EP0032095A1 - Acoustic radar antenna matching process and device for carrying it out - Google Patents

Acoustic radar antenna matching process and device for carrying it out Download PDF

Info

Publication number
EP0032095A1
EP0032095A1 EP80401870A EP80401870A EP0032095A1 EP 0032095 A1 EP0032095 A1 EP 0032095A1 EP 80401870 A EP80401870 A EP 80401870A EP 80401870 A EP80401870 A EP 80401870A EP 0032095 A1 EP0032095 A1 EP 0032095A1
Authority
EP
European Patent Office
Prior art keywords
temperature
horn
paraboloid
frequency
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP80401870A
Other languages
German (de)
French (fr)
Other versions
EP0032095B1 (en
Inventor
Jean-Michel Fage
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bertin Technologies SAS
Original Assignee
Bertin et Cie SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bertin et Cie SA filed Critical Bertin et Cie SA
Priority to AT80401870T priority Critical patent/ATE4074T1/en
Publication of EP0032095A1 publication Critical patent/EP0032095A1/en
Application granted granted Critical
Publication of EP0032095B1 publication Critical patent/EP0032095B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/28Sound-focusing or directing, e.g. scanning using reflection, e.g. parabolic reflectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S367/00Communications, electrical: acoustic wave systems and devices
    • Y10S367/902Speed of sound compensation

Definitions

  • the remote measurement of local meteorological parameters - such as the thermal structure (temperature inversion layer for example) or the three-dimensional vertical profile of the wind - by micrometeorological stations of the SODAR or acoustic radar type, poses the problem of exploitation. of the signal given the very low level collected.
  • the antennas used in acoustic remote sensing systems are generally of the parabolic type: they consist of a paraboloid extended by a hood internally coated with an absorbent material, the backscattered signal being picked up in the output plane of an acoustic horn located in the axis of the paraboloid. If this type of antenna has a significant gain, it has in return the disadvantage of creating a system of interference fringes, between the bottom of the paraboloid and the exit plane of the horn, on the scale of the half-length acoustic wave. This translates to the air by a frequency transfer function in the form of a sinusoid.
  • the focus of the antenna will be located in the vicinity of a pressure belly, for a given reference temperature To (15 ° C for example), if the focal distance of the parabolold is a certain integer multiple of the acoustic half-wavelength. In this case, there is indeed a pressure belly at the focal point where the outlet plane of the horn will preferably be placed.
  • This condition obviously depends, at a given emission frequency, on the wavelength and therefore on the temperature T of the air in the bottom of the antenna.
  • the present invention relates to an automatic method for adapting the antenna as well as the implementation device enabling it to follow the evolution of this structure of interference fringes as a function of the temperature T so that the recording signal always occurs in the vicinity of the same pressure belly.
  • the transmission frequency remaining fixed, the signal is recorded in the exit plane of a horn which is movable in the axis of the paraboloid and whose displacement is performs according to a T-law corresponding to the theoretical displacement of the standing wave structure.
  • the displacement of the outlet plane of the horn according to this law will advantageously be controlled by the movement of an actuator rod whose oil capacity will serve as a temperature probe.
  • the exit plane of the horn remaining fixed, at the focal point for example, the emission frequency is modified according to a law in T -1 ⁇ 2 corresponding to the theoretical displacement of the structure of interference fringes, so that the pressure belly remains stationary regardless of temperature variations.
  • the relative variation ⁇ f of the frequency fo equal to the relative variation ⁇ of the wavelength ⁇ o, will then be expressed as a function of the relative variation of temperature
  • the temperature variations recorded by a probe located between the bottom of the parabolold and the outlet plane of the horn are transformed, in an adequate electronic circuit, into voltage variations, themselves converted into frequency variations by a conventional voltage / frequency converter .
  • the bandwidth of the filter centered on the transmission frequency is in a first fixed version, the bandwidth relating to f / fo being such that it makes it possible to filter the signal without attenuation in a fixed temperature range such than :
  • the bandwidth of the filter remains centered on the transmission frequency and follows its evolution by a tracking system: in this case, the filter is of the digital type.
  • FIG 1 there is shown schematically an acoustic radar antenna 1 consisting of a paraboloid surface 2 extended by a hood 3 internally covered with an acoustic absorbing material 4.
  • a transmitting chamber 6, such as 'A compression chamber, extended by a horn 7 is held in the axis 5 of this antenna 1 which it is made integral by a rigid link 8 such as a tripod.
  • a rigid link 8 such as a tripod.
  • We represented a theoretical brush backscattered sound waves 9 determining the effective area 10 of the antenna 1; the sound waves generated by the emission chamber 6 theoretically follow the opposite path.
  • the surface portion 11 located in the axis 5 of the paraboloid is partially masked by the presence of the transmission and reception system.
  • Figure 3 is shown schematically the electronic device for adapting the antenna 1; the outlet plane 15 of the horn 7 being located at the focal point of the paraboloid, at the abscissa Xo, the emission frequency f is modified to compensate for the theoretical evolution of the structure of interference fringes as a function of the temperature.
  • the restoration of the pressure belly 13 at the abscissa Xo causes a variation in frequency ⁇ f around the frequency fo such that:
  • the different stages of the transformation of the indication of the temperature T into ° K given by the temperature probe 14 are symbolized by blocks 27 °
  • the variation in temperature T is transformed in a conventional electronic circuit 27A in voltage variation V which in turn is transformed into frequency variation f by a conventional voltage / frequency converter 27B.
  • This variation in frequency is processed in a microcomputer 270 which reacts at the level of the emission E by modifying the frequency and at the level of the reception R by modifying the filters, so that they are always centered on the frequency d 'program.
  • FIG 4 is shown the mechanical adaptation system of the antenna 1 for moving the outlet plane 15 of the horn 7 according to the theoretical law of evolution of the structure of interference fringes as a function of temperature.
  • This mechanical system comprises a hydraulic cylinder 16 disposed in the axis 5 of the paraboloide 2 and supported by a fixed plate 17.
  • the end 18 of the rod 19 of this cylinder 16 is integral with an assembly 20 movable in the axis 5 of the dish and comprising the emission chamber 6 extended by the horn 7, the assembly being supported by a frame consisting of two parallel plates 21 and 22 sliding along columns or vertical guides 23 supported by the fixed plate 17 rigidly linked due to the structure of the parabolold 2 by the tripod system 8.
  • the columns 23 are secured at their lower part by a plate 24 pierced with a circular opening 25 leaving free passage to the moving element 20.
  • the capacity of the hydraulic cylinder 16 communicates with a coil 26 made of copper or any other good conductive material heat, which then constitutes the temperature probe shown diagrammatically at 14 in FIG. 3.
  • the total capacity of 16 and 26 is such that, for a variation ⁇ T of the temperature at the level of the horn 7, the rod 19 of the jack 16 moves the desired length:
  • the mechanical device for implementing the method is not limited to the embodiment of FIG. 4 and it could in particular be produced by a system of articulated arms taking, for example, support on the tripod 8, in the manner of a umbrella mechanism where the whales would be fixed.

Abstract

The reflector of an acoustic echo ranging system is matched so as to make up for the influence of the temperature at the bottom of the reflector, on the measurement of the back-reflected signal. The acoustic signal receiver being stationary the transmission frequency is controlled by a temperature responsive electronic circuit so that the receiver is always located at the same pressure antinode. Alternatively, the transmission frequency being fixed, the position of the receiver is controlled by a temperature responsive mechanical gear causing the position of the receiver to coincide with the same pressure antinode.

Description

La mesure à distance de paramètres météorologiques locaux - tels que la structure thermique (couche d'inversion de température par exemple) ou le profil vertical tridimensionnel du vent - par des stations micrométéorologiques du type SODAR ou radar acoustique, pose le problème de l'exploitation du signal compte tenu du très faible niveau recueilli.The remote measurement of local meteorological parameters - such as the thermal structure (temperature inversion layer for example) or the three-dimensional vertical profile of the wind - by micrometeorological stations of the SODAR or acoustic radar type, poses the problem of exploitation. of the signal given the very low level collected.

On pourra se reporter à cet égard à un article de J.M. Marshall et autres intitulé "Combined Radar-Acoustic Sounding System" et paru dans la revue américaine APPLIED OPTICS, Vol. 11, N° 1, Janvier 1972, pages 108 à 112.In this regard, reference may be made to an article by J.M. Marshall and others entitled "Combined Radar-Acoustic Sounding System" and published in the American journal APPLIED OPTICS, Vol. 11, N ° 1, January 1972, pages 108 to 112.

Les antennes utilisées dans les systèmes de télédétection acoustique sont généralement du type parabolique : elles sont constituées d'un paraboloïde prolongé par une hotte revêtue intérieurement d'un matériau absorbant, le signal rétrodiffusé étant capté dans le plan de sortie d'un cornet acoustique situé dans l'axe du paraboloïde. Si ce type d'antenne a un gain important, il a en contrepartie l'inconvénient de créer un système de franges d'interférence, entre le fond du paraboloïde et le plan de sortie du cornet, à l'échelle de la demi-longueur d'onde acoustique. Cela se traduit à l'antenne par une fonction de transfert en fréquence ayant la forme d'une sinusoide.The antennas used in acoustic remote sensing systems are generally of the parabolic type: they consist of a paraboloid extended by a hood internally coated with an absorbent material, the backscattered signal being picked up in the output plane of an acoustic horn located in the axis of the paraboloid. If this type of antenna has a significant gain, it has in return the disadvantage of creating a system of interference fringes, between the bottom of the paraboloid and the exit plane of the horn, on the scale of the half-length acoustic wave. This translates to the air by a frequency transfer function in the form of a sinusoid.

La fréquence d'émission étant choisie en fonction de la portée, le foyer de l'antenne sera situé au voisinage d'un ventre de pression, pour une température donnée de référence To (15°C par exemple), si la distance focale du parabololde est un certain multiple entier de la demi-longueur d'onde acoustique. Dans ce cas, on a en effet un ventre de pression au foyer où sera placé, de préférence, le plan de sortie du cornet.The transmission frequency being chosen according to the range, the focus of the antenna will be located in the vicinity of a pressure belly, for a given reference temperature To (15 ° C for example), if the focal distance of the parabolold is a certain integer multiple of the acoustic half-wavelength. In this case, there is indeed a pressure belly at the focal point where the outlet plane of the horn will preferably be placed.

Cette condition dépend évidemment, à fréquence d'émission donnée, de la longueur d'onde et donc de la température T de l'air dans le fond de l'antenne.This condition obviously depends, at a given emission frequency, on the wavelength and therefore on the temperature T of the air in the bottom of the antenna.

Autrement dit, pour une position donnée du capteur dans l'axe du paraboloïde, celui-ci enregistrera, pour un même signal à l'entrée de l'antenne, des amplitudes différentes en fonction de la température T du moment, la structure de franges d'interférence établies se dilatant ou se contractant suivant que la température augmente ou diminue.In other words, for a given position of the sensor in the axis of the paraboloid, it will record, for the same signal at the input of the antenna, different amplitudes as a function of the temperature T of the moment, the fringe structure of established interference expanding or contracting as the temperature increases or decreases.

La présente invention concerne un procédé automatique d'adaptation de l'antenne ainsi que le dispositif de mise en oeuvre lui permettant de suivre l'évolution de cette structure de franges d'interférence en fonction de la température T de telle sorte que l'enregistrement du signal se fasse toujours au voisinage du même ventre de pression. Selon un mode d'exécution préféré de ce procédé, la fréquence d'émission restant fixe, l'enregistrement du signal se fait dans le plan de sortie d'un cornet qui est mobile dans l'axe du parabololde et dont le déplacement s'effectue suivant une loi en T correspondant au déplacement théorique de la structure d'ondes stationnaires.The present invention relates to an automatic method for adapting the antenna as well as the implementation device enabling it to follow the evolution of this structure of interference fringes as a function of the temperature T so that the recording signal always occurs in the vicinity of the same pressure belly. According to a preferred embodiment of this method, the transmission frequency remaining fixed, the signal is recorded in the exit plane of a horn which is movable in the axis of the paraboloid and whose displacement is performs according to a T-law corresponding to the theoretical displacement of the standing wave structure.

La variation relative ΔX de l'abscisse Xo du ventre de pression aura alors pour expression en fonction de la variation relative de température ΔT :

Figure imgb0001
The relative variation ΔX of the abscissa Xo of the pressure belly will then be expressed as a function of the relative temperature variation ΔT:
Figure imgb0001

Le déplacement du plan de sortie du cornet suivant cette loi sera avantageusement commandé par le mouvement d'une tige de vérin dont la capacité en huile servira de sonde de température.The displacement of the outlet plane of the horn according to this law will advantageously be controlled by the movement of an actuator rod whose oil capacity will serve as a temperature probe.

Selon une variante, le plan de sortie du cornet restant fixe, au foyer par exemple, on modifie la fréquence d'émission selon une loi en T correspondant au déplacement théorique de la structure de franges d'interférence, de telle sorte que le ventre de pression reste immobile quelles que soient les variations de température. La variation relative Δf de la fréquence fo égale à la variation relative Δλ de la longueur d'onde λo, aura alors pour expression en fonction de la variation relative de température

Figure imgb0002
According to a variant, the exit plane of the horn remaining fixed, at the focal point for example, the emission frequency is modified according to a law in T corresponding to the theoretical displacement of the structure of interference fringes, so that the pressure belly remains stationary regardless of temperature variations. The relative variation Δf of the frequency fo equal to the relative variation Δλ of the wavelength λo, will then be expressed as a function of the relative variation of temperature
Figure imgb0002

Les variations de températures enregistrées par une sonde située entre le fond du parabololde et le plan de sortie du cornet sont transformées, dans un circuit électronique adéquat, en variations de tension, elles-mêmes converties en variations de fréquence par un convertisseur classique tension/fréquence.The temperature variations recorded by a probe located between the bottom of the parabolold and the outlet plane of the horn are transformed, in an adequate electronic circuit, into voltage variations, themselves converted into frequency variations by a conventional voltage / frequency converter .

Dans ce cas, la bande passante du filtre centrée sur la fréquence d'émission est dans une première version fixe, la bande passante relative à f/fo étant telle qu'elle permette de filtrer le signal sans atténuation dans une gamme de température fixée telle que :

Figure imgb0003
In this case, the bandwidth of the filter centered on the transmission frequency is in a first fixed version, the bandwidth relating to f / fo being such that it makes it possible to filter the signal without attenuation in a fixed temperature range such than :
Figure imgb0003

Dans une seconde version, la bande passante du filtre reste centrée sur la fréquence d'émission et suit son évolution par un système suiveur : dans ce cas, le filtre est du type numérique.In a second version, the bandwidth of the filter remains centered on the transmission frequency and follows its evolution by a tracking system: in this case, the filter is of the digital type.

La description qui va suivre, en regard des dessins annexés, illustrera, à titre d'exemple non limitatif, deux modes de réalisation de l'invention.

  • - la figure 1 est une coupe axiale schématique d'une antenne classique.
  • - la figure 2 est une présentation schématique du phénomène de franges d'interférence établies entre le fond du paraboloide et le plan de sortie du cornet.
  • - la figure 3 est une représentation synoptique du mode d'adaptation de l'antenne par un dispositif électronique selon l'invention.
  • - la figure 4 est une représentation schématique du mode d'adaptation de l'antenne par un moyen mécanique selon une variante de l'invention.
The description which follows, with reference to the appended drawings, will illustrate, by way of nonlimiting example, two embodiments of the invention.
  • - Figure 1 is a schematic axial section of a conventional antenna.
  • - Figure 2 is a schematic presentation of the phenomenon of interference fringes established between the bottom of the dish and the outlet plane of the horn.
  • - Figure 3 is a block diagram of the mode of adaptation of the antenna by an electronic device according to the invention.
  • - Figure 4 is a schematic representation of the mode of adaptation of the antenna by mechanical means according to a variant of the invention.

Sur la figure 1, on a représenté d'une manière schématique une antenne de radar acoustique 1 constituée d'une surface paraboloidique 2 prolongée par une hotte 3 recouverte intérieurement d'un matériau absorbant acoustique 4. Une chambre d'émission 6, telle qu'une chambre de compression, prolongée par un cornet 7 est maintenue dans l'axe 5 de cette antenne 1 dont elle est rendue solidaire par une liaison rigide 8 telle qu'un trépied. On a représenté un pinceau théorique d'ondes sonores rétrodiffusées 9 déterminant la surface efficace 10 de l'antenne 1; les ondes sonores engendrées par la chambre d'émission 6 suivent théoriquement le chemin inverse. La portion de surface 11 située dans l'axe 5 du paraboloide est partiellement masquée par la présence du système d'émission et de réception.In Figure 1, there is shown schematically an acoustic radar antenna 1 consisting of a paraboloid surface 2 extended by a hood 3 internally covered with an acoustic absorbing material 4. A transmitting chamber 6, such as 'A compression chamber, extended by a horn 7 is held in the axis 5 of this antenna 1 which it is made integral by a rigid link 8 such as a tripod. We represented a theoretical brush backscattered sound waves 9 determining the effective area 10 of the antenna 1; the sound waves generated by the emission chamber 6 theoretically follow the opposite path. The surface portion 11 located in the axis 5 of the paraboloid is partially masked by the presence of the transmission and reception system.

Sur la figure 2 est représenté schématiquement le déplacement de la structure de franges d'interférence 12 en fonction de la température T : le ventre de pression 13 situé au foyer, à l'abscisse Xo, se déplace de ΔX pour une température T= To + Δ T, le plan de sortie 15 du cornet 7 se déplaçant de la même valeur théorique :In FIG. 2 is shown schematically the displacement of the structure of interference fringes 12 as a function of the temperature T: the pressure belly 13 located at the focal point, on the abscissa Xo, moves from ΔX for a temperature T = To + Δ T, the outlet plane 15 of the horn 7 moving by the same theoretical value:

Figure imgb0004
Sur la figure 3 est représenté schématiquement le dispositif électronique d'adaptation de l'antenne 1; le plan de sortie 15 du cornet 7 étant situé au foyer du paraboloïde, à l'abscisse Xo, la fréquence d'émission f est modifiée pour compenser l'évolution théorique de la structure de franges d'interférence en fonction de la température. Le rétablissement du ventre de pression 13 à l'abscisse Xo entraine une variation de fréquence Δf autour de la fréquence fo telle que :
Figure imgb0005
Figure imgb0004
In Figure 3 is shown schematically the electronic device for adapting the antenna 1; the outlet plane 15 of the horn 7 being located at the focal point of the paraboloid, at the abscissa Xo, the emission frequency f is modified to compensate for the theoretical evolution of the structure of interference fringes as a function of the temperature. The restoration of the pressure belly 13 at the abscissa Xo causes a variation in frequency Δf around the frequency fo such that:
Figure imgb0005

Les différentes étapes de la transformation de l'indication de la température T en °K donnée par la sonde de température 14 sont symbolisées par des blocs 27° La variation de température T est transformée dans un circuit électronique classique 27A en variation de tension V qui à son tour est transformée en variation de fréquence f par un convertisseur classique tension/ fréquence 27B. Cette variation de fréquence est traitée dans un micro-ordinateur 270 qui réagit au niveau de l'émission E en modifiant la fréquence et au niveau de la réception R en modifiant les filtres, de telle sorte qu'ils soient toujours centrés sur la fréquence d'émission.The different stages of the transformation of the indication of the temperature T into ° K given by the temperature probe 14 are symbolized by blocks 27 ° The variation in temperature T is transformed in a conventional electronic circuit 27A in voltage variation V which in turn is transformed into frequency variation f by a conventional voltage / frequency converter 27B. This variation in frequency is processed in a microcomputer 270 which reacts at the level of the emission E by modifying the frequency and at the level of the reception R by modifying the filters, so that they are always centered on the frequency d 'program.

Sur la figure 4 est représenté le système mécanique d'adaptation de l'antenne 1 permettant de déplacer le plan de sortie 15 du cornet 7 suivant la loi théorique d'évolution de la structure de franges d'interférence en fonction de la température. Ce système mécanique comporte un vérin hydraulique 16 disposé dans l'axe 5 du paraboloide 2 et supporté par une platine fixe 17. L'extrémité 18 de la tige 19 de ce vérin 16 est solidaire d'un équipage 20 mobile dans l'axe 5 du paraboloide et comprenant la chambre d'émission 6 prolongée par le cornet 7, l'ensemble étant supporté par un châssis constitué de deux plaques parallèles 21 et 22 coulissant le long de colonnes ou guides verticaux 23 supportés par la platine fixe 17 liée rigi- dement à la structure du parabololde 2 par le système de trépied 8.In Figure 4 is shown the mechanical adaptation system of the antenna 1 for moving the outlet plane 15 of the horn 7 according to the theoretical law of evolution of the structure of interference fringes as a function of temperature. This mechanical system comprises a hydraulic cylinder 16 disposed in the axis 5 of the paraboloide 2 and supported by a fixed plate 17. The end 18 of the rod 19 of this cylinder 16 is integral with an assembly 20 movable in the axis 5 of the dish and comprising the emission chamber 6 extended by the horn 7, the assembly being supported by a frame consisting of two parallel plates 21 and 22 sliding along columns or vertical guides 23 supported by the fixed plate 17 rigidly linked due to the structure of the parabolold 2 by the tripod system 8.

Les colonnes 23 sont solidarisées à leur partie inférieure par une plaque 24 percée d'une ouverture circulaire 25 laissant le libre passage à l'équipage mobile 20. La capacité du vérin hydraulique 16 communique avec un serpentin 26 en cuivre ou tout autre matière bonne conductrice de la chaleur, qui constitue alors la sonde de température représentée schématiquement en 14 sur la figure 3. La capacité totale de 16 et 26 est telle que, pour une variation ΔT de la température au niveau du cornet 7, la tige 19 du vérin 16 se déplace de la longueur voulue :

Figure imgb0006
The columns 23 are secured at their lower part by a plate 24 pierced with a circular opening 25 leaving free passage to the moving element 20. The capacity of the hydraulic cylinder 16 communicates with a coil 26 made of copper or any other good conductive material heat, which then constitutes the temperature probe shown diagrammatically at 14 in FIG. 3. The total capacity of 16 and 26 is such that, for a variation ΔT of the temperature at the level of the horn 7, the rod 19 of the jack 16 moves the desired length:
Figure imgb0006

Le dispositif mécanique de mise en oeuvre du procédé n'est pas limité au mode de réalisation de la figure 4 et il pourrait en particulier être réalisé par un système de bras articulés prenant par exemple appui sur le trépied 8, à la manière d'un mécanisme de parapluie où les baleines seraient fixes.The mechanical device for implementing the method is not limited to the embodiment of FIG. 4 and it could in particular be produced by a system of articulated arms taking, for example, support on the tripod 8, in the manner of a umbrella mechanism where the whales would be fixed.

Claims (11)

1. Procédé d'adaptation d'une antenne de radar acoustique propre à améliorer la qualité de la réception du signal acoustique réfléchi par la cible et capté par un cornet (7) dont le plan de sortie (15) est situé à l'optimum de réception, à proximité du foyer d'un parabololde (2) ayant une distance focale qui est un multiple entier de la demi-longueur d'onde émise, lequel multiple est une caractéristique de la configuration du paraboloïde choisi, compte tenu de ce que les conditions de réception sont perturbées par l'apparition d'un système de franges d'interférence qui s'établit naturellement entre le fond du paraboloide (2) et le cornet (7) et qui évolue avec la température (T) régnant dans le fond de l'antenne, caractérisé en ce qu'on corrige automatiquement cette évolution par un réglage en fonction de cette température (T) faisant coÏncider la position du plan de sortie (15) du cornet (7) avec le même ventre de pression (13) repéré à partir du fond du paraboloide (2) par ledit multiple de la demi-longueur d'onde.1. Method for adapting an acoustic radar antenna capable of improving the quality of reception of the acoustic signal reflected by the target and picked up by a horn (7) whose exit plane (15) is located at the optimum receiving, near the focal point of a paraboloid (2) having a focal length which is an integer multiple of the half wavelength emitted, which multiple is a characteristic of the configuration of the chosen paraboloid, taking into account that the reception conditions are disturbed by the appearance of a system of interference fringes which is established naturally between the bottom of the dish (2) and the horn (7) and which evolves with the temperature (T) prevailing in the bottom of the antenna, characterized in that this change is automatically corrected by an adjustment as a function of this temperature (T) making the position of the outlet plane (15) of the horn (7) coincide with the same pressure belly ( 13) spotted from the bottom of the dish (2) by said mult half the wavelength. 2. Dispositif d'adaptation d'une antenne de radar acoustique par la mise en oeuvre du procédé selon la revendication 1, caractérisé en ce que la température est mesurée par une sonde (14) située au voisinage du cornet (7).2. Device for adapting an acoustic radar antenna by implementing the method according to claim 1, characterized in that the temperature is measured by a probe (14) located in the vicinity of the horn (7). 3. Dispositif selon la revendication 2, caractérisé en ce que, le plan de sortie (15) du cornet (7) étant fixé au foyer du paraboloide (2) ou à son voisinage, le réglage est réalisé par un dispositif électronique (27) modifiant la fréquence d'émission.3. Device according to claim 2, characterized in that, the outlet plane (15) of the horn (7) being fixed to the focus of the paraboloid (2) or in its vicinity, the adjustment is carried out by an electronic device (27) modifying the transmission frequency. 4. Dispositif selon la revendication 3, caractérisé en ce que les variations de température (T) détectées par la sonde (14) sont transformées dans un circuit électronique (27A) en variations de tension (V), elles-mêmes converties en variation de fréquence (f) par un convertisseur classique : tension/fréquence (27B), la variation de fréquence Δ f autour de la fréquence d'émission de référence fo devant satisfaire à la relation suivante :
Figure imgb0007
4. Device according to claim 3, characterized in that the temperature variations (T) detected by the probe (14) are transformed in an electronic circuit (27A) into voltage variations (V), themselves converted into variation of frequency (f) by a conventional converter: voltage / frequency (27B), the frequency variation Δ f around the reference transmission frequency fo having to satisfy the following relationship:
Figure imgb0007
5. Dispositif selon la revendication 2, 3 ou 4, caractérisé en ce que les filtres utilisés pour l'analyse du signal restent centrés sur la fréquence d'émission par un système suiveur.5. Device according to claim 2, 3 or 4, characterized in that the filters used for the analysis of the signal remain centered on the transmission frequency by a tracking system. 6. Dispositif selon la revendication 4, caractérisé en ce que les bandes passantes des filtres utilisés pour l'analyse du signal restent fixes et sont telles que la bande passante relative Δf/fo permette de restituer le signal sans atténuation dans une gamme de température fixée ΔT telle que
Figure imgb0008
6. Device according to claim 4, characterized in that the bandwidths of the filters used for the analysis of the signal remain fixed and are such that the relative bandwidth Δf / fo allows the signal to be restored without attenuation in a fixed temperature range ΔT such that
Figure imgb0008
7. Dispositif d'adaptation d'une antenne de radar acoustique par la mise en oeuvre du procédé selon la revendication 1, caractérisé en ce que la fréquence d'émission restant fixe, le réglage est réalisé par un dispositif mécanique commandé par la sonde de température (26) et modifiant la position du plan de sortie (15) du cornet (7) dans l'axe (5) du paraboloide (2).7. Device for adapting an acoustic radar antenna by implementing the method according to claim 1, characterized in that the emission frequency remaining fixed, the adjustment is carried out by a mechanical device controlled by the probe. temperature (26) and modifying the position of the outlet plane (15) of the horn (7) in the axis (5) of the paraboloid (2). 8. Dispositif selon la revendication 7, caractérisé en ce que les variations de température enregistrées par la sonde (26) sont transformées par le dispositif mécanique en un déplacement du plan de sortie (15) du cornet (7) dans l'axe (5) du paraboloide (2), la variation d'ab8cisse ΔX par rapport à l'abscisse Xo du foyer devant satisfaire à la relation :
Figure imgb0009
8 . Device according to claim 7, characterized in that the temperature variations recorded by the probe (26) are transformed by the mechanical device into a displacement of the outlet plane (15) of the horn (7) in the axis (5) of the paraboloid (2), the variation of abscissa ΔX with respect to the abscissa Xo of the hearth having to satisfy the relation:
Figure imgb0009
9. Dispositif selon la revendication 7 ou 8, caractérisé en ce que le dispositif mécanique comporte un vérin hydraulique (16) commandé par la sonde de température (26).9. Device according to claim 7 or 8, characterized in that the mechanical device comprises a hydraulic cylinder (16) controlled by the temperature probe (26). 10. Dispositif selon la revendication 9, caractérisé en ce que le vérin (16) est disposé dans l'axe (5) du paraboloide (2) et supporté par une platine fixe (17), l'extrémité (18) de la tige (19) de ce vérin (16) étant solidaire d'un équipage (20) mobile le long de l'axe (5) du paraboloide et comprenant la chambre d'émission (6) prolongée par le cornet (7), l'ensemble étant supporté par un bâti fixe (8) rigidement lié à la structure du parabaloide.10. Device according to claim 9, characterized in that the jack (16) is disposed in the axis (5) of the paraboloid (2) and supported by a fixed plate (17), the end (18) of the rod (19) of this jack (16) being secured to a unit (20) movable along the axis (5) of the paraboloide and comprising the emission chamber (6) extended by the horn (7), the all being supported by a fixed frame (8) rigidly linked to the structure of the parabaloide. 11. Dispositif selon la revendication 9 ou 10? caractérisé en ce que la capacité du vérin (16) communique avec un serpentin (26) qui l'entoure et qui constitue la sonde de température, la capacité totale du vérin et du serpentin étant telle que, pour une variation ΔT de la température, la tige (19) du vérin se déplace de la longueur ΔX voulue.11. Device according to claim 9 or 10? characterized in that the capacity of the jack (16) communicates with a coil (26) which surrounds it and which constitutes the temperature probe, the total capacity of the jack and the coil being such that, for a variation ΔT of the temperature, the rod (19) of the cylinder moves the desired length ΔX.
EP80401870A 1979-12-27 1980-12-24 Acoustic radar antenna matching process and device for carrying it out Expired EP0032095B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT80401870T ATE4074T1 (en) 1979-12-27 1980-12-24 METHOD OF ADAPTING AN ACOUSTIC RADAR ANTENNA AND DEVICE TO ITS OPERATION.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR7931740A FR2472803A1 (en) 1979-12-27 1979-12-27 METHOD FOR ADAPTING ANTENNAS OF ACOUSTIC RADAR AND DEVICE FOR IMPLEMENTING SAID METHOD
FR7931740 1979-12-27

Publications (2)

Publication Number Publication Date
EP0032095A1 true EP0032095A1 (en) 1981-07-15
EP0032095B1 EP0032095B1 (en) 1983-07-06

Family

ID=9233182

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80401870A Expired EP0032095B1 (en) 1979-12-27 1980-12-24 Acoustic radar antenna matching process and device for carrying it out

Country Status (6)

Country Link
US (1) US4358835A (en)
EP (1) EP0032095B1 (en)
JP (1) JPS5694284A (en)
AT (1) ATE4074T1 (en)
DE (1) DE3064059D1 (en)
FR (1) FR2472803A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2136568A (en) * 1983-02-28 1984-09-19 Standard Oil Co Seismic source system for use in water covered areas

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4596006A (en) * 1984-03-16 1986-06-17 Honeywell Inc. Ultrasonic object detector
US4679175A (en) * 1984-12-13 1987-07-07 Honeywell Inc. Ultrasonic distance sensor with dual burst noise rejection
US4719605A (en) * 1984-12-13 1988-01-12 Honeywell Inc. Self-calibrating ultrasonic range finder
DE3905099C1 (en) * 1989-02-20 1990-08-09 Schoeller Transportautomation Gmbh, 5120 Herzogenrath, De
CA2046952C (en) * 1990-07-13 2002-01-29 Jeffrey James Felice Measuring device
DE4435156C2 (en) * 1994-09-30 2002-06-27 Microsonic Ges Fuer Mikroelekt ultrasonic sensor
CN2812027Y (en) * 2005-07-08 2006-08-30 南京德朔实业有限公司 Ultrasonic distant measurer
CN102196340A (en) * 2010-03-16 2011-09-21 鸿富锦精密工业(深圳)有限公司 Sound-centralizing-type loudspeaker
JP5755993B2 (en) * 2011-10-21 2015-07-29 理想科学工業株式会社 Ultrasonic sensor
CN112367468B (en) * 2020-10-30 2022-02-01 维沃移动通信有限公司 Image processing method and device and electronic equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3895188A (en) * 1972-06-21 1975-07-15 Everett L Ingraham Sound collecting device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2274262A (en) * 1939-05-31 1942-02-24 Rca Corp Air speed indicator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3895188A (en) * 1972-06-21 1975-07-15 Everett L Ingraham Sound collecting device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
APPLIED OPTICS, vol. 11, no. 1, janvier 1972 New York US J. MARSHALL et al.: "Combined Radar-Acoustic Sounding System", pages 108-112 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2136568A (en) * 1983-02-28 1984-09-19 Standard Oil Co Seismic source system for use in water covered areas

Also Published As

Publication number Publication date
FR2472803A1 (en) 1981-07-03
JPS5694284A (en) 1981-07-30
EP0032095B1 (en) 1983-07-06
JPS6411152B2 (en) 1989-02-23
FR2472803B1 (en) 1984-07-06
DE3064059D1 (en) 1983-08-11
US4358835A (en) 1982-11-09
ATE4074T1 (en) 1983-07-15

Similar Documents

Publication Publication Date Title
EP0032095B1 (en) Acoustic radar antenna matching process and device for carrying it out
EP0267823B1 (en) Glazed frost detection appliance and thickness measuring means using ultrasonics, and glazed frost sensor
EP0335759B1 (en) Ultrasonic anemometer
FR2609167A1 (en) HYPERFREQUENCY PROXIMITY SENSOR
EP0385897A1 (en) Microechographic probe using ultrasound focusing through a deformable surface
FR2722566A1 (en) DYNAMIC MOVEMENT SENSOR, USES OF SUCH A SENSOR AND METHOD FOR MEASURING THE MOVEMENT OF A SURFACE
CH467998A (en) Ultrasonic device for measuring the position of a liquid level
FR2868970A1 (en) ACOUSTIC DEVICE, LIQUID GAUGE PROBE EQUIPPED WITH SUCH A DEVICE, AND LIQUID GAUGE SYSTEM PROVIDED WITH SUCH A PROBE
FR2836998A1 (en) POWER CONTROL FOR RADAR SYSTEMS
EP0480980B1 (en) Process and device for measuring the gelling of paraffin petroleum products, in particular, crude oil
FR2674028A1 (en) Method and device for determining the radiation pattern of an antenna
CA2064372C (en) Continuous and contact free thickness measurement device of a thin conductive layer on a moving fiber or tape like isolating support
EP0133135B1 (en) Ultrasonic search unit with several transducers of different dimensions
EP0650046A1 (en) Portable and compact device to measure the reflection coefficient of a structure subjected to microwave radiation
WO1998019133A1 (en) Dimensional inspection device without ultrasonic contact
FR2497947A1 (en) METHOD AND DEVICE FOR MICROWAVE THERMOGRAPHY-HYPERTHERMIA
KR100902045B1 (en) System for Measuring Surface Vibration using Interferometer and Method therefor
EP0508888B1 (en) Method of selecting ultrasonic transducers
EP0702202A1 (en) Device for regulating the balancing system of an artillery piece depending on the external temperature
EP0522989B1 (en) Device to optoelectronically detect the quantity of liquid in a container
CA2133473A1 (en) Ultrasound thickness measuring method and device and use of said device
FR2835317A1 (en) METHOD AND DEVICE FOR ECHOGRAPHIC CONTROL IN IMMERSION OF A PLASTIC TUBULAR SHEATH
CH598587A5 (en) Ultrasonic pressure sensor with ceramic transmission transducer
EP1014110A1 (en) Lidar system and application to a radar system
FR3118197A1 (en) Enhanced Frequency Modulated Coherent Lidar

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LU NL SE

17P Request for examination filed

Effective date: 19811214

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 4074

Country of ref document: AT

Date of ref document: 19830715

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3064059

Country of ref document: DE

Date of ref document: 19830811

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19921028

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19921126

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19921218

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19921222

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19921224

Year of fee payment: 13

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19921231

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930113

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19930115

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19930120

Year of fee payment: 13

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19931224

Ref country code: GB

Effective date: 19931224

Ref country code: AT

Effective date: 19931224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19931225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19931231

Ref country code: CH

Effective date: 19931231

Ref country code: BE

Effective date: 19931231

BERE Be: lapsed

Owner name: BERTIN & CIE

Effective date: 19931231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940701

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19931224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 80401870.3

Effective date: 19940710