EP0035439B1 - Procédé et dispositif d'antibrouillage pour radar associé à une antenne à balayage électronique, et radar comprenant un tel dispositif - Google Patents

Procédé et dispositif d'antibrouillage pour radar associé à une antenne à balayage électronique, et radar comprenant un tel dispositif Download PDF

Info

Publication number
EP0035439B1
EP0035439B1 EP81400286A EP81400286A EP0035439B1 EP 0035439 B1 EP0035439 B1 EP 0035439B1 EP 81400286 A EP81400286 A EP 81400286A EP 81400286 A EP81400286 A EP 81400286A EP 0035439 B1 EP0035439 B1 EP 0035439B1
Authority
EP
European Patent Office
Prior art keywords
antenna
phase
plane
jamming
dephasers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81400286A
Other languages
German (de)
English (en)
Other versions
EP0035439A1 (fr
Inventor
Robert Guilhem
Guy Leterrier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0035439A1 publication Critical patent/EP0035439A1/fr
Application granted granted Critical
Publication of EP0035439B1 publication Critical patent/EP0035439B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/2605Array of radiating elements provided with a feedback control over the element weights, e.g. adaptive arrays
    • H01Q3/2611Means for null steering; Adaptive interference nulling
    • H01Q3/2617Array of identical elements

Definitions

  • the invention relates to a method and an anti-jamming device for radar associated with an electronic scanning antenna; it also relates to a radar comprising such a device.
  • Modern aircraft are generally fitted with jamming devices which emit modulated waves in the frequency range of radars capable of detecting their presence.
  • the radars receiving the high power waves thus emitted by the jamming devices are saturated and made almost blind; this remains true even if the wave emitted by the jamming device only arrives in the direction of a secondary lobe of the radiation pattern of the radar antenna, taking into account the high level of power emitted by the jammer.
  • the devices of the prior art use auxiliary antennas responsible for receiving the signals transmitted by these jammers; the number of these antennas must be at least equal to that of the interference sources.
  • certain types of antenna with electronic deflection achieve the deflection of the beam by controlling the phase shifters connected to the elementary sources placed for example in a plane a phase value ⁇ ij defined by where i and j are whole numbers defining the position of the source considered with respect to two orthogonal directions OX and OY of the plane of the antenna, A ⁇ p x and A ⁇ py are the phase differences between two consecutive sources according to the OX and OY directions defining the phase plane perpendicular to the pointing direction, ⁇ ij is a constant phase shift independent of the pointing direction.
  • the electronic deflection of the beam is obtained by imposing on each elementary source of index i, j a phase shift ⁇ ij such that all the elementary sources radiate in phase in the chosen direction, taking into account their position in space and their feeding phase; this constitutes a wave surface perpendicular to the chosen direction.
  • the present invention aims to ensure anti-jamming by the use of a single electronic scanning antenna, the law of illumination of which is modified in phase and / or in amplitude by acting on the attenuator phase shifters connected to certain elementary sources, so that in the supposed direction of an interference source the gain of the antenna is zero or very low.
  • One of the characteristics of the invention consists in implementing means which add corrective terms to the value ⁇ ij defined above.
  • the anti-jamming method consists in modifying for each given interference source certain attenuator phase shifters associated with the elementary sources (which constitute the electronic scanning antenna) so that at the linear phase law corresponding to the desired direction of pointing of the antenna, or superimposed a disturbance law approaching a periodic law whose period measured in the plane of the antenna (or the opening thereof) parallel to the plane defined by the direction of the jammer and the normal to the antenna (or to its opening), law whose spatial period (wavelength) is given by where ⁇ is the wavelength used by the radar and 0 is the angle between the direction of the jammer and the normal defined above.
  • one modifies the amplitude of the law of disturbance and its position for performing its position a translation parallel to the direction in which is measured the LON g wave ueur these modifications being made so as to obtain a minimization of the gain of the antenna in the direction of the jamming device considered.
  • Another characteristic of the invention consists in modifying, for each interference source, certain phase shifters and / or attenuators associated with the elementary sources so that the disturbance law defined above is such that the disturbances considered alone have a radiation diagram having a maximum substantially in the direction of the interference source considered and a value as low as possible in the other directions, obtaining. of this latter characteristic being facilitated by the simultaneous use of phase and amplitude disturbances which makes it possible to greatly reduce the value of the radiation pattern in the direction symmetrical to that of the interference source considered with respect to the normal defined above. above.
  • Another characteristic of the invention consists in subjecting the phase disturbance law and / or in amplitude a translation such that it modifies the phase of the radiation pattern of the disturbances considered alone so as to minimize the overall radiation pattern of the antenna in the direction of the interference source considered by substantially opposing the radiation pattern. radiation from disturbances to that of the undisturbed antenna, this for the direction of the interference source considered.
  • ⁇ x bn and ⁇ y bn are the phase differences between two consecutive sources (in the directions OX and OY) defining by their value a phase plane perpendicular to the direction of the n th interference device b n ,
  • a n and ⁇ n are two adjustable phase parameters whose value is controlled by a computer
  • a double disturbance in amplitude and in phase corresponding to the combination of two previously defined disturbances is produced on the antenna.
  • the method according to the invention consists in playing on certain phase-attenuators associated with the elementary sources constituting the electronic scanning antenna.
  • Figure la shows the phase laws applied to the phase shifters of the electronic scanning antenna.
  • the electronic scanning antenna 1 is assumed to be in a plane (OX, OY); OZ represents the normal to this plane with respect to 0, point of intersection of the plane of antenna 1 with the axis of symmetry of this antenna OB ; represents the direction of the interference source of rank i, 0 the angle (OZ, OB ; ) and OP the pointing direction of the electronic scanning antenna 1.
  • the plane 2 represents an equiphase plane passing through 0 and corresponding to pointing direction OP.
  • Curve 3 represents an example of a supposed sinusoidal phase modulation law which is superimposed on the straight line 2. It therefore assumes a suitable algebraic variation of the phase angles of certain phase-shifters according to a distribution law on the surface of the approximately sinusoidal antenna.
  • A represents the amplitude of this phase modulation law.
  • the direction OBi of the jamming device of rank i is a priori arbitrary. Consequently the cancellation or the minimization of the gain in the direction of the jamming device actually requires two quasi-periodic disturbances of the phase law, according to the two directions OX and OY and that the resulting law of disturbance of wavelength spatial ⁇ / sin ⁇ is defined parallel to the intersection of the antenna plane and the plane (OZ, OB i ); to obtain this disturbance law, perturbations are carried out parallel to the axis OX and to the axis OY which correspond to the terms ⁇ x bn and ⁇ y bn .
  • phase shifters are quantified and controlled by binary words. Therefore curves 2 and 3 of the figure characterizing it respectively the linear phase law defining the pointing direction OP and the phase modulation law, close to a sinusoid, allowing the decrease in gain in the direction OB ; , can only be approached.
  • Figure 1b shows an example of the approximation of these curves.
  • N be the number of phase shifters located in a volume limited by two planes perpendicular to the line of intersection of the plane of the antenna and the plane (OY, OB i ) and distant by a deviation, from, weak compared to the period
  • the modification of the values of the phase shift angles of these n phase shifters by the same quantity ⁇ A n risks giving too great a contribution with respect to the gain of the antenna in the direction OB i which one seeks to minimize.
  • the perturbation law will not be applied to phase shifters having a quantization error less than a value given for the phase law defining the pointing direction OP of the antenna.
  • FIG. 2 gives an example of a device implementing the method described above.
  • the device comprises a radar deviation receiver 66 receiving the signals from the electronic scanning antenna via a terminal 65.
  • This radar deviation receiver 66 is connected to a computer 110 and to a set of N identical phase-shifter control circuits 40, each of them being connected to a phase-shifter-attenuator of an elementary source by means of a terminal 30.
  • a single phase-shifter control circuit 40 is shown so to facilitate understanding.
  • the computer 110 is connected to the N phase-shifting control circuits 40, and to a comparison circuit 50 making it possible to compare, for the same pointing direction of the electronic scanning antenna, the different values of the sum signal ⁇ coming from the deviation meter receiver radar 66 for different settings of the phase shifters attenuators associated with the elementary sources constituting the radar antenna.
  • the comparison circuit 50 comprises a controlled switch 62 receiving the sum signal ⁇ from the radar deviation receiver 66 and connected at output to a comparator 64 and to a memory 63; the control of this switch 62 is connected to the computer 110 and to a set of logic AND circuits 32 via a counting circuit 31.
  • This set of circuits Logical AND 32 is connected to the computer 110, to a comparator 64 and to a memory 63, this memory 63 also being connected to the comparator 64.
  • Each control circuit 40 comprises two memory pairs 9, 10 and 7, 8 each couple being connected to an addition circuit 18 by means of a controlled switch 16, 23 and a multiplication circuit 17, 22 receiving the output of a memory 12,13.
  • Each of the memories 7, 8, 9, 10 is connected to the radar deviation receiver 66.
  • the addition circuit 18 is connected to two memories 14 and 15 by means of a controlled switch 19.
  • the output of the addition circuit 18 is connected to a controlled switch 20; a first output of this controlled switch 20 is connected to a multiplication circuit 25 via a circuit 21 calculating the function cos x, x being the signal applied to its input.
  • the multiplication circuit 25 also receives the content of a memory 26 and the content of memories 24 via a circuit 200 calculating the cosine of the values from the memories 24. Its output is connected to an addition circuit 28 via memories 29.
  • the second output of the controlled switch 20 is also connected to this addition circuit 28 via the memory circuits 24.
  • the output of the addition circuit 28 is connected to a terminal 30 connected to the phase shifter-attenuator of the elementary source on which this control circuit 40 will act, by means of a circuit 27 rounding the number from the addition circuit 28.
  • the two sets of memories 15 and 26 are directly controlled by the computer 110.
  • the above circuits are of the logic type with the exception of the radar deviation receiver.
  • the following description of the operation is made by assuming all of the circuits making up the comparison circuit 50 and the control circuits 40 produced with logic circuits.
  • the radar deviation receiver 66 identifies the directions of the different sources of interference. Each of these directions is identified by a phase plane perpendicular to the direction of the jamming device.
  • Knowledge of OB management ; of a particular jammer determines the phase differences ⁇ b x and ⁇ b y between two phase shifters-attenuators associated with two consecutive elementary sources in the directions OX and OY of the antenna. These pairs of values ( ⁇ ⁇ b x , ⁇ b y ) are stored in a memory internal to the radar deviation receiver 66 during a first antenna scan. This information is renewed every r antenna scans.
  • Any pointing direction of the electronic scanning antenna is also defined by a phase shift torque ⁇ x , A ⁇ py.
  • the values ⁇ x and A ⁇ py are transmitted respectively to two memories 8 and 100, the values ⁇ bn x and ⁇ bn y , associated with the n th scrambling device, respectively to memories 7 and 9.
  • the computer 110 receives from the radar deviation meter receiver 66 the value of the gain of the electronic scanning antenna in the direction of the interference source considered with respect to the pointing direction, thus allowing the computer 110 to estimate the number and the distribution of phase-attenuators associated with the elementary sources which it will modify.
  • the computer 110 then positions all of the controlled switches 16, 23, 19 and 20 of each control circuit 40 associated with a phase shifter-attenuator of an elementary source in the position shown in FIG. 2. This position of the switches is called by the following position 1, the different position being called position 2. Similarly, this computer transmits to memories 12 and 13, by links not described in FIG. 2, the values i and j corresponding to the number j of the column parallel to OX in which is the phase shift considered and rank i in this column. This operation is therefore equivalent to matrixing the electronic scanning antenna in the directions OX and OY defined by the direction of the jamming device.
  • phase shift term ⁇ ij associated with each phase shifter and which compensates for a possible phase shift originating for example from the position on the antenna, from the elementary source which is associated with it relative. to the microwave power supply of this antenna.
  • the addition circuit 28 then delivers a signal equivalent to: which has been stored in the set of memories 24 and which corresponds exclusively to the pointing of the electronic scanning antenna in the chosen direction. Then the computer 110 switches to position 2, the controlled switches 16, 19, 20 and 23 of certain control circuits 40, associated with the elementary sources. The addition circuit 28 then delivers the sum of the previous phase term contained in the memory 24 and the correction term contained in the memory 29 corresponding to the product of the cosine terms from the circuits 21 and 200, then factorized, with the amplitude A, in the multiplication circuit 25.
  • ⁇ ij the total phase applied to this phase shifter for a given jammer: the y value being stored in a memory included in the circuit 200 calculates the cosine and where A and ⁇ are the values corresponding to the n th IEM jammer, respectively from memories 15 and 16.
  • a circuit 27 then operates the rounding of this number; in fact, the phase-shifting attenuators being generally controlled by binary words of K bits, the binary word representing ⁇ ij must be rounded up to the nearest binary word of K bits before being applied to the control of the phase shifter by means of terminal 30.
  • the values A and ⁇ being able to vary respectively from 0 to A n and from 0 to 2n by successive discrete values, the computer 110 repeats this operation of calculation of ⁇ ij for all the possible values of the couple (A, ⁇ ).
  • the computer 110 opens the switch 62 allowing the application of the value, previously sampled and coded in binary, of the sum signal ⁇ coming from the radar deviation receiver 66.
  • This opening of the controlled switch 62 also causes the incrementation of a unit of a counting circuit 31.
  • the value of the sum signal ⁇ is compared using a comparator 64 to the previous value of this same signal sum ⁇ associated with the previous pair (A, ⁇ ) and stored in a memory 63. If the sum signal E applied to comparator 64 is smaller than the previous signal stored in memory 63, comparator 64 delivers a signal which firstly causes the smallest sum sum somme to be stored in memory 63, and secondly authorizes the transfer to the computer 110 of the binary number existing on the outputs of the counting circuit 31 via a set of logic AND circuits 32.
  • the computer 110 receives from the counting circuit 31 the number of the couple (A, ⁇ ) corresponding to a minimum value of the sum signal ⁇ . The computer 110 then puts in the memories 15 and 26 the corresponding values of A and ⁇ .
  • the computer repeats these operations for the n interference sources Bi acting on different control circuits 40 for each interference source.
  • phase disturbance and / or amplitude law applied to the phase shifter-attenuators of the elementary antennas must be such that, measured in the phase plane of the pointing of the antenna, this is periodic.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

  • L'invention concerne un procédé et un dispositif d'antibrouillage pour radar associé à une antenne à balayage électronique; elle concerne également un radar comprenant un tel dispositif.
  • Les avions modernes sont généralement pourvus de dispositifs de brouillage qui émettent des ondes modulées dans le domaine de fréquence des radars susceptibles de détecter leur présence. Les radars recevant les ondes de forte puissance ainsi émises par les dispositifs de brouillage sont saturés et rendus quasiment aveugles; ceci reste vrai même si l'onde émise par le dispositif de brouillage n'arrive que dans la direction d'un lobe secondaire du diagramme de rayonnement de l'antenne radar, compte tenu du haut niveau de puissance émise par le brouilleur.
  • Pour remédier à cet inconvénient, les dispositifs de l'art antérieur utilisent des antennes auxiliaires chargées de recevoir les signaux émis par ces brouilleurs; le nombre de ces antennes doit être au moins égal à celui des sources de brouillage.
  • Les signaux issus de ces antennes auxiliaires sont ajoutés aux signaux de l'antenne principale après traitement en phase et en amplitude de telle sorte que la somme totale présente une énergie de brouillage nulle ou du moins fortement atténuée. Cette solution toutefois présente des inconvénients: l'un d'entre eux est directement lié au nombre d'antenne auxiliaires à utiliser. Ces inconvénients font que la mise en oeuvre pratique d'un tel dispositif d'antibrouillage est délicate.
  • Selon l'art antérieur, certains types d'antennes à déflexion électronique réalisent la déflexion du faisceau en commandant aux déphaseurs reliés aux sources élémentaires placées par exemple dans un plan une valeur de phase ϕij définie par
    Figure imgb0001
    où i et j sont des nombres entiers définissant la position de la source considérée par rapport à deux directions orthogonales OX et OY du plan de l'antenne, A<px et A<py sont les écarts de phase entre deux sources consécutives selon les directions OX et OY définissant le plan de phase perpendiculaire à la direction de pointage, ψij est un déphasage constant indépendant de la direction de pointage.
  • Selon l'art antérieur, d'une façon plus générale, la déflexion électronique du faisceau est obtenue en imposant à chaque source élémentaire d'indice i, j un déphasage ϕij tel que toutes les sources élémentaires rayonnent en phase dans la direction choisie, compte tenu de leur position dans l'espace et de leur phase d'alimentation; on constitue ainsi une surface d'onde perpendiculaire à la direction choisie.
  • D'autre part, il est connu, comme décrit dans le brevet US-A-4189 733 d'utiliser un système de modulation/démodulation effectuant une expansion et compression du signal afin de réduire l'amplitude des signaux provenant des directions différentes de la direction du pointage de l'antenne. De même il est connu, comme décrit dans la demande publiée EP-A-014 650, de placer devant une antenne radar un filtre constitué par des fils parallèles parcourus par des courants électriques, afin d'atténuer des lobes secondaires du diagrame de rayonnement de ladite antenne.
  • La présente invention vise à assurer l'antibrouillage par l'utilisation d'une unique antenne à balayage électronique dont on modifie la loi d'illumination en phase et/ou en amplitude en agissant sur les déphaseurs atténuateurs reliés à certaines sources élémentaires, afin que dans la direction supposée d'une source de brouillage le gain de l'antenne soit nul ou très faible.
  • Une des caractéristiques de l'invention consiste à mettre en oeuvre des moyens qui ajoutent des termes correctifs à la valeur ϕij définie ci-dessus.
  • Selon l'invention, le procédé d'antibrouillage consiste à modifier pour chaque source de brouillage donnée certains déphaseurs atténuateurs associés aux sources élémentaires (qui constituent l'antenne à balayage électronique) de telle façon qu'à la loi linéaire de phase correspondant à la direction désirée du pointage de l'antenne, soit superposée une loi de perturbation se rapprochant d'une loi périodique dont la période mesurée dans le plan de l'antenne (ou de l'ouverture de celle-ci) parallèlement au plan défini par la direction du brouilleur et la normale à l'antenne (ou à son ouverture), loi dont la période spatiale (longueur d'onde) est donnée par
    Figure imgb0002
    où À est la longueur d'onde utilisée par le radar et 0 l'angle entre la direction du brouilleur et la normale définie ci-dessus. Selon une autre caractéristique de ce procédé, on modifie l'amplitude de la loi de perturbation et sa position en effectuant pour sa position une translation parallèle à la direction selon laquelle est mesurée la lon- gueur d'onde
    Figure imgb0003
    ces modifications étant faites de manière à obtenir une minimisation du gain de l'antenne dans la direction du dispositif de brouillage considéré.
  • Une autre caractéristique de l'invention consiste à modifier pour chaque source de brouillage certains déphaseurs et/ou atténuateurs associés aux sources élémentaires de telle façon que la loi de perturbation définie plus haut soit telle que les perturbations considérées seules aient un diagramme de rayonnement possédant un maximum sensiblement dans la direction de la source de brouillage considérée et une valeur aussi faible que possible dans les autres directions, l'obtention. de cette dernière caractéristique étant facilitée par l'emploi simultané de perturbations de phase et d'amplitude qui permet de diminuer fortement la valeur du diagramme de rayonnement dans la direction symétrique de celle de la source de brouillage considérée par rapport à la normale définie ci-dessus.
  • Une autre caractéristique de l'invention consiste à faire subir à la loi de perturbation en phase et/ou en amplitude une translation telle qu'elle modifie la phase du diagramme de rayonnement des perturbations considérées seules de manière à minimiser le diagramme de rayonnement global de l'antenne dans la direction de la source de brouillage considérée en opposant sensiblement le diagramme de rayonnement des perturbations à celui de l'antenne non perturbée, ceci pour la direction de la source de brouillage considérée.
  • Selon une caractéristique de l'invention, les moyens mettant en oeuvre ce procédé, dans le cas d'une antenne plane, comportent un ensemble de N dispositifs de commande associés aux N déphaseurs-atténuateurs des sources élémentaires composant l'antenne, chacun de ces dispositifs étant connecté à un calculateur et au récepteur d'écartométrie radar, P dispositifs de commande parmi ces N délivrant aux déphaseurs auxquels ils sont associés une valeur de phase ϕij définie par
    Figure imgb0004
    avec y = 0 ou π/2 où i et j (comme plus haut) sont des nombres entiers définissant la position de la source élémentaire associée par rapport à deux directions orthogonales OX et OY du plan de l'antenne, Δϕx et Δϕy sont, conformément à l'art antérieur, les écarts de phase entre deux sources consécutives (selon les directions OX et OY) définissant par leur valeur le plan de phase perpendiculaire à la direction de pointage, ψij est un terme constant indépendant du pointage dû à la position géographique sur l'antenne du déphaseur considéré, mais où, selon l'invention le terme correctif
    Figure imgb0005
    est défini comme suit:
  • Δϕx bn et Δϕy bn sont les écarts de phase entre deux sources consécutives (selon les directions OX et OY) définissant par leur valeur un plan de phase perpendiculaire à la direction du nième dispositif de brouillage bn,
  • An et Øn sont deux paramètres de phase réglables dont la valeur est commandée par un calculateur,
  • le terme cos (jΔϕx+iΔϕy) provient de la nécessité d'appliquer une perturbation quasi périodique, l'élaboration de la perturbation devant prendre en compte les valeurs algébriques des phases principales appliquées aux sources élémentaires afin d'obtenir un pointage du lobe principal de rayonnement de l'antenne dans une direction donnée.
  • Selon une autre caractéristique de l'invention, on réalise sur l'antenne une perturbation d'amplitude représentée par le terme général pour la source i,j:
    Figure imgb0006
    avec y' = 0 ou n/2 en choisissant de préférence Bn = ± An, Ø'n=Øn+b (avec b = 0 ou π) les Cn étant tels que l'amplitude de la perturbation soit toujours négative pour chacun des brouilleurs supposé isolé.
  • Selon une autre caractéristique de l'invention, on réalise sur l'antenne une double perturbation en amplitude et en phase correspondant à la combinaison de deux perturbations précédemment définies.
  • D'autres avantages et caractéristiques de la présente invention ressortiront de la description qui suit, donnée à l'aide des figures qui représentent
    • - les figures 1a et 1b, un schéma montrant les lois de phase appliquées aux déphaseurs de l'antenne à balayage électronique;
    • - la figure 2, un bloc diagramme général montrant un exemple de réalisation du dispositif selon l'invention.
  • Comme il a été dit, le procédé suivant l'invention consiste à jouer sur certains déphaseurs-atténuateurs associés aux sources élémentaires constituant l'antenne à balayage électronique.
  • La figure la montre les lois de phase appliquées aux déphaseurs-atténuateurs de l'antenne à balayage électronique.
  • L'antenne à balayage électronique 1 est supposée dans un plan (OX, OY); OZ représente la normale à ce plan par rapport à 0, point d'intersection du plan de l'antenne 1 avec l'axe de symétrie de cette antenne OB; représente la direction de la source de brouillage de rang i, 0 l'angle (OZ, OB;) et OP la direction de pointage de l'antenne à balayage électronique 1. Le plan 2 représente un plan équiphase passant par 0 et correspondant à la direction de pointage OP.
  • La courbe 3 représente un exemple de loi de modulation de phase supposée sinusoïdale qui est superposée à la droite équiphase 2. Elle suppose donc une variation algébrique convenable des angles de phase de certains déphaseurs-atténuateurs selon une loi de répartition sur la surface de l'antenne approximativement sinusoïdale. La projection de cette loi de perturbation périodique de phase sur la doirte formée par l'intersection du plan de l'antenne 1, et du plan formé par l'axe mécanique OZ de cette antenne et la direction OB; du brouilleur considéré, définit des longueurs AB et CD correspondant à une période de cette loi périodique de perturbation de phase appliquée aux déphaseurs de l'antenne; chacun de ces segments AB ou CD a pour longueur
    Figure imgb0007
    étant la longueur d'onde utilisée par le radar. A représente l'amplitude de cette loi de modulation de phase.
  • Les calculs et les expérimentations faits montrent, qu'une modification de l'angle de phase de certains déphaseurs, permettant d'obtenir cette loi de perturbation de phase périodique, entraîne notamment dans une direction donnée OB; une modification des lobes secondaires du diagramme de rayonnement de l'antenne à balayage électronique; de plus les expérimentations ont montré qu'il existe toujours une translation selon la direction du vecteur u parallèle au plan de la phase 2 de cette perturbation de phase permettant d'obtenir dans la direction du dispositif de brouillage Bi un minimum de gain de l'antenne, ce minimum pouvant dans certains cas être un zéro de gain.
  • Il faut noter que la direction OBi du dispositif de brouillage de rang i est a priori quelconque. Par conséquent l'annulation ou la minimisation du gain dans la direction du dispositif de brouillage nécessite en fait deux perturbations quasi-périodiques de la loi de phase, selon les deux directions OX et OY et que la loi de perturbation résultante de longueur d'onde spatiale λ/sinΘ est définie parallèlement à l'intersection du plan de l'antenne et du plan (OZ, OBi); pour obtenir cette loi de perturbation, on réalise des perturbations parallèles à l'axe OX et à l'axe OY qui correspondent aux termes Δϕx bn et Δϕy bn.
  • En pratique, les déphaseurs sont quantifiés et commandés par des mots binaires. De ce fait les courbes 2 et 3 de la figure la caractérisant respectivement la loi linéaire de phase définissant la direction de pointage OP et la loi de modulation de phase, proche d'une sinusoïde, permettant la diminution du gain dans la direction OB;, ne peuvent être qu'approchées.
  • La figure 1b montre un exemple de l'approximation de ces courbes. Pour la loi de modulation périodique de phase représentée par la courbe 3 cela revient à un échantillonnage, et de ce fait les quantums 4 et 5 sont les quantums qui sont nécessaires au minimum pour définir une loi périodique. Soit N le nombre de déphaseurs se trouvant dans un volume limité par deux plans perpendiculaires à la droite d'intersection du plan de l'antenne et du plan (OY, OBi) et distant d'un écart, du, faible devant la période
    Figure imgb0008
    La modification des valeurs des angles de déphasage de ces n déphaseurs d'une même quantité ± An risque de donner une contribution trop importante par rapport au gain de l'antenne dans la direction OBi que l'on cherche à minimiser. On est donc conduit à limiter le choix à P déphaseurs (P ≼ N). Ils peuvent être, notamment, répartis uniformément dans une direction perpendiculaire à OX, ce qui revient à dire que, parmit les N déphaseurs, on modifie le réglage d'un déphaseur sur q, q étant le nombre défini par N = P.q.
  • Par exemple, la loi de perturbation ne sera pas appliquée aux déphaseurs ayant une erreur de quantification inférieure à une valeur donnée pour la loi de phase définissant la direction de pointage OP de l'antenne.
  • Le procédé selon l'invention permettant la réduction du gain de l'antenne à balayage électronique 1 dans une direction OB, d'un dispositif de brouillage comporte donc les étapes suivantes, la direction de pointage OP de l'antenne 1 étant fixe:
    • - détermination de la direction des brouilleurs;
    • - calcul de la période
      Figure imgb0009
      directement ou pro- jeté sur des axes déterminés;
    • - modification de l'angle de phase de certains déphaseurs de l'antenne pour donner une loi de perturbation de phase 3, approximativement sinusoïdale; le nombre de déphaseurs sur lequel on joue étant choisi en fonction du gain de l'antenne à minimiser dans la direction du dispositif de brouillage;
    • - translation de cette loi de perturbation de phase parallèlement à la droite d'intersection du plan de l'antenne et du plan (OZ, OBi) de façon à obtenir dans la direction OBi un gain minimal de l'antenne à balayage électronique 1;
    • - répétition de l'ensemble de ces opérations pour chaque direction OBi correspondant à une source de brouillage. Cette séquence d'opération est refaite à chaque nouvelle direction OP de pointage de l'antenne, car lorsque cette direction de pointage change, tout le diagramme de rayonnement de l'antenne se modifie et les minimisations précédentes ne sont plus valables.
  • La figure 2 donne un exemple de dispositif mettant en oeuvre le procédé décrit précédemment.
  • Le dispositif comporte un récepteur d'écarto- métrie radar 66 recevant les signaux de l'antenne à balayage électronique par l'intermédiaire d'une borne 65. Ce récepteur d'écartométrie radar 66 est connecté à un calculateur 110 et à un ensemble de N circuits identiques de commande de déphaseurs 40, chacun d'eux étant relié à un déphaseur-atténuateur d'une source élémentaire par l'intermédiair d'une borne 30. Sur la figure 2 un seul circuit de commande de déphaseur 40 est représenté afin de faciliter la compréhension. Le calculateur 110 est connecté aux N circuits de commande de déphaseurs 40, et à un circuit de comparaison 50 permettant de comparer pour une même direction de pointage de l'antenne à balayage électronique les différentes valeurs du signal somme Σ issu du récepteur d'écartométrie radar 66 pour différents réglages des déphaseurs-atténuateurs associés aux sources élémentaires constituant l'antenne du radar.
  • Le circuit de comparaison 50 comporte un interrupteur commandé 62 recevant le signal somme Σ du récepteur d'écartométrie radar 66 et connecté en sortie à un comparateur 64 et à une mémoire 63; la commande de cet interruptuer 62 est reliée au calculateur 110 et à un ensemble de circuits ET logiques 32 par l'intermédiaire d'un circuit de comptage 31. Cet ensemble de circuits ET logiques 32 est relié au calculateur 110, à un comparateur 64 et à une mémoire 63, cette mémoire 63 étant également connectée au comparateur 64.
  • Chaque circuit de commande 40 comporte deux couples de mémoire 9, 10 et 7, 8 chaque couple étant connecté à un circuit d'addition 18 par l'intermédiaire d'un interrupteur commandé 16, 23 et d'un circuit de multiplication 17, 22 recevant la sortie d'une mémoire 12,13. Chacune des mémoires 7, 8, 9, 10 est connectée au récepteur d'écarto- métrie radar 66. Le circuit d'addition 18 est connecté à deux mémoires 14 et 15 par l'intermédiaire d'un interrupteur commandé 19.
  • La sortie du circuit d'addition 18 est connectée à un interrupteur commandé 20; une première sortie de cet interrupteur commandé 20 est reliée à un circuit de multiplication 25 par l'intermédiaire d'un circuit 21 calculant la fonction cos x, x étant le signal appliqué à son entrée. Le circuit de multiplication 25 reçoit également le contenu d'une mémoire 26 et le contenu de mémoires 24 par l'intermédiaire d'un circuit 200 calculant le cosinus des valeurs issues des mémoires 24. Sa sortie est connectée à un circuit d'addition 28 par l'intermédiaire de mémoires 29. La seconde sortie de l'interrupteur commandé 20 est également reliée à ce circuit d'addition 28 par l'intermédiaire des circuits mémoires 24. La sortie du circuit d'addition 28 est connectée à une borne 30 reliée au déphaseur-atténuateur de la source élémentaire sur laquelle ce circuit de commande 40 va agir, par l'intermédiaire d'un circuit 27 effectuant l'arrondi du nombre issu du circuit d'addition 28. Les deux ensembles de mémoires 15 et 26 sont directement commandés par le calculateur 110.
  • De façon préférentille, les circuits précédents sont du type logique à l'exception du récepteur d'écartométrie radar. La description du fonctionnement qui suit est faite en supposant l'ensemble des circuits composant le circuit de comparaison 50 et les circuits de commande 40 réalisés avec des circuits logiques.
  • Pendant un premier balayage d'antenne, le récepteur d'écartométrie radar 66 repère les directions des différentes sources de brouillage. Chacune de ces directions est repérée par un plan de phase perpendiculaire à la direction du dispositif de brouillage.
  • La connaissance de la direction OB; d'un brouilleur particulier détermine les écarts de phase Δϕb x et Δϕb y entre deux déphaseurs-atténuateurs associés à deux sources élémentaires consécutives selon les directions OX et OY de l'antenne. Ces couples de valeurs (Δϕ b x, Δϕb y) sont mémorisés dans une mémoire interne au récepteur d'écartométrie radar 66 pendant un premier balayage d'antenne. Ces informations sont renouvelées tous les r balayages d'antenne.
  • Une direction de pointage quelconque de l'antenne à balayage électronique est également défini par un couple de déphasage Δϕx, A<py.
  • Pour cette direction de pointage les valeurs Δϕx et A<py sont transmises respectivement à deux mémoires 8 et 100, les valeurs Δϕbn x et Δϕbn y, associées au nième dispositif de brouillage, respectivement aux mémoires 7 et 9.
  • Parallèlement le calculateur 110 reçoit du récepteur d'écartométrie radar 66 la valeur du gain de l'antenne à balayage électronique dans la direction de la source de brouillage considérée par rapport à la direction de pointage, permettant ainsi au calculateur 110 d'estimer le nombre et la répartition des déphaseurs-atténuateurs associés aux sources élémentaires qu'il va modifier.
  • Le calculateur 110 positionne ensuite tous les interrupteurs commandés 16, 23, 19 et 20 de chaque circuit de commande 40 associé à un déphaseur-atténuateur d'une source élémentaire sur la position représentée sur la figure 2. Cette position des interrupteurs est appelée par la suite position 1, la position différente étant appelée position 2. De même ce calculateur transmet aux mémoires 12 et 13, par des liaisons non décrites sur la figure 2, les valeurs i et j correspondant au numéro j de la colonne parallèle à OX dans laquelle se trouve le déphaseur considéré et le rang i dans cette colonne. Cette opération est donc équivalente à un matriçage de l'antenne à balayage électronique selon les directions OX et OY définies par la direction du dispositif de brouillage.
  • Dans la mémoire 14 se trouve de façon permanente un terme de déphasage ψij associé à chaque déphaseur et qui compense un éventuel déphasage provenant par exemple de la position sur l'antenne, de la source élémentaire qui lui est associée par rapport. à l'alimentation hyperfréquence de cette antenne.
  • Le positionnement des interrupteurs commandés étant effectué, le circuit d'addition 28 délivre alors un signal équivalent à:
    Figure imgb0010
    qui a été stocké dans l'ensemble de mémoires 24 et qui correspond exclusivment au pointage de l'antenne à balayage électronique dans la direction choisie. Puis le calculateur 110 bascule dans la position 2, les interrupteurs commandés 16, 19, 20 et 23 de certains circuits de commande 40, associés aux sources élémentaires. Le circuit d'addition 28 délivre alors la somme du terme de phase précédent contenu dans la mémoire 24 et du terme de correction contenu dans la mémoire 29 correspondant au produit des termes en cosinus issus des circuits 21 et 200, puis factorisés, avec l'amplitude A, dans le circuit de multiplication 25. Si l'on note ϕij la phase totale appliquée à ce déphaseur pour un brouilleur donné:
    Figure imgb0011
    la valeur de y étant stockée dans une mémoire incluse dans le circuit 200 calculant le cosinus et où A et Φ sont les valeurs correspondant au nièm e brouilleur, issues respectivement des mémoires 15 et 16. Un circuit 27 opère ensuite l'arrondi de ce nombre; en effet les déphaseurs-atténuateurs étant généralement commandés par des mots binaires de K bits, le mot binaire représentant ϕij doit être arrondi au mot binaire de K bits le plus proche avant d'être appliqué sur la commande du déphaseur par l'intermédiaire de la borne 30.
  • Les valeurs A et Φ pouvant respectivement varier de 0 à An et de 0 à 2n par valeurs discrètes successives, le calculateur 110 repète cette opération de calcul de ϕij pour toutes les valeurs possibles du couple (A, Φ).
  • Parallèlement, à chaque valeur du couple (A, Φ), le calculateur 110 ouvre l'interrupteur 62 permettant l'application de la valeur, préalablement échantillonnée et codée en binaire, du signal somme Σ issu du récepteur d'écartométrie radar 66.
  • Cette ouverture de l'interrupteur commandé 62 provoque également l'incrémentation d'une unité d'un circuit de comptage 31. La valeur du signal somme Σ est comparée à l'aide d'un comparateur 64 à la valeur précédente de ce même signal somme Σ associé au couple (A, Φ) précédent et stocké dans une mémoire 63. Si le signal somme E appliqué au comparateur 64 est plus petit que le signal précédent stocké dans la mémoire 63, le comparateur 64 délivre un signal qui d'une part provoque la mise en mémoire 63 du plus petit des signaux somme Σ, et d'autre part autorise le transfert au calculateur 110 du nombre binaire existant sur les sorties du circuit de comptage 31 par l'intermédiaire d'un ensemble de circuits ET logiques 32.
  • Lorsque l'ensemble des couples (A, Φ) a été essayé, le calculateur 110 reçoit du circuit de comptage 31 le numéro du couple (A, Φ) correspondant à une valeur minimale du signal somme Σ. Le calculateur 110 remet alors dans les mémoires 15 et 26 les valeurs de A et Φ correspondantes.
  • On dispose ainsi d'une réduction maximale, dans cette direction de pointage de l'antenne, du bruit de la nième source de brouillage. Le calculateur renouvelle ces opérations pour les n sources de brouillage Bi agissant sur des circuits de commande 40 différents pour chaque source de brouillage.
  • A la fin de ces opérations formant une séquence, on dispose dans la direction de pointage choisie d'un signal reçu pour lequel le bruit des sources de brouillage est minimisé. Afin d'optimiser la réduction des brouilleurs, cette séquence est répétée plusieurs fois, ce qui permet de tenir compte des interactions faibles entre les minimisations.
  • Une variante de ce procédé de minimisation est obtenue par une loi de perturbation d'amplitude appliquée suivant la même séquence que précédemment décrit, la commande des déphaseurs étant remplacée par celle des atténuateurs, les mémoires 8 et 10 correspondant aux termes Δϕx et Δϕy étant alors inutiles.
  • Dans le cas de l'utilisation d'une antenne non plane, la loi de perturbation de phase et/ou d'amplitude appliquée aux déphaseurs-atténuateurs des antennes élémentaires doit être telle que, mesurée dans le plan de phase du pointage de l'antenne, celle-ci soit périodique.
  • On a ainsi décrit un procédé d'antibrouillage pour antenne à balayage électronique et un radar muni d'une antenne à balayage électronique utilisant ce procédé.

Claims (10)

1. Procédé d'antibourillage pour radar d'écarto- métrie associé à une antenne plane à balayage électronique (1) comportant un réseau, de centre de symétrie (o), de sources élémentaires munies de leur déphaseur-atténuateur d'adresse i, j par rapport à deux directions orthogonales OX et OY du plan de l'antenne consistant à effectuer un calcul destiné à la détermination d'un plan équiphase (2) correspondant à la direction de pointage (OP) de l'antenne, ladite antenne émettant des signaux à la longueur d'onde λ et recevant dans une direction 0 par rapport à son axe de symétrie (OZ) les signaux émis par une source de brouillage (Bi), caractérisé en ce qu'il est procédé aux étapes suivantes:
- un balayage d'antenne permettant au récepteur d'écartométrie radar (66) de repérer les directions des différentes sources de brouillage (Bi)
- calcul d'une loi de perturbation de phase (3) périodique dans le plan équiphase correspondant à la direction de pointage OP de l'antenne, de période spatiale λ/sin Θ définie parallèlement à l'intersection du plan (1) de l'antenne et du plan OZ, oBi et dont les points équiphases forment dans le plan de l'antenne (1) des lignes approximativement droites et parallèles entre elles aux directions OX et OY;
- calcul et choix du nombre de déphaseurs-atténuateurs d'adresse i, j et modification de la phase et/ou de l'amplitude par ces déphaseurs-atténuateurs pour obtenir cette loi de perturbation, déterminant une réduction du gain de l'antenne dans la direction du brouilleur considéré pour la direction de pointage OP de l'antenne.
2. Procédé d'antibrouillage selon la revendication 1, caractérisé en ce que la loi de perturbation de phase sensiblement périodique (3) est proche d'une sinusoïde.
3. Procédé d'antibrouillage selon la revendication 2, caractérisé en ce que la loi de perturbation de phase quasi-sinuoïdale est représentée par au moins deux échantillongs correspondant approximativement au maximum de cette sinusoïde, l'amplitude de chaque échantillon traduisant une modification de phase et/ou d'amplitude algébrique des déphaseurs-atténuateurs d'adresse i, j de l'antenne.
4. Procédé d'antibrouillage selon la revendication 1, caractérisé en ce que la loi de perturbation subit une translation dans le plan de phase (2) associé à la direction de pointage (OP) de l'antenne, selon la direction du vecteur u parallèle au plan équiphase (2), de façon à obtenir dans la direction de la source de brouillage un gain minimum.
5. Procédé d'antibrouillage selon la revendication 1, caractérisé en ce que le nombre de déphaseurs-atténuateurs servant à générer la loi de perturbation de phase et/ou d'amplitude est proportionnel au gain de l'antenne dans la direction Θ du dispositif de brouillage considéré.
6. Procédé d'antibrouillage selon la revendication 5, caractérisé en ce que les déphaseurs-atténuateurs concernés par la loi de perturbation de phase et/ou d'amplitude sont répartis uniformément à la surface de l'antenne.
7. Dispositif d'antibrouillage utilisant une antenne plane à balayage électronique comportant un réseau de centre de symétrie (o) de N sources élémentaires munies de leur déphaseur-atténuateur d'adresse i, j par rapport à deux directions orthogonales OX et OY du plan de l'antenne pour la mise en oeuvre du procédé d'antibrouillage selon la revendication 1, caractérisé en ce qu'il comporte un ensemble de N circuits de commande (40) associés aux N déphaseurs-atténuateurs des sources élémentaires composant l'antenne à balayage électronique, chacun de ces N circuites de commande (40) étant connecté à un calculateur (110) et au récepteur d'écartométrie radar (66), P circuits de commande (40) parmi ces N délivrant aux déphaseurs auxquels ils sont associés une valeur de phase ϕij définie par:
Figure imgb0012
où y = 0 ou n/2 et où i et j sont des nombres entiers définissant la position du déphaseur considéré par rapport aux deux directions orthogonales OX et OY du plan de l'antenne, l'une de ces directions étant parallèle à la projection orthogonale sur ce même plan d'antenne de la direction de la source de brouillage (Bi) que l'on cherche à éliminer, Δϕx et Δϕy les écarts de phase entre deux déphaseurs-atténuateurs consécutifs selon les directions OX et OY permettant de définir le plan équiphase (2) perpendiculaire à la direction de pointage, Δϕbn x, et Δϕbn y les écarts de phase entre deux déphaseurs consécutifs selon les directions OX et OY permettant de définir le plan de phase perpendiculaire à la direction de la source de brouillage (Bi) d'ordre n, An et Φn deux paramètres de phase réglables dont la valeur pour chaque brouilleur est ommandée par le calculateur (110), les N-P circuits de commande (40) restant, délivrant aux déphaseurs-atténuateurs auxquels ils sont associés une valeur de phase ϕ'i,j définie par:
Figure imgb0013
où ψij est une terme constant tenant compte du déphage dû à la position du déphaseur-atténuateur sur l'antenne.
8. Dispositif d'antibrouillage selon la revendication 7, caractérisé en ce qu'il comporte un circuit de comparaison (50) connecté au calculateur (110) et au récepteur d'écartométrie radar (66), ce circuit de comparaison comparent les valeurs successives du signal somme Σ issu du récepteur d'écartométrie radar (66) associées à chaque couple de valeurs A et transmises par le calculateur (110) aux circuits de commande (40), et ne retenant que l'adresse du couple de valeurs (A, Φ) donnant la plus petite valeur du signal somme Σ.
9. Dispositif d'antibrouillage selon la revendication 7, caractérisé en ce que chaque circuit de commande (40) comporte des interrupteurs commandés à deux positions tels que, restant dans la première position, le signal de sortie de ce circuit de commande (40) représente la phase ϕ'ij et étant mis successivement dans les deux positions, le signal de sortie de ce circuit de commande (40) représente la phase ϕij.
10. Dispositif d'antibrouillage selon la revendication 7, caractérisé en ce qu'une loi de perturbation d'amplitude est appliquée sur chaque déphaseur-atténuateur de rang i, j de l'antenne (1) seule ou en combinaison avec la loi de perturbation de phase appliquée aux déphaseurs-atténuateurs de cette même antenne (1), cette loi de perturbation d'amplitude étant définie par:
Figure imgb0014
où Bn = ±An, Ø'n = Øn + b avec b = 0 ou π, et Cn une constante telle que l'amplitude de la perturbation soit négative pour chacun des brouilleurs supposé isolé et y' une constante égale à 0 ou π/2.
EP81400286A 1980-03-04 1981-02-24 Procédé et dispositif d'antibrouillage pour radar associé à une antenne à balayage électronique, et radar comprenant un tel dispositif Expired EP0035439B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8004836A FR2477784A1 (fr) 1980-03-04 1980-03-04 Procede et dispositif d'antibrouillage pour radar associe a une antenne a balayage electronique et radar comprenant un tel dispositif
FR8004836 1980-03-04

Publications (2)

Publication Number Publication Date
EP0035439A1 EP0035439A1 (fr) 1981-09-09
EP0035439B1 true EP0035439B1 (fr) 1984-10-24

Family

ID=9239300

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81400286A Expired EP0035439B1 (fr) 1980-03-04 1981-02-24 Procédé et dispositif d'antibrouillage pour radar associé à une antenne à balayage électronique, et radar comprenant un tel dispositif

Country Status (6)

Country Link
EP (1) EP0035439B1 (fr)
CA (1) CA1177565A (fr)
DE (1) DE3166762D1 (fr)
DK (1) DK94881A (fr)
FR (1) FR2477784A1 (fr)
NO (1) NO153072C (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3453623A (en) * 1966-07-06 1969-07-01 Technology Uk Phase-optimized antennae system
US3964065A (en) * 1974-12-17 1976-06-15 The United States Of America As Represented By The Secretary Of The Army Steerable antenna null combiner system
US4189733A (en) * 1978-12-08 1980-02-19 Northrop Corporation Adaptive electronically steerable phased array
EP0014650A1 (fr) * 1979-02-05 1980-08-20 Societe D'etude Du Radant Filtre spatial adaptatif hyperfréquence et son procédé d'utilisation pour l'atténuation ou l'annulation des lobes secondaires du diagramme de rayonnement d'une antenne

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3670335A (en) * 1967-06-08 1972-06-13 Bell Telephone Labor Inc Arrays with nulls steered independently of main beam

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3453623A (en) * 1966-07-06 1969-07-01 Technology Uk Phase-optimized antennae system
US3964065A (en) * 1974-12-17 1976-06-15 The United States Of America As Represented By The Secretary Of The Army Steerable antenna null combiner system
US4189733A (en) * 1978-12-08 1980-02-19 Northrop Corporation Adaptive electronically steerable phased array
EP0014650A1 (fr) * 1979-02-05 1980-08-20 Societe D'etude Du Radant Filtre spatial adaptatif hyperfréquence et son procédé d'utilisation pour l'atténuation ou l'annulation des lobes secondaires du diagramme de rayonnement d'une antenne

Also Published As

Publication number Publication date
FR2477784A1 (fr) 1981-09-11
CA1177565A (fr) 1984-11-06
NO153072C (no) 1986-01-08
NO153072B (no) 1985-09-30
EP0035439A1 (fr) 1981-09-09
DE3166762D1 (en) 1984-11-29
DK94881A (da) 1981-09-05
FR2477784B1 (fr) 1983-12-23
NO810731L (no) 1981-09-07

Similar Documents

Publication Publication Date Title
EP0415818B1 (fr) Commande de pointage pour système d&#39;antenne à balayage électronique et formation de faisceau par le calcul
EP0063517B1 (fr) Système de télémétrie passive
FR2614427A1 (fr) Procede de telemetrie sonore passive
EP0309350B1 (fr) Dispositif de mesure de produits d&#39;intermodulation d&#39;un système récepteur
EP0143497B1 (fr) Système radar à monoimpulsion à onde continue modulée en fréquence dont on améliore la stabilité d&#39;axe
EP0017532A1 (fr) Dispositif de traitement de signaux d&#39;écartométrie angulaire d&#39;un radar monopulse et radar comportant un tel dispositif
EP0068909A1 (fr) Procédé et dispositif de réduction de la puissance des signaux de brouillage reçus par les lobes secondaires d&#39;une antenne radar
EP0035439B1 (fr) Procédé et dispositif d&#39;antibrouillage pour radar associé à une antenne à balayage électronique, et radar comprenant un tel dispositif
CA2134165C (fr) Dispositif compact et portable pour mesurer le coefficient de reflexion d&#39;une structure exposee a un rayonnement hyperfrequence
EP0147305B1 (fr) Dispositif de discrimination d&#39;échos radar
EP0014619A1 (fr) Dispositif de filtrage dynamique non linéaire du bruit de mesure angulaire dans un radar, et système radar le comportant
FR2465233A1 (fr) Appareil de determination de gisement a radar ultrasonore
CA2389899C (fr) Procede de repointage pour antenne reseau a reflecteur
FR2632420A1 (fr) Procede et dispositif de compensation de la vitesse du fouillis dans un radar doppler coherent a vitesse ambigue variable
EP0831554B1 (fr) Procédé de positionnement de senseurs ou émetteurs électromagnétiques dans un réseau
FR2714483A1 (fr) Procédé et dispositif de réduction de la puissance des signaux de brouillage reçus par les lobes secondaires d&#39;une antenne de radar à fréquence aléatoire.
FR2646924A1 (fr) Procede et dispositif d&#39;antibrouillage d&#39;un equipement de detection electromagnetique comportant une antenne a reflecteur, antenne et equipement ainsi obtenus
EP0187588A1 (fr) Procédé d&#39;adaptation de la post-intégration dans un radar à fréquences de récurrence commutées et circuit mettant en oeuvre ce procédé
FR2682772A1 (fr) Procede et dispositif de mesure de courtes distances par analyse du retard de propagation d&#39;une onde.
EP1798813A1 (fr) Procédé d&#39;assemblage d&#39;une antenne de radiocommunication, antenne de radiocommunication assemblée selon un tel procédé et dispositif destiné à la mise en oeuvre d&#39;un tel procédé d&#39;assemblage
EP3155689B1 (fr) Antenne plate de telecommunication par satellite
EP0031750B1 (fr) Goniomètre acoustique
FR2552885A1 (fr) Procede d&#39;antibrouillage d&#39;une antenne a balayage electronique et antenne obtenue par application dudit procede
EP0087355A1 (fr) Procédé de mesure du site d&#39;une cible à basse altitude dans un récepteur radar monopulse, et récepteur radar monopulse mettant en oeuvre un tel procédé
CA2123266A1 (fr) Systeme de poursuite destine a estimer l&#39;erreur de pointage d&#39;une antenne hyperfrequence

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE GB IT NL

17P Request for examination filed

Effective date: 19810924

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE GB IT NL

REF Corresponds to:

Ref document number: 3166762

Country of ref document: DE

Date of ref document: 19841129

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19900228

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19910901

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930121

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930125

Year of fee payment: 13

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940224

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19941101