EP0031378B1 - Element de structure, armature tetraedrique construite a partir de celui-ci et procede de construction - Google Patents

Element de structure, armature tetraedrique construite a partir de celui-ci et procede de construction Download PDF

Info

Publication number
EP0031378B1
EP0031378B1 EP80901524A EP80901524A EP0031378B1 EP 0031378 B1 EP0031378 B1 EP 0031378B1 EP 80901524 A EP80901524 A EP 80901524A EP 80901524 A EP80901524 A EP 80901524A EP 0031378 B1 EP0031378 B1 EP 0031378B1
Authority
EP
European Patent Office
Prior art keywords
hexagonal
struts
tetrahedral
truss
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP80901524A
Other languages
German (de)
English (en)
Other versions
EP0031378A1 (fr
EP0031378A4 (fr
Inventor
John Joseph Gilman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Allied Corp
Original Assignee
Allied Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Allied Corp filed Critical Allied Corp
Publication of EP0031378A1 publication Critical patent/EP0031378A1/fr
Publication of EP0031378A4 publication Critical patent/EP0031378A4/fr
Application granted granted Critical
Publication of EP0031378B1 publication Critical patent/EP0031378B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/19Three-dimensional framework structures
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/19Three-dimensional framework structures
    • E04B1/1903Connecting nodes specially adapted therefor
    • E04B1/1906Connecting nodes specially adapted therefor with central spherical, semispherical or polyhedral connecting element
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/19Three-dimensional framework structures
    • E04B2001/1924Struts specially adapted therefor
    • E04B2001/1927Struts specially adapted therefor of essentially circular cross section
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/19Three-dimensional framework structures
    • E04B2001/1957Details of connections between nodes and struts
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/19Three-dimensional framework structures
    • E04B2001/1957Details of connections between nodes and struts
    • E04B2001/1972Welded or glued connection
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/19Three-dimensional framework structures
    • E04B2001/1981Three-dimensional framework structures characterised by the grid type of the outer planes of the framework
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/19Three-dimensional framework structures
    • E04B2001/1981Three-dimensional framework structures characterised by the grid type of the outer planes of the framework
    • E04B2001/1984Three-dimensional framework structures characterised by the grid type of the outer planes of the framework rectangular, e.g. square, grid

Definitions

  • This invention relates generally to structural trusses and other articulated supporting structures and specifically to three-dimensional structural trusses, i.e. supporting structures whose primary load-bearing capacity is attributable to extension of the structure in three dimensions.
  • a structural truss may generally be considered to be an open, skeletal assembly of struts joined at nodes to achieve a supporting structure of high load-bearing capacity relative to its weight, i.e. high specific structural strength.
  • Fundamentally trusses are based on the geometric triangle to take advantage of the inherent rigidity of the skeletal-triangle in supporting a coplanar load.
  • conventional trusses are essentially two dimensional (2D) (planar) structures, i.e. they are not freestanding.
  • Three dimensional (3D) stability is achieved by providing lateral support, e.g. by cords or other cross-linking members between parallel trusses.
  • Complex, quasi-3D trusses may be built up with a grid-like network of 2D truss members; however, such complex networks are not fundamentally 3D trusses, since the base member of the network is not repeated periodically in three dimensions.
  • U.S. Patent No. 3,139,959 for "Construction Arrangement” issued July 7, 1964 to R. W. Kraft discloses a tetrahedral truss in a diamond cubic arrangement and in a distorted diamond cubic arrangement. Kraft further discloses linear and zig-zag ("W" shaped) construction elements for the trusses.
  • U.S. Patent No. 3,333,349 for "Framework Molecular Orbital Model Assembly" issued August 1, 1967 to G. C. Brumlik discloses a model for representing the physical and geometric relationships of molecular and atomic orbitals, including a tetrahedral geometric relationship.
  • the present invention provides a truss that is fundamentally periodic in three dimensions and therefore has three-dimensional stability without dependence on lateral stabilizing members or complex networking.
  • the truss may be built up simply in regular fashion by "repeating" a fundamental unit in the three dimensions to the extent desired.
  • the truss design continues to take advantage of the inherent rigidity of the basic skeletal triangle.
  • the truss design achieves these advantages with maximum geometric efficiency, i.e. the minimum number of struts per node (four) that is required for stability of an articulated, periodic 3D structure.
  • a three-dimensional tetrahedral truss in the pattern of cubic diamond characterized by:
  • the truss may be a graded structure wherein the characteristic dimension of said skeletal-tetrahedral units varies layer-wise within said truss by an integer power of the fraction one-half (Fig. 12).
  • the "characteristic dimension" is defined as the length of a side of the conceptual reference cube enclosing the tetrahedral unit.
  • the invention also relates to a structural element for forming a three-dimensional, tetrahedral truss in the pattern of cubic diamond, characterized by:
  • the invention also relates to a hexagonal structural element for constructing a three-dimensionally periodic skeletal tetrahedral truss in the pattern of cubic diamond, characterized by:
  • the invention also relates to a method for constructing a three-dimensionally periodic, skeletal tetrahedral truss in the pattern of cubic diamond, characterized by the steps of:
  • equilateral tetrahedron 10 (having equal faces) and its complementary skeletal-tetrahedron 12 are shown for definitional purposes.
  • the equilateral tetrahedron may conceptually be thought of as a three-dimen- tional triangle, extending spatially the exceptional two-dimensional (planar) rigidity of the equilateral triangle.
  • the skeletal-tetrahedron 12 may be thought of as consisting of four struts 14 joined at a node 16 and externally terminating at the four apexes respectively of the phantom reference tetrahedron 10 enclosing the skeletal assembly 12.
  • the skeletal equilateral tetrahedron is the most geometrically stable articulated structure of line elements, having maximum symmetry (i.e. cubic), with the minimum number of struts per node (i.e. four) for a stable 3D articulated structure, while utilizing the rigidity of the basic triangle.
  • a skeletal-tetrahedral unit 20 is shown wherein four struts 14 are received and joined onto four protrusions 23 respectively of a male-node 22, the assembly forming a skeletal equilateral tetrahedron.
  • the struts and the nodes may optionally be hollow to minimize the weight of the unit, as shown for example in the male-node 22 by channels 24 within protrusions 23.
  • 3A and 3B another skeletal-tetrahedral unit 30 is shown wherein four struts 14 are received into the four receptacles 33 of a female-node 32.
  • Joining of the struts to the node may be by conventional means such as fusion joining (welding or brazing), mechanical joining (pins, clamps, and the like), or adhesive joining. Further, the unit may be formed as a continuous (jointless) element.
  • the struts may be tubes or rods of oriented or pyrolytic graphite, a material having exceptional specific stiffness and low thermal expansion, and the nodes of a structural alu- minimum alloy having exceptionally toughness properties.
  • the composite structure would have ultra-stiff struts (though of low though- ness) joined at high toughness nodes (plastically deformable upon the unit being excessively loaded).
  • a phantom reference cube 40 of characteristic dimension "a” which as shown in Fig. 5 may be inserted into any of the eight cubic (sub-cell) positions of a phantom unit-cell 50 having characteristic dimension "2a".
  • Four tetrahedral units 42 of like orientation are joined in alternating sub-cells 40 of the unit-cell 50, as shown in the exploded view of Fig. 6, to form the completed unit-cell 50, as shown in Fig. 7.
  • This unit-cell may be repeated simply in any or all of the three dimensions to the extent desired, thereby obtaining a three-dimensionally periodic, tetrahedral truss.
  • a fundamental bilateral-element 80 is shown having equal sides 82 and having an included angle 84 of about 109° 28', i.e. the angle between the struts of a skeletal equilateral tetrahedron.
  • Optional features may be included to facilitate joining of a plurality of bilateral-elements, such as a structural pin 86 at one extremity and a complementary, close fitting receptacle 88 at the other extremity.
  • the bilateral-elements may be made of conventional alloys, preferably those having high specific strength.
  • FIG. 9A, 9B and 9C an exploded plan view, a plan view, and a side view are shown respectively of the triplanar-ring of Fig. 9.
  • Each of the six bilateral-elements 80 is comprised of two straight side members connected at one end with an included angle therebetween of about 109° 28'.
  • the bilateral-elements are arranged and connected to form ring 90 which delimits three pairs of facing, opposite elements such as 80 and 80', the cross-opposing sides, such as 82 and 82', of each pair being substantially parallel with each other and coplanar with one of the three characteristic planes of the ring.
  • these triplanar-ring elements are exceptionally rigid under torsional loading. Joining may be secured by conventional fusion joining means or by adhesive joining means and the like.
  • the hexagonal triplanar-ring of the invention is equivalently comprised of three pairs of equilateral strut members.
  • Each pair of struts connect at one end to form interconnecting struts having an included angle therebetween of about 109° 28', and the three strut pairs are cooperatively arranged and connected into the ring.
  • the mating strut ends thereof connect to form included angles therebetween of about 109° 28', and the resultant ring thereby delimits three pairs of parallel struts, the struts being coplanar with one of the three characteristic planes of the ring.
  • Figs. 10 and 10A Four hexagonal triplanar-rings 90 are assembled into the closed skeletal-tetrahedral unit 100 as shown in Figs. 10 and 10A.
  • Rigid joining of the unit may be by conventional mechanical means such as bolting, riveting, strapping, clamping, and the like or by conventional fusion joining.
  • Fig. 7 The sixteen struts 44 making up the unit-cell 50 may be classified into two categories, i.e. corner struts and face struts.
  • a corner strut has its external extremity terminating at a corner of the unit-cell. There are four of these corner struts 72 per unit-cell.
  • a face strut has its external extremity terminating at a face of the unit-cell. There are twelve of these face struts 74 per unit-cell.
  • the closed skeletal-tetrahedral unit 100 (Fig. 10) is of the pattern formed by the face struts of the cubic-diamond unit-cell 50 shown in Fig. 7.
  • the closed tetrahedral unit 100 is preferred over the articulated tetrahedral unit 42 (Fig. 7) because points of stress concentration at strut-node joints are eliminated.
  • a plurality of tetrahedral units 100 are co- operatively stacked (nested), as shown in Figs. 11 and 1 1A, to build up a tetrahedral truss 110.
  • Rigid joining of neighboring tetrahedral units 100 may be accomplished by conventional means as discussed above. Note that a skeletal equilateral tetrahedron is completed at each juncture of neighboring units 100, thereby obtaining the cubic-diamond structure of the first node of the invention (Fig. 7).
  • tetrahedral truss 1 10 of Fig. 11 is shown with further three-dimensional extension 123, i.e. repeated units 10. Additionally the simplicity is shown with which a graded truss 120 (e.g. having layers 122 and 123) may be built up. By varying the characteristic dimension of adjacent layers by an integer power of the fraction one-half, adjacent layers may be co- operatively stacked, as shown in the exploded perspective view of Fig. 12A. Thus, a tetrahedral truss may readily be constructed having a relatively "smooth" (close) supporting surface with an open structure in the interior portions of the truss.
  • the hexagonal triplanar-ring 90 (Fig. 9), having the advantage that a jointless element is obtained.
  • the ring may be mechanically shaped from a linear member of a structural alloy and fusion joined to close the ring, with perhaps subsequent heat treatment, e.g. precipitation hardening.
  • the material may be a fiber reinforced composite.
  • the ring may be constructed of oriented graphite according to conventional methods, e.g. by pyrolyzing a shaped winding or organic fiber under orienting tension.
  • FIG. 13 an optional feature is shown for promoting the rigidity at the juncture between neighboring closed skeletal-tetrahedral units 100 (Fig. 11).
  • a cross-sectional cut is taken through such a junc4ure.
  • the hexagonal triplanar-rings 90 may be of hexagonal cross-section, rather than of circular cross-section as shown in the preceding drawings.
  • a linear, close fiting filler rod 132 also of hexagonal cross-section, is inserted into the void between neighboring rings 90.
  • the members are shown as being hollow to minimize weight.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Joining Of Building Structures In Genera (AREA)

Abstract

Une armature tridimensionnelle, tetraedrique et son procede de construction. L'armature comprend un motif d'ossature periodique tridimensionnelle d'une pluralite d'unites tetraedriques reliees entre elles, l'ossature ayant la forme ne structure cristallographique cubique du type diamant (Fig. 7). Dans un mode de realisation, chacune des unites tetraedriques d'ossature est un dispositif articule d'entretoises (44) assemblees sous forme d'un tetraedre d'ossature equilaterale (Fig. 4). Dans un autre mode preferentiel de realisation, chacune des unites tetraedriques d'ossature est un dispositif d'ossature compose d'organes allonges (80) assembles suivant la configuration formee par les faces d'une cellule unitaire d'un diamant cubique (Fig. 6), et chacune d'elles est assemblee, de preference, avec quatre anneaux hexagonaux triplanaires (Fig. 10A) ayant la forme produite en joignant six elements bilateraux (80) dans un anneau ferme, de configuration triplanaire (Fig. 9), les elements bilateraux (80) ayant chacun des cotes egaux et un angle interieur d'environ 109 28' (Fig. 8).

Claims (14)

1. Ossature tétraédrique en trois dimensions ayant la configuration d'un trapèze constitué de cubes, caractérisée par:
(a) un réseau squelettique, périodique en trois dimensions d'une pluralité interconnectée d'unités tétraédriques de squelette fermées (100);
(b) chacune des unités tétraédriques fermées (100) comprenant quatre anneaux hexagonaux sur trois plans (90) agencés et connectés le long de leurs côtés à entretoise accouplés en coopération de manière à former l'unté (100); et
(c) chacun des anneaux hexagonaux (90) comprenant six entretoises équilatérales dont les intersections forment des angles inclus égaux d'environ 109° 28', chaque anneau
(90) délimitant ainsi trois paires d'entretoises parallèles, avec chacune des entretoises dans le même plan que l'un des trois plans.
2. Ossature selon la revendication 1, caractérisée en ce qu'elle est progressive de manière à permettre un empilage coopératif d'unités tétraédriques (100) ayant des dimensions caractéristiques (a) qui varient suivant une puissance entière de la fraction un-demi.
3. Ossature selon la revendication 1, caractérisée en ce que la réseau est en outre caractérisé par:
(a) une pluralité de couches (122, 123);
(b) chaque couche étant formée d'unités tétraédriques (100) ayant une dimension caractéristique (a); et
(c) cette dimension caractéristique variant suivant une puissance entière de la fraction un-demi entre unités de couches contiguës.
4. Ossature selon la revendication 1, où chacun des anneaux hexagonaux (90) est en outre caractérisé en ayant la configuration structurelle d'un anneau continu, sans joint.
5. Ossature selon la revendication 1, où chacun des anneaux hexagonaux (90) est en outre caractérisé en étant constitué de six éléments bilatéraux (80); chaque élément bilatéral ayant des côtés d'intersection étaux, qui forment un angle inclus d'environ 109° 28', et les éléments bilatéraux étant agencés et connectés de manière à former un anneau fermé ayant trois paires d'éléments opposés en regard (80, 80') les côtés diamétralement opposés (82, 82') de chaque paire étant sensiblement parallèles l'un à l'autre, et dans le même plan que l'un des trois plans (figure 9A).
6. Ossature selon la revendication 1, où chacun des anneaux hexagonaux (90) est constitué d'entre toises ayant une section hexagonale.
7. Elément structurel pour la formation d'une ossature tétraédrique à trois dimensions, ayant la configuration d'un trapèze constitué de cubes, caractérisée par:
(a) une unité tétraédrique de squelette fermée (100);
(b) cette unité tétraédrique comprenant quatre anneaux hexagonaux sur trois plans (90), disposés et connectés le long de leurs côtés à entretoise accouplés en coopération de manière à former l'unité;
(c) chacun des anneaux hexagonaux (90) comprenant six entretoises équilatérales, dont les intersections forment des angles inclus égaux (84) d'environ 109° 28', chaque anneau délimitant ainsi trois paires d'entretoises parallèles, avec chacune des entretoises dans le même plan que l'un des trois plans; et
(d) chaque anneau (90) ayant des côtés à entretoise qui sont destinés à être accouplés en coopération suivant leur longueur avec les côtés à entretoise d'anneaux hexagonaux sur trois plans ayant une configuration similaire et placés en des endroits contigus.
8. Elément structurel selon la revendication 7, où chacun des anneaux hexagonaux (90) a la configuration structurelle d'un anneau continu, sans joint.
9. Elément structurel selon la revendication 7, où chacun des anneaux hexagonaux (90) est en outre caractérisé en étant constitué de six éléments bilatéraux (80); chaque élément bilatéral ayant des côtés d'intersection égaux (82) qui forment un angle inclus (84) d'environ 109° 28', et les éléments bilatéraux étant agencés et connectés de manière à former un anneau fermé ayant trois paires d'éléments opposés, en regard (80, 80'), les côtés diamétralement opposés (82, 82') de chaque paire étant sensiblement parallèles et dans le même plan que l'un des trois plans.
10. Elément structurel selon la revendication 7, où chacun des anneaux hexagonaux (90) est constitué d'entretoises ayant une section en coupe hexagonale.
11. Elément structurel hexagonal pour la construction d'une ossature tétraédrique de squelette périodique dans les trois dimensions ayant la configuration d'un trapèze constitué de cubes, caractérisé par:
(a) six entretoises équilatérales agencées et connectées de manière à former un anneau hexagonal sur trois plans (90), dont les entretoises d'intersection forment des angles inclus d'environ 109° 28',
(b) cet anneau hexagonal (90) délimitant ainsi trois paires d'entretoises parallèles, chacune des entretoises étant dans le même plan que l'un des trois plans; et
(c) l'anneau (90) avant des côtés à entretoise destinés à être accouplés en coopération suivant leur longueur avec les côtés à entretoise d'anneaux hexagonaux sur trois plans ayant la même configuration et placés dans des endroits contigus pour former un ensemble tétraédrique de squelette fermé (100) de l'ossature tétraédrique.
12. Elément structurel hexagonal selon la revendication 11, où l'anneau hexagonal sur trois plans (90) est constitué de six éléments bilatéraux (80), chaque élément bilatéral ayant des côtés égaux d'intersection qui forment entre eux un angle inclus d'environ 109° 28'; et les éléments bilatéraux étant agencés et reliés de manière à former un anneau fermé ayant trois paires d'éléments opposés, en regard (80, 80'), les côtés diamétralement opposés (82, 82') étant sensiblement parallèles et dans le même plan que l'un des trois plans.
13. Elément structurel hexagonal selon la revendication 11, où l'anneau hexagonal sur trois plans (90) comporte des entretoises ayant une section en coupe hexagonale.
14. Procédé de construction d'une ossature tétraédrique de squelette, périodique en trois dimensions, ayant la configuration d'un trapèze constitué de cubes, caractérisé par les étapes suivantes:
(a) le positionnement pour qu'ils soient contigus les uns aux autres de quatre anneaux hexagonaux sur trois plans (90) de manière à former une unité tétraédrique de squelette fermée (100), chacun des anneaux hexagonaux comprenant six entretoises équilatérales, dont les intersections forment des angles inclus égaux d'environ 109° 28', chaque anneau (90) délimitant ainsi trois paires d'entretoises parallèles, et chacune des entretoises étant dans le même plan que l'un des trois plans;
(b) la connexion des anneaux hexagonaux (90) les uns aux autres, le long de leurs entretoises accouplées en coopération; et
(c) l'interconnexion d'une pluralité d'unités tétraédriques fermées (100) le long des côtés à entretoise accouplés en coopération pour former l'ossature tétraédrique.
EP80901524A 1979-07-03 1981-01-26 Element de structure, armature tetraedrique construite a partir de celui-ci et procede de construction Expired EP0031378B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US5449779A 1979-07-03 1979-07-03
US54497 1979-07-03

Publications (3)

Publication Number Publication Date
EP0031378A1 EP0031378A1 (fr) 1981-07-08
EP0031378A4 EP0031378A4 (fr) 1981-07-16
EP0031378B1 true EP0031378B1 (fr) 1984-03-28

Family

ID=21991506

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80901524A Expired EP0031378B1 (fr) 1979-07-03 1981-01-26 Element de structure, armature tetraedrique construite a partir de celui-ci et procede de construction

Country Status (5)

Country Link
EP (1) EP0031378B1 (fr)
CA (1) CA1157219A (fr)
DE (1) DE3067251D1 (fr)
IT (1) IT1193541B (fr)
WO (1) WO1981000130A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020068194A3 (fr) * 2018-06-15 2020-05-28 Ogre Skin Designs, Llc Structures, systèmes et procédés pour la répartition d'énergie

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2556757B1 (fr) * 1983-12-14 1987-04-10 Bouygues Sa Treillis porteur tridimensionnel en beton et procede pour realiser ce treillis
DE3913474A1 (de) * 1989-04-24 1990-10-25 Siemens Ag Photothermisches untersuchungsverfahren, einrichtung zu seiner durchfuehrung und verwendung des verfahrens
US5615528A (en) * 1994-11-14 1997-04-01 Owens; Charles R. Stress steering structure
AU700621B2 (en) * 1994-11-14 1999-01-07 Charles R. Owens Structural frame
GB2490767A (en) * 2012-04-16 2012-11-14 Alexander Owen David Lorimer Structural geometric framework
CN102912852B (zh) * 2012-10-18 2014-12-24 东南大学 一种正四面体对称型可展机构单元
US20190055729A1 (en) * 2017-08-15 2019-02-21 Jon Dietz Unitary hubs for domes or spheres
CN113581398B (zh) * 2021-09-07 2022-08-16 哈尔滨工业大学(深圳) 一种可快速装配的多杆节点

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3333349A (en) * 1964-04-01 1967-08-01 George C Brumlik Framework molecular orbital model assembly

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3148539A (en) * 1959-01-20 1964-09-15 Charles E Cook Ideal spherical hinge for analytical framework
US3139959A (en) * 1961-06-12 1964-07-07 United Aircraft Corp Construction arrangement
US3354591A (en) * 1964-12-07 1967-11-28 Fuller Richard Buckminster Octahedral building truss
DE1810434C3 (de) * 1968-11-22 1975-06-19 Richard Dipl.-Ing. 8000 Muenchen Dietrich Hochbauwerk
US3722153A (en) * 1970-05-04 1973-03-27 Zomeworks Corp Structural system
US3707813A (en) * 1971-06-30 1973-01-02 J Mudgett Modular structure
US3853418A (en) * 1973-02-28 1974-12-10 Celanese Corp Safety support for use adjacent a vehicular trafficway
DE2316141C3 (de) * 1973-03-29 1979-08-16 Conrad Roland 1000 Berlin Lehmann Räumliches Netzwerk zum Klettern
US4207715A (en) * 1978-09-14 1980-06-17 Kitrick Christopher J Tensegrity module structure and method of interconnecting the modules

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3333349A (en) * 1964-04-01 1967-08-01 George C Brumlik Framework molecular orbital model assembly

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020068194A3 (fr) * 2018-06-15 2020-05-28 Ogre Skin Designs, Llc Structures, systèmes et procédés pour la répartition d'énergie
US11371576B2 (en) 2018-06-15 2022-06-28 Ogre Skin Designs, Llc Structures, systems, and methods for energy distribution
US11898619B2 (en) 2018-06-15 2024-02-13 Ogre Skin Designs, Llc Structures, systems, and methods for energy distribution

Also Published As

Publication number Publication date
EP0031378A1 (fr) 1981-07-08
IT8023203A1 (it) 1982-01-02
IT1193541B (it) 1988-07-08
CA1157219A (fr) 1983-11-22
DE3067251D1 (en) 1984-05-03
EP0031378A4 (fr) 1981-07-16
WO1981000130A1 (fr) 1981-01-22
IT8023203A0 (it) 1980-07-02

Similar Documents

Publication Publication Date Title
US4446666A (en) Tetrahedral truss
CA2285980C (fr) Structure tridimensionnelle a treillis isometrique
EP0031378B1 (fr) Element de structure, armature tetraedrique construite a partir de celui-ci et procede de construction
JPS6124741A (ja) 関節型伸展トラスビ−ム
US4448832A (en) Dimensionally woven composite
US5266379A (en) Tetrahedron filled panels
US3237362A (en) Structural unit for supporting loads and resisting stresses
US3953948A (en) Homohedral construction employing icosahedron
US4241117A (en) Structural cores and their fabrication
EP0064176B1 (fr) Elément structural pour constructions
US4601152A (en) Truss structure and method of construction
US5331779A (en) Truss framing system for cluster multi-level housing
US8869464B2 (en) Correlated hyperbolic paraboloid structural members
EP0097062B1 (fr) Techniques d'assemblage pour structures larges
US4746056A (en) Method of joining tubular steel lattice members and a device for use in the execution of the method
CN109811891B (zh) 一种柔性全张拉结构体系、预张力设计方法及施工方法
US4869041A (en) Octet space frame structure and components for assembling such space frames
US20100218437A1 (en) n-fold Hyperbolic Paraboloids and Related Structures
US3827206A (en) Three dimensional construction
US1066212A (en) Wood structure.
CN209854920U (zh) 一种柔性全张拉结构体系
US4907390A (en) Truss module for load-bearing structures
JP3773952B2 (ja) 構造フレーム
US3800492A (en) Reinforcement for reinforced-concrete structures
Gilman Novel method for constructing tetrahedral frames

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB NL

17P Request for examination filed

Effective date: 19810721

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALLIED CORPORATION

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB NL

REF Corresponds to:

Ref document number: 3067251

Country of ref document: DE

Date of ref document: 19840503

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19840601

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19840613

Year of fee payment: 5

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19850630

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19870101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19870227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19870303

GBPC Gb: european patent ceased through non-payment of renewal fee
REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881118