EP0040559B1 - Dispositif convoluteur piézoélectrique à ondes élastiques - Google Patents

Dispositif convoluteur piézoélectrique à ondes élastiques Download PDF

Info

Publication number
EP0040559B1
EP0040559B1 EP81400686A EP81400686A EP0040559B1 EP 0040559 B1 EP0040559 B1 EP 0040559B1 EP 81400686 A EP81400686 A EP 81400686A EP 81400686 A EP81400686 A EP 81400686A EP 0040559 B1 EP0040559 B1 EP 0040559B1
Authority
EP
European Patent Office
Prior art keywords
substrate
convolver
convolver device
electrode
strips
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81400686A
Other languages
German (de)
English (en)
Other versions
EP0040559A1 (fr
Inventor
Hervé Gautier
Charles Maerfeld
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0040559A1 publication Critical patent/EP0040559A1/fr
Application granted granted Critical
Publication of EP0040559B1 publication Critical patent/EP0040559B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06GANALOGUE COMPUTERS
    • G06G7/00Devices in which the computing operation is performed by varying electric or magnetic quantities
    • G06G7/12Arrangements for performing computing operations, e.g. operational amplifiers
    • G06G7/19Arrangements for performing computing operations, e.g. operational amplifiers for forming integrals of products, e.g. Fourier integrals, Laplace integrals, correlation integrals; for analysis or synthesis of functions using orthogonal functions
    • G06G7/195Arrangements for performing computing operations, e.g. operational amplifiers for forming integrals of products, e.g. Fourier integrals, Laplace integrals, correlation integrals; for analysis or synthesis of functions using orthogonal functions using electro- acoustic elements

Definitions

  • the invention relates to convolvers using the propagation of acoustic waves in piezoelectric solids.
  • counterprogressive elastic waves which propagate in a region of the surface of the support where they interact non-linearly are excited at the ends of a support made of piezoelectric material. generate a double frequency electric field.
  • This electric field is collected by an integrating electrode covering the interaction region and this collecting electrode provides an electric signal whose modulation represents the convolution function of the two incident electric signals.
  • the modulation function of one of the two incident signals has undergone a time inversion before being applied to one of the inputs of the convolver device, the emerging signal represents a correlation function.
  • the invention applies more particularly to convolvers capable of analogically processing signals characterized by a product f. T high.
  • the guide convolvers produced so far have a response which tends to deviate from the mathematical expression of the convolution integral. Indeed, when the length L of the collecting electrode becomes large with respect to the electromagnetic wavelength, which corresponds to a product fT of high value, it is necessary to take account of the electromagnetic losses which create disturbances at the level of interaction. The signal from the interaction is no longer spatially uniform. As the electric charges are no longer induced in phase, they do not add up in an equiphase manner in the interaction region. In addition, the resistance of the collecting electrode eventually becomes appreciable with respect to the output impedance of the convolutor, which leads to a deterioration of the response. It should also be mentioned that disturbances at the interaction level also appear, even if the length L of the collecting electrode is small compared to the electromagnetic wavelength, when the resistance-capacitance product of the guide is not small enough before period 1 / f.
  • the invention as it is characterized in the claims, aims to collect the convolution signal by samples taken step by step along the interaction region of the elastic waves. contraprogressive, without these samples being able to disturb the propagation of acoustic waves by their presence.
  • the interval between two successive samples is chosen so that the difference in uniformity of the interaction remains small when the samples are brought back to the outlet of the convolutor.
  • FIG. 1 represents the diagram of a convoluting device of known type.
  • a support made of piezoelectric material 10 are arranged at the two ends two transducers 11 and 12 in the form of interdigitated combs forming the two inputs e 1 and e 2 of the convolver.
  • the two signals for which the convolution function is to be obtained are modulated around a central carrier frequency f equal to several tens of megaherts. These two signals are sent to the inputs e 1 and e 2 so as to generate two counterprogressive elastic waves propagating in two directions opposite to the surface of the support 10 with more or less penetration depending on the type of waves generated.
  • the support 10 acts not only as a propagating medium but also as a non-linear medium where there is a non-linear interaction of the two waves which creates a signal of double carrier frequency. This signal is theoretically spatially uniform over the interaction zone and it is detectable by means of a uniform electrode 15 placed on the interaction zone.
  • This electrode 15 forms a capacitor with a counter electrode consisting for example of two side plates 16 connected to each other by a connection 17 to the electrical ground.
  • the plate 15 thus collects the electric charges induced by the non-linear interaction of the two waves and provides at its output s a signal C (t) at the frequency 2f.
  • the two contraprogressive waves emitted are of the form: and where x is the axis of propagation of waves at speed v, ⁇ the pulsation 2 ⁇ f and k the number of waves ⁇ / v.
  • a signal is obtained at the output s: where K is related to energy efficiency.
  • the modulation of the signal C (t) represents the convolution function of the signals F (t) and G (t) compressed in time by a ratio 2, and over a time interval corresponding to the duration during which the two signals interact over the entire length L of the plate 15.
  • These devices are capable of processing signals of several tens of Megahertz of bandwidth B and of a few tens of microseconds of duration T. They are of great interest by their great simplicity of implementation, their high processing speed, their volume and their very low consumption.
  • the waves must be guided in this width W and the plate 15 is simply used, the guidance being obtained by the effect of slowing down of the waves caused by the short-circuit of the acoustic field at the surface.
  • the device of FIG. 1 can be implemented as follows.
  • the frequency f is equal to 156 MHz and the duration T to 12 s.
  • the beam compressors are produced by couplers with conductive bands.
  • the electrodes 15 and 16 constitute a portion of the electromagnetic transmission line in which the propagation speed of the electromagnetic waves VEM is low because of the high value of the permittivity of the substrate. Effects of propagation losses appear when the length L of the output plate is greater than about 0.1 of electromagnetic wavelength ⁇ EM equal to v EM / 2f. These effects introduce on the one hand phase shifts between the sources of the charges and the contact points and on the other hand reflections at the points of electrical discontinuity.
  • the condition L / ⁇ Em > 0.1 corresponds to: going is the speed of the acoustic waves.
  • the device described has a central frequency equal to 156 MHz for a band of 50 MHz.
  • the factor M (a), function of r is due to the non-uniformity of the interaction and the signal H (t) no longer represents the function of convolution of the two signals F (t) and G (t) .
  • the convolver device according to the invention illustrated in FIG. 2 comprises an output electrode 15 provided with several contacts distributed over its entire length along the axis of propagation of the acoustic waves and connected together to form the output s of the convolutor, the maximum interval between the contacts being chosen to obtain a low error of uniformity of the interaction.
  • the transmission line 20 comprises n equidistant sockets 21 connected at a common point by wires 22 introducing a negligible phase shift.
  • the short-circuit current I cc at the output is then evaluated as a function of the abscissa of an acoustic generator 23 of charge I, the abscissa x being identified with respect to the middle of the interval between two taps, for example the taken 1 and 2.
  • FIG. 4 represents the variations of I cc / I in amplitude, solid line, and in phase, dotted line, in the case where the half-distance between taps is equal to O, 075, lEM and for 3 values of the attenuation a by y ⁇ EM in Néper.
  • the resistance R is given by if r is the plate resistivity and the capacitance C depends on the distance between the positive and negative electrodes and it can be adjusted.
  • the loss a is known and the maximum spacing between taps can be determined to obtain the required uniformity error.
  • the maximum distance between taps is of the order of 0.1 ⁇ a to 0.22 ⁇ a for a phase error and of amplitude limited respectively to 10 ° and 1 dB, ⁇ a denoting the acoustic wavelength at the surface of the substrate.
  • the contacts on the outlet plate must be made so as not to disturb the propagation of the acoustic waves. Given the high operating frequencies, the dimensions are very small, the plate being able to measure a few tens of microns in width, and several production techniques can be used.
  • the contacts are made by soldering or by direct bonding of a conductive wire 40 on the outlet plate 41 placed on the surface of the substrate 45.
  • the dimensions of the welding point 42 or the adhesive point 43 do not exceed one tenth of the acoustic wavelength.
  • welding is carried out either by thermocompression or by ultrasound. As for bonding, it is obtained cold using either indium or electrically conductive epoxy resin.
  • the contacts can be made by welding or gluing next to the plate so as to be able to increase the size of the welding point or the point of glue. For this, the contacts are made at a distance from the plate such that the energy of the acoustic waves is practically zero, this distance being of the order of a few wavelengths.
  • connection blocks 52 are arranged along the plate 55 on the surface of the substrate. They are electrically connected to the plate by conductive strips 50 whose width is less than / ! A / 5 to disturb the propagation of the acoustic waves as little as possible, their length being equal to Z chosen to sufficiently distance the blocks from the plate. These bands are connected to the blocks by wider bands 51 making it possible to reduce the electrical resistance. These strips 51 can be flared from the strips 50 to the blocks 53 as shown in FIG. 8. Referring to FIG. 7, the ground electrodes 54 are notched to receive the blocks 52, this discontinuity not affecting the uniformity of interaction.
  • Electrodes can also be distant enough from the plate to remain uniform if the width of the substrate allows it. These electrodes can also be placed on the lower surface of the substrate.
  • the spots of solder or glue 53 made on the pavers can be produced using all the conventional techniques since there are no longer any dimensional constraints. Although in the example represents each contact is ensured by two blocks, we could use only one on one side or the other.
  • each metal strip 51 and each block 52 are placed on a thin layer of an electrically insulating material 60 such as resin or Si0 2, thus significantly reducing the coupling between the substrate and the metallized parts .
  • an electrically insulating material 60 such as resin or Si0 2
  • FIG. 9 shows another technique making it possible to suppress coupling by the conductive strips of connections 50.
  • Each strip is metallized on a material which is then eliminated so as to leave an air gap 70 between substrate and the strip. Note that this technique is known in particular for producing an acoustic filter.
  • the guide 55, the strips 50 and 51 and the blocks 52 are for example metallized by deposition, by evaporation or spraying using a mask produced by photolithography.
  • Another embodiment consists in placing an electrode in the form of a plate opposite the guide and similar to the latter. The connections to the output circuit are made on this electrode.
  • FIG 10 shows in section an embodiment by capacitive coupling.
  • a first substrate 85 has on its surface the devices for generating the acoustic waves and the guide 80; it can also include the ground electrodes 82.
  • a second substrate 86 is applied to the surface of the first substrate 85.
  • the two substrates are preferably made of the same material.
  • the substrate 86 has a recess 83 provided with the output electrode 81 placed opposite the guide 80 and at a predetermined distance h. This distance h is chosen so as to capacitively couple the electrode to the guide without reducing the efficiency of the convolver. For this the capacitance C brought back must be large compared to the capacitance Cp of the piezoelectric substrate.
  • the value of the capacitance Cp is of the order of the permittivity 8 p of the substrate while the value of the capacitance C is equal to ⁇ o where ⁇ o is the permittivity of the air, these values being counted per unit of length along the axis of propagation of the waves.
  • the substrate 85 includes the recess such as 83 provided with the acoustic guide 80 while the other substrate is planar.
  • Figures 11 and 12 show two other alternative embodiments for which the guide is not metallized: sout it is produced by profiling the substrate to give it a greater thickness opposite the output electrode as shown in Figure 11 at 90, either it is produced by modifying the structure of the substrate opposite the output electrode by an ion implantation as shown in FIG. 12 at 100.
  • the faces of the two piezoelectric substrates 85 and 86 are polished and brought into contact and then held by gluing or mechanically by pressing, or else by adhesion obtained by a seal.
  • FIG. 13 shows an embodiment comprising metal studs 110 produced between the metal guide and the outlet electrode.
  • the height of the recess 83 can be notably greater than for the constructions with capacitive coupling and it is therefore less critical.
  • the lateral dimension of each stud is small in front of ⁇ a, around 0.1 ⁇ a; in addition, these studs 110 are distributed along the guide randomly to avoid cumulative effects, the average distance between studs being of the order of 100 ⁇ a.
  • the pads are produced beforehand either on the guide 80 or on the electrode 81, for example by photoengraving, the two substrates then being assembled according to one of the techniques seen above.
  • FIG. 14 An embodiment by profiled guide is shown in FIG. 14.
  • the guide 120 is profiled in thickness transversely to the axis of propagation of the waves to present a central zone 121 and two lateral zones 122.
  • the central zone has a thickness greater than the two lateral zones causing, by mechanical load effect on the substrate 125, a slower propagation speed under this central zone and consequently guiding the waves.
  • the speed in the free zone of the substrate 123 is also greater than that of the lateral zones by the effect of an electric short circuit on the surface of the substrate.
  • the lateral zones 122 are produced so as to present a large electrical conduction.
  • the profiling of the guide is obtained for example by ionic machining. It can also be obtained by adding a conductive or insulating material over a prior metallization.
  • the electrical contacts 124 are made at the outer edges of the lateral zones outside the zone of presence of the acoustic energy.
  • the guide 130 is homogeneous in thickness and has a structure transverse to the axis of propagation of the waves, leading to the creation of a central guiding zone 131 and two lateral zones on which the electrical connections are made.
  • the central zone is continuous while the two lateral zones are discontinuous and produced by cutting the guide into strips (132) perpendicular to its axis.
  • the central zone thus makes a total short-circuit on the surface of the substrate which slows down the waves relative to the lateral zones which make a partial short-circuit.
  • the spacing p between bands (132) is chosen to be less than ⁇ a / 2 to avoid the known effects of "stop band” and thus maintain a large bandwidth B.
  • the guide is for example obtained by photoengraving or photolithography.
  • the electrical contacts are made at the ends of the strips.
  • the guide has a width W of 30 ⁇ and a length L of 35 mm. It has four equidistant sockets of 1, two of which are located at the ends so that the I / ⁇ Em ratio is close to 0.16, the frequency band being equal to 100 MHz.
  • Figures 16 and 17 schematically represent the convolver and output circuit assembly.
  • FIG. 17 makes it possible to distinguish the detail of the connections at the level of a socket.
  • the metallized studs 146 are connected to the guide 145 and are connected to each other and to the ends of the tracks 142 of the output circuit by gold wires a few millimeters in length 148.
  • the ground electrodes 147 are connected to the parts of the output circuit connected to ground at 149.
  • the arrangement of the tracks 142 makes it possible to connect the four sockets to the output cable 143, of impedance generally equal to 50 ⁇ , by connections of identical lengths, thus making it possible to add the signals from the sockets in phase. Note that this realization is possible because the speed of the electromagnetic waves in the guide is low compared to that of the conventional transmission lines constituted by the tracks 142.
  • the output circuit can also be produced on the acoustic substrate previously metallized and covered with a insulating layer with the lowest permittivity possible.
  • such an embodiment makes it possible to obtain a uniformity of the amplitude response of less than 1 dB and a uniformity of the phase of less than 15 °. With only the two extreme sockets connected, the result is amplitude uniformity to within 5 dB and phase uniformity between 80 and 90 degrees.

Landscapes

  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Software Systems (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Description

  • L'invention se rapporte aux convoluteurs utilisant la propagation des ondes acoustiques dans les solides piézoélectriques. Etant donné deux signaux électriques incidents de durée T et de fréquence porteuse f, on excite aux extrémités d'un support en matériau piézoélectrique des ondes élastiques contraprogressives qui se propagent dans une région de la surface du support où elles interagissent non-linéairement de façon à engendrer un champ électrique à fréquence double. Ce champ électrique est recueilli par une électrode intégratice recouvrant la région d'interaction et cette électrode collectrice fournit un signal électrique dont la modulation représente la fonction de convolution des deux signaux électriques incidents. Cette technique est notamment décrite dans un article de C. S. KINO intitulé »Acoustoelectric interactions in acoustic- surface-wave devices« et publié dans les Pro- ceedings of the IEEE, mai 1976, vol. 64, N° 5, pages 724-748. Lorsque la fonction de modulation de l'un des deux signaux incidents a subi une inversion de temps avant d'être appliquée à l'une des entrées du dispositif convoluteur, le signal émergent représente une fonction de corrélation. L'invention s'applique plus particulièrement aux convoluteurs capables de traiter analogiquement des signaux caractérisés par un produit f. T élevé.
  • Les convoluteurs à guide réalisés jusqu'ici ont une réponse qui tend à s'écarter de l'expression mathématique de l'intégrale de convolution. En effet, lorsque la longueur L de l'électrode collectrice devient grande vis à vis de la longueur d'onde électromagnétique, ce qui vorrespond à un produit fT de valeur élevée, il faut tenir compte des pertes électromagnétiques qui créent des perturbations au niveau de l'interaction. Le signal issu de l'interaction n'est plus spa- tialement uniforme. Comme les charges électriques ne sont plus induites en phase, elles ne s'additionnent pas de manière équiphase dans la région d'interaction. En outre, la résistance de l'électrode collectrice finit par devenir appréciable par rapport à l'impédance de sortie du convoluteur, ce qui entraine une détérioration de la réponse. Il faut également mentionner que des perturbations au niveau de l'interaction apparaissent également, même si la longueur L de l'électrode collectrice est petite devant la longueur d'onde électromagnétique, lorsque le produit résistance-capacité du guide n'est pas assez petit devant la période 1/f.
  • En vue de pallier les inconvénients énumérés ci-dessus, l'invention telle qu'elle est caractérisée dans les revendications, vise à recueillir le signal de convolution par des prélèvements effectués de proche en proche le long de la région d'interaction des ondes élastiques contraprogressives, sans que ces prélèvements puissent perturber par leur présence la propagation des ondes acoustiques. L'intervalle entre deux prélèvements successifs est choisi de manière que l'écart d'uniformité de l'interaction reste faible lorsque les prélèvements sont ramenés à la sortie du convoluteur.
  • L'invention sera mieux comprise au moyen de la description ci-après et des figures annexées parmi lesquelles
    • la figure 1 représente un dispositif convoluteur de type connu;
    • la figure 2 représente un dispositif convoluteur selon l'invention;
    • la figure 3 est un schéma explicatif;
    • la figure 4 est un diagramme explicatif;
    • les figures 5 et 6 illustrent une première variante réalisation des prises de contact;
    • la figure 7 illustre une seconde variante de prise de contact;
    • la figure 8 illustre une troisième variante de prise de contact;
    • la figure 9 illustre une quatrième variante de prise de contact;
    • la figure 10 représente un mode de couplage capacitif;
    • les figures 11 et 12 représentent des variantes du mode de couplage illustré sur la figure 10;
    • la figure 13 représente un mode de couplage galvanique par plots;
    • la figure 14 illustre un dispositif convoluteur à guide profilé;
    • la figure 15 représente une variante de réalisation du dispositif de la figure 14;
    • la figure 16 montre les connexions reliant les contacts avec la sortie du dispositif convoluteur;
    • la figure 17 représente un détail de la figure 16.
  • La figure 1 représente le schéma d'un dispositif convoluteur de type connu. Sur un support en matériau piézoélectrique 10 sont disposés aux deux extrémités deux transducteurs 11 et 12 sous la forme de peignes interdigités formant les deux entrées e1 et e2 du convoluteur. Les deux signaux dont on veut obtenir la fonction de convolution sont modulés autour d'une fréquence centrale porteuse f égale à plusieurs dizaines de Méga- herts. Ces deux signaux sont envoyés sur les entrées e1 et e2 de manière à générer deux ondes élastiques contraprogressives se propageant suivant deux directions opposées à la surface du support 10 avec plus ou moins de pénétration suivant le type d'ondes générées. Le support 10 agit non seulement comme milieu propagateur mais également comme milieu non linéaire où il se produit une interaction non linéaire des deux ondes qui crée un signal de fréquence porteuse double. Ce signal est théoriquement spatiale- ment uniforme sur la zone d'interaction et il est détectable au moyen d'une électrode uniforme 15 placée sur la zone d'interaction.
  • Cette électrode 15 forme une capacité avec une contre-électrode constituée par exemple de deux plaques latérales 16 reliées entre elles par une connexion 17 à la masse électrique. La plaque 15 collecte ainsi les charges électriques induites par l'interaction non linéaire des deux ondes et fournit à sa sortie s un signal C(t) à la fréquence 2f.
  • Si F(t) et G(t) sont les deux signaux dont on veut obtenir la convolution, les deux ondes contraprogressives émises sont de la forme:
    Figure imgb0001
    et
    Figure imgb0002
    où x est l'axe de propagation des ondes à la vitesse v, ω la pulsation 2πf et k le nombre d'ondes ω/v. On obtient à la sortie s un signal:
    Figure imgb0003
    où K est lié au rendement énergétique. La modulation du signal C(t) représente la fonction de convolution des signaux F(t) et G(t) comprimés dans le temps d'un rapport 2, et sur un intervalle de temps correspondant à la durée pendant laquelle les deux signaux interagissent sur toute la longueur L de la plaque 15.
  • Ces dispositifs sont capables de traiter des signaux de plusieurs dizaines de Mégahertz de largeur de bande B et de quelques dizaines de microsecondes de durée T. Ils présentent un grand intérêt par leur grande simplicité de réalisation, leur grande vitesse de traitement, leur volume et leur consommation très réduite.
  • Le rendement de tels dispositifs est d'autant plus grand que, pour une puissance des signaux d'entrée donnée, la largeur des faisceaux d'ondes acoustiques W qui interagissent est faible. Aussi ces dispositifs utilisent généralement en sortie des transducteurs 11 et 12 des compresseurs de faisceaux schématisés sur la figure 1 par les deux rectangles 13 et 14. Ces compresseurs peuvent être réalisés de différentes façons et en particulier à l'aide de bandes conductrices à pas ou largeurs variables comme décrit dans le brevet français de C. MAERFELD N°2.269.237 déposé le 7 Août 1973 au nom de THOMSON-CSF. De plus en sortie des compresseurs, les ondes doivent être guidées dans cette largeur W et on utilise simplement la plaque 15, le guidage étant obtenu par l'effet de ralentissement des ondes provoqué par le court-circuit du champ acoustique en surface. Ces dispositifs permettent alors d'obtenir une dynamique de l'ordre de 60 à 80 dB.
  • A titre d'exemple non limitatif le dispositif de la figure 1 peut être rélisé comme suit. La fréquence f est égale à 156 MHz et la durée T à 12 s. Les compresseurs de faisceaux sont réalisés par des coupleurs à bandes conductrices. Les électrodes 15 et 16 constituent une portion de ligne de transmission électromagnétique dans laquelle la vitesse de propagation des ondes électromagnétiques VEM est faible à cause de la valeur élevée de la permittivité du substrat. Des effets de pertes de propagation apparaissent lorsque la longueur L de la plaque de sortie est supérieure à environ 0,1 de longueur d'onde électromagnétique λEM égale à vEM/2f. Ces effets introduisent d'une part des déphasages entre les sources des charges et les points de contacts et d'autre part des réflexions aux points de discontinuité électrique.
  • La condition L/ÂEm > 0,1 correspond à:
    Figure imgb0004
    va étant la vitesse des ondes acoustiques.
  • Le dispositif décrit a une fréquence centrale égale à 156 MHz pour une bande de 50 MHz. Par ailleurs les valeurs types sont va = 3500 m/s et VEM = 4,3107 m/s dans le cas où le matériau piézoélectrique utilisé est du LiNb03. Avec ces valeurs l'inégalité 3 conduit à tenir compte des effets de propagation lorsque fT devient supérieur à 600.
  • En raison des effets de propagation, le signal obtenu à la sortie s est:
    Figure imgb0005
  • Dans cette expression le facteur M(a), fonction de r, est dû à la non uniformité de l'interaction et le signal H(t) ne représente plus la fonction de convolution des deux signaux F(t) et G(t).
  • L'inconvénient est donc très important et cela d'autant plus qu'il n'est pratiquement pas possible de corriger le terme M(τ) a posteriori.
  • Le dispositif convoluteur suivant l'invention illustré sur la figure 2 comporte une électrode de sortie 15 munie de plusieurs contacts répartis sur toute sa longueur suivant l'axe de propagation des ondes acoustiques et reliés entre eux pour former la sortie s du convoluteur, l'intervalle maximum entre les contacts étant choisi pour obtenir une erreur d'uniformité de l'interaction faible.
  • L'intervalle maximum entre contacts ou prises, peut être évalué par un calcul. Pour effectuer ce calcul la plaque de sortie 15 est assimilée à une ligne de transmission électromagnétique avec pertes, la constante de propagation étant de la forme γ = (― a + 2jπ)/λEM où a est l'atténuation par longueur d'onde dans la ligne (en Neper). En se reportant à la figure 3, la ligne de transmission 20, comporte n prises 21 équidistantes connectées en un point commun par des fils 22 introduisant un déphasage négligeable. On évalue alors le courant de court-circuit Icc en sortie en fonction de l'abcisse d'un générateur acoustique 23 de charge I, l'abscisse x étant repérée par rapport au milieu de l'intervalle entre deux prises, par exemple les prises 1 et 2.
  • La figure 4 représente les variations de Icc/I en amplitude, trait plein, et en phase, trait pointillé, dans le cas où la demi-distance entre prises
    Figure imgb0006
    est égale à O,075,lEM et pour 3 valeurs de l'atténuation a par yÏEM en Néper. Cette atténuation a est telle que a = RCf si R et C sont la résistance et la capacité pour un
    Figure imgb0007
    du guide. La résistance R est donnée par
    Figure imgb0008
    si r est la résistivité de plaque et la capacité C dépend de la distance entre les électrodes positive et négative et elle peut être ajustée.
  • Pour des valeurs de W, L, r et C, la perte a est connue et on peut déterminer l'espacement maximum entre prises pour obtenir l'erreur d'uniformité requise.
  • En pratique la valeur de a dépasse rarement 6 Nepers et en se reportant à la figure 4, la distance maximum entre prises est de l'ordre de 0,1λa à 0,22λa pour une erreur de phase et d'amplitude limitée respectivement à 10° et 1 dB, λa désignant la longueur d'onde acoustique à la surface du substrat.
  • Les contacts sur la plaque de sortie doivent être réalisés de manière à ne pas perturber la propagation des ondes acoustiques. Compte tenu des fréquences élevées de fonctionnement les dimensions sont très petites, la plaque pouvant mesurer quelques dizaines de microns en largeur, et plusieurs techniques de réalisation peuvent être employées.
  • Comme représenté sur les figures 5 et 6, les contacts sont réalisés par soudure ou par collage directs d'un fil conducteur 40 sur la plaque de sortie 41 placée à la surface du substrat 45. Pour éviter les effets de diffraction, et limiter la charge mécanique, les dimensions du point de soudure 42 ou du point de colle 43 ne dépassent pas le dixième de la longueur d'onde acoustique.
  • La soudure est réalisée soit par thermocompression, soit par ultrasons. Quant au collage il est obtenu à froid en utilisant soit de l'indium, soit de la résine époxy électriquement conductrice.
  • Les contacts peuvent être réalisés par soudure ou collage à côté de la plaque de manière à pouvoir augmenter la taille du point de soudure ou du point de colle. Pour cela les contacts sont faits à une distance de la plaque telle que l'énergie des ondes acoustiques soit pratiquement nulle, cette distance étant de l'ordre de quelques longueurs d'onde.
  • Un exemple de réalisation est représenté sur la figure 7 dans le cas du convoluteur à trois plaques de la figure 2. Plusieurs pavés de connexion 52 sont disposés le long de la plaque 55 à la surface du substrat. Ils sont reliés électriquement à la plaque par des bandes conductrices 50 dont la largeur est inférieure à /!a/5 pour perturber le moins possible la propagation des ondes acoustiques, leur longueur étant égale à Z choisie pour éloigner suffisamment les pavés de la plaque. Ces bandes sont reliées aux pavés par des bandes 51 plus larges permettant de diminuer la résistance électrique. Ces bandes 51 peuvent s'évaser depuis les bandes 50 jusqu'aux pavés 53 comme représenté en figure 8. En se reportant à la figure 7, les électrodes de masse 54 sont échancrées pour recevoir les pavés 52, cette discontinuité n'affectant pas l'uniformité de l'interaction. Ces électrodes peuvent aussi être éloignées suffisamment de la plaque pour rester uniformes si la largeur du substrat le permet. Ces électrodes peuvent aussi être placées à la surface inférieure du substrat. Les points de soudure ou de colle 53 effectués sur les pavés peuvent être réalisés en utilisant toutes les techniques classiques puisqu'il n'y a plus aucune contrainte de dimensions. Bien que dans l'exemple représente chaque contact soit assuré par deux pavés, on pourrait n'en utiliser qu'un seul d'un côté ou de l'autre.
  • Avec cette technique, il existe un couplage acousto-électrique des surfaces métalliques avec le substrat qui engendre des effets parasites comme en particulier une perte de sensibilité accrue au niveau des connexions.
  • Comme représenté sur la figure 8, chaque bande métallique 51, et chaque pavé 52 sont placés sur une couche mince d'un matériau isolant électriquement 60 tel que de la résine ou du Si02 réduisant ainsi notablement le couplage entre le substrat et les parties métallisées. Cette technique permet de disposer de pavés de grandes dimensions et d'électrodes de masse uniformes, le cas échéant en regard des pavés.
  • Sur la figure 9 on a représenté une autre technique permettant de supprimer le couplage par les bandes conductrices de connexions 50. Chaque bande est métallisée sur un matériau qui ensuite est éliminé de manière à laisser un intervalle d'air 70 entre substrat et la bande. Notons que cette technique est connue notamment pour la réalisation de filtre acoustique.
  • Pour ces réalisations le guide 55, les bandes 50 et 51 et les pavés 52 sont par exemple métallisés par dépôt, par évaporation ou pulvérisation à l'aide d'un masque réalisé par photolithographie.
  • Une autre forme de réalisation consiste à disposer une électrode en forme de plaque en regard du guide et semblable à celle-ci. Les connexions vers le circuit de sortie sont effectuées sur cette électrode.
  • La figure 10 représente en coupe une réalisation par couplage capacitif. Un premier substrat 85 comporte à sa surface les dispositifs de génération des ondes acoustiques et le guide 80; il peut comporter aussi les électrodes de masse 82. Un deuxième substrat 86 est appliqué à la surface du premier substrat 85. Afin d'éviter les problèmes dûs aux contraintes thermiques, les deux substrats sont de préférence constitués du même matériau. Le substrat 86 comporte un évidement 83 muni de l'électrode de sortie 81 placée en regard du guide 80 et à une distance h prédéterminée. Cette distance h est choisie de manière à coupler capacitivement l'électrode au guide sans diminuer le rendement du convoluteur. Pour cela la capacité C ramenée doit être grande devant la capacité Cp du substrat piézoélectrique. Dans le cas d'un dispositif tel que représenté sur la figure 2, la valeur de la capacité Cp est de l'ordre de la permittivité 8p du substrat tandis que la valeur de la capacité C est égale à εo
    Figure imgb0009
    où εo est la permittivité de l'air, ces valeurs étant comptée par unité de longueur suivant l'axe de propagation des ondes. La condition C > Cp s'écrit donc
    Figure imgb0010
    Par exemple W = 50 µ et εPo = 50 ce qui donne h 1 µ et h sera de l'ordre de 0,1 micron. Suivant une variante de réalisation, le substrat 85 comporte l'évidement tel que 83 muni du guide acoustique 80 tandis que l'autre substrat est plan.
  • Les figures 11 et 12 représentent deux autres variantes de réalisation pour lesquelles le guide n'est pas métallisé: sout il est réalisé en profilant le substrat pour lui donner une épaisseur plus importante en regard de l'électrode de sortie comme représenté sur la figure 11 en 90, soit il est réalisé en modifiant la structure du substrat en regard de l'électrode de sortie par une implantation ionique comme représenté sur la figure 12 en 100.
  • Dans ces réalisations les faces des deux substrats piézoélectriques 85 et 86 sont polies et amenées en contact puis maintenues par collage ou mécaniquement par pressage, ou encore par adhérence obtenue par joint obtique.
  • La figure 13 représente une réalisation comportant des plots métalliques 110 réalisés entre le guide métallique et l'électrode de sortie. Pour cette réalisation, la hauteur de l'evidement 83 peut être notablement plus importante que pour les réalisations à couplage capacitif et elle est donc moins critique. Pour ne pas perturber la propagation des ondes acoustiques, la dimension latérale de chaque plot est faible devant Âa, environ 0,1λa; en outre ces plots 110 sont répartis le long du guide aléatoirement pour éviter les effets cumulatifs, la distance moyenne entre plots étant de l'ordre de 100Âa.
  • La réalisation des plots est effectuée au préalable soit sur le guide 80, soit sur l'électrode 81 par exemple par photogravure, les deux substrats étant ensuite assemblés suivant l'une des techniques vues précédemment.
  • Une réalisation par guide profilé est représentée sur la figure 14. Le guide 120 est profilé en épaisseur tranversalement à l'axe de propagation des ondes pour présenter une zone centrale 121 et deux zones latérales 122. La zone centrale a une épaisseur plus grande que les deux zones latérales entrainant par effet de charge mécanique sur le substrat 125 une vitesse de propagation plus lente sous cette zone centrale et en conséquence un guidage des ondes. La vitesse dans la zone libre du substrat 123 est en outre plus grande que celle des zones latérales par effet de court-circuit électrique à la surface du substrat. Les zones latérales 122 sont réalisées de manière à présenter une conduction électrique grande.
  • Le profilage du guide est obtenu par exemple par usinage ionique. Il peut aussi être obtenu en rapportant un matériau conducteur ou isolant par dessus une métallisation préalable.
  • Les contacts électriques 124 sont effectués au niveau des bords extérieurs des zones latérales en dehors de la zone de présence de l'énergie acoustique.
  • Une réalisation par guide d'épaisseur homogène est représentée sur la figure 15 en vue de dessus. Le guide 130 est homogène en épaisseur et présente une structure transversale à l'axe de propagation des ondes aboutissant à créer une zone centrale 131 guidante et deux zones latérales sur lesquelles sont effectuées les connexions électriques. La zone centrale est continue tandis que les deux zones latérales sont discontinues et réalisées en découpant le guide en bandes (132) perpendiculaires à son axe. La zone centrale fait ainsi un court-circuit total à la surface du substrat ce qui ralentit les ondes relativement aux zones latérales qui font un court-circuit partiel.
  • On obtient ainsi deux zones ayant des densités de métallisation différentes. L'espacement p entre bandes (132) est choisi inférieur à Âa/2 pour éviter les effets connus de »bande d'arrêt« et ainsi conserver une grande largeur de bande B.
  • Cette réalisation est plus simple à mettre en oeuvre que la précédente: le guide est par exemple obtenu par photogravure ou photolithographie. Les contacts électriques sont effectués aux extrémités des bandes.
  • Les contacts électriques pour ces deux derniers types de réalisation peuvent être faits en bordure des zones latérales:
    • - sout par soudure ou par collage directement;
    • - soit par métallisation de plots 133 avec ou sans isolant.
  • A titre d'exemple non limitatif, on a réalisé un convoluteur à plusieurs prises de sortie ayant pour caractéristiques f = 300 MHz et T = 10 µs. Le guide a une largeur W de 30 µ et une longueur L de 35 mm. Il comporte quatre prises équidistantes de 1 dont deux sont situées aux extrémités de sorte que le rapport I/ÂEm est voisin de 0,16, la bande de fréquence étant égale à 100 MHz.
  • Les figures 16 et 17 représentent schématiquement l'ensemble convoluteur et circuit de sortie. Sur la figure 16, on distingue les quatre prises de sortie 141 placées sur le substrat 144 au voisinage duquel est rapporté le circuit de sortie 140 constitué par exemple d'un circuit imprimé de quelques dixièmes de mm d'épaisseur.
  • La figure 17 permet de distinguer le détail des connexions au niveau d'une prise. Los plots métallisées 146 sont reliés au guide 145 et sont connectés entre eux et aux extrémités des pistes 142 du circuit de sortie par des fils d'or de quelques millimètres de longueur 148. De même les électrodes de masse 147 sont connectées aux parties du circuit de sortie reliées à la masse en 149.
  • L'agencement des pistes 142 permet de relier les quatre prises au câble de sortie 143, d'impédance en général égale à 50 Ω, par des connexions de longueurs identiques permettant ainsi de sommer en phase les signaux issus des prises. Notons que cette réalisation est possible car la vitesse des ondes électromagnétiques dans le guide est faible devant celle des lignes de transmission classiques constituées par les pistes 142. Le circuit de sortie peut être également réalisé sur le substrat acoustique au préalable métallisé et recouvert d'une couche isolante de permittivité aussi faible que possible.
  • En accord avec le choix de l'espacement entre les contacts, une telle réalisation permet d'obtenir une uniformité de la réponse en amplitude inférieure à 1 dB et une uniformité en phase inférieure à 15°. Avec seulement les deux prises extrêmes connectées, le résultat est une uniformité en amplitude à 5 dB près et une uniformité en phase comprise entre 80 et 90 degrés.

Claims (36)

1. Dispositif convoluteur utilisant la propagation des ondes acoustiques à la surface d'un solide piézoélectrique et comportant:
- un substrat piézoélectrique (10),
- des moyens d'excitation (11, 12) de deux ondes acoustiques contraprogressives à la fréquence f,
- au moins deux électrodes (15, 16) allongées s'étendant parallèlement à l'axe de propagation des ondes acoustiques entre les moyens d'excitation (11, 12), l'une (16) étant réunie à la masse et l'autre (15) étant placée du côté du substrat portant les moyens d'excitation (11, 12) pour recueillir le signal à la fréquence 2f issu de l'interaction non linéaire des deux ondes acoustiques, caractérisé en ce que ce signal est prélevé sur cette électrode (15) par un ensemble de contacts électriques (42) réunis ensemble à la sortie (S) du dispositif et diposés sur la longueur de l'électrode avec un espacement dont la valeur est d'une part faible devant la longueur d'onde électromagnétique ÂEM égale à VEM/2f où VEM est la vitesse des ondes électromagnétiques dans l'électrode, et d'autre part telle que le produit résistance capacité des portions de l'électrode entre deux contacts soit de valeur faible devant la période 1/f.
2. Dispositif selon la revendication 1, caractérisé en ce qu'il comprend en outre des moyens (11, 12) pour comprimer en largeur l'onde acoustique, et des moyens pour guider les ondes ainsi comprimées sous l'électrode (15) de prélèvement.
3. Dispositif convoluteur selon la revendication 2, caractérisé par le fait que l'électrode (15) de prélèvement est une métallisation de la surface du substrat (10).
4. Dispositif convoluteur selon la revendication 3, caractérisé par le fait que les contacts électriques (42) sont réalisés directement sur l'électrode de prélèvement (15) par soudure ou par collage, la dimension du point de soudure ou de colle étant inférieure à 0,1 fois la longueur d'onde acoustique Âa égale à va/2f où va est la vitesse des ondes acoustiques.
5. Dispositif convoluteur selon la revendication 4, caractérisé par le fait que le soudage (42) est obtenu par thermocompression.
6. Dispositif convoluteur selon la revendication 4, caractérisé par le fait que le soudage (42) est obtenu par ultrasons.
7. Dispositif convoluteur selon la revendication 4, caractérisé par le fait que le collage (42) est réalisé avec de l'indium ou avec de la résine époxy conductrice.
8. Dispositif convoluteur selon la revendication 4, caractérisé par le fait que les contacts (52) électriques s'étendent latéralement par rapport à l'électrode de prélèvement (55).
9. Dispositif convoluteur selon la revendication 8, caractérisé par le fait que des pavés métalliques (52) longeant l'électrode de prélèvement (55) sont déposés en retrait pour recevoir les contacts électriques (53) et sont reliés à cette électrode (55) par des premières bandes métalliques (50) de largeur inférieure à Âa/5, où Âa est la longueur d'onde acoustique à la surface du substrat.
10. Dispositif convoluteur selon la revendication 9, caractérisé par le fait que les pavés de connexions (52) sont reliés aux premières bandes par des bandes (51) présentant un évasement lorsqu'on s'écarte de l'électrode de prélèvement (55).
11. Dispositif convoluteur selon la revendication 10, caractérisé par le fait qu'il comporte une couche mince (60) de matériau isolant entre la surface du substrat piézoélectrique et l'ensemble des bandes évasées et des pavés.
12. Dispositif convoluteur selon la revendication 1, caractérisé par le fait qu'il comporte en outre une autre électrode de masse (16) et que ces deux électrodes de masse (16) sont déposées à la surface du substrat (10) de part et d'autre de l'électrode de prélèvement (55).
13. Dispositif convoluteur selon l'une quelconque des revendications 9 à 12, caractérisé par le fait que chaque contact électrique met en oeuvre deux pavés (52) placés de part et d'autre de l'électrode de prélèvement (55).
14. Dispositif convoluteur selon l'une quelconque des revendications 9, 10 et 12, caractérisé par le fait que l'électrode de masse (16) est déposée à la surface du substrat (10); cette électrode de masse étant échancrée autour de chaque pavé (52).
15. Dispositif convoluteur selon la revendication 9, caractérisé par le fait que les premières bandes (50) sont déposées à la surface du substrat (10).
16. Dispositif convoluteur selon la revendication 9, caractérisé par le fait que les premières bandes (50) sont des arceaux reposant par leurs extrémités sur la surface du substrat.
17. Dispositif convoluteur selon la revendication 8, caractérisé par le fait que les contacts (42) sont réalisés par l'un des moyens suivants: soudage par thermocompression, soudage par ultrasons, collage à l'indium et collage par résine époxy électriquement conductrice.
18. Dispositif convoluteur selon la revendication 2, caractérisé par le fait que l'électrode de prélèvement (81) est une électrode de dimensions semblables aux moyens de guidage (90) et surplombant ceux-ci à une distance h très inférieure à W/(εpo). où W est la longueur de l'électrode, et p et 0 respectivement les permitivités de l'air et du substrat.
19. Dispositif convoluteur selon la revendication 18, caractérisé par le fait qu'il comporte un deuxième substrat (86) appliqué sur la surface du premier substrat (85) supportant les moyens de guidage (80) et que dans ce deuxième substrat est pratiqué un évidement (83) muni de l'électrode de prélèvement (81).
20. Dispositif convoluteur selon la revendication 19, caractérisé par le fait que les faces en contact du premier (85) et du deuxième (86) substrat sont polies puis maintenues par collage ou mécaniquement par pressage ou par adhérence obtenue par joint optique.
21. Dispositif selon la revendication 18, caractérisé par le fait qu'un évidement est pratiqué dans le premier substrat (85) et qu'il est muni des moyens de guidage; un deuxième substrat (86) étant appliqué sur la surface du premier substrat (85).
22. Dispositif convoluteur selon l'une quescon- que des revendications 19 ou 21, caractérisé par le fait que les moyens de guidage (80) sont réalisés par métallisation à la surface du premier substrat (85) sur la largeur W.
23. Dispositif convoluteur selon la revendication 19 ou 21, caractérisé par le fait que les moyens de guidage (90) sont rélisés par une sur- épaisseur du premier substrat (85) de largeur W.
24. Dispositif convoluteur selon la revendication 19 ou 21, caractérisé par le fait que les moyens de guidage (100) sont réalisés par une modification de la structure de la surface du premier substrat (85) sur la largeur W obtenue par implantation ionique.
25. Dispositif convoluteur selon la revendication 3, caractérisé par le fait que les moyens de guidage (120) sont profilés en épaisseur transversalement à l'axe de propagation des ondes acoustiques, de manière à présenter une zone centrale (121) épaisse de largeur W et au moins une zone latérale (122) moins épaisse, les contacts électriques (124) étant réalisés au niveau des bords extérieurs de la ou des zones latérales (122).
26. Dispositif convoluteur selon la revendication 25, caractérisé par le fait que le profilage des moyens de guidage (120) est obtenu en rapportant un matériau de largeur W par-dessus une métallisation préalable.
27. Dispositif convoluteur selon la revendication 25, caractérisé par le fait que le profilage des moyens de guidage (120) est obtenu en usinant la métallisation.
28. Dispositif convoluteur selon la revendication 25, caractérisé par le fait que les moyens de guidage (120) sont profilés de manière à présenter deux zones latérales (122) de même largeur de part et d'autre de la zone centrale.
29. Dispositif convoluteur selon la revendication 3, caractérisé par le fait que les moyens de guidage (130) sont formés d'une zone centrale pleine (131) de largeur W guidant les ondes et au moins une zone latérale ajourée de même épaisseur formée de bandes (132) s'écartant de l'axe des moyens de guidage (130) et aux extrémités desquelles sont réalisés les contacts électriques, l'écartement des bandes étant inférieur à Âa/2 et leur largeur telle que le rapport sur écartement soit faible, avec Âa égal à la longueur d'onde acoustique à la surface du substrat.
30. Dispositif convoluteur selon la revendication 29, caractérisé par le fait qu'il comporte une zone latérale (132) de chaque côté de la zone centrale (131).
31. Dispositif convoluteur selon l'une quelconque des revendications 25 ou 29, caractérisé par le fait que les contacts électrique (124) sont réalisés par l'un des moyens suivants: soudage par thermocompression, soudage par ultrasons, collage à l'indium et collage par résine époxy électriquement conductrice.
32. Dispositif convoluteur selon l'une quelconque des revendications 25 ou 29, caractérisé par le fait que les contacts électriques sont réalisés par pavés métallisés (133) à la surface du substrat (125).
33. Dispositif selon l'une quelconque des revendications 25 ou 29, caractérisé par le fait que les pavés métallisés (133) sont séparés de la surface du substrat par une couche mince (60) de matériau isolant.
34. Dispositif convoluteur selon la revendication 3, caractérisé par le fait que la métallisation (15) est obtenue par dépôt effectué par évaporation du métal.
35. Dispositif convoluteur selon la revendication 3, caractérisé par le fait que la métallisation (15) est obtenue par dépôt effectué par pulvérisation du métal.
36. Dispositif selon la revendication 1, caractérisé par le fait que les contacts électriques (141) sont reliés à la sortie par des longueurs égales de pistes (142) d'un circuit imprimé (140) placé à proximité du substrat (144).
EP81400686A 1980-05-20 1981-04-30 Dispositif convoluteur piézoélectrique à ondes élastiques Expired EP0040559B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8011225 1980-05-20
FR8011225A FR2483143B1 (fr) 1980-05-20 1980-05-20 Dispositif convoluteur piezoelectrique a ondes elastiques

Publications (2)

Publication Number Publication Date
EP0040559A1 EP0040559A1 (fr) 1981-11-25
EP0040559B1 true EP0040559B1 (fr) 1984-08-08

Family

ID=9242157

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81400686A Expired EP0040559B1 (fr) 1980-05-20 1981-04-30 Dispositif convoluteur piézoélectrique à ondes élastiques

Country Status (7)

Country Link
US (1) US4388599A (fr)
EP (1) EP0040559B1 (fr)
JP (1) JPS5718115A (fr)
CA (1) CA1177126A (fr)
DE (1) DE3165355D1 (fr)
FR (1) FR2483143B1 (fr)
NO (1) NO154365C (fr)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58196712A (ja) * 1982-05-12 1983-11-16 Nec Corp エラステイツク・コンボルバ
JPS598075U (ja) * 1982-07-07 1984-01-19 三菱電機株式会社 熱交換器
US4592009A (en) * 1983-11-17 1986-05-27 E-Systems, Inc. MSK surface acoustic wave convolver
US4870376A (en) * 1983-12-15 1989-09-26 Texas Instruments Incorporated Monolithic elastic convolver output circuit
US4584475A (en) * 1984-05-29 1986-04-22 Allied Corporation Surface acoustic wave infrared line imaging array
US4675839A (en) * 1985-04-10 1987-06-23 Allied Corporation Receiver for a spread spectrum communication system having a time-multiplexed convolver
JPS61296807A (ja) * 1985-06-25 1986-12-27 Clarion Co Ltd 弾性表面波装置
GB2197559B (en) * 1986-08-22 1990-03-28 Clarion Co Ltd Bias voltage circuit for a convolver
US4894576A (en) * 1987-04-10 1990-01-16 Clarion Co., Ltd. Surface-acoustic-wave convolver
JP2911893B2 (ja) * 1987-05-15 1999-06-23 クラリオン株式会社 弾性表面波装置
US5440155A (en) * 1987-10-15 1995-08-08 Electronic Decisions Incorporated Acoustic charge transport convolver, method of use and fabrication
JP2520136Y2 (ja) * 1988-02-15 1996-12-11 クラリオン株式会社 弾性表面波装置
JPH02199910A (ja) * 1989-01-27 1990-08-08 Clarion Co Ltd 弾性表面波装置
JPH03162103A (ja) * 1989-11-21 1991-07-12 Fujitsu Ltd 実効線路長が変更されたマイクロストリップライン
US5357225A (en) * 1992-12-23 1994-10-18 Alcatel Network Systems, Inc. Method and apparatus for adjusting the impedance of a microstrip transmission line
DE69525937D1 (de) 1995-06-09 2002-04-25 Canon Kk Akustische Oberflächenwellenanordnung und diese verwendendes Übertragungssystem

Also Published As

Publication number Publication date
CA1177126A (fr) 1984-10-30
EP0040559A1 (fr) 1981-11-25
JPH031847B2 (fr) 1991-01-11
NO154365B (no) 1986-05-26
FR2483143A1 (fr) 1981-11-27
JPS5718115A (en) 1982-01-29
NO811707L (no) 1981-11-23
DE3165355D1 (en) 1984-09-13
US4388599A (en) 1983-06-14
FR2483143B1 (fr) 1988-02-05
NO154365C (no) 1986-09-03

Similar Documents

Publication Publication Date Title
EP0040559B1 (fr) Dispositif convoluteur piézoélectrique à ondes élastiques
EP0883447B1 (fr) Sonde acoustique multielements comprenant une electrode de masse commune
EP0608249B2 (fr) Filtre a ondes de surface et a trajet acoustique replie
EP0354117B1 (fr) Transducteur piézoélectrique pour générer des ondes de volume
JP2717071B2 (ja) 誘電体基板上に金属化領域を備えた音波デバイスの製法
FR2484735A1 (fr) Resonateur a ondes acoustiques de surface
FR2799906A1 (fr) Filtre a ondes acoustiques d'interface notamment pour les liaisons sans fil
FR2601824A1 (fr) Filtre d'onde elastique de surface
EP0044758B1 (fr) Dispositif de terminaison d'une ligne de transmission, en hyperfréquence, à taux d'ondes stationnaires minimal
FR2473811A1 (fr) Dispositif a onde acoustique de surface
FR2770932A1 (fr) Procede de fabrication d'une sonde acoustique
EP2385625A1 (fr) Combineur comprenant des transducteurs acoustiques
EP0369835B1 (fr) Transducteur interdigité pour filtre à ondes de surface
EP0424240B1 (fr) Transducteur d'ondes de surface unidirectionnel
EP0270448A1 (fr) Sonde d'appareil à ultrasons à barrette d'éléments piézoélectriques
FR2590089A1 (fr) Convolutionnement a codage par dephasage differentiel
FR2466927A1 (fr) Convertisseur d'ondes acoustiques de surface
EP0412855B1 (fr) Transducteurs électrique/acoustique et acoustique/électrique pour dispositif à ondes de surface à diffraction réduite et dispositif à ondes de surface correspondant
FR2545947A1 (fr) Coupleur directif electro-optique a trois electrodes et a dephasage alterne
BE479957A (fr)
EP0270447A1 (fr) Sonde d'échographe à arrangement d'éléments piézo-électriques
EP0576340A1 (fr) Filtre à ondes de surface à réseaux réfléchissants
FR2639769A1 (fr) Element hyperfrequence de filtrage du type ligne a coupure d'ame
FR2618609A1 (fr) Ligne hyperfrequence du type triplaque comportant une connexion de masse
FR2621431A1 (fr) Filtre a ondes de surface utilisant des transducteurs en forme de peignes comportant des doigts ponderes par variation de la longueur de recouvrement de ces doigts

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE GB IT

17P Request for examination filed

Effective date: 19811212

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE GB IT

REF Corresponds to:

Ref document number: 3165355

Country of ref document: DE

Date of ref document: 19840913

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920321

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920323

Year of fee payment: 12

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930430