EP0032355A1 - Fibre reinforced composite material and process for its production - Google Patents
Fibre reinforced composite material and process for its production Download PDFInfo
- Publication number
- EP0032355A1 EP0032355A1 EP80710024A EP80710024A EP0032355A1 EP 0032355 A1 EP0032355 A1 EP 0032355A1 EP 80710024 A EP80710024 A EP 80710024A EP 80710024 A EP80710024 A EP 80710024A EP 0032355 A1 EP0032355 A1 EP 0032355A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- aluminum
- composite material
- fibers
- metal layers
- solder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 63
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 10
- 238000000034 method Methods 0.000 title claims description 17
- 239000011208 reinforced composite material Substances 0.000 title 1
- 229910000679 solder Inorganic materials 0.000 claims abstract description 44
- 229910052751 metal Inorganic materials 0.000 claims abstract description 43
- 239000002184 metal Substances 0.000 claims abstract description 43
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 28
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 28
- 229910000838 Al alloy Inorganic materials 0.000 claims abstract description 10
- 239000003733 fiber-reinforced composite Substances 0.000 claims abstract description 9
- 239000002131 composite material Substances 0.000 claims description 37
- 239000000463 material Substances 0.000 claims description 19
- 238000005096 rolling process Methods 0.000 claims description 19
- 238000002844 melting Methods 0.000 claims description 18
- 230000008018 melting Effects 0.000 claims description 18
- 238000007731 hot pressing Methods 0.000 claims description 11
- 239000004744 fabric Substances 0.000 claims description 10
- 229910052710 silicon Inorganic materials 0.000 claims description 9
- 239000010703 silicon Substances 0.000 claims description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 6
- 238000005098 hot rolling Methods 0.000 claims description 6
- 239000011248 coating agent Substances 0.000 claims description 5
- 238000000576 coating method Methods 0.000 claims description 5
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 4
- HMDDXIMCDZRSNE-UHFFFAOYSA-N [C].[Si] Chemical compound [C].[Si] HMDDXIMCDZRSNE-UHFFFAOYSA-N 0.000 claims description 4
- 229910052796 boron Inorganic materials 0.000 claims description 4
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 3
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 claims description 3
- 239000004917 carbon fiber Substances 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 239000011651 chromium Substances 0.000 claims description 3
- 229910017052 cobalt Inorganic materials 0.000 claims description 3
- 239000010941 cobalt Substances 0.000 claims description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 239000011733 molybdenum Substances 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 239000010936 titanium Substances 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 229910052720 vanadium Inorganic materials 0.000 claims description 3
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- 229910000676 Si alloy Inorganic materials 0.000 claims description 2
- 239000000654 additive Substances 0.000 claims description 2
- 239000007788 liquid Substances 0.000 claims description 2
- 150000002739 metals Chemical class 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims 2
- 229910052749 magnesium Inorganic materials 0.000 claims 2
- 239000011777 magnesium Substances 0.000 claims 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims 1
- 229910052748 manganese Inorganic materials 0.000 claims 1
- 239000011572 manganese Substances 0.000 claims 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims 1
- 230000008878 coupling Effects 0.000 abstract 1
- 238000010168 coupling process Methods 0.000 abstract 1
- 238000005859 coupling reaction Methods 0.000 abstract 1
- 238000000137 annealing Methods 0.000 description 12
- 229910045601 alloy Inorganic materials 0.000 description 11
- 239000000956 alloy Substances 0.000 description 11
- 239000011162 core material Substances 0.000 description 7
- 238000007747 plating Methods 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 229910000789 Aluminium-silicon alloy Inorganic materials 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 238000001816 cooling Methods 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 230000005496 eutectics Effects 0.000 description 4
- 239000004033 plastic Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000005476 soldering Methods 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- 229910018125 Al-Si Inorganic materials 0.000 description 2
- 229910018520 Al—Si Inorganic materials 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 238000005097 cold rolling Methods 0.000 description 2
- 238000004455 differential thermal analysis Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000002657 fibrous material Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000007750 plasma spraying Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229920000914 Metallic fiber Polymers 0.000 description 1
- 230000035508 accumulation Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000002318 adhesion promoter Substances 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C47/00—Making alloys containing metallic or non-metallic fibres or filaments
- C22C47/20—Making alloys containing metallic or non-metallic fibres or filaments by subjecting to pressure and heat an assembly comprising at least one metal layer or sheet and one layer of fibres or filaments
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C49/00—Alloys containing metallic or non-metallic fibres or filaments
- C22C49/02—Alloys containing metallic or non-metallic fibres or filaments characterised by the matrix material
- C22C49/04—Light metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
Definitions
- the invention relates to a fiber-reinforced composite material consisting of at least two metal layers made of aluminum or an aluminum alloy and fibers in between, and a method for producing this composite material.
- Fiber-reinforced thin strips or sheets made of aluminum alloys with up to 50 vol% boron fibers, some of which are coated with SiC, are already produced using the plasma spraying method.
- the fiber layer wound on a drum is fixed by an aluminum layer applied by means of plasma spraying on the aluminum foil lying under the fibers.
- These spray layers are very porous and must therefore, for. B. by hot rolling or hot pressing.
- the fibers are subjected to very high thermal and mechanical stresses due to the aluminum droplets in the plasma jet, which are hot up to 2000 ° C. This can damage the fibers and the composite as early as the manufacturing stage.
- the tapes produced also have a limited finite length, which is determined by the drum circumference. In addition, this method works discontinuously and requires high investment costs.
- the present invention was therefore based on the object of developing a fiber-reinforced composite material and a method for its production which does not have the disadvantages mentioned.
- the process to be developed should not cause any thermal or mechanical damage to the fibers, should basically be integrated into the work process of a semi-finished tool and be expanded into a continuous process.
- the layering of metal layers and intermediate fibers additionally has an aluminum solder.
- the aluminum solder is preferably plated on one or both sides of the metal layers. It usually consists of an aluminum-silicon alloy with 5 to 12% silicon, whereby surface-active metals can be contained as wetting-promoting additives.
- the cladding layer thickness is between 3 and 10% of the metal layer.
- the metal layer can consist of the standardized material AlMn 1, the thickness of each metal layer being 1 to 2 mm, which is plated with 10% aluminum silicon solder.
- the metal layers can contain iron and / or nickel up to 3% and chromium, titanium, zirconium, cobalt, vanadium, molybdenum each individually up to 1% or in a mixture.
- a silicon carbon fiber is preferably used as the fibrous material.
- boron fibers with or without silicon carbon coating can also be used.
- the fibers are preferably used in the form of fiber fabric or as a fiber mat, which are arranged essentially parallel to one another.
- the composite material according to the invention is produced under slight pressure and at a temperature which is above the melting temperature of the solder and below the softening temperature of the metal layers. These process conditions can be maintained by hot pressing or hot rolling the pre-coated composite material, wherein the temperature range should be 450 to 650 0 C.
- the layering of the composite is at the correct temperature before entering the nip.
- the primary material to produce the pre-layered composite by bringing the metal layers of the aluminum solder alloy and the fiber fabric together using rollers and to preheat the primary material separately first. Immediately before the rolling, it must then preferably be brought into contact in a continuous furnace and heated to the required final temperature.
- the composite material can be post-compacted at temperatures below the solder melting point by re-rolling. This densification leads to particularly firm and dense end products.
- the composite material is also advantageous to subject the composite material to an annealing treatment prior to a heat treatment above the solder melting point. It has been found that the annealing treatment at temperatures of 10 to 50 ° C. below the solder melting point is particularly favorable with an annealing time of 2 to 12 hours.
- the pre-layered composite can be produced by combining the metal layers, the aluminum solder alloy and the fiber fabric by means of rollers and reels. It is also possible to preheat the primary material separately and to heat it to the final temperature above the solder melting temperature immediately before rolling on the pre-layered composite.
- the task of the aluminum solder alloy can be to serve as protection against oxidation and as an adhesion promoter in the production of the composite material. It is possible that the composite material is produced without noticeable deformation of the core sheets and the bond between metal layers and fibers by a fiber mat impregnated with the solder layer is formed. In this production, a rolling degree between 0.5 and 1.5% is used.
- the plating layer thickness is preferably 3 to 10% of the metal layer.
- the liquid solder envelops the fibers during hot pressing and thus prevents further air entry and thus again the oxidation of the metal surfaces.
- the fiber layers or fiber fabric or fiber mats can consist of long or short fibers and can be arranged with a parallel fiber arrangement or at other angles.
- the parallel arrangement has advantages in terms of strength and bending stress.
- the composite material consisting of several layers in the middle consists of an unreinforced core made of aluminum or an aluminum alloy.
- the unreinforced core preferably has a thickness of approximately 30% of the total thickness of the composite material.
- the composite material according to the invention it proves to be particularly advantageous to carry out the hot pressing of parallel fiber layers, fiber fabrics or fiber mats between the metal layers at temperatures of a maximum of 650 ° C. Temperatures beyond this entail the risk of the metal layers melting.
- the minimum temperature has been found to be a processing temperature of 450 ° C in numerous investigations. Below this temperature, the plasticity of the material is too low to achieve sufficient adhesion and forming of the individual layers with one another.
- the hot pressing is preferably carried out at pressures below 50 bar. In numerous tests it has been found that with large-area parts, better adhesion is achieved by working with these relatively low pressing pressures of less than 50 bar and then performing subsequent compaction by hot or cold rolling.
- the composite material is subjected to an annealing treatment before the heat treatment above the solder melting point.
- the main additional alloy element of the solder for example silicon, should be better distributed by diffusion, so that a homogeneous composite material with better processing properties is produced.
- the annealing temperatures are preferably 10 to 50 ° below the solder melting point, so that there is sufficient security against inadvertent melting of the solder.
- the hot pressing can be carried out in a vacuum, under protective gas or in air.
- the sheets When hot pressing in air, the sheets must first be removed from the oxide cover by chemical stripping. Due to the plastic deformation when aluminum is pressed in between the fibers, there is an approximately 50% increase in the metal surface, so that the new oxide-free surface areas weld together and adhere firmly to the fibers. The effect of the solder plating layer occurs for the remaining 50% of the surface of the aluminum sheets, so that there is a total of 100% adhesion between the sheets and the embedded fibers.
- An improvement in the hot workability of the composite material produced according to the invention can be achieved by an annealing treatment.
- the remainder of the solder coating that has not been pressed out after hot pressing is eliminated by diffusion.
- the homogenization should be carried out below the solder melting point until the excess alloy components of the solder layer have migrated into the metal layers. In the case of an AlSi solder, this would mean that excess silicon components diffuse away, so that an excessive melting point lowering of the aluminum by the silicon cannot be determined at any point in the composite.
- a composite material treated in this way can be heat-treated again in its later application, for example in the case of hot working, brazing or welding, without a molten phase occurring in the fiber-reinforced composite material itself.
- FIG. 1 A three-layer fiber-reinforced composite material is shown in FIG. It consists of base plate 1 and cover plate 2, each 0.3 mm thick and made of the material AlMnl. Both sheets are clad on one side with approx. 10% of an AlSil2 solder. Two intermediate plates 3, 4 also consist of AlMn1 and are clad on both sides with an AlSil2 solder. The thicknesses of the solder 5, 6, 7, 8, 9, 10 plated are the same and amount to approximately 10% of the sheet thickness.
- the composite sheet as in Fig. 1 was layered and inserted into the already preheated to 600 0 C die.
- the mold was closed on the sample with a pressure of approx. 28 N / mm 2 . After about 15 seconds, the heating was switched off and, after the temperature had dropped to about 500 ° C., the pressure was switched off.
- FIG. 2 shows the structure of this sample in a metallographic cross section.
- These remnants of eutectic can be e.g. Eliminate by diffusion annealing the sample at 500 ° C and an annealing time of 4 h, since the excess Si diffuses out of the solder residues into the surrounding metal sheet.
- Fig. 3 shows the cross section after annealing. The areas of the residual eutectic between the fibers 16 have disappeared. Instead, a zone of homogeneous structure 15 has formed, which contains only weak accumulations of the remaining silicon.
- Curve 19 shows a composite material after the diffusion annealing at 4 h and 500 ° C. (cf. FIG. 3). She does not have the scale at 573 0 C more, ie occur after this heat treatment no early partial melting prior to the melting of the sheets more. After such annealing, the material can be brazed again or otherwise heat-treated.
- the metal layers are each provided with a solder plating.
- Two freshly pickled AIMnl sheets with a thickness of 1 mm are solder-plated on one side with 10% AlSi 10.
- the dimensions of the sheets are 70 x 190 mm 2 .
- An equally large piece of fiber fabric made of SiC fibers with a thickness of 140 ⁇ m is placed between these sheets.
- the SiC fibers are held together by aluminum warp threads measuring 50 x 400 ⁇ m 2 at a distance of approximately 2.8 mm.
- solder-clad sheets are each directed towards the fiber fabric with the solder layer.
- the end faces of the samples are welded together and the weld seam is slightly tipped to allow the sample to easily run into the roll gap.
- the other end of the samples was held together by a thin aluminum wire.
- soldering temperature With certain aluminum alloys, it is difficult to set the appropriate soldering temperature because the melting temperatures of the soldering material and the base material are close together. In these cases, the raw material should be fed separately, whereby the unplated metal sheets are not heated as high as the aluminum solder alloy. The soldering temperature is only reached shortly before or during rolling. The procedure is similar if only one of the metal layers is solder-plated.
- the sample When using solder-plated sheets made of AlMn1, the sample is heated to 630 0 c in an electrically preheated air circulation oven, removed from the oven and immediately inserted into the roller that is already running. During the rolling process, the fiber mat is soaked with solder and the excess solder is pressed out of the sample. In this case, the rolling pressure is set so that there is no noticeable decrease or extension of the core sheets.
- the core sheets When the degree of rolling is increased, the core sheets are deformed and extended over the entire cross section.
- the material moves under sharper deformation compared to the practically non-deformable rigid high-strength SiC fibers.
- This shear Deformation is desirable in order to bond fibers and sheet metal material more closely and thus improve adhesion. If the shear deformation is too great, ie the degree of rolling is too high, great shear stresses occur, so that the fibers can tear.
- the cheapest degree of rolling must therefore be between 1, 5 and 10%.
- the preferred method produces 15.6% to 17.8% elongation samples. They showed periodically broken fibers at x-ray radiographs at intervals of 3 mm. In contrast, samples with 0.9 or 3.2% elongation showed very good adhesion and no tears in the fibers.
- the alloy of the metal layers iron and / or nickel can contain up to 3% and in each case up to 1% chromium, titanium, zirconium, cobalt, Vanadium or molybdenum can also be added in combination with other elements that increase the heat resistance.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Pressure Welding/Diffusion-Bonding (AREA)
- Laminated Bodies (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Abstract
Description
Die Erfindung betrifft einen faserverstärkten Verbundwerkstoff, bestehend aus mindestens zwei Metallagen aus Aluminium oder einer Aluminiumlegierung und zwischengelagerten Fasern, sowie ein Verfahren zur Herstellung dieses Verbundwerkstoffes.The invention relates to a fiber-reinforced composite material consisting of at least two metal layers made of aluminum or an aluminum alloy and fibers in between, and a method for producing this composite material.
Faserverstärkte dünne Bänder bzw. Bleche aus Aluminiumlegierungen mit bis zu 50 Vol-% Borfasern, die teils mit SiC beschichtet sind, werden bereits nach der Methode des Plasmaspritzens hergestellt. Hierbei wird die auf eine Trommel gewickelte Faserlage durch eine mittels Plasmaspritzen aufgetragene Aluminiumschicht auf der unter den Fasern liegenden Aluminiumfolie fixiert. Diese Spritzschichten sind sehr porös und müssen daher z. B. durch Warmwalzen oder Heißpressen nachverdichtet werden. Außerdem werden die Fasern durch die bis 2000°C heißen Aluminiumtröpfchen im Plasmastrahl thermisch und mechanisch sehr stark beansprucht. Dies kann zur Schädigung der Fasern und des Verbundes bereits im Herstellungsstadium führen. Die hergestellten Bänder haben zudem eine begrenzte endliche Länge, die durch den Trommelumfang vorgegeben ist. Außerdem arbeitet diese Methode diskontinuierlich und erfordert hohe Investitionskosten.Fiber-reinforced thin strips or sheets made of aluminum alloys with up to 50 vol% boron fibers, some of which are coated with SiC, are already produced using the plasma spraying method. Here, the fiber layer wound on a drum is fixed by an aluminum layer applied by means of plasma spraying on the aluminum foil lying under the fibers. These spray layers are very porous and must therefore, for. B. by hot rolling or hot pressing. In addition, the fibers are subjected to very high thermal and mechanical stresses due to the aluminum droplets in the plasma jet, which are hot up to 2000 ° C. This can damage the fibers and the composite as early as the manufacturing stage. The tapes produced also have a limited finite length, which is determined by the drum circumference. In addition, this method works discontinuously and requires high investment costs.
Der vorliegenden Erfindung lag daher die Aufgabe zugrunde, einen faserverstärkten Verbundwerkstoff und ein Verfahren zu seiner Herstellung zu entwickeln, das die erwähnten Nachteile nicht aufweist. Das zu entwickelnde Verfahren soll keine thermische und mechanische Schädigung der Fasern verursachen, sich grundsätzlich in den Arbeitsablauf eines Halbwerkzeuges einfügen und zu einem kontinuierlichen Verfahren ausbauen lassen.The present invention was therefore based on the object of developing a fiber-reinforced composite material and a method for its production which does not have the disadvantages mentioned. The process to be developed should not cause any thermal or mechanical damage to the fibers, should basically be integrated into the work process of a semi-finished tool and be expanded into a continuous process.
Erfindungsgemäß wird diese Aufgabe dadurch gelöst, daß die Schichtung aus Metallagen und zwischengelagerten Fasern zusätzlich ein Aluminiumlot aufweist. Vorzugsweise ist das Aluminiumlot ein- oder beidseitig auf den Metallagen aufplattiert. Es besteht üblicherweise aus einer Aluminiumsiliziumlegierung mit 5 bis 12% Silizium, wobei grenzflächenaktive Metalle als benetzungsfördernde Zusätze enthalten sein können.According to the invention, this object is achieved in that the layering of metal layers and intermediate fibers additionally has an aluminum solder. The aluminum solder is preferably plated on one or both sides of the metal layers. It usually consists of an aluminum-silicon alloy with 5 to 12% silicon, whereby surface-active metals can be contained as wetting-promoting additives.
Nach einem besonderen Ausführungsbeispiel der Erfindung liegt die Plattierschichtdicke zwischen 3 und 10% der Metallage. Die Metallage kann aus dem genormten Werkstoff AlMn 1 bestehen, wobei die Dicke jeder Metallage 1 bis 2 mm beträgt, die mit 10% Aluminiumsiliziumlot plattiert ist. Die Metallagen können Eisen und/oder Nickel bis zu 3% und Chrom, Titan, Zirkon, Kobalt, Vanadin, Molybdän jeweils einzeln bis zu 1% oder in Zusammenmischung enthalten.According to a special embodiment of the invention, the cladding layer thickness is between 3 and 10% of the metal layer. The metal layer can consist of the standardized material AlMn 1, the thickness of each metal layer being 1 to 2 mm, which is plated with 10% aluminum silicon solder. The metal layers can contain iron and / or nickel up to 3% and chromium, titanium, zirconium, cobalt, vanadium, molybdenum each individually up to 1% or in a mixture.
Als Faserstoff wird bevorzugt eine Siliziumkohlenstoffaser verwendet. Es können aber auch Borfasern mit oder ohne Siliziumkohlenstoffbeschichtung Verwendung finden. Die Fasern werden vorzugsweise in Form von Fasergewebe oder als Fasermatte eingesetzt, die im wesentlichen parallel zueinander angeordnet sind. Aus mehreren Versuchen hat sich ergeben, daß die Festigkeitswerte eines Schichtwerkstoffes besonders günstig sind, wenn in der Mitte ein unverstärkter Kern aus Aluminium oder einer Aluminiumlegierung vorhanden ist.A silicon carbon fiber is preferably used as the fibrous material. However, boron fibers with or without silicon carbon coating can also be used. The fibers are preferably used in the form of fiber fabric or as a fiber mat, which are arranged essentially parallel to one another. Out Several tests have shown that the strength values of a layer material are particularly favorable if an unreinforced core made of aluminum or an aluminum alloy is present in the middle.
Die Herstellung des erfindungsgemäßen Verbundwerkstoffes erfolgt unter leichtem Druck und einer Temperatur, die oberhalb der Schmelztemperatur des Lotes und unterhalb der Erweichungstemperatur der Metallagen liegt. Diese Verfahrensbedingungen können durch Heißpressen oder Heißwalzen des vorgeschichteten Verbundwerkstoffes eingehalten werden, wobei der Temperaturbereich zwischen 450 und 6500C liegen sollte.The composite material according to the invention is produced under slight pressure and at a temperature which is above the melting temperature of the solder and below the softening temperature of the metal layers. These process conditions can be maintained by hot pressing or hot rolling the pre-coated composite material, wherein the temperature range should be 450 to 650 0 C.
Es ist aber auch möglich, die Schichtung aus Metallagen, zwischengelagerten Fasern und Aluminiumlot vor dem Walzen auf Temperaturen oberhalb des Lotschmelzpunktes zu bringen und anschließend kalt zu walzen. Durch zahlreiche Versuche hat man festgestellt, daß es vorteilhaft ist, die Walzung, d.h. den eigentlichen Verbindungsvorgang mit kalten Walzen vorzunehmen. Bei dieser Verfahrensweise wird während der Herstellung des Verbundwerkstoffes bereits eine Abkühlung mit einer hohen Abkühlungsrate ermöglicht. Das vorgeheizte Ausgangsmaterial wird im ersten Teil des Walzvorganges gegeneinander gepreßt und verbunden, während gleichzeitig von den kalten Walzen aus eine Abkühlung über die Metallagen in die Verbindungszone erfolgt. Dieses bewirkt, daß das Fertigprodukt als Verbundwerkstoff unmittelbar nach dem Austritt aus dem Walzspalt weiter verarbeitet werden kann.However, it is also possible to bring the layering of metal layers, intermediate fibers and aluminum solder to temperatures above the solder melting point before rolling and then roll it cold. Through numerous attempts it has been found that it is advantageous to roll, i.e. perform the actual connection process with cold rollers. With this procedure, cooling with a high cooling rate is already made possible during the production of the composite material. The preheated starting material is pressed against one another in the first part of the rolling process and connected, while at the same time cooling takes place from the cold rolls via the metal layers into the connecting zone. This means that the finished product can be processed as a composite material immediately after it leaves the roll gap.
Es ist wichtig, daß die Schichtung des Verbundwerkstoffes vor dem Eintritt in den Walzspalt die vorschriftsmäßige Temperatur besitzt. Hierbei hat es sich als vorteilhaft erwiesen, das Vormaterial zur Herstellung des vorgeschichteten Verbundes durch Zusammenführung der Metallagen der Aluminiumlotlegierung und des Fasergewebes mittels Rollen vorzunehmen und das Vormaterial zunächst separat vorzuheizen. Unmittelbar vor der Walzung muß es dann vorzugsweise in einem Durchlaufofen in Kontakt gebracht werden und auf die erforderliche Endtemperatur erhitzt werden.It is important that the layering of the composite is at the correct temperature before entering the nip. Here it has proven to be advantageous to use the primary material to produce the pre-layered composite by bringing the metal layers of the aluminum solder alloy and the fiber fabric together using rollers and to preheat the primary material separately first. Immediately before the rolling, it must then preferably be brought into contact in a continuous furnace and heated to the required final temperature.
Nach dem eigentlichen Verbindungsprozeß kann der Verbundwerkstoff bei Temperaturen unterhalb des Lotschmelzpunktes durch Nachwalzen nachverdichtet werden. Diese Nachverdichtung führt zu besonders festen und dichten Endprodukten.After the actual joining process, the composite material can be post-compacted at temperatures below the solder melting point by re-rolling. This densification leads to particularly firm and dense end products.
Ferner ist es vorteilhaft, den Verbundwerkstoff vor einer Warmbehandlung oberhalb des Lotschmelzpunktes einer Glühbehandlung zu unterziehen. Es hat sich herausgestellt, daß die Glühbehandlung bei Temperaturen von 10 bis 50 C unterhalb des Lotschmelzpunktes bei einer Glühzeit von 2 bis 12 Stunden besonders günstig ist.It is also advantageous to subject the composite material to an annealing treatment prior to a heat treatment above the solder melting point. It has been found that the annealing treatment at temperatures of 10 to 50 ° C. below the solder melting point is particularly favorable with an annealing time of 2 to 12 hours.
Die Herstellung des vorgeschichteten Verbundes kann durch Zusammenführung der Metallagen, der Aluminiumlotlegierung und des Fasergewebes mittels Rollen und Haspeln erfolgen. Es ist auch möglich, das Vormaterial separat vorzuheizen und die Aufheizung auf Endtemperatur oberhalb der Lotschmelztemperatur unmittelbar vor dem Walzen am vorgeschichteten Verbund vorzunehmen.The pre-layered composite can be produced by combining the metal layers, the aluminum solder alloy and the fiber fabric by means of rollers and reels. It is also possible to preheat the primary material separately and to heat it to the final temperature above the solder melting temperature immediately before rolling on the pre-layered composite.
Die Aufgabe der Aluminiumlotlegierung kann darin bestehen, als Oxidationsschutz und als Haftvermittler bei der Herstellung des Verbundwerkstoffes zu dienen. Es ist möglich, daß der Verbundwerkstoff ohne merkliche Verformung der Kernbleche hergestellt wird und der Verbund zwischen Metallagen und Fasern durch eine mit der Lotschicht getränkte Fasermatte gebildet wird. Bei dieser Herstellung wird mit einem Abwalzgrad zwischen 0, 5 und 1, 5% gearbeitet.The task of the aluminum solder alloy can be to serve as protection against oxidation and as an adhesion promoter in the production of the composite material. It is possible that the composite material is produced without noticeable deformation of the core sheets and the bond between metal layers and fibers by a fiber mat impregnated with the solder layer is formed. In this production, a rolling degree between 0.5 and 1.5% is used.
Zur Erzielung eines hochtemperaturbeständigen Verbundwerkstoffes aus Aluminium ist es jedoch vorteilhaft, den Faserwerkstoff durch plastische Verformung der Metallagen in diese einzubetten. Dabei muß ein Abwalzgrad zwischen 1, 5 und 10% angewendet werden.However, in order to achieve a high-temperature-resistant composite material made of aluminum, it is advantageous to embed the fiber material into the metal layers by plastic deformation thereof. A rolling ratio between 1, 5 and 10% must be used.
Es ist besonders vorteilhaft, als Plattierschicht eine AlSi-Legierung mit 5 bis 12% Silizium zu verwenden. Dabei gelingt eine nahezu vollständige Verschweißung der Metallagen, wobei besonders die nahe-eutektischen AlSi-Legierungen mit 10-12% Si von Vorteil sind. Die Grenzschicht zwischen der Metallage und der Lotplattierung ist praktisch oxidfrei.It is particularly advantageous to use an AlSi alloy with 5 to 12% silicon as the plating layer. Almost complete welding of the metal layers is achieved, the near-eutectic AlSi alloys with 10-12% Si being particularly advantageous. The boundary layer between the metal layer and the solder plating is practically oxide-free.
Die Plattierschichtdicke beträgt vorzugsweise 3 bis 10% der Metallage. Dabei umhüllt das flüssige Lot beim Heißpressen die Fasern und verhindert so einen weiteren Luftzutritt und damit erneut die Oxidation der Metalloberflächen.The plating layer thickness is preferably 3 to 10% of the metal layer. The liquid solder envelops the fibers during hot pressing and thus prevents further air entry and thus again the oxidation of the metal surfaces.
Grundsätzlich können alle keramischen, anorganischgloder metallischenFasern oder Kohlefasern mit deutlicher Verstärkungswirkung und hinreichender thermischer und chemischer Beständigkeit für den erfindungsgemäßen faserverstärkten Verbundwerkstoff eingesetzt werden. Es ist jedoch besonders vorteilhaft, als Fasern SiC-Fasern, Bor-Fasern mit oder ohne SiC-Beschichtung zu verwenden. Bei Verwendung dieser Fasern liegt nach der Abkühlung eine vollständige metallurgische Verbindung der Metallagen und eine vollständige Einbettung und Haftung der Fasern innerhalb des Verbundwerkstoffes vor. In den Randzonen zwischen Metallage und Fasern läßt sich auch nach dem Einschmelzen am Schliffbild oder durch analytische Untersuchung das ursprüngliche Vorhandensein einer Plattierschicht durch unterschiedliche Konzentrationsverteilung feststellen.Basically all ceramic, inorganic g loder metallic fibers or carbon fibers can be used for the inventive fiber-reinforced composite material with significant reinforcing effect and sufficient thermal and chemical resistance. However, it is particularly advantageous to use SiC fibers, boron fibers with or without SiC coating as fibers. When these fibers are used, there is a complete metallurgical bond between the metal layers and a complete embedding and adhesion of the fibers within the composite material after cooling. In the marginal zones between the metal layer and fibers the original presence of a plating layer can also be determined by different concentration distribution after melting on the micrograph or by analytical examination.
Es ist besonders vorteilhaft, den Verbundwerkstoff mit mehreren Faserlagen zu verstärken, die abwechselnd mit ein- oder beidseitig lotplattierten Metallagen aus Aluminium oder Aluminiumlegierungen bedeckt sind. Die Faserlagen bzw. Fasergewebe oder Fasermatten können aus Lang- oder Kurzfasern bestehen und mit paralleler Faseranordnung oder unter anderen Winkeln angeordnet sein. Die parallele Anordnung hat aber hinsichtlich der Festigkeit und Biegebeanspruchung Vorteile.It is particularly advantageous to reinforce the composite material with several fiber layers, which are alternately covered with metal layers made of aluminum or aluminum alloys that are solder-plated on one or both sides. The fiber layers or fiber fabric or fiber mats can consist of long or short fibers and can be arranged with a parallel fiber arrangement or at other angles. The parallel arrangement has advantages in terms of strength and bending stress.
Zur Erhöhung der Biegesteifigkeit ist es vorteilhaft, daß der aus mehreren Schichten bestehende Verbundwerkstoff in der Mitte aus einem unverstärkten Kern aus Aluminium oder einer Aluminiumlegierung besteht. Der unverstärkte Kern besitzt bevorzugt eine Dicke von etwa 30% der Gesamtdicke des Verbundwerkstoffes.To increase the bending stiffness, it is advantageous that the composite material consisting of several layers in the middle consists of an unreinforced core made of aluminum or an aluminum alloy. The unreinforced core preferably has a thickness of approximately 30% of the total thickness of the composite material.
Bei der Herstellung des erfindungsgemäßen Verbundwerkstoffes erweist es sich als besonders vorteilhaft, das Heißpressen paralleler Faserlagen, Fasergewebe oder Fasermatten zwischen den Metallagen bei Temperaturen von maximal 650°C durchzuführen. Darüber hinausgehende Temperaturen bringen die Gefahr des Anschmelzens der Metalllagen mit sich. Als Mindesttemperatur hat sich bei zahlreichen Untersuchungen eine Verarbeitungstemperatur von 450°C ergeben. Unterhalb dieser Temperatur ist die Plastizität des Werkstoffes zu gering, um eine ausreichende Haftung und Umformung der einzelnen Lagen miteinander zu erreichen. Bei den bevorzugt zum Einsatz gelangenden AlSi-Loten ist es besonders vorteilhaft, einen Temperaturbereich von 590 bis 6200C anzuwenden, da hier die Bleche einerseits ausreichend plastisch, andererseits die thermische und mechanische Beanspruchung der Fasern während der Verarbeitung begrenzt sind.In the production of the composite material according to the invention, it proves to be particularly advantageous to carry out the hot pressing of parallel fiber layers, fiber fabrics or fiber mats between the metal layers at temperatures of a maximum of 650 ° C. Temperatures beyond this entail the risk of the metal layers melting. The minimum temperature has been found to be a processing temperature of 450 ° C in numerous investigations. Below this temperature, the plasticity of the material is too low to achieve sufficient adhesion and forming of the individual layers with one another. In the case of the AlSi solders used with preference, it is particularly advantageous to use a temperature range from 590 to 6200C, since here the sheets are sufficiently plastic on the one hand, and the thermal and mechanical on the other Strain on the fibers during processing is limited.
Das Heißpressen geschieht bevorzugterweise bei Preßdrucken unter 50 bar. In zahlreichen Versuchen hat sich herausgestellt, daß bei großflächigen Teilen eine bessere Haftung dadurch erzielt wird, daß mit diesen relativ geringen Preßdrucken von unter 50 bar gearbeitet wird und anschließend eine Nachverdichtung durch Warm- oder Kaltwalzen erfolgt.The hot pressing is preferably carried out at pressures below 50 bar. In numerous tests it has been found that with large-area parts, better adhesion is achieved by working with these relatively low pressing pressures of less than 50 bar and then performing subsequent compaction by hot or cold rolling.
Gemäß einem bevorzugten Anwendungsfall der Erfindurg wird der Verbundwerkstoff vor der Warmbehandlung oberhalb des Lotschmelzpunktes einer Glühbehandlung unterzogen. Dabei soll das Hauptzusatzlegierungselement des Lotes, beispielsweise Silizium, durch Diffusion besser verteilt werden, so daß ein homogener Verbundwerkstoff mit besseren Verarbeitungseigenschaften entsteht. Die Glühtemperaturen liegen vorzugsweise 10 bis 50° unterhalb des Lotschmelzpunktes, damit eine ausreichende Sicherheit gegen das unbeabsichtigte Aufschmelzen des Lotes gegeben ist.According to a preferred application of the invention, the composite material is subjected to an annealing treatment before the heat treatment above the solder melting point. The main additional alloy element of the solder, for example silicon, should be better distributed by diffusion, so that a homogeneous composite material with better processing properties is produced. The annealing temperatures are preferably 10 to 50 ° below the solder melting point, so that there is sufficient security against inadvertent melting of the solder.
Das Heißpressen kann im Vakuum, unter Schutzgas oder auch an Luft erfolgen. Beim Heißpressen unter Luft müssen die Bleche vorher durch chemisches Abbeizen von zu starker Oxidbedeckung befreit werden. Durch die plastische Verformung beim Einpressen des Aluminiums zwischen die Fasern findet eine etwa 50 %ige Vergrößerung der Metalloberfläche statt, so daß die neuen oxidfreien Oberflächenbereiche miteinander verschweißen und fest an den Fasern haften. Für die restlichen 50 % der Oberfläche der Aluminiumbleche tritt die Wirkung der Lotplattierschicht ein, so daß sich insgesamt eine 100 %ige Haftung zwischen den Blechen und den eingelagerten Fasern ergibt.The hot pressing can be carried out in a vacuum, under protective gas or in air. When hot pressing in air, the sheets must first be removed from the oxide cover by chemical stripping. Due to the plastic deformation when aluminum is pressed in between the fibers, there is an approximately 50% increase in the metal surface, so that the new oxide-free surface areas weld together and adhere firmly to the fibers. The effect of the solder plating layer occurs for the remaining 50% of the surface of the aluminum sheets, so that there is a total of 100% adhesion between the sheets and the embedded fibers.
Eine Verbesserung der Warmverarbeitbarkeit des erfindungsgemäß hergestellten Verbundwerkstoffes läßt sich durch eine Glühbehandlung erreichen. Dabei wird der nach dem Heißpressen nicht ausgepreßte Rest der Lotbeschichtung durch Diffusion eliminiert. Die Homogenisierung soll unterhalb des Lotschmelzpunktes so lange durchgeführt werden, bis die überschüssigen Legierungsbestandteile der Lotschicht in die Metallagen abgewandert sind. Bei einem AlSi-Lot würde dies bedeuten, daß überschüssige Siliziumbestandteile wegdiffundieren, so daß an keiner Stelle des Verbundes eine zu starke Schmelzpunkterniedrigung des Aluminiums durch das Silizium feststellbar ist.An improvement in the hot workability of the composite material produced according to the invention can be achieved by an annealing treatment. The remainder of the solder coating that has not been pressed out after hot pressing is eliminated by diffusion. The homogenization should be carried out below the solder melting point until the excess alloy components of the solder layer have migrated into the metal layers. In the case of an AlSi solder, this would mean that excess silicon components diffuse away, so that an excessive melting point lowering of the aluminum by the silicon cannot be determined at any point in the composite.
Ein so behandelter Verbundwerkstoff kann bei seiner späteren Anwendung erneut wärmebehandelt werden, zum Beispiel bei Warmverformung, beim Hartlöten oder Schweißen, ohne daß in dem faserverstärkten Verbundwerkstoff selbst eine schmelzflüssige Phase auftritt.A composite material treated in this way can be heat-treated again in its later application, for example in the case of hot working, brazing or welding, without a molten phase occurring in the fiber-reinforced composite material itself.
Im folgenden wird die Erfindung anhand eines Ausführungsbeispiels näher erläutert. Es zeigen
- Figur 1 einen erfindungsgemäß zusammengesetzten Werkstoff vor der Verbindung durch Heißpressen oder Heißwalzen
Figur 2 einen erfindungsgemäßen Verbundwerkstoff nach dem Heißpressen oder Heißwalzen- Figur 3 einen erfindungsgemäßen Verbundwerkstoff nach einer anschließenden Glühung
Figur 4 ein Diagramm über zwei Tempera.turdifferenzmessungen.
- Figure 1 shows a composite material according to the invention before connection by hot pressing or hot rolling
- Figure 2 shows a composite material according to the invention after hot pressing or hot rolling
- Figure 3 shows a composite material according to the invention after a subsequent annealing
- FIG. 4 shows a diagram over two temperature difference measurements.
In Fig. 1 ist ein dreilagig faserverstärkter Verbundwerkstoff dargestellt. Er besteht aus Bodenblech 1 und Deckblech 2, die jeweils 0, 3 mm dick sind und aus dem Werkstoff AlMnl bestehen. Beide Bleche sind einseitig plattiert mit ca. 10 % eines AlSil2-Lotes. Zwei Zwischenbleche 3, 4 bestehen ebenfalls aus AlMn1 und sind beidseitig mit einem AlSil2-Lot plattiert. Die Dicken der aufplattierten Lote 5, 6, 7, 8, 9, 10 sind gleich und betragen etwa 10 % der Blechdicke.A three-layer fiber-reinforced composite material is shown in FIG. It consists of base plate 1 and cover
Zwischen den Plattierschichten 5, 6, 7, 8, 9, 10 befinden sich drei Gewebeschichten aus SiC-Fasern 11 mit jeweils 100 µm Dicke.Between the plating layers 5, 6, 7, 8, 9, 10 there are three fabric layers made of
Aus den entfetteten und blankgebeizten Blechen und den entfetteten Fasergewebelagen wurde das Verbundblech wie in Fig. 1 geschichtet und in die bereits auf 6000C vorgeheizte Preßform eingelegt. Die Form wurde mit einem Preßdruck von ca. 28 N/mm2 auf die Probe geschlossen. Nach etwa 15 sec. wurde die Heizung und nach Absinken der Temperatur auf etwa 500°C auch der Druck abgeschaltet.From the defatted and blankgebeizten sheets and the defatted fiber fabric plies, the composite sheet as in Fig. 1 was layered and inserted into the already preheated to 600 0 C die. The mold was closed on the sample with a pressure of approx. 28 N / mm 2 . After about 15 seconds, the heating was switched off and, after the temperature had dropped to about 500 ° C., the pressure was switched off.
Das Gefüge dieser Probe zeigt Fig. 2 in einem metallographischen Querschliff. Man erkennt die gute Verschweißung der Bleche 12 und die vollständige Umhüllung der Fasern 13. Zwischen den Fasern befinden sich noch kleine Bereiche erstarrten Al-Si-Eutektikums aus Resten der Lotschicht 14. Diese Reste von Eutektikum lassen sich z.B. durch eine Diffusionsglühung der Probe bei 500°C und einer Glühzeit von 4 h eliminieren, da hierbei das überschüssige Si aus den Lotresten in das umgebende Blech hineindiffundiert. Fig. 3 zeigt den Querschliff nach der Glühung. Die Bereiche des Resteutektikums zwischen den Fasern 16 sind verschwunden. Stattdessen hat sich eine Zone homogenen Gefüges 15 gebildet, die nur noch schwache Anreicherungen restlichen Siliziums enthält.2 shows the structure of this sample in a metallographic cross section. One can see the good welding of the
Dieser Vorgang läßt sich mit Hilfe der Differential-Thermo-Analyse (DTA) auch quantitativ nachweisen. Bei linearem Aufheizen eines Verbundwerkstoffes, hergestellt wie bei Fig. 2 erläutert, zeigt sich in dem Temperaturdifferenz-Verlauf 18 gegen eine mitaufgeheizte Vergleichsprobe aus Reinaluminium ein kleiner Ausschlag bei etwa 573°C, der dem Aufschmelzen der Reste der eutektischen Al-Si-Lotlegierung entspricht. Dieses ist in Fig. 4 dargestellt, wobei der Temperaturverlauf über die Aufheizzeit als gepunktete Linie 17 angegeben ist. Bei etwa 642°C beginnt das Aufschmelzen der AlMn-Legierung der Bleche mit großem Ausschlag in der Δ T-Kurve.This process can also be demonstrated quantitatively with the help of differential thermal analysis (DTA). In the case of linear heating of a composite material, produced as explained in FIG. 2, the
Die Kurve 19 zeigt einen Verbundwerkstoff nach der Diffusionsglühung bei 4 h und 500°C (vgl. Fig. 3). Sie weist den Ausschlag bei 5730C nicht mehr auf, d.h. es treten nach dieser Wärmebehandlung keine frühen Anschmelzungen vor dem Aufschmelzen der Bleche mehr auf. Das Material kann nach einer solchen Glühung wieder hartgelötet oder anderweitig warmbearbeitet werden.
Im folgenden soll ein Beispiel für das erfindungsgemäße Kaltwalzen des faserverstärkten Verbundwerkstoffs gegeben werden. Dabei werden die Metallagen mit jeweils einer Lotplattierung versehen.An example of the cold rolling of the fiber-reinforced composite material according to the invention will be given below. The metal layers are each provided with a solder plating.
Zwei frisch gebeizte Bleche aus AIMnl mit einer Dicke von 1 mm werden einseitig lotplattiert mit 10 % AlSi 10. Die Abmessung der Bleche beträgt 70 x 190 mm2. Zwischen diese Bleche wird ein gleichgroßes Stück Fasergewebe aus SiC-Fasern mit 140 µm Dicke gelegt. Die SiC-Fasern werden durch Aluminiumkettfäden der Abmessung 50 x 400 µm2 in etwa 2,8 mm Abstand zusammengehalten.Two freshly pickled AIMnl sheets with a thickness of 1 mm are solder-plated on one side with 10
Die lotplattierten Bleche sind jeweils mit der Lotschicht zum Fasergewebe gerichtet. Vor dem Walzen werden die Stirnseiten der Proben miteinander verschweißt und die Schweißnaht leicht angespitzt, um ein leichtes Einlaufen der Probe in den Walzspalt zu ermöglichen. Das andere Ende der Proben wurde durch einen dünnen Aluminiumdraht zusammengehalten.The solder-clad sheets are each directed towards the fiber fabric with the solder layer. Before rolling, the end faces of the samples are welded together and the weld seam is slightly tipped to allow the sample to easily run into the roll gap. The other end of the samples was held together by a thin aluminum wire.
Bei bestimmten Aluminiumlegierungen ist es schwierig, die geeignete Löttemperatur einzustellen, da die Schmelztemperaturen von Lötmaterial und Grundwerkstoff dicht beieinander liegen. In diesen Fällen soll das Vormaterial getrennt zugeführt werden, wobei die unplattierten Bleche nicht so hoch erhitzt werden wie die Aluminiumlotlegierung. Die Löttemperatur wird erst kurz vor oder beim Walzen erreicht. In ähnlicher Weise ist zu verfahren, wenn nur eine der Metallagen lotplattiert ist.With certain aluminum alloys, it is difficult to set the appropriate soldering temperature because the melting temperatures of the soldering material and the base material are close together. In these cases, the raw material should be fed separately, whereby the unplated metal sheets are not heated as high as the aluminum solder alloy. The soldering temperature is only reached shortly before or during rolling. The procedure is similar if only one of the metal layers is solder-plated.
Bei der Verwendung lotplattierter Bleche aus AlMn1 wird die Probe in einem elektrisch vorgeheizten Luftumwälzofen auf 6300c aufgeheizt, dem Ofen entnommen und sofort in die bereits laufende Walze eingeführt. Beim Walzdurchgang wird die Fasermatte mit Lot getränkt und das überflüssige Lot aus der Probe herausgedrückt. In diesem Fall ist der Walzdruck so eingestellt, daß keine merkliche Abnahme bzw. Verlängerung der Kernbleche stattfindet.When using solder-plated sheets made of AlMn1, the sample is heated to 630 0 c in an electrically preheated air circulation oven, removed from the oven and immediately inserted into the roller that is already running. During the rolling process, the fiber mat is soaked with solder and the excess solder is pressed out of the sample. In this case, the rolling pressure is set so that there is no noticeable decrease or extension of the core sheets.
Zur Konstanthaltung einer gleichmäßigen Walzentemperatur müssen diese gekühlt werden. Aufgrund der tiefen Walztemperatur ist das restliche Lot des Verbundwerkstoffes nach dem Verlassen der Walzen bereits wieder erstarrt.To keep a constant roller temperature constant, they have to be cooled. Due to the low rolling temperature, the remaining solder of the composite material has solidified again after leaving the rolls.
Bei Erhöhung des Walzgrades werden die Kernbleche im ganzen Querschnitt verformt und verlängert. Das Material verschiebt sich dabei unter schärferer Verformung gegenüber den praktisch nicht verformbaren steifen hochfesten SiC-Fasern. Diese Scherverformung ist erwünscht, um Fasern und Blechwerkstoff inniger zu verbinden und damit die Haftung zu verbessern. Bei zu großer Scherverformung, d.h. zu hohem Walzgrad, treten große Schubspannungen auf, so daß die Fasern reißen können. Der günstigste Walzgrad muß also zwischen 1, 5 und 10 % liegen.When the degree of rolling is increased, the core sheets are deformed and extended over the entire cross section. The material moves under sharper deformation compared to the practically non-deformable rigid high-strength SiC fibers. This shear Deformation is desirable in order to bond fibers and sheet metal material more closely and thus improve adhesion. If the shear deformation is too great, ie the degree of rolling is too high, great shear stresses occur, so that the fibers can tear. The cheapest degree of rolling must therefore be between 1, 5 and 10%.
Nach dem bevorzugten Verfahren werden Proben mit 15, 6 bis 17,8% Verlängerung hergestellt. Sie zeigten bei Röntgendurchstrahlungen in Abständen von 3mm periodisch gerissene Fasern. Proben mit 0,9 bzw. 3, 2 % Verlängerung zeigten dagegen eine sehr gute Haftung und keine Risse der Fasern.The preferred method produces 15.6% to 17.8% elongation samples. They showed periodically broken fibers at x-ray radiographs at intervals of 3 mm. In contrast, samples with 0.9 or 3.2% elongation showed very good adhesion and no tears in the fibers.
Zur Verbesserung der mechanischen Eigenschaften des Kernwerkstoffes, insbesondere zur Verbesserung der Warmfestigkeit bzw. des mechanischen Verhaltens in der Wärme, kann der Legierung der Metallagen Eisen und/oder Nickel bis zu 3 % und jeweils bis zu 1 % Chrom, Titan, Zirkon, Kobalt, Vanadin oder Molybdän auch in Kombination mit anderen die Warmfestigkeit steigernden Elementen zugemischt werden.To improve the mechanical properties of the core material, in particular to improve the heat resistance or the mechanical behavior in heat, the alloy of the metal layers iron and / or nickel can contain up to 3% and in each case up to 1% chromium, titanium, zirconium, cobalt, Vanadium or molybdenum can also be added in combination with other elements that increase the heat resistance.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT80710024T ATE7405T1 (en) | 1980-01-04 | 1980-10-10 | FIBER REINFORCED COMPOSITE AND PROCESS FOR ITS MANUFACTURE. |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3000171 | 1980-01-04 | ||
DE3000171A DE3000171C2 (en) | 1980-01-04 | 1980-01-04 | Fiber-reinforced composite material and process for its manufacture |
DE3033725A DE3033725C2 (en) | 1980-09-08 | 1980-09-08 | Process for the production of a fiber-reinforced composite material |
DE3033725 | 1980-09-08 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0032355A1 true EP0032355A1 (en) | 1981-07-22 |
EP0032355B1 EP0032355B1 (en) | 1984-05-09 |
Family
ID=25783032
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP80710024A Expired EP0032355B1 (en) | 1980-01-04 | 1980-10-10 | Fibre reinforced composite material and process for its production |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP0032355B1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0338783A2 (en) * | 1988-04-19 | 1989-10-25 | Ube Industries, Ltd. | Fiber-reinforced metal composite |
US4980242A (en) * | 1988-04-01 | 1990-12-25 | Ube Industries, Ltd. | Fiber-reinforced metal composite |
EP0588545A1 (en) * | 1992-09-14 | 1994-03-23 | Showa Aluminum Corporation | Method of hot brazing aluminum articles |
US6861156B2 (en) | 2001-11-16 | 2005-03-01 | Eads Deutschland Gmbh | Metal fiber-reinforced composite material as well as a method for its production |
US10457019B2 (en) | 2010-02-15 | 2019-10-29 | Productive Research Llc | Light weight composite material systems, polymeric materials, and methods |
CN116141774A (en) * | 2023-02-16 | 2023-05-23 | 江苏礼德铝业有限公司 | Aluminum plate with ceramic fibers and manufacturing method thereof |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2328749B1 (en) | 2008-08-18 | 2019-09-25 | Productive Research LLC. | Formable light weight composites |
KR20170103030A (en) | 2009-12-28 | 2017-09-12 | 프로덕티브 리서치 엘엘씨 | Processes for welding composite materials and articles therefrom |
CN105415769B (en) | 2011-02-21 | 2019-07-16 | 多产研究有限责任公司 | The composite material and method in the region including different performance |
US9233526B2 (en) | 2012-08-03 | 2016-01-12 | Productive Research Llc | Composites having improved interlayer adhesion and methods thereof |
US11338552B2 (en) | 2019-02-15 | 2022-05-24 | Productive Research Llc | Composite materials, vehicle applications and methods thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2330336A1 (en) * | 1972-07-10 | 1975-01-30 | United Aircraft Corp | METHOD OF MANUFACTURING LAMINATES |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3936277A (en) * | 1970-04-09 | 1976-02-03 | Mcdonnell Douglas Corporation | Aluminum alloy-boron fiber composite |
FR2133317A5 (en) * | 1971-04-16 | 1972-11-24 | Thomson Csf | Composite strip - of aluminium/alloy matrix with eg silicon carbide fibre reinforcement prodn |
US3795042A (en) * | 1972-08-22 | 1974-03-05 | United Aircraft Corp | Method for producing composite materials |
JPS6041136B2 (en) * | 1976-09-01 | 1985-09-14 | 財団法人特殊無機材料研究所 | Method for manufacturing silicon carbide fiber reinforced light metal composite material |
US4110505A (en) * | 1976-12-17 | 1978-08-29 | United Technologies Corp. | Quick bond composite and process |
-
1980
- 1980-10-10 EP EP80710024A patent/EP0032355B1/en not_active Expired
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2330336A1 (en) * | 1972-07-10 | 1975-01-30 | United Aircraft Corp | METHOD OF MANUFACTURING LAMINATES |
Non-Patent Citations (1)
Title |
---|
JOURNAL OF METALS, Band 27, Heft 5, Mai 1975 W.C. HARRIGAN et al.: "Aluminium graphite composites; Effects of processing on mechanical properties", Seiten 20 und 21 * Seite 20, linke Spalte, Absatz 2 * * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4980242A (en) * | 1988-04-01 | 1990-12-25 | Ube Industries, Ltd. | Fiber-reinforced metal composite |
EP0338783A2 (en) * | 1988-04-19 | 1989-10-25 | Ube Industries, Ltd. | Fiber-reinforced metal composite |
EP0338783A3 (en) * | 1988-04-19 | 1990-01-10 | Ube Industries, Ltd. | Fiber-reinforced metal composite |
EP0588545A1 (en) * | 1992-09-14 | 1994-03-23 | Showa Aluminum Corporation | Method of hot brazing aluminum articles |
US5504296A (en) * | 1992-09-14 | 1996-04-02 | Showa Aluminum Corporation | Method of hot brazing aluminum articles |
US6861156B2 (en) | 2001-11-16 | 2005-03-01 | Eads Deutschland Gmbh | Metal fiber-reinforced composite material as well as a method for its production |
US10457019B2 (en) | 2010-02-15 | 2019-10-29 | Productive Research Llc | Light weight composite material systems, polymeric materials, and methods |
CN116141774A (en) * | 2023-02-16 | 2023-05-23 | 江苏礼德铝业有限公司 | Aluminum plate with ceramic fibers and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
EP0032355B1 (en) | 1984-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3000171A1 (en) | FIBER REINFORCED COMPOSITE AND METHOD FOR THE PRODUCTION THEREOF | |
DE69725170T2 (en) | MULTI-LAYERED METAL COMPOSITES PRODUCED BY CONTINUOUSLY casting METAL COMPOSITE STRINGS | |
DE2432929C3 (en) | Method of bending a sandwich panel | |
DE60111420T2 (en) | METHOD FOR PRODUCING A COMPOSITE ALUMINUM PLATE | |
DE10156125A1 (en) | Metal fiber reinforced composite material and method for producing the same | |
EP0032355B1 (en) | Fibre reinforced composite material and process for its production | |
DE102015116619B4 (en) | Production of semi-finished products and structural components with regionally different material thicknesses | |
EP3429792A1 (en) | Method for producing a hot-rolled plated composite material, flat product stack, hot-rolled plated composite material and use thereof | |
DE102017210201A1 (en) | Process for producing a steel component provided with a metallic, corrosion-protective coating | |
EP0004063B1 (en) | Process for producing clad plate | |
DE10011758C2 (en) | Process for the production of thin-walled components made of steel and components produced thereafter | |
DE2303991C2 (en) | Use of a nickel-chromium-iron alloy | |
DE3626470A1 (en) | METHOD FOR PRODUCING A TITANIUM-PLATED STEEL PLATE BY HOT ROLLERS | |
DE69834298T2 (en) | COMPOSITE MATERIAL OF BERYLLIUM, COPPER ALLOY AND STAINLESS STEEL AND METHOD OF CONNECTING | |
WO2020109018A1 (en) | Method for producing a material composite, material composite and use thereof | |
DE3100501C2 (en) | Process for the production of composite sheets | |
DE68906978T2 (en) | METHOD FOR PRODUCING A PLATED SHEET. | |
EP0735148B1 (en) | Process for making a structural component with brazed foils of ODS sintered iron alloys and component made by this process | |
DE10202212A1 (en) | Production of strip or sheet made from a metallic composite material comprises forming hollow body made from first material, filling the inner chamber of the hollow body with second metallic material, heating and hot rolling the filled body | |
DE2009699C3 (en) | Composite metal material and process for its manufacture | |
DE3033725C2 (en) | Process for the production of a fiber-reinforced composite material | |
WO2020193531A1 (en) | Method for producing a hot-rolled steel material composite with various properties | |
DE1954641A1 (en) | Process for making a metallic laminate | |
DE3327657A1 (en) | METHOD FOR PRODUCING ALUMINUM COMPOSITES | |
DD299524A5 (en) | METHOD AND DEVICE FOR PRODUCING A COMPOSITE MATERIAL |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH FR GB IT LU NL SE |
|
17P | Request for examination filed |
Effective date: 19810831 |
|
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH FR GB IT LI LU NL SE |
|
REF | Corresponds to: |
Ref document number: 7405 Country of ref document: AT Date of ref document: 19840515 Kind code of ref document: T |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19910923 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19911002 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19911008 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19911010 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19911011 Year of fee payment: 12 Ref country code: LU Payment date: 19911011 Year of fee payment: 12 |
|
ITTA | It: last paid annual fee | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19911031 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19911106 Year of fee payment: 12 |
|
EPTA | Lu: last paid annual fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19921010 Ref country code: GB Effective date: 19921010 Ref country code: AT Effective date: 19921010 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19921011 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19921031 Ref country code: CH Effective date: 19921031 Ref country code: BE Effective date: 19921031 |
|
BERE | Be: lapsed |
Owner name: VEREINIGTE ALUMINIUM-WERKE A.G. Effective date: 19921031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19930501 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19921010 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19930630 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
EUG | Se: european patent has lapsed |
Ref document number: 80710024.3 Effective date: 19930510 |