EP0037490A1 - Release system of an automatic circuit breaker for the interruption of a circuit - Google Patents
Release system of an automatic circuit breaker for the interruption of a circuit Download PDFInfo
- Publication number
- EP0037490A1 EP0037490A1 EP81102059A EP81102059A EP0037490A1 EP 0037490 A1 EP0037490 A1 EP 0037490A1 EP 81102059 A EP81102059 A EP 81102059A EP 81102059 A EP81102059 A EP 81102059A EP 0037490 A1 EP0037490 A1 EP 0037490A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- circuit
- thermomechanical
- release
- short
- tripping
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000000930 thermomechanical effect Effects 0.000 claims abstract description 71
- 230000007246 mechanism Effects 0.000 claims abstract description 10
- 229910001285 shape-memory alloy Inorganic materials 0.000 claims description 7
- 230000001960 triggered effect Effects 0.000 claims description 4
- 229910045601 alloy Inorganic materials 0.000 abstract description 4
- 239000000956 alloy Substances 0.000 abstract description 4
- 238000010438 heat treatment Methods 0.000 description 8
- 230000006870 function Effects 0.000 description 7
- 230000008901 benefit Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000002985 plastic film Substances 0.000 description 2
- 229920006255 plastic film Polymers 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 230000036316 preload Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H71/00—Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
- H01H71/10—Operating or release mechanisms
- H01H71/12—Automatic release mechanisms with or without manual release
- H01H71/14—Electrothermal mechanisms
- H01H71/145—Electrothermal mechanisms using shape memory materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H71/00—Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
- H01H71/10—Operating or release mechanisms
- H01H71/12—Automatic release mechanisms with or without manual release
- H01H71/40—Combined electrothermal and electromagnetic mechanisms
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H71/00—Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
- H01H71/10—Operating or release mechanisms
- H01H71/12—Automatic release mechanisms with or without manual release
- H01H71/40—Combined electrothermal and electromagnetic mechanisms
- H01H2071/407—Combined electrothermal and electromagnetic mechanisms the thermal element being heated by the coil of the electromagnetic mechanism
Definitions
- the invention relates to the triggering system of a circuit breaker for interrupting a circuit with at least one thermomechanical converter, a short-circuit release and a switching mechanism with a latch, which is triggered by the thermomechanical converter or short-circuit release in the event of an overcurrent (overload or short-circuit current) and interrupts the circuit .
- Tripping systems of this type have become very widespread and essentially serve to protect electrical lines and devices connected to them.
- short-circuit currents that may occur due to the ever decreasing impedance in the supply network reach ever greater values.
- thermomechanical converter In the case of automatic switches, in particular in the case of miniature circuit breakers, which are provided for switching high short-circuit currents, it was difficult to achieve sufficient short-circuit strength in the thermomechanical converter, which experiences a mechanical deflection when the temperature rises and causes a force effect which triggers the switching lock, since the thermomechanical converter was usually in the circuit and could be destroyed by the high short-circuit currents.
- DE-AS 16 40 882 discloses a thermal release device with a bimetal that can be heated by a heating element.
- these triggers are only short-circuit proof on the one hand and on the other hand have the disadvantage that an additional impedance is switched into the circuit by the heat conductor.
- the invention is therefore based on the object of providing a tripping system for interrupting a circuit of the type mentioned, which has a high short-circuit strength, avoids additional impedances in the tripping system and is constructed as simply as possible while avoiding the disadvantages mentioned at the outset.
- thermomechanical transducer of the release system consists of a shape memory alloy and is in thermal contact with a heat source located in the current path of the circuit breaker.
- a heat source in the current path can e.g. B. the coil or the yoke of a magnetic short-circuit release.
- one leg of a dynamic release loop, which serves as a short-circuit release, or a section of a current path can also serve as the heat source.
- thermomechanical converter made of a shape memory alloy suddenly deflects when a certain triggering temperature is exceeded and can thereby trigger a switching mechanism.
- the invention takes on the property of. to use abrupt deflection in which the thermomechanical transducer is brought into thermal contact, in particular contact, with a heat source. This thermal contact remains unchanged until it reaches the operating temperature and the resulting induced deflection of the thermoelectric transducer, as the F ormgedowntnisleg réelle to experiences no appreciable change in shape at that temperature.
- thermomechanical converters Both shape memory alloys with one-way and two-way effects are suitable for the thermomechanical converter.
- care must be taken to ensure that after the switching function has been triggered and the thermomechanical converter has cooled again, it is plastically deformed again when the trigger is reset. When heated again, the alloy regains its original shape and triggers the switching function again.
- thermomechanical converter it is advantageous to clamp the thermomechanical converter on one side so that its free end can deflect when the temperature rises and trigger the switching function.
- thermomechanical transducer can be pretensioned by an applied force to determine the triggering function, because the pretensioning can determine the triggering temperature at which the deformation of the plastically deformed alloy begins.
- thermomechanical transducer can advantageously be designed as a strip-shaped part which, in order to achieve good thermal contact with the heat source in the current path of the circuit breaker (e.g. coil or yoke of a magnetic short-circuit release, the limb of a dynamic release loop or the section of a current path) hugs.
- the design as a leaf spring can serve to determine the transition temperature between the martensitic and austernitic phase, that is to say to determine the temperature at which the alloy suddenly deflects.
- thermomechanical converter can be designed as a spiral, which is preferably arranged coaxially with the heat source.
- the particular advantage here is that the spiral does not stand out from the heat source when the temperature rises and the deflection caused thereby, as can happen with a strip-shaped part. With the design as a spiral, the thermal contact remains fully intact even when deflection has taken place.
- the spiral can be designed as a prestressed spring, the prestressing being able to take place axially or radially. It can be designed so that the temperature-related deflecting force acts either in the direction of the spiral axis or radially (torsional force). If the magnetic short-circuit release is used as the heat source, the spiral can either be placed outside over the magnetic release coil or the yoke, or in some cases also be arranged inside the magnetic release coil.
- thermomechanical converter designed so that a heat transfer associated with the tripping current between short-circuit tripping. - ser and thermomechanical converter exists.
- an intermediate layer of selected thermal conductivity, thickness and contact surface can be inserted between the heat-exchanging surfaces of the heat source and the thermomechanical transducer in order to set a predetermined tripping current.
- Such an intermediate layer can influence both the tripping current and the tripping time constant.
- a single thermomechanical converter can be used for different self-switch ratings if the trip coil is dimensioned for a certain power and the same heat transfer through the intermediate layer is ensured.
- thermomechanical converter can only be heated indirectly by the heat source located in the current path of the circuit breaker. This results in an unlimited short-circuit strength of the thermomechanical converter.
- thermomechanical converter z. B. can be arranged both in parallel and in series with the short-circuit release.
- the thermomechanical converter is preferably bridged by a parallel resistor to increase the short-circuit strength.
- FIG. 1 shows the basic circuit of a release system according to the prior art.
- a triggering system is included, for example, in the automatic switch which is described in German Offenlegungsschrift 15 88 513.
- the release system the following components are connected in series between terminals 14 and 15: a thermomechanical converter 11, which according to the prior art usually consists of a thermobimetal, a magnetic short-circuit release 12 and a switching contact point 13, which in a known manner consists of a fixed contact piece 28 and a movable contact piece 27.
- the switching contact point 13 which is shown in the open state, is, as the dashed lines of action indicate, when a short-circuit or overload current occurs either by the magnetic short-circuit release 12 or by a switching mechanism 16, the switching mechanism 16 in turn either by the thermomechanical converter 11 or is triggered by the magnetic short-circuit release 12.
- Figure 2 only differs from the Figure 1, that the thermo-mechanical converter 11 ate not, as in Figure 1 with the magnetic short-circuit trigger 12 in series, but is connected in parallel.
- thermomechanical converter 21 clamped on one side is a strip of a shape memory alloy and is in direct thermal contact with the magnetic short-circuit release 12. It is not traversed by the current. but heated when the current through the magnetic short-circuit release 12 flows through it. As soon as the temperature of the thermomechanical converter 21 exceeds a response value in the event of a short-circuit or overload current, the thermomechanical converter 21 jumps out and acts on a switching mechanism 16, which in turn opens the switching contact point 13 and interrupts the current flow. It is also here, as provided in Figures 1 and 2 in that the magnetic K urzschlußauslöser 12 both directly and acts via the switching mechanism 16 to the switch contact point. 13
- FIG. 4 and FIG. 5 represent basic circuits of the release system corresponding to FIG. 3, only that here the heat source for heating the thermomechanical converter 21 clamped on one side is not a magnetic short-circuit release coil, as in FIG. 3, but, as shown in FIG. 4, a dynamic release 17 or as shown in FIG. 5, a section of a current path 20.
- the dynamic release loop 17 shown in FIG. 4 consists of a fixed leg 18 and a free leg 19, which repel one another at high current surges.
- the free leg 19 is deflected by the repulsive forces and causes the switch contact point 13 to open either via the switch lock 16 or directly.
- thermomechanical converter 31 clamped on one side from FIG.
- the free end of the thermomechanical converter 31 is heated as a function of the current flowing through the dynamic release 17 and deflects when a release temperature is exceeded and acts on a switching mechanism 16.
- the deflection of the thermomechanical transducer 31 takes place in the axial or radial direction, depending on its design.
- thermomechanical transducer 41, 51, 61 clamped on one side is wound spirally around the coil of a magnetic short-circuit release 12.
- the deflection when a triggering temperature is exceeded takes place axially in FIG. 7, in which the spiral contracts, likewise axially in FIG. 8, in which the spiral extends, and radially in FIG. 9, in which the. Spiral twisted (torsion).
- the thermomechanical transducers of FIGS. 7 to 9 can be designed as compression springs 41, tension springs 51 and as torsion springs 61.
- the arrows A, B and C indicate the direction in which the thermomechanical transducer 31, 41, 51 deforms when the response temperature is exceeded in order to then act on the switching mechanism 16.
- thermomechanical converter In the indirect heating of the thermomechanical converter as shown in the switching arrangement of the trigger system in Figure 3 to Figure 9, the thermomechanical converter is not flowed through by the current. On the one hand, this results in an unlimited short-circuit strength of the thermomechanical converter, on the other hand, the triggering system is not burdened by the resistance of a thermomechanical converter connected in series, as shown in FIG. 1.
- thermomechanical converter 21 is here arranged parallel to the magnetic short-circuit release 12.
- the clamped end of the thermo-mechanical transducer 21 is connected to the terminal 14 and the free end of the thermo-mechanical converter 21 is connected via a flexible line 33 with the movable contact piece 27 of the S chaltternstelle 13.
- a portion of the current usl Harborsystem in which A occurs flows through the heat Ln contact with the magnetic short-circuit trigger 12 projecting thermo-mechanical converter 21, the other part flows through the magnetic short circuit release 12th
- FIG. 11 shows a schematic section through a magnetic short-circuit release 22 which contains a magnetic core 23, a magnet armature 24, to which a release pin 25 is fastened, and a magnetic release coil 26.
- the trigger pin 25 can lift a movable contact piece 27 from a fixed contact piece 28, which leads to an interruption of the current flow.
- a right-angled thermomechanical transducer 21 is attached, the leg of which extends parallel to the axis of the short-circuit release and can bend freely when the temperature rises (dashed line) Movable contact piece 27 acts, causing a power cut.
- the deflection S reaches a triggering stroke S a which , via the pawl 29, triggers the switching lock 16 and thus opens the contact point 13.
- the abrupt deflection of the thermomechanical transducer 21 ensures that there is good thermal contact between the magnetic short-circuit release 22 and the thermomechanical transducer 21 until it is deflected.
- an intermediate layer can be inserted in a column S between the magnetic short-circuit release 22 and the thermomechanical converter 21 in order to set a specific heat transfer value.
- This intermediate layer can e.g. B. a copper intermediate layer (small time constant for the release system due to the high conductivity of the intermediate layer) or a plastic film (large time constant for the release system due to the low conductivity of the intermediate layer).
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Breakers (AREA)
- Thermally Actuated Switches (AREA)
Abstract
Description
Die Erfindung betrifft das Auslösesystem eines Selbstschalters zur Unterbrechung eines Stromkreises mit mindestens einem thermomechanischen Wandler, einem Kurzschlußauslöser und einem Schaltwerk mit einer Verklinkung, welche von dem thermomechanischen Wandler bzw. Kurzschlußauslöser im Falle eines Überstromes (Überlast- oder Kurzschlußstrom) ausgelöst wird und den Stromkreis unterbricht.The invention relates to the triggering system of a circuit breaker for interrupting a circuit with at least one thermomechanical converter, a short-circuit release and a switching mechanism with a latch, which is triggered by the thermomechanical converter or short-circuit release in the event of an overcurrent (overload or short-circuit current) and interrupts the circuit .
Auslösesysteme dieser Art haben eine große Verbreitung erlangt und dienen im wesentlichen dem Schutz von elektrischen Leitungen und an diesen angeschlossenen Geräten. Im Zuge der laufenden Verstärkung der Netze ergibt es sich zwangsläufig, daß aufgrund der immer kleiner werdenden Impedanz im Versorgungsnetz evtl. auftretende Kurzschlußströme immer größere Werte erreichen.Tripping systems of this type have become very widespread and essentially serve to protect electrical lines and devices connected to them. In the course of the ongoing reinforcement of the networks, it is inevitable that short-circuit currents that may occur due to the ever decreasing impedance in the supply network reach ever greater values.
Bei Selbstschaltern, insbesondere bei Leitungsschutzschaltern, die für das Schalten hoher Kurzschlußströme vorgesehen sind, war die Realisierung einer ausreichenden Kurzschlußfestigkeit des thermomechanischen Wandlers, der bei auftretender Temperaturerhöhung eine mechanische Auslenkung erfährt und eine Kraftwirkung hervorruft, welche das Schaltschloß auslöst, schwierig, da der thermomechanische Wandler in der Regel in dem Stromkreis lag und durch die hohen Kurzschlußströme zerstört werden konnte.In the case of automatic switches, in particular in the case of miniature circuit breakers, which are provided for switching high short-circuit currents, it was difficult to achieve sufficient short-circuit strength in the thermomechanical converter, which experiences a mechanical deflection when the temperature rises and causes a force effect which triggers the switching lock, since the thermomechanical converter was usually in the circuit and could be destroyed by the high short-circuit currents.
In der deutschen Offenlegungsschrift 15 88 513 wurde daher vorgeschlagen, daß die Heizung der thermischen Überstromauslösung (thermomechanischer Wandler), die mit der Spule des Kurzschlußauslösers in Reihe geschaltet ist und den vollen Strom führt, kurzgeschlossen wird, sobald der Schaltkontakt geöffnet ist und der Lichtbogen die Löschbleche erreicht hat. Durch diese Lösung wird zwar die Kurzschlußfestigkeit des thermomechanischen Wandlers verbessert, diese Lösung hat jedoch den Nachteil, daß mit Kurzschließen des thermomechanischen Wandlers die Schalterimpedanz abnimmt, wodurch der Kurzschlußstrom ansteigt und damit die Belastung des Löschblechstapels zunimmt.In
Um eine ausreichende Kurzschlußfestigkeit zu schaffen, wurde in der Vergangenheit schon oft versucht, ein Auslöseelement für den Überlastbereich zu finden, das die Auslösefunktion übernehmen kann, ohne von der direkten Strombeaufschlagung abhängig zu sein, d.h. ein Element, das nicht in dem Stromkreis liegt, sondern indirekt beheizt wird. Beispielsweise ist durch die DE-AS 16 40 882 eine thermische Auslöseeinrichtung mit einem durch ein Heizelement beheizbaren Bimetall bekannt geworden. Diese Auslöser sind jedoch einerseits auch nur begrenzt kurzschlußfest und haben andererseits den Nachteil, daß durch den Heizleiter eine zusätzliche Impedanz in den Stromkreis eingeschaltet ist.In the past, in order to provide sufficient short-circuit strength, attempts have often been made to find a tripping element for the overload range which can take over the tripping function without being dependent on the direct current application, i.e. an element that is not in the circuit, but is heated indirectly. For example, DE-AS 16 40 882 discloses a thermal release device with a bimetal that can be heated by a heating element. However, these triggers are only short-circuit proof on the one hand and on the other hand have the disadvantage that an additional impedance is switched into the circuit by the heat conductor.
Der Erfindung liegt daher die Aufgabe zugrunde, ein Auslösesystem zur Unterbrechung eines Stromkreises der eingangs genannten Art zu schaffen, das eine hohe Kurzschlußfestigkeit aufweist, zusätzliche Impedanzen im Auslösesystem vermeidet und unter Vermeidung der eingangs genannten Nachteile so einfach wie möglich aufgebaut ist.The invention is therefore based on the object of providing a tripping system for interrupting a circuit of the type mentioned, which has a high short-circuit strength, avoids additional impedances in the tripping system and is constructed as simply as possible while avoiding the disadvantages mentioned at the outset.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß der thermomechanische Wandler des Auslösesystems aus einer Formgedächtnislegierung besteht und in Wärmekontakt mit einer in den Strompfad des Selbstschalters liegenden Wärmequelle steht. Solch eine im Strompfad liegende Wärmequelle kann z. B. die Spule oder das Joch eines magnetischen Kurzschlußauslösers sein. Als Wärmequelle kann aber auch ein Schenkel einer dynamischen Auslöseschleife, die als Kurzschlußauslöser dient, oder ein Abschnitt einer Strombahn dienen. Die Vorteile gegenüber bekannten Lösungen ergeben sich daraus, daß für die Beheizung des thermomechanischen Wandlers kein zusätzliches Heizelement erforderlich ist, weil die Erwärmung einer in dem Auslösesystem enthaltenen Wärmequelle ausgenützt werden kann. Ein entsprechend ausgelegter thermomechanischer Wandler aus einer Formgedächtnislegierung lenkt bei Überschreiten einer bestimmten Auslösetemperatur sprunghaft aus und kann hierdurch ein Schaltwerk auslösen. Die Erfindung macht sich die Eigenschaft der. sprunghaften Auslenkung zu nutze, in dem der thermomechanische Wandler in Wärmekontakt, insbesondere Berührungskontakt, mit einer Wärmequelle gebracht wird. Dieser Wärmekontakt bleibt bis zum Erreichen der Auslösetemperatur und der dadurch bewirkten Auslenkung des thermomechanischen Wandlers unverändert, da die Formgedächtnislegierung bis zu dieser Temperatur keine nennenswerte Formänderung erfährt.This object is achieved in that the thermomechanical transducer of the release system consists of a shape memory alloy and is in thermal contact with a heat source located in the current path of the circuit breaker. Such a heat source in the current path can e.g. B. the coil or the yoke of a magnetic short-circuit release. However, one leg of a dynamic release loop, which serves as a short-circuit release, or a section of a current path can also serve as the heat source. The advantages over known solutions result from the fact that no additional heating element is required for heating the thermomechanical converter, because the heating of a heat source contained in the triggering system can be used. An appropriately designed thermomechanical converter made of a shape memory alloy suddenly deflects when a certain triggering temperature is exceeded and can thereby trigger a switching mechanism. The invention takes on the property of. to use abrupt deflection in which the thermomechanical transducer is brought into thermal contact, in particular contact, with a heat source. This thermal contact remains unchanged until it reaches the operating temperature and the resulting induced deflection of the thermoelectric transducer, as the F ormgedächtnislegierung to experiences no appreciable change in shape at that temperature.
Für den thermomechanischen Wandler sind sowohl Formgedächtnislegierungen mit Einweg- als auch mit Zweiwegeffekt geeignet. Bei Verwendung einer Formgedächtnislegierung mit Einwegeffekt, muß dafür Sorge getragen werden, daß nach Auslösung der Schaltfunktion und Wiederabkühlung des thermomechanischen Wandlers dieser mit der Rückstellung des Auslösers wieder plastisch verformt wird. Bei erneuter Erwärmung gewinnt die Legierung dann ihre ursprüngliche Form zurück und löst wieder die Schalt÷ funktion aus.Both shape memory alloys with one-way and two-way effects are suitable for the thermomechanical converter. When using a shape memory alloy with a one-way effect, care must be taken to ensure that after the switching function has been triggered and the thermomechanical converter has cooled again, it is plastically deformed again when the trigger is reset. When heated again, the alloy regains its original shape and triggers the switching function again.
Es ist vorteilhaft den thermomechanischen Wandler einseitig einzuspannen, so daß sein freies Ende bei Temperaturerhöhung auslenken und die Schaltfunktion auslösen kann.It is advantageous to clamp the thermomechanical converter on one side so that its free end can deflect when the temperature rises and trigger the switching function.
Zur Festlegung der Auslösefunktion kann erfindungsgemäß der thermomechanische Wandler durch eine aufgeprägte Kraft vorgespannt werden., denn durch die Vorspannung kann die Auslösetemperatur, bei der die Rückverformung der plastisch verformten Legierung einsetzt , festgelegt werden.According to the invention, the thermomechanical transducer can be pretensioned by an applied force to determine the triggering function, because the pretensioning can determine the triggering temperature at which the deformation of the plastically deformed alloy begins.
In vorteilhafter Weise läßt sich der thermomechanische Wandler als streifenförmiges Teil ausbilden, das sich zur Erzielung eines guten Wärmekontaktes an die Wärmequelle im Strompfad des Selbstschalters (z. B. Spule oder Joch eines magnetischen Kurzschlußauslösers, dem Schenkel einer dynamischen Auslöseschleife oder dem Abschnitt einer Strombahn) anschmiegt. Die Auslegung als Blattfeder kann zur Festlegung der Umwandlungstemperatur zwischen martensitischen und austernitischen Phase, also zur Festlegung der Temperatur, bei der sich die Legierung sprunghaft auslenkt, dienen.The thermomechanical transducer can advantageously be designed as a strip-shaped part which, in order to achieve good thermal contact with the heat source in the current path of the circuit breaker (e.g. coil or yoke of a magnetic short-circuit release, the limb of a dynamic release loop or the section of a current path) hugs. The design as a leaf spring can serve to determine the transition temperature between the martensitic and austernitic phase, that is to say to determine the temperature at which the alloy suddenly deflects.
Einer weiteren Ausgestaltung zur Folge, läßt sich der thermomechanische Wandler als Spirale ausbilden, die vorzugsweise koaxial zur Wärmequelle angeordnet ist. Der besondere Vorteil ist hier darin zu sehen, daß sich die Spirale bei Temperaturerhöhung und dadurch hervorgerufener Auslenkung nicht von der Wärmequelle abhebt, wie dies bei einemstreifenförmigen Teil geschehen kann. Damit bleibt bei der Ausgestaltung als Spirale der Wärmekontakt auch bei erfolgter Auslenkung voll bestehen. Die Spirale kann als vorgespannte Feder ausgebildet werden, wobei die Vorspannung axial oder radial erfolgen kann. Sie kann so gestaltet werden, daß die temperaturbedingte auslenkende Kraft entweder in Richtung der Spiralachse oder radial (Torsionskraft) wirkt. Sofern als Wärmequelle der magnetische Kurzschlußauslöser dient, kann die Spirale entweder außen über die Magnetauslösespule oder das Joch gelegt werden, oder in einigen Fällen auch innerhalb der Magnetauslösespule angeordnet werden.According to a further embodiment, the thermomechanical converter can be designed as a spiral, which is preferably arranged coaxially with the heat source. The particular advantage here is that the spiral does not stand out from the heat source when the temperature rises and the deflection caused thereby, as can happen with a strip-shaped part. With the design as a spiral, the thermal contact remains fully intact even when deflection has taken place. The spiral can be designed as a prestressed spring, the prestressing being able to take place axially or radially. It can be designed so that the temperature-related deflecting force acts either in the direction of the spiral axis or radially (torsional force). If the magnetic short-circuit release is used as the heat source, the spiral can either be placed outside over the magnetic release coil or the yoke, or in some cases also be arranged inside the magnetic release coil.
Einem weiteren Merkmal der Erfindung zur Folge werden zur Einstellung eines vorgegebenen Auslösestromes die Größe und Form der wärmeaustauschenden Flächen der Wärmequelle, z. B. Spule oder Joch eines magnetischen Kurzschlußauslösers, Schenkel einer dynamischen Auslöseschleife oder Abschnitt einer Strombahn) und des thermomechanischen Wandlers so gestaltet, daß ein dem Auslösestrom zugeordneter Wärmeübergang zwischen Kurzschlußauslö. - ser und thermomechanischem Wandler besteht.Another feature of the invention, the size and shape of the heat-exchanging surfaces of the heat source, for. B. coil or yoke of a magnetic short-circuit release, leg one dynamic tripping loop or section of a current path) and the thermomechanical converter designed so that a heat transfer associated with the tripping current between short-circuit tripping. - ser and thermomechanical converter exists.
Erfindungsgemäß kann zur Einstellung eines vorgegebenen Auslösestromes zwischen den wärmeaustauschenden Flächen der Wärmequelle und des thermomechanischen Wandlers eine Zwischenschicht ausgewählter Wärmeleitfähigkeit, Dicke und Auflagefläche eingefügt werden. Solch eine Zwischenschicht kann sowohl den Auslösestrom als auch die Auslösezeitkonstante beeinflussen. Wird z. B. eine Zwischensicht aus Kunststoffolien zwischen den Kurzschlußauslöser und den thermomechanischen Wandler eingefügt, so spricht das Auslösesystem erst nach größerer Zeitkonstante und bei größerer Strombelastung an. Bei Wahl einer Kupferzwischenschicht verringern sich beide Werte. Es ist-daher möglich, in gewissen Grenzen die Kenndaten eines Auslösesystems lediglich durch Austausch der Zwischenschicht zu variieren. Es kann für unterschiedliche Selbstschalternennstromstärken ein einziger thermomechanischer Wandler verwendet werden, wenn die Auslösespule auf eine bestimmte Leistung dimensioniert wird und gleicher Wärmeübergang durch die Zwischenschicht sichergestellt ist.According to the invention, an intermediate layer of selected thermal conductivity, thickness and contact surface can be inserted between the heat-exchanging surfaces of the heat source and the thermomechanical transducer in order to set a predetermined tripping current. Such an intermediate layer can influence both the tripping current and the tripping time constant. Is z. B. a Z intermediate view of plastic films inserted between the short-circuit release and the thermomechanical converter, the trigger system only speaks after a larger time constant and with a larger current load. When choosing an intermediate copper layer, both values decrease. It is therefore possible to vary the characteristics of a release system within certain limits simply by exchanging the intermediate layer. A single thermomechanical converter can be used for different self-switch ratings if the trip coil is dimensioned for a certain power and the same heat transfer through the intermediate layer is ensured.
Ein wesentlicher Vorteil der Erfindung ist darin zu sehen, daß der thermomechanische Wandler durch die in dem Strompfad des Selbstschalters liegende Wärmequelle ausschließlich indirekt beheizt werden kann. Dies hat eine unbegrenzte Kurzschlußfestigkeit des thermomechanischen Wandlers zur Folge.A major advantage of the invention is that the thermomechanical converter can only be heated indirectly by the heat source located in the current path of the circuit breaker. This results in an unlimited short-circuit strength of the thermomechanical converter.
Es ist jedoch auch möglich, wo dies für die Auslegung einer geeigneten Auslösecharakteristik notwendig ist, den thermomechanischen Wandler zumindest teilweise in den Stromkreis einzuschalten. Hierbei kann der thermomechanische Wandler z. B. sowohl parallel als auch in Reihe zum Kurzschlußauslöser angeordnet werden. Bei Reihenschaltung wird zur Erhöhung der Kurzschlußfestigkeit des thermomechanischen Wandlers dieser vorzugsweise durch einen Parallelwiderstand überbrückt.However, it is also possible, where this is necessary for the design of a suitable tripping characteristic, to switch the thermomechanical converter at least partially into the circuit. Here, the thermomechanical converter z. B. can be arranged both in parallel and in series with the short-circuit release. In the case of a series connection, the thermomechanical converter is preferably bridged by a parallel resistor to increase the short-circuit strength.
Anhand der Zeichnung, in der mehrere Ausführungsbeispiele der Erfindung gezeigt sind, sollen die Erfindung sowie weitere vorteilhafte Ausgestaltungen und Verbesserungen und weitere Vorteile näher erläutert und beschrieben werden.The invention and further advantageous refinements and improvements and further advantages are to be explained and described in more detail with reference to the drawing, in which several exemplary embodiments of the invention are shown.
Es zeigen
- Figur 1 bis 10 jeweils eine Prinzipschaltung des Auslösesystems,
- Fig. 11 eine schematische Darstellung des Auslöseelemen.ts und
- Fig. 12 eine grafische Darstellung der Auslenkung des temperaturempfindlichen Elements in Abhängigkeit von der Temperatur.
- 1 to 10 each show a basic circuit of the release system,
- Fig. 11 is a schematic representation of the Auslöseelemen.ts and
- 12 shows a graphic representation of the deflection of the temperature-sensitive element as a function of the temperature.
Die Figur 1 zeigt die Prinzipschaltung eines Auslösesystems gemäß dem Stand der Technik. Solch ein Auslösesystem ist zum Beispiel in dem Selbstschalter enthalten, der in der deutschen Offenlegungsschrift 15 88 513 beschrieben ist. Bei dem Auslösesystem sind zwischen Anschlußklemmen 14 und 15 folgende Bauelemente in Reihe geschaltet: Ein thermomechanischer Wandler 11, der gemäß dem Stand der Technik gewöhnlich aus einem Thermobimetall besteht, ein magnetischer Kurzschlußauslöser 12 und eine Schaltkontaktstelle 13, die in bekannter Weise aus einem ortsfesten Kontaktstück 28 und einem beweglichen Kontaktstück 27 besteht. Die Schaltkontaktstelle 13, die in geöffnetem Zustand dargestellt ist, wird, wie die gestrichelten Wirkungslinien andeuten, bei Auftreten eines Kurzschluß- oder Überlaststromes entweder durch den magnetischen Kurzschlußauslöser 12 oder durch ein Schaltschloß 16 geöffnet, wobei das Schaltschloß 16 seinerseits entweder durch den thermomechanischen Wandler 11 oder durch den magnetischen Kurzschlußauslöser 12 ausgelöst wird.FIG. 1 shows the basic circuit of a release system according to the prior art. Such a triggering system is included, for example, in the automatic switch which is described in German Offenlegungsschrift 15 88 513. In the release system, the following components are connected in series between
Die Figur 2 unterscheidet sich von der Figur 1 nur dadurch, daß hier der thermomechanische Wandler 11 nicht wie in Figur 1 mit dem magnetischen Kurzschlußauslöser 12 in Reihe, sondern parallel geschaltet ist.Figure 2 only differs from the Figure 1, that the thermo-
Bei dem in Figur3dargestellten Prinzipschaltbild eines Auslösesystems gem. der Erfindung liegt zwischen den Anschlußklemmen 14 und 15 lediglich der magnetische Kurschlußauslöser 12 und die Schaltkontaktstelle 13. Der einseitig eingespannte thermomechanische Wandler 21, ist ein Streifen aus einer Formgedächtnislegierung und steht in direktem Wärmekontakt mit dem magnetischen Kurzschlußauslöser 12. Er wird nicht vom Strom durchflossen, sondern bei Temperaturerhöhung des stromdurchflossenen magnetischen Kurzschlußauslösers 12 durch diesen beheizt. Sobald bei Kurzschluß- oder Überlaststrom die Temperatur des thermomechanischen Wandlers 21 einen Ansprechwert überschreitet, lenkt sich der thermomechanische Wandler 21 sprunghaft aus und wirkt auf ein Schaltschloß 16 ein, welches seinerseits die Schaltkontaktstelle 13 öffnet und den Stromfluß unterbricht. Es ist auch hier, wie in Figur 1 und 2 vorgesehen, daß der magnetische Kurzschlußauslöser 12 sowohl direkt als auch über das Schaltschloß 16 auf die Schaltkontaktstelle 13 einwirkt.In the basic circuit diagram of a release system shown in FIG. According to the invention, only the magnetic short-
Figur 4 und Figur 5 stellen Prinzipschaltungen des Auslösesystems entsprechend Figur 3 dar, nur daß hier die Wärmequelle zur Beheizung des einseitig eingespannten thermomechanischen Wandlers 21 nicht, wie in Figur 3, eine magnetische Kurzschlußauslösespule ist, sondern, wie in Figur 4 dargestellt, ein dynamischer Auslöser 17 oder wie in Figur 5 dargestellt, ein Abschnitt einer Strombahn 20. Die in Figur 4 dargestellte dynamische Auslöseschleife 17 besteht aus einem feststehenden Schenkel 18 und einem freien Schenkel 19, die sich bei hohen Stromstößen abstoßen. Durch die Abstoßungskräfte wird der freie Schenkel 19 ausgelenkt und bewirkt entweder über das Schaltschloß 16 oder direkt die Öffnung der Schaltkontaktstelle 13.FIG. 4 and FIG. 5 represent basic circuits of the release system corresponding to FIG. 3, only that here the heat source for heating the
Das in Figur 6 dargestellte Prinzipschaltbild eines Auslösesystems gem. der Erfindung unterscheidet sich lediglich in der Ausführung des einseitig eingespannten thermomechanischen Wandlers 31 von Figur 4. Der thermomechanische Wandler 31 ist hier nicht streifenförmig, sondern als Schraubenfeder aus einer Formgedächtnislegierung ausgebildet, die koaxial um den feststehenden Schenkel des dynamischen Auslösers 17 gelegt ist. Das freie Ende des thermomechanischen Wandlers 31 wird in Abhängigkeit des durch den dynamischen Auslöser 17 fliessenden Stromes erwärmt und lenkt sich bei Überschreiten einer Auslösetemperatur aus und wirkt auf ein Schaltschloß 16 ein. Die Auslenkung des thermomechanischen Wandlers 31 erfolgt je nach dessen Auslegung in axialer oder radialer Richtung.The basic circuit diagram of a trigger system shown in FIG. The invention differs only in the design of the
Bei den in den Figuren 7, 8 und 9 dargestellten Prinzipschaltbildern eines Auslösesystems gem. der Erfindung ist ein einseitig eingespannter thermomechanischer Wandler 41, 51, 61 spiralförmig um die Spule eines magnetischen Kurzschlußauslösers 12 gewickelt. Die Auslenkung bei Überschreiten einer Auslösetempera- tur erfolgt in Figur 7 axial, in dem sich die Spirale zusammenzieht, in Figur 8 ebenfalls axial, in dem sich die Spirale streckt und in Figur 9 radial, in dem sich die. Spirale verdreht (Torsion). Durch Anlegen einer Vorspannung können die thermomechanischen Wandler der Figuren 7 bis 9 als Druckfeder 41, Zugfeder 51 und als Torsionsfeder 61 ausgelegt werden. Die Pfeile A, B und C deuten an, in welche Richtung sich der thermomechanische Wandler 31, 41, 51 bei Überschreiten der Ansprechtemperatur verformt um dann auf das Schaltschloß 16 einzuwirken.In the basic circuit diagrams of a trigger system shown in FIGS. 7, 8 and 9, according to FIG. According to the invention, a
Bei der indirekten Beheizung des thermomechanischen Wandlers wie er in der Schaltanordnung des Auslösesystems in Figur 3 bis Figur 9 dargestellt ist, wird der thermomechanische Wandler nicht vom Strom durchflossen. Hieraus ergibt sich einerseits eine unbegrenzte Kurzschlußfestigkeit des thermomechanischen Wandlers, andererseits wird das Auslösesystem nicht durch den Widerstand eines in Reihe geschalteten thermomechanischen Wandlers, wie in Figur 1 gezeigt, belastet.In the indirect heating of the thermomechanical converter as shown in the switching arrangement of the trigger system in Figure 3 to Figure 9, the thermomechanical converter is not flowed through by the current. On the one hand, this results in an unlimited short-circuit strength of the thermomechanical converter, on the other hand, the triggering system is not burdened by the resistance of a thermomechanical converter connected in series, as shown in FIG. 1.
Bei einer Auslegung eines Auslösesystems, bei der die Erwärmung z.B. des magnetischen Kurzschlußauslösers durch den durchfließenden Strom nicht ausreicht, um den thermomechanischen Wandler auszulösen, kann eine Schaltungsanordnung angewendet werden, wie sie in Figur 10 dargestellt ist. Der thermomechanische Wandler 21 ist hier parallel zum magnetischen Kurzschlußauslöser 12 angeordnet. Das eingespannte Ende des thermomechanischen Wandlers 21 ist mit der Anschlußklemme 14 verbunden und das freie Ende des thermomechanischen Wandlers 21 ist über eine flexible Leitung 33 mit dem beweglichen Kontaktstück 27 der Schaltkontaktstelle 13 verbunden. Ein Teil des Stromes, der in das Auslösesystem eintritt, fließt durch den Ln Wärmekontakt zum magnetischen Kurzschlußauslöser 12 stehenden thermomechanischen Wandler 21, der andere Teil fließt durch den magnetischen Kurzschlußauslöser 12.In a design of a trigger system in which the heating z . B. of the magnetic short-circuit release due to the current flowing through is not sufficient to trigger the thermomechanical converter, a circuit arrangement as shown in FIG. 10 can be used. The
Die Figur 11 stellt einen schematischen Schnitt durch einen magnetischen Kurzschlußauslöser 22 dar, der einen Magnetkern 23, einen Magnetanker 24, an welchem ein Auslösestift 25 befestigt ist, und eine Magnetauslösespule 26 enthält. Im Falle eines Überlast- oder Kurzschlußstromes kann der Auslösestift 25 ein bewegliches Kontaktstück 27 von einem festen Kontaktstück 28 abheben, was zu einer Unterbrechung des Stromflusses führt. Auf der Stirnseite des magnetischen Kurzschlußauslösers 22 ist ein rechtwinklig ausgebildeter thermomechanischer Wandler 21 befestigt, dessen parallel zur Achse des Kurzschlußauslösers verlaufender Schenkel sich bei Temperaturerhöhung frei auszubiegen vermag (gestrichelte Linie), wobei er über eine Klinke 29 und ein nicht dargestelltes Schaltschloß, welches auf das bewegliche Kontaktstück 27 einwirkt, eine Stromunterbrechung verursacht.FIG. 11 shows a schematic section through a magnetic short-
In Figur 11 handelt es sich beim thermomechanischen Wandler 21 um einen einseitig eingespannten Streifen aus einer Formgedächtnislegierung, der sich entsprechend Figur 12 erst bei Überschreiten einer Auslösetemperatur aT bei Erwärmung sprunghaft auslenkt.In Figure 11 it is at the thermo-
Bei der Auslösetemperatur Ta erreicht die Auslenkung S einen Auslösehub Sa, der über die Klinke 29 zu einer Auslösung des Schaltschlosses 16 und damit zum Öffnen der Kontaktstelle 13 führt. Durch die sprunghafte Auslenkung des thermomechanischen Wandlers 21 ist sichergestellt, daß ein guter Wärmekontakt zwischen dem magnetischen Kurzschlußauslöser 22 und dem thermomechanischem Wandler 21 bis zu dessen Auslenkung gegeben ist.At the triggering temperature T a , the deflection S reaches a triggering stroke S a which , via the
In einem weiteren Ausführungsbeispiel, das nicht dargestellt ist, kann in einer Spalte S zwischen den magnetischen Kurzschlußauslöser 22 und den thermomechanischen Wandler 21 zur Einstellung eines bestimmten Wärmeübergangswertes eine Zwischenschicht eingefügt werden. Diese Zwischenschicht kann z. B. eine Kupferzwischenlage (kleine Zeitkonstante für das Auslösesystem wegen großer Leitfähigkeit der Zwischenlage) oder eine Kunststoffolie (große Zeitkonstante für das Auslösesystem wegen kleiner Leitfähigkeit der Zwischenlage) sein.In a further exemplary embodiment, which is not shown, an intermediate layer can be inserted in a column S between the magnetic short-
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT81102059T ATE13608T1 (en) | 1980-04-03 | 1981-03-19 | TRIP SYSTEM OF A CIRCUIT BREAKER FOR BREAKING A CIRCUIT. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3013016 | 1980-04-03 | ||
DE19803013016 DE3013016A1 (en) | 1980-04-03 | 1980-04-03 | RELEASE SYSTEM OF A SELF-SWITCH TO INTERRUPT A CIRCUIT |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0037490A1 true EP0037490A1 (en) | 1981-10-14 |
EP0037490B1 EP0037490B1 (en) | 1985-05-29 |
Family
ID=6099221
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP81102059A Expired EP0037490B1 (en) | 1980-04-03 | 1981-03-19 | Release system of an automatic circuit breaker for the interruption of a circuit |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0037490B1 (en) |
JP (1) | JPS56153642A (en) |
AT (1) | ATE13608T1 (en) |
DE (1) | DE3013016A1 (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2557353A1 (en) * | 1983-12-26 | 1985-06-28 | Merlin Gerin | MAGNETOTHERMIC TRIGGER IN SHAPE MEMORY MATERIAL, ASSOCIATED WITH CIRCUIT BREAKER MECHANISM |
EP0353816A1 (en) * | 1988-08-01 | 1990-02-07 | Matsushita Electric Works, Ltd. | Shape memory alloy and electric path protective device utilizing the alloy |
DE4424125C1 (en) * | 1994-07-08 | 1995-07-13 | Flohr Peter | Automatic main protection fuse for distribution network |
WO1996024151A1 (en) * | 1995-02-01 | 1996-08-08 | Siemens Energy & Automation, Inc. | Low energy memory metal actuated latch |
EP0821383A2 (en) * | 1996-07-25 | 1998-01-28 | ABBPATENT GmbH | Overcurrent trip unit for an electrical installation device, particularly for a circuit breaker |
EP0849761A2 (en) * | 1996-12-20 | 1998-06-24 | ABBPATENT GmbH | Overcurrent and short circuit trip device for an electric circuit breaker |
EP0978859A2 (en) * | 1998-08-03 | 2000-02-09 | Siemens Aktiengesellschaft | Electrical installation device with a thermally sensitive element in the disconnection chain |
AP1679A (en) * | 1998-12-22 | 2006-11-30 | Microscience Ltd | Outer surface proteins, their genes, and their use. |
US20120169451A1 (en) * | 2010-12-30 | 2012-07-05 | Brian Frederick Mooney | Shape memory alloy actuated circuit breaker |
WO2014083191A1 (en) * | 2012-11-29 | 2014-06-05 | Eaton Industries (Austria) Gmbh | Circuit breaker having a passively heated bimetal element |
CN107004546A (en) * | 2014-11-20 | 2017-08-01 | 伊顿工业(奥地利)有限公司 | Breaker with bimetallic element that is passively heating and acting on the armature of electromagnetism trigger |
WO2018114572A1 (en) * | 2016-12-20 | 2018-06-28 | Conti Temic Microelectronic Gmbh | Pneumatic valve |
DE102017207294A1 (en) * | 2017-05-02 | 2018-11-08 | Zf Friedrichshafen Ag | Power switch element for opening an electrical connection and battery disconnector |
WO2020254213A1 (en) * | 2019-06-21 | 2020-12-24 | Schneider Electric Industries Sas | Electronic installation device |
JP2021505280A (en) * | 2017-12-07 | 2021-02-18 | ストリックス リミテッド | Sterilizer |
US11635154B2 (en) | 2018-10-01 | 2023-04-25 | Conti Temic Microelectronic Gmbh | Pneumatic valve |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4224046C2 (en) * | 1992-07-21 | 1994-07-07 | Elektroelement Izlake D D | Overcurrent release for protective switching devices |
DE4300909C2 (en) * | 1993-01-15 | 1997-02-06 | Abb Patent Gmbh | Thermal release, especially for a circuit breaker |
DE9405745U1 (en) * | 1994-03-09 | 1994-05-19 | Siemens AG, 80333 München | Overcurrent release |
DE4413888B4 (en) * | 1994-04-21 | 2004-09-02 | Abb Patent Gmbh | Overcurrent release for a self-switch |
DE102004056280A1 (en) * | 2004-11-22 | 2006-05-24 | Abb Patent Gmbh | Protective switch with magnetic release for e.g. motor or circuit protection, is made from alloy with magnetic shape memory |
DE102004056279A1 (en) * | 2004-11-22 | 2006-05-24 | Abb Patent Gmbh | Protective switch with magnetic and thermal release for e.g. motor or circuit protection, is made from alloy with combined thermal- and magnetic shape memory |
DE102004056282A1 (en) * | 2004-11-22 | 2006-05-24 | Abb Patent Gmbh | Switching device for an electronic assembly comprises a thermal and electromagnetic circuit breaker having a snap-on mounting interacting with an impact anchor |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH354503A (en) * | 1957-11-13 | 1961-05-31 | Weber Ag Fab Elektro | Trip device for circuit breaker |
DE1588513A1 (en) * | 1967-12-19 | 1971-01-21 | Licentia Gmbh | Circuit arrangement for automatic switch in narrow design |
DE1640882B1 (en) * | 1966-08-27 | 1971-11-04 | Licentia Gmbh | Thermal release device |
DE2701884A1 (en) * | 1976-01-19 | 1977-07-21 | Delta Materials Research Ltd | CURRENT OVERLOAD PROTECTION |
DE2912361A1 (en) * | 1978-04-11 | 1979-10-25 | Int Standard Electric Corp | OVERCURRENT SWITCH |
DE2928799A1 (en) * | 1978-07-21 | 1980-01-31 | Delta Materials Research Ltd | ELECTRICAL FUSE MACHINE |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1822570U (en) * | 1956-10-27 | 1960-12-01 | Theodor Kiepe Elektrotechnisch | SELF-ACTING DISCONNECTING DEVICE EQUIPPED WITH THERMAL AND ELECTROMAGNETIC RELEASE. |
US3162739A (en) * | 1962-06-25 | 1964-12-22 | Gen Electric | Electric circuit breaker with improved trip means |
DE1884376U (en) * | 1963-06-12 | 1963-12-12 | Licentia Gmbh | BIMETAL ARRANGEMENT FOR SWITCHING DEVICES. |
DE1588507B2 (en) * | 1967-12-12 | 1971-06-03 | Licentia Patent Verwaltungs GmbH, 6000 Frankfurt | COMBINED BIMETAL AND MAGNETIC RELEASE |
-
1980
- 1980-04-03 DE DE19803013016 patent/DE3013016A1/en not_active Ceased
-
1981
- 1981-03-19 EP EP81102059A patent/EP0037490B1/en not_active Expired
- 1981-03-19 AT AT81102059T patent/ATE13608T1/en not_active IP Right Cessation
- 1981-04-02 JP JP4852481A patent/JPS56153642A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH354503A (en) * | 1957-11-13 | 1961-05-31 | Weber Ag Fab Elektro | Trip device for circuit breaker |
DE1640882B1 (en) * | 1966-08-27 | 1971-11-04 | Licentia Gmbh | Thermal release device |
DE1588513A1 (en) * | 1967-12-19 | 1971-01-21 | Licentia Gmbh | Circuit arrangement for automatic switch in narrow design |
DE2701884A1 (en) * | 1976-01-19 | 1977-07-21 | Delta Materials Research Ltd | CURRENT OVERLOAD PROTECTION |
DE2912361A1 (en) * | 1978-04-11 | 1979-10-25 | Int Standard Electric Corp | OVERCURRENT SWITCH |
DE2928799A1 (en) * | 1978-07-21 | 1980-01-31 | Delta Materials Research Ltd | ELECTRICAL FUSE MACHINE |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2557353A1 (en) * | 1983-12-26 | 1985-06-28 | Merlin Gerin | MAGNETOTHERMIC TRIGGER IN SHAPE MEMORY MATERIAL, ASSOCIATED WITH CIRCUIT BREAKER MECHANISM |
EP0147278A2 (en) * | 1983-12-26 | 1985-07-03 | Merlin Gerin | Thermal-magnetic tripping mechanism of a circuit breaker made of shape memory effect material |
EP0147278A3 (en) * | 1983-12-26 | 1985-08-21 | Merlin Gerin | Thermal-magnetic tripping mechanism of a circuit breaker made of shape memory effect material |
EP0353816A1 (en) * | 1988-08-01 | 1990-02-07 | Matsushita Electric Works, Ltd. | Shape memory alloy and electric path protective device utilizing the alloy |
DE4424125C1 (en) * | 1994-07-08 | 1995-07-13 | Flohr Peter | Automatic main protection fuse for distribution network |
EP0691665A1 (en) * | 1994-07-08 | 1996-01-10 | ABBPATENT GmbH | Main cut-out |
WO1996024151A1 (en) * | 1995-02-01 | 1996-08-08 | Siemens Energy & Automation, Inc. | Low energy memory metal actuated latch |
US5629662A (en) * | 1995-02-01 | 1997-05-13 | Siemens Energy & Automation, Inc. | Low energy memory metal actuated latch |
EP0821383A2 (en) * | 1996-07-25 | 1998-01-28 | ABBPATENT GmbH | Overcurrent trip unit for an electrical installation device, particularly for a circuit breaker |
EP0821383A3 (en) * | 1996-07-25 | 1999-01-07 | ABBPATENT GmbH | Overcurrent trip unit for an electrical installation device, particularly for a circuit breaker |
EP0849761A2 (en) * | 1996-12-20 | 1998-06-24 | ABBPATENT GmbH | Overcurrent and short circuit trip device for an electric circuit breaker |
EP0849761A3 (en) * | 1996-12-20 | 1999-01-07 | ABBPATENT GmbH | Overcurrent and short circuit trip device for an electric circuit breaker |
EP0978859A2 (en) * | 1998-08-03 | 2000-02-09 | Siemens Aktiengesellschaft | Electrical installation device with a thermally sensitive element in the disconnection chain |
EP0978859A3 (en) * | 1998-08-03 | 2001-03-28 | Siemens Aktiengesellschaft | Electrical installation device with a thermally sensitive element in the disconnection chain |
AP1679A (en) * | 1998-12-22 | 2006-11-30 | Microscience Ltd | Outer surface proteins, their genes, and their use. |
US20120169451A1 (en) * | 2010-12-30 | 2012-07-05 | Brian Frederick Mooney | Shape memory alloy actuated circuit breaker |
US8830026B2 (en) * | 2010-12-30 | 2014-09-09 | General Electric Company | Shape memory alloy actuated circuit breaker |
WO2014083191A1 (en) * | 2012-11-29 | 2014-06-05 | Eaton Industries (Austria) Gmbh | Circuit breaker having a passively heated bimetal element |
CN107004546B (en) * | 2014-11-20 | 2019-01-15 | 伊顿工业(奥地利)有限公司 | With passively heating and act on the breaker of the bimetallic element on the armature of electromagnetism trigger |
CN107004546A (en) * | 2014-11-20 | 2017-08-01 | 伊顿工业(奥地利)有限公司 | Breaker with bimetallic element that is passively heating and acting on the armature of electromagnetism trigger |
US11047497B2 (en) | 2016-12-20 | 2021-06-29 | Conti Temic Microelectronic Gmbh | Pneumatic valve |
CN110100125A (en) * | 2016-12-20 | 2019-08-06 | 大陆泰密克微电子有限责任公司 | Pneumatic operated valve |
CN110100125B (en) * | 2016-12-20 | 2020-10-16 | 大陆泰密克微电子有限责任公司 | Pneumatic valve |
WO2018114572A1 (en) * | 2016-12-20 | 2018-06-28 | Conti Temic Microelectronic Gmbh | Pneumatic valve |
DE102017207294A1 (en) * | 2017-05-02 | 2018-11-08 | Zf Friedrichshafen Ag | Power switch element for opening an electrical connection and battery disconnector |
JP2021505280A (en) * | 2017-12-07 | 2021-02-18 | ストリックス リミテッド | Sterilizer |
US20210145991A1 (en) * | 2017-12-07 | 2021-05-20 | Strix Limited | Sterlizing device |
US11925714B2 (en) * | 2017-12-07 | 2024-03-12 | Strix Limited | Sterilizing device |
US11635154B2 (en) | 2018-10-01 | 2023-04-25 | Conti Temic Microelectronic Gmbh | Pneumatic valve |
WO2020254213A1 (en) * | 2019-06-21 | 2020-12-24 | Schneider Electric Industries Sas | Electronic installation device |
CN114175204A (en) * | 2019-06-21 | 2022-03-11 | 施耐德电器工业公司 | Electronic facility device |
US12046892B2 (en) | 2019-06-21 | 2024-07-23 | Schneider Electric Industries Sas | Electronic installation device |
Also Published As
Publication number | Publication date |
---|---|
EP0037490B1 (en) | 1985-05-29 |
DE3013016A1 (en) | 1981-10-08 |
JPS56153642A (en) | 1981-11-27 |
ATE13608T1 (en) | 1985-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0037490B1 (en) | Release system of an automatic circuit breaker for the interruption of a circuit | |
DE2928799A1 (en) | ELECTRICAL FUSE MACHINE | |
EP1815490B1 (en) | Switching equipment comprising a thermal and electromagnetic trip device | |
DE3637275C1 (en) | Overcurrent trip device for protection switching apparatuses | |
EP0042113A2 (en) | Automatic circuit breaker | |
CH668502A5 (en) | CIRCUIT BREAKER. | |
EP0828273B1 (en) | Switch with a safety element | |
EP1001444A2 (en) | Overcurrent trip device | |
EP2286432B1 (en) | Electric selective automatic switch | |
DE102012202153A1 (en) | Thermomagnetic release for small current ranges | |
EP0849761A2 (en) | Overcurrent and short circuit trip device for an electric circuit breaker | |
DE2700989A1 (en) | RELEASE DEVICE WITH THERMAL DELAY | |
EP0028389B1 (en) | Low voltage-protective line switch | |
DE69517242T2 (en) | CIRCUIT BREAKER WITH TWO INTERRUPTION POINTS | |
DE102012011063A1 (en) | Electrical switching device e.g. generator circuit breaker, has trip coil traversed by current to be monitored, and rod-shaped tripping armature made of material exhibiting thermal effect and magnetic shape memory effect | |
DE3544647A1 (en) | Fault current circuit breaker | |
DE2610951C3 (en) | Circuit breaker | |
DE19838417B4 (en) | Thermal release device | |
DE4224046C2 (en) | Overcurrent release for protective switching devices | |
EP0990247B1 (en) | Device for triggering an overload circuit breaker | |
DE3401968A1 (en) | PROTECTIVE SWITCH FOR ELECTRIC MOTORS | |
DE626486C (en) | Thermal overcurrent trip device using two bimetal strips | |
DE102004056279A1 (en) | Protective switch with magnetic and thermal release for e.g. motor or circuit protection, is made from alloy with combined thermal- and magnetic shape memory | |
DE1513586C (en) | Multipole thermal overcurrent from loose or multipole thermal over current relay with pear skin strips heated by the current | |
DE733607C (en) | Overcurrent monitoring device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH FR GB IT NL |
|
17P | Request for examination filed |
Effective date: 19820311 |
|
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH FR GB IT LI NL |
|
REF | Corresponds to: |
Ref document number: 13608 Country of ref document: AT Date of ref document: 19850615 Kind code of ref document: T |
|
ET | Fr: translation filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19860131 Year of fee payment: 6 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19860331 Year of fee payment: 6 |
|
26 | Opposition filed |
Opponent name: MERLIN GERIN, S.A. Effective date: 19860222 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: MERLIN GERIN, SA |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Effective date: 19870319 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19871001 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19890228 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19890313 Year of fee payment: 9 |
|
ITTA | It: last paid annual fee | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19890331 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19890413 Year of fee payment: 9 |
|
RDAG | Patent revoked |
Free format text: ORIGINAL CODE: 0009271 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT REVOKED |
|
GBPR | Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
27W | Patent revoked |
Effective date: 19890313 |
|
BERE | Be: lapsed |
Owner name: BROWN BOVERI & CIE A.G. MANNHEIM Effective date: 19900331 |