhr, da der Zeitsignal-Empfänger länger eingeschaltet ist. Nach dem heutigen Stand der Technik lassen sich sehr gute Resonatoren herstellen, die die tägliche Gangabweichung einer Uhr gering halten. Die grösste Abweichung entsteht bei einem Zeitskalensprung, also bei Schaltsekunden, mit dem die Funkuhr ständig rechnen muss und der ihr gesamtes Konzept verschlechtert. Es bietet sich daher an, von dem Verfahren einer Schaltsekunde zum Teil abzuweichen und die Anpassung der mittleren Sonnenzeit an die gemittelte Atomzeit in kleineren Zeitskalensprüngen vorzunehmen. Günstig ist die Aufteilung der Schaltsekunde in 8 (23) gleiche Teile, also in 0,125 Sekunden-Schritten, die vor dem errechneten Zeitpunkt in 8 aufeinanderfolgenden Tagen, den letzten Kalendertagen eines UTC-Monats (UTC = Coordinated Universal Time), vorzugsweise Ende Juni oder Ende Dezember, berücksichtigt werden. Dabei bleibt das generelle Prinzip der Schaltsekunde erhalten, auf das man sich international geeinigt hat. Wird mehr als ein Sender-Zeitsignal pro Tag gesendet (es sollten mindestens 2 sein, die um 12 Stunden versetzt sind), dann muss die Berücksichtigung eines Zeitskalensprungs in jedem Sender-Zeitsignal eines Mess-Zeitintervalls (z.B. eines Tages) auf dieselbe Art berücksichtigt werden. Aufgrund praktischer Erfahrungen kann man davon ausgehen, dass eine Korrektur der Funkuhr pro Tag ausreicht. Um periodische Störer, die regelmässig zu einer Tageszeit stören, auszuschalten, ist es zweckmässig, auf ein zweites Sender-Zeitsignal zurückgreifen zu können. Dies hat auch den Vorteil, dass man bei der ersten Inbetriebnahme oder nach einem Servicefall der Funkuhr nicht von einer einzigen Tageszeit abhängig ist. Es sollte daher das einheitliche Sender-Zeitsignal zu zwei festen Tageszeiten, die um 12 Stunden versetzt sind, jeweils ausgestrahlt werden. Aus den vielfältigen Möglichkeiten für ein geeignetes Sender-Zeitsignal, das eine automatische Auswertung gewährleistet, wurde eine Lösung ausgearbeitet, die den Aufbau einfacher Zeitzeichencoder sowie -decoder gestattet, akustisch wahrnehmbar ist und nur drei Sekunden Zeitdauer in Anspruch nimmt (Figur 9). Die Nf-Modulationsfrequenz von 1000 Hz wurde gewählt, da sie in der Nachrichtentechnik für viele Parameter als Bezugsfrequenz dient und ausserdem hörbar gemacht werden kann. Die gewählte Dauer von insgesamt drei Sekunden stellt einen günstigen Kompromiss zwischen unnötig lang (damit störanfällig) und zu kurz (damit ungenügende Selektion aus einem beliebigen NF-Signal) dar. Weiter ist hervorzuheben, dass alle massgebenden Zeiten mit Binärteilern von einer üblichen «Uhrenfrequenz», z. B. 215 Hz oder 222 Hz, ableitbar sind, wofür es genügend Resonatoren gibt. Dieser Vorteil bezieht sich sowohl auf die Zeitzeichencoderals auch -decoderschaltung. Die gleich gewählten Zeitabschnitte kommen auch einer Computerauswertung entgegen, da mit Programmschleifen oder Unterprogrammen gearbeitet werden kann.Automatic adjustment procedures for autonomous radio clocks must be dimensioned in the worst case. However, a large capture range means that the radio clock is susceptible to faults and requires more energy because the time signal receiver is switched on for a longer period. According to the current state of the art, very good resonators can be manufactured which keep the daily rate deviation of a watch low. The greatest deviation arises with a time scale jump, i.e. leap seconds, with which the radio clock must constantly reckon and which worsens its overall concept. It is therefore advisable to partially deviate from the leap second method and to adapt the mean solar time to the mean atomic time in smaller time scale increments. It is favorable to divide the leap second into 8 (2 3 ) equal parts, i.e. in 0.125 second steps, before the calculated time in 8 consecutive days, the last calendar days of a UTC month (UTC = Coordinated Universal Time), preferably at the end of June or at the end of December. The general principle of the leap second, which has been agreed internationally, is retained. If more than one transmitter time signal is sent per day (there should be at least 2, which are offset by 12 hours), then the consideration of a time scale jump in each transmitter time signal of a measurement time interval (e.g. a day) must be taken into account in the same way . Based on practical experience, it can be assumed that one correction of the radio clock per day is sufficient. In order to switch off periodic interferers that regularly interfere at a time of day, it is expedient to be able to use a second transmitter time signal. This also has the advantage that you are not dependent on a single time of day when the radio clock is commissioned for the first time or after servicing. The uniform transmitter time signal should therefore be broadcast at two fixed times of the day, which are offset by 12 hours. From the various possibilities for a suitable transmitter time signal, which ensures automatic evaluation, a solution was developed that allows the construction of simple time signal encoders and decoders, is acoustically perceptible and only takes three seconds (Figure 9). The Nf modulation frequency of 1000 Hz was chosen because it serves as a reference frequency for many parameters in communications technology and can also be made audible. The selected duration of a total of three seconds represents a favorable compromise between unnecessarily long (thus prone to failure) and too short (hence insufficient selection from any LF signal). It should also be emphasized that all relevant times with binary dividers have a usual "clock frequency" , e.g. B. 2 15 Hz or 2 22 Hz can be derived, for which there are enough resonators. This advantage relates to both the time signal encoder and decoder circuit. The equally selected time periods are also suitable for computer evaluation, since program loops or subroutines can be used.

Claims (7)

1. Method for the automatic adjustment of autonomous radio clocks with the aid of a transmitter time mark (3) which is received in a transmitter time mark receiver (45) with a correction of the cycle deviation and of the oscillator frequency, as a function of stored measured data, in which the correction of the oscillator frequency and a change in the stored measured data does not occur if a transmitter time mark is missed, characterised by the method stages:
A) the cycle deviation of the radio clock which has arisen within a defined constant time interval is periodically measured according to its magnitude and direction, and stored;
B) the transmitter time mark (3) is received within a defined lock-in range which is very short in comparison with the time interval, the limits of which habe been derived from the oscillator frequency of the radio clock;
C) between a time reference in the transmitter time marke received (3) and a reference point in an internal time signal (4) which is produced periodically in the radio clock, a differential time measurement is carried out;
D) the correction to the cycle deviation and the oscillator frequency carried out as a function of the stored measured data takes place periodically, following on the differential time measurement;
E) the correction of the cycle deviation is continued without a simultaneous correction of the oscillator frequency after a transmitter time mark has been missed as a function of the stored measured data which remains unaltered.
2. Method according to Claim 1, characterised by the fact that the transmitter time mark receiver (45) is only switched on for a little longer than the time lock-in range.
3. Method according to Claim 1, characterised by the fact that the oscillator (30) of the radio clock is automatically aligned in such a way that the transmitter time mark (3) appears before the periodic internal time signal (4).
4. Method according to Claim 1, characterised by the fact that the transmitter time mark receiver (45) is automatically adjusted to the strongest transmitter, that if a time mark is, however, missed by this transmitter, either the next strongest transmitter or a preselected transmitter is automatically addressed.
5. Method according to Claim 1, characterised by the fact that the transmitter time mark receiver (45) is moved into a standard radio or television receiver, the receiver stages and receiver equipment of which are also used by the radio clock.
6. Method according to Claim 1, characterised by the fact that the method is used for clock installations and that the clock time indicated on a secondary clock can be addressed and changed from a main clock under a particular address given by coding switch (91).
7. Method according to Claim 6, characterised by the fact that a time scale jump of one second is processed which, during the transmission of the transmitter time mark, is divided up into several small scale jumps which are, on their part, distributed over several successive defined time intervals.
EP81102235A 1980-06-19 1981-03-25 Process for the automatic setting of radio clocks aided by time signals Expired EP0042913B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AT81102235T ATE22359T1 (en) 1980-06-19 1981-03-25 PROCEDURE FOR AUTONOMOUS SETTING OF AUTONOMOUS RADIO CLOCKS USING A TIME SIGN.
CA000379059A CA1167649A (en) 1980-06-19 1981-06-04 Method of automatic adjustment of self-contained radio-clock by means of time mark

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3022949 1980-06-19
DE3022949A DE3022949C2 (en) 1980-06-19 1980-06-19 Process for the automatic correction of the rate deviation of a clock

Publications (3)

Publication Number Publication Date
EP0042913A2 EP0042913A2 (en) 1982-01-06
EP0042913A3 EP0042913A3 (en) 1982-01-20
EP0042913B1 true EP0042913B1 (en) 1986-09-17

Family

ID=6104961

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81102235A Expired EP0042913B1 (en) 1980-06-19 1981-03-25 Process for the automatic setting of radio clocks aided by time signals

Country Status (4)

Country Link
US (1) US4440501A (en)
EP (1) EP0042913B1 (en)
JP (1) JPS5735780A (en)
DE (2) DE3022949C2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3822412A1 (en) * 1988-07-01 1990-01-04 Schulz Werner Dipl Ing Fh Method for automatically setting autonomous radio clocks
DE3827837A1 (en) * 1988-08-17 1990-02-22 Thomson Brandt Gmbh METHOD FOR CORRECTING DATE AND TIME
DE4403124A1 (en) * 1994-02-02 1995-08-03 Telefunken Microelectron Radio clock with receiver unit

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4582434A (en) * 1984-04-23 1986-04-15 Heath Company Time corrected, continuously updated clock
DE3439638C1 (en) * 1984-10-30 1986-05-15 Gebrüder Junghans GmbH, 7230 Schramberg Autonomous radio clock
US5150954A (en) * 1984-12-05 1992-09-29 Seiko Corporation Pager watch system utilizing time slot communication
US4768178A (en) * 1987-02-24 1988-08-30 Precision Standard Time, Inc. High precision radio signal controlled continuously updated digital clock
US4823328A (en) * 1987-08-27 1989-04-18 Conklin Charles C Radio signal controlled digital clock
JPH01152776U (en) * 1988-04-15 1989-10-20
EP0427515A3 (en) * 1989-11-08 1991-10-09 Seiko Epson Corporation Automatically corrected electronic timepiece
JPH03218494A (en) * 1989-11-08 1991-09-26 Seiko Epson Corp Clock with automatic correction of time accuracy
US5265070A (en) * 1989-11-08 1993-11-23 Seiko Epson Corporation Receiving device with timekeeping function
KR950012055B1 (en) * 1990-01-29 1995-10-13 더 유나이티드 스테이츠 오브 어메리카, 레프리젠티드 바이 더 세크리터리, 유나이티드 스테이츠 디파트먼트 오브 코머스 Device and method for providing accurate time and/or frequency
KR930005908B1 (en) * 1990-05-22 1993-06-25 삼성전자 주식회사 Automatic time adjustment circuit
US5128909A (en) * 1990-08-17 1992-07-07 Ball Corporation Advanced clock measurement system
JP3000245B2 (en) * 1992-03-04 2000-01-17 セイコーインスツルメンツ株式会社 Radio-controlled electronic clock
JPH0744719B2 (en) * 1993-03-29 1995-05-15 日本電気株式会社 Wireless selective call receiver
DE4423366C1 (en) * 1994-07-04 1995-10-19 Grundig Emv Software clock operating method for electronic entertainment appts. e.g with TV receiver or video recorder
JP4264494B2 (en) * 2003-05-15 2009-05-20 Okiセミコンダクタ株式会社 Standard radio wave reception time device
DE10334990B4 (en) 2003-07-31 2016-03-17 Atmel Corp. Radio Clock
JP4283622B2 (en) * 2003-09-10 2009-06-24 セイコープレシジョン株式会社 Radio correction clock
CN1627213A (en) * 2003-11-28 2005-06-15 Atmel德国有限公司 Radio-controlled clock and method for acquiring time information from a time signal
DE10357201A1 (en) * 2003-12-08 2005-07-07 Atmel Germany Gmbh Radio Clock
US7333467B2 (en) 2003-12-08 2008-02-19 Atmel Germany Gmbh Receiver circuit and method using selectively variable amplification for receiving time signals from different transmitters
DE10361593A1 (en) * 2003-12-30 2005-07-28 Atmel Germany Gmbh Method for determining the start of seconds from a transmitted time signal
DE102004004375B4 (en) 2004-01-29 2019-08-08 Atmel Corp. Method for obtaining time information and radio clock
DE102004004411B4 (en) 2004-01-29 2015-08-20 Atmel Corp. Radio clock and method for obtaining time information
DE102004004416A1 (en) * 2004-01-29 2005-08-18 Atmel Germany Gmbh Method for determining the signal quality of a transmitted time signal
DE102004005340A1 (en) * 2004-02-04 2005-09-01 Atmel Germany Gmbh Method for obtaining time information, receiver circuit and radio clock
DE102005056483B3 (en) 2005-11-26 2007-01-11 Atmel Germany Gmbh Time information receiving e.g. for radio clock, involves having characteristic value of temporal duration compared to signal phase of certain signal level of digital signal with desired value
CN101651504A (en) * 2008-08-15 2010-02-17 鸿富锦精密工业(深圳)有限公司 Electronic device and clock calibrating method thereof
US20090129208A1 (en) * 2009-01-28 2009-05-21 Weiss Kenneth P Apparatus, system and method for keeping time
CN101951304B (en) * 2010-08-31 2012-04-18 华为技术有限公司 Microwave transmission device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1773406B2 (en) * 1967-09-01 1976-08-26 Patek Phillippe S.A., Genf (Schweiz) INDEPENDENT AND CONTINUOUS TIME SETTING DEVICE OF A WATCH

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1673793C3 (en) * 1967-03-23 1981-03-19 Telefonbau Und Normalzeit Gmbh, 6000 Frankfurt Procedure for the ongoing transmission of the time
US3772258A (en) * 1971-10-13 1973-11-13 Texaco Inc Process for the polymerization of acrylic acid esters
CH540521A (en) * 1972-01-06 1973-04-13 Landis & Gyr Ag Electronic clock, in particular synchronous clock with power reserve
IT957184B (en) * 1972-04-12 1973-10-10 Mischiatti S ELECTRONIC EQUIPMENT FOR LOCAL OR UNIVERSAL CONTROL AND SYNCHRONIZATION OF WATCHES
US3945194A (en) * 1973-12-15 1976-03-23 Itt Industries, Inc. Electronic quartz clock with integrated circuits
JPS5127968A (en) * 1974-09-03 1976-03-09 Suwa Seikosha Kk Denshidokei no jidoshuseihoho
JPS5162074A (en) * 1974-11-28 1976-05-29 Seiko Instr & Electronics Denshidokeino byoshuseisochi
US4117661A (en) * 1975-03-10 1978-10-03 Bryant Jr Ellis H Precision automatic local time decoding apparatus
JPS6015905B2 (en) * 1975-06-18 1985-04-22 セイコーエプソン株式会社 electronic clock
CH608933B (en) * 1976-01-12 Ebauches Sa ELECTRONIC DIGITAL QUARTZ WATCH.
US4014166A (en) * 1976-02-13 1977-03-29 The United States Of America As Represented By The Secretary Of Commerce Satellite controlled digital clock system
CH624539B (en) * 1977-12-02 Ebauches Electroniques Sa ELECTRONIC WATCH PART WITH AUTOMATIC GAP CORRECTION.
CH618315GA3 (en) * 1977-02-21 1980-07-31
DE2715096C2 (en) * 1977-04-04 1982-12-16 Wolfgang Dr.-Ing. 6101 Groß-Bieberau Hilberg Arrangement for obtaining and displaying time information, consisting of a radio clock and a quartz clock that is spatially combined with this
US4204167A (en) * 1978-05-24 1980-05-20 Liu Yung Ho Electronic time piece automatic calibrating device
JPS552927A (en) * 1978-06-21 1980-01-10 Nec Corp Automatic time correction device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1773406B2 (en) * 1967-09-01 1976-08-26 Patek Phillippe S.A., Genf (Schweiz) INDEPENDENT AND CONTINUOUS TIME SETTING DEVICE OF A WATCH

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Elektor 1974, S.7-79, 7-80 *
Funkschau 1979, H 26, S. 1527-1531 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3822412A1 (en) * 1988-07-01 1990-01-04 Schulz Werner Dipl Ing Fh Method for automatically setting autonomous radio clocks
DE3827837A1 (en) * 1988-08-17 1990-02-22 Thomson Brandt Gmbh METHOD FOR CORRECTING DATE AND TIME
DE4403124A1 (en) * 1994-02-02 1995-08-03 Telefunken Microelectron Radio clock with receiver unit

Also Published As

Publication number Publication date
DE3175319D1 (en) 1986-10-23
US4440501A (en) 1984-04-03
JPS5735780A (en) 1982-02-26
DE3022949C2 (en) 1983-11-17
DE3022949A1 (en) 1981-12-24
EP0042913A2 (en) 1982-01-06
EP0042913A3 (en) 1982-01-20

Similar Documents

Publication Publication Date Title
EP0042913B1 (en) Process for the automatic setting of radio clocks aided by time signals
DE3786529T2 (en) Control of high frequency response pulses in a television survey system.
DE102006060927A1 (en) Signaling device for household appliance, particularly smoke detector, has time signal receiver which has receiving unit that receives electromagnetic time signal and processing unit for processing time signal
EP0308881B1 (en) Radio-controlled watch
DE69116609T2 (en) Receiver for paging system with clockwork function
DE2643250A1 (en) Slave clock receiving coded time signal - has error detection circuit and optical display
DE2545823C2 (en) Method for the automatic readjustment of an electronic clock and clock for carrying out the method
DE2807214C3 (en) Timing device
DE2609526C3 (en) Electronic clock
DE2715096C2 (en) Arrangement for obtaining and displaying time information, consisting of a radio clock and a quartz clock that is spatially combined with this
EP1503257A2 (en) Radio-controlled timepiece
DE10361593A1 (en) Method for determining the start of seconds from a transmitted time signal
DE2744780C2 (en) Phase monitoring circuit for a VOR receiver
EP0185160A2 (en) Radio-controlled time piece
DE3822412C2 (en)
DE2539224B2 (en) Procedure for automatically correcting the time display of a watch and clock to perform this procedure
EP0204851A2 (en) Electric watch
DE4412892A1 (en) Autonomous radio watch or clock with radio receiver and aerial
DE2541299B2 (en) Circuit for generating a stepped tuning voltage for tuning a receiver
DE102006060924B3 (en) Wireless programming method for time signal receiver, involves transmitting programming instruction, which is coded in adapted data format on time signal receiver, of transmitting device
DE4230531C1 (en) Radio clock
DE3046671C2 (en) Time code generator
DE3043867A1 (en) Regulating system for radio controlled clock - uses correction device in digital section between receiving section and manual adjustment
WO2008074484A1 (en) Programmable time signal receiver method for programming a time signal receiver and programming device for a time signal receiver
DE1952750A1 (en) Remote measuring system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

17P Request for examination filed

Effective date: 19810325

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SCHULZ, WERNER, DIPL.-ING.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 22359

Country of ref document: AT

Date of ref document: 19861015

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3175319

Country of ref document: DE

Date of ref document: 19861023

ITF It: translation for a ep patent filed
ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19870331

R20 Corrections of a patent specification

Effective date: 19870210

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19900213

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19900215

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19900216

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19900219

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19900228

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19900323

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19900329

Year of fee payment: 10

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19900331

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19910325

Ref country code: AT

Effective date: 19910325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19910326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19910331

Ref country code: CH

Effective date: 19910331

Ref country code: BE

Effective date: 19910331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19910429

Year of fee payment: 11

BERE Be: lapsed

Owner name: SCHULZ WERNER

Effective date: 19910331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19911001

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19911129

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19921201

EUG Se: european patent has lapsed

Ref document number: 81102235.9

Effective date: 19911009