EP0023501A1 - Device for exploiting the wave energy of lakes and seas - Google Patents

Device for exploiting the wave energy of lakes and seas

Info

Publication number
EP0023501A1
EP0023501A1 EP80900295A EP80900295A EP0023501A1 EP 0023501 A1 EP0023501 A1 EP 0023501A1 EP 80900295 A EP80900295 A EP 80900295A EP 80900295 A EP80900295 A EP 80900295A EP 0023501 A1 EP0023501 A1 EP 0023501A1
Authority
EP
European Patent Office
Prior art keywords
stabilizer
fin
fins
rotor
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP80900295A
Other languages
German (de)
French (fr)
Inventor
Eduard Hartmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0023501A1 publication Critical patent/EP0023501A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H19/00Marine propulsion not otherwise provided for
    • B63H19/02Marine propulsion not otherwise provided for by using energy derived from movement of ambient water, e.g. from rolling or pitching of vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/16Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem"
    • F03B13/18Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore
    • F03B13/1805Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom is hinged to the rem
    • F03B13/181Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom is hinged to the rem for limited rotation
    • F03B13/1815Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom is hinged to the rem for limited rotation with an up-and-down movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/16Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem"
    • F03B13/18Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore
    • F03B13/1805Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom is hinged to the rem
    • F03B13/1825Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom is hinged to the rem for 360° rotation
    • F03B13/183Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom is hinged to the rem for 360° rotation of a turbine-like wom
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/16Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem"
    • F03B13/18Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore
    • F03B13/1805Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom is hinged to the rem
    • F03B13/1825Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom is hinged to the rem for 360° rotation
    • F03B13/1835Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom is hinged to the rem for 360° rotation of an endless-belt type wom
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/50Measures to reduce greenhouse gas emissions related to the propulsion system
    • Y02T70/5218Less carbon-intensive fuels, e.g. natural gas, biofuels
    • Y02T70/5236Renewable or hybrid-electric solutions

Definitions

  • the invention relates to a device for generating a propulsion system by using the wave energy in lakes and seas.
  • Shaft drives of this type only work in but not against shaft erection. This is because with a drive against the direction of the shaft, the energy required for lifting the boat at a wave crest is approximately equal to that recovered energy when the boat dropped into a wave valley. The same considerations also apply to a swing movement.
  • Another known device works with air chambers arranged above the swell, the air volume changed as a result of the swell being fed to corresponding air turbines.
  • a disadvantage of all previously known devices for energy generation is the limited local usability of the swell. To achieve large power units, a large number of identical units must be interconnected. Furthermore, changes in the wavelength and the direction of the wave have a very disadvantageous effect on the efficiency of these devices. An additional problem is the relatively high anchoring forces that occur during storms and the robustness of the devices in this regard.
  • the aim of the invention is to remedy these disadvantages and to create a shaft drive that works with a high degree of efficiency regardless of the direction of the shaft.
  • this is achieved in that a submersible fin, lying approximately horizontally in the water, is connected to a stabilizer which does not follow the wave movement or only follows it to a greatly reduced extent.
  • FIG. 1 a schematic representation of a device in a wave motion, in a side view
  • FIG. 2 several fins with an inertia-acting stabilizer, in a side view
  • FIG. 3 several fins in one plane with two stabilizers
  • FIG. 4 a schematic representation of a Fin with flat stabilizer in side view
  • Fig. 5 a device with wing-like stabilizers
  • Fig. 6 a rigid fin with flat stabilizer, in side view
  • Fig. 7 a delta-like fin with analog stabilizer
  • Fig. 8 a device with submersible over the fins Pedestal
  • Fig. 1 a schematic representation of a device in a wave motion, in a side view
  • FIG. 2 several fins with an inertia-acting stabilizer, in a side view
  • FIG. 3 several fins in one plane with two stabilizers
  • FIG. 4 a schematic representation of a Fin with flat stabilizer in side view
  • Fig. 5 a device with wing
  • FIG. 9 a partial side view of a device with flexible or foldable fins
  • Fig. 10 a device with a motor driven by the flow, in side view
  • Fig. 11 several fins on a belt running over two rollers
  • Fig. 12 Fins in rotor arrangement only, in supervision
  • Fig. 13 fins in a disc-like arrangement, in up view
  • Fig. 14 Fins in a ring-shaped arrangement, in supervision
  • Fig. 15 Fins in a rotating arrangement with fixed stabilizer, in a side view
  • Fig. 16 Fins with a floating stabilizer and with rotating motors, in a side view
  • Fig. 17 Fins in a rotating arrangement with over the Finned stabilizers, in side view
  • Fig. 18 fins in a rotating arrangement with stationary stabilizer, in side view
  • Fig. 19 fins in a rotating arrangement with connections to buoyancy chambers
  • Fig. 20 fins in a rotating arrangement, as a power plant, in side view
  • Fig. 21 partial view of Fig. 20.
  • an elastic fin 1 is connected to an elongated horizontal stabilizer 3 via a bracket 2, which acts as a torque, and lies in the axial direction 4 without the influence of a flow force. If the water surface 5 has a wave movement in the direction 6, the underlying water masses become vertically oscillating in Direction 7 and 8 moved with a shift of 1/4 of the wavelength 9. The elastically deformable fin 1 is deformed under the force of the flow in the direction 7 by the angle 10. The vertically directed flow is approximately deflected in the direction 11. According to the momentum law, the resulting force effects in the triangle of forces can be broken down into directions 12 and 13.
  • the stabilizer 3 is now expediently designed such that it has the greatest possible inertia or stability with respect to the force effect in the direction 12. Furthermore, the shape is designed so that it is largely insensitive to the flow movements in the direction 7 and 8. As a result of these conditions, the flow force in direction 13, according to the action equal to reaction, becomes effective as driving force 14 for the movement in direction 15 of the device.
  • this shaft drive works in any direction 15 of the device for direction 6 of the shaft movements.
  • the stabilizer 3 and the fin 1 expediently have a weight that is equal to or slightly less than the weight of water displaced by their volume.
  • FIG. 2 several fins 16 are connected via a holder 17 to a common stabilizer 18, which at its ends 19 and 20 has mass-intensive floatable elements 21 and 22 to increase stability.
  • the multiple connection of the fins 16 in series has the advantage that the vertically upward and downward force components 23 and 24 partially cancel each other, thereby achieving a high level of efficiency for the driving force.
  • the direction 25 indicates the swell and the direction 26 the locomotion of the device.
  • a plurality of fins 27 are interconnected in the plane 28 next to and behind one another in the same driving force effect, direction 29.
  • the individual fins 27 are connected via brackets 30 to two floating stabilizers 31 and 32, the load chambers 33 to 36 for increasing stability and two vertical rudders 37.38. are pivotable for directional control in bearings 40, 41.
  • the entire fin surface is expediently dimensioned such that the waves in the passage 42 give their energy fully to the fins 27, that is to say that after the passage of the fins 37 there is practically no wave movement.
  • the lateral height 43 of the stabilizers 31 and 32 is kept as small as possible so that a lateral swell can also be used as drive energy.
  • each water particle 46 moves perpendicular to the direction of propagation 47 of the shaft 44.
  • the vertical movement 49 has almost completely subsided.
  • An effective flow-based stabilizer 50 is therefore advantageously arranged in a water depth 51 greater than or equal to half the wavelength 9.
  • the driving fin 52 is advantageously located close to the central axis 45 of the shaft 44 and is connected to the stabilizer 50 via struts 53. So that the device moves stably in direction 15, the stabilizer 50 is equipped with a fuselage 54 and a tail unit 55.
  • a mass body 56 is arranged in front of the stabilizer 50 on the fuselage 54.
  • the center of gravity 57 of the device resting in the water lies in the area 58 of the stabilizer 50.
  • a vertical sword 59 is arranged on the hull 54 in the area of the stabilizer 50 for increasing the lateral stability.
  • the driving fins 52 are fastened to a spar 60 and together form a driving surface 61, which is connected to the stabilizer 50 via a body 62, the struts 63, 64 and the fuselage 54.
  • a sword 59 is arranged below the fuselage 54 and a tail unit 55 is arranged at the end of the same.
  • the stabilizer 50 and the tail unit 55 are equipped with rudders 65, 66, 67, 68, which can be controlled via elements (not shown) by means of a double lever 69 arranged on the body 62.
  • the rowing effect is known from flight technology and has a similar effect.
  • the body 62 is expediently designed to float, so that the entire device is immersed in the still water up to level 70.
  • the distance 71 between the surface 61 and the stabilizer 50 is adjustable so that it can also be used in shallow water.
  • the struts 63, 64 in FIG. 72, 73, 74, 75 are fastened to the fuselage 54 and to the body 62.
  • the extension 76 of the strut 64 passes through the body 62 in a slot 77 and is equipped with a handle 78.
  • Bores 80 are arranged in the plate 79 and in the extension 77, through which a bolt 8l can be inserted.
  • the desired distance 71 can thus be set by changing the angular position 82 of the extension 76.
  • a tab 83 is arranged on the body 62, in which the tensile force of the device can be transferred to other floatable bodies, not shown.
  • the person using the device lies in the water and holds on to the double lever 69, which also serves to control the device.
  • the device moves in the direction 15 at normal steering positions. Braking of the device is possible by the control-oriented extension of surface 61 above level 70.
  • the person can also operate the device lying on a floating body, not shown, which is attached to the tab 83 via a line.
  • a fin 84 lying in the region of the swell is connected via the strut 85 with a flat stabilizer 86. If at least the fin 84 or the stabilizer 86 have a flow profile 87, no elasticity or deflectability of the fin 84, the stabilizer 86 or strut 85 is required.
  • the drive effect is achieved by a relatively longer outflow part 88 to the inflow part 89.
  • the outflow angles 91 and 92 produce a similar effect to a fin that can be deflected relative to the axis of movement 90.
  • a plate (not shown) of approximately the same thickness is used instead of a flow profile 87, the fin 84 must be able to be deflected relative to the stabilizer 86.
  • the fin 84 is connected to a stabilizer 86 via the strut 85.
  • the outline of the fin and the stabilizer are approximately triangular, trapezoidal or delta-shaped.
  • the middle part 93 has an anti-ice protection and serves as a standing or lying surface for one or more people who, depending on the case, are in the openings 9 or on the ones on the fin 84 hold fastened lines 95 with handles 96.
  • the entire device including people, generates little or no lift, so that the fin 84 is at least flooded by the wave crests.
  • the device is controlled by shifting the weight of the operator.
  • FIG. 8 shows a perspective view of the fins 97 to 106 which can be moved under the action of waves and which are fastened to the stabilizers 107 and 108.
  • a platform 109 is connected to the stabilizers 107 and 108 via vertical struts 110.
  • the buoyancy conditions of the device with the gravitational effect of the operator can be controlled via a pump 111, which has a connection via lines 112 to 115 to the ballast chambers 116 to 119 by pumping in or pumping out liquid such that the stabilizers 107 . 108 lie almost horizontally up to the immersion line 120 in the water. In this position, the pedestal 109 is so far above the immersion line 120 that the waves can pass under the pedestal 109 in normal sea conditions without it touching it.
  • the platform 109 is designed to be floatable, with a nose 122 slightly raised in the direction of travel 121 against high swell, with two holder handles 123 and a rudder 126 which is vertically mounted on the platform end 124 and which can be controlled via the stirrups 125 to influence the direction of travel 121.
  • the fins 99, 102, 105 are pivotally mounted in the stabilizers 107, 108 and connected to a lever 127, the position of which can be fixed in a grid plate 128.
  • the fins 99, 102, 105 can be adjusted by the angle 129 by pivoting the lever 127. In this way, braking is achieved.
  • Each of the two stabilizers 107 and 108 has a vertical sword 130 at the bottom.
  • the stabilizers 107, 108 are upstream of the platform 109 in the direction of travel 121 and are equipped at the tip 131 with a rubber buffer 132 against injuries and with vertical viewing fins 133.
  • the cross-section 134 of the stabilizers advantageously corresponds to a slender standing ellipse and the cross-section 135 of the struts 10 is expediently finned so that the flow losses are low.
  • the struts 110 generate little or no buoyancy when immersed.
  • the dimensions of the platform 109 are expediently designed so that several people can sit on them.
  • an at least partially bendable or foldable fin 136 is guided or fastened at two opposite ends 137, 138 via two unequal connections 139, 140 to brackets 141, 142 lying in the direction of travel 121.
  • the shorter connection 140 lies in the direction of travel 121 and can also be expediently removed, so that the end 137 is attached directly to the holder 141.
  • the fin 136 is cankaved towards the pressure side 144 and is positioned at an angle 145 which is favorable for the inflow.
  • the deflection 146 of the fin 136 can be adjusted by changing the length of the connections 139, 140 or by moving the brackets 141, 142 on the axis 147.
  • either the fin 136 itself or the connection 139, 140 is made of an elastic material.
  • This embodiment makes it possible to manufacture the device with as little effort as possible despite good drive power.
  • a plurality of fins 149 which drive the floating body in the direction of travel 121, are fastened to a stabilizer 148, which is designed by inertia or by its low buoyancy in such a way that it does not follow the wave movement as far as possible.
  • the energy is used via a motor 152 attached to the stabilizer 148 and driven by the flow 150 via turbines 151.
  • the energy thus removed is either supplied to a stabilizer 148 (not shown) and occasionally discharged, or is passed on directly via a submarine cable 153.
  • a plurality of fins 154 are fastened to an endless chain-like or belt-like holder 155 and run around two rollers 156, 157 which have a support 158 which has a floatable stabilizer 160 at one end 159 and a bearing block 163 anchored in the bottom 162 at the other end 161 .
  • the fins move in the direction of 164 and pass on the energy to consumers via rollers 156, 157 and further transmission elements (not shown).
  • this device can also be attached to anchored fins or ships.
  • each fin 165 with their stabilizer 166 form a rotor 167 lying horizontally in the water with the fulcrum 168.
  • the wave crests 169 and the wave troughs 170 pass through the rotor 167 in the direction of 171. Since the angle of the direction 171 of the swell has no influence have the drive direction 172 of the fins 165, each fin 165 produces a rotation effect in the same direction whose energy can be harnessed.
  • the wavelength 9 has practically no influence on the drive effect.
  • the fins 173 form an approximately closed disc 174. This means that high efficiencies are also achieved as slow-running machines.
  • the drive fins 173 form an annular surface 175 which are connected via brackets 176 in the center 177. This version is particularly interesting for large systems, since high operational reliability can be achieved via elastic connections.
  • a wave energy rotor 178 with fins 173 and stabilizer 179 is mounted centrally on a stabilizer 180 firmly anchored in the floor 162 at position 181.
  • This arrangement is suitable for small power plants. It could also be anchored above the water, for example on derricks or on correspondingly large fins or ships. The energy is appropriately used via the torque effect.
  • the wave energy rotor 182 floats in the water due to buoyancy.
  • the immersion depth 183 of the drive fins 173 is kept stable by means of a rope-like or chain-like holder 184, which rests on a mass-intensive stabilizer 185 on the bottom 162.
  • the length 186 of the holder 184 is expediently adjustable by means of a device (not shown) arranged in a center 187.
  • the wave energy rotor 192 has a disk-like rotor 193 with drive fins 173 and motors 188.
  • the rotor 193 is mounted in a stationary center 194 and is connected to the base 162 via an armature 195.
  • buoyant stabilizers 198 which are also effective as fins, are fastened via brackets 197.
  • the energy introduced via the motors 188 is dissipated via elements (not shown) via the control center 194 and the line 191. If the waves are in direction 171, the wave energy rotor 192 is displaced in the same direction 171 as a result of the wave resistance, so that the armature 195 makes an angle 199. In this position, the armature 195 can also absorb small torques which arise in the control center 187 from the rotor bearing 200 or from transmission elements.
  • the holder 197 for the stabilizers 198 is expediently adjustable with respect to the immersion depth 183.
  • the wave energy rotor 201 has a flat stabilizer 204 on the stationary part 202 of the control center 203.
  • the center 203 is buoyant and the immersion depth 183 of the rotor 205 is regulated by changing a baiast chamber 206.
  • the center of gravity of the whole wave energy rotor is advantageously as deep as possible.
  • the wave energy rotor 207 has a plurality of controllable buoyancy chambers 208, 209, 210, which are arranged on the rotor 213 and in the center 214 via holders 211, 212.
  • the buoyancy chambers 208, 209, 210 are dimensioned such that, as shown, it is possible to lift the entire rotor 213 above the water surface 5. In this position there is no drive effect and maintenance work can be carried out relatively easily.
  • FIG. 20 there are several fins 215 via the holders 216, 217 with a lower surface-like stabilizer 218 and connected via the brackets 219 to a higher-level stabilizer 220 and via the bracket 221 and the surface body 222 with motors 224 driven by turbines 223.
  • Controllable rudders 225 which are set vertically downward are fastened to the surface body 222.
  • the drive fins 215 and the stabilizer 218 are connected via the brackets 216 and the struts 226, 227 to the control center 228 consisting of a rotating part 229, with generator 230, control center 231, landing deck 232, access hatch 233 and resting part 234 with bearing 235
  • the resting part 234 has a support 236, with a swiveling propeller 238 driven in the bearing 327 via a motor and control, not shown, as well as an anchor winch 239 and submarine cable winch 240. Also arranged in the stationary part 234 are an energy transmission element 241 and controllable ballast chambers 242, 243. For better maneuverability, a sword 244 with a rudder 245 is also attached to part 234.
  • the stabilizer 218 also has adjustable ballast chambers 246.
  • the energy absorbed via expediently a plurality of motors 224 is fed to a central co-rotating generator 230 via energy conductors 247 and passed on to the submarine cable 191 via the energy transmission element 24l.
  • the drivable propeller 238, depending on the position, can be used for torque compensation of the frictional forces or as a propulsion drive in a wave-free sea. If there is a swell, the entire unit can also move using the drive effect of the vertical rudders 225. These are then adjusted depending on the rotor rotation at an angle to their tangent to the circle. Access to part 234 is via openings 248, 249, 250. Wave energy rotors of this type expediently have a diameter 251 of several hundred meters.
  • the fins 215 form with their holders 216 and the underlying stabilizer 218, a segment 252, which forms an annular surface with other partially drawn segments 253, 254.
  • Motors 224 which are driven by turbines 223 are fastened to individual segments 252 via flat bodies 222 which are designed to be favorable in terms of flow.
  • the flat body 222 has a controllable rudder 255 for regulating the immersion depth of the rotor and for rapid submersion in a storm.
  • the segments 252 are fixed to the center via the struts 226, 227.
  • a buoyant stabilizer 220 is attached via the bracket 219 and can also be used as a drive.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ocean & Marine Engineering (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

L'energie des vagues en dessous de la surface de l'eau dans la zone ou subsiste un courant de vagues, est convertie en une energie cinetique au moyen d'ailettes (27), qui est utilisee pour la production d'energie.Energy from waves below the surface of the water in the area where a current of waves remains is converted into kinetic energy by means of fins (27), which is used for the production of energy.

Description

Wellenantrieb für die Nutzung der Wellenenergie in Seen und MeerenShaft drive for the use of wave energy in lakes and seas
Die Erfindung bezieht sich auf eine Vorrichtung zur Erzeugung eines Fortbewegungsantriebes durch Nutzung der Wellenenergie in Seen und Meeren.The invention relates to a device for generating a propulsion system by using the wave energy in lakes and seas.
Es ist bekannt, dass sich ein im Wasser schwimmender Körper, bei vorhandenem Wellengang durch die Einwirkung der Wellenbewegung in Laufrichtung der Welle fortbewegt. Will man einen schwimmenden Körper jedoch gegen die Wellenlaufrichtung bewegen, so benötigt man dazu Energie. Neben den entstehenden Reibungskräften im Wasser muss auch der sogenannte Wellenwiderstand überwunden werden. Da in der Wellenbewegung selber kinetische und potentielle Energie vorliegt, wurde schon öfters der Versuch unternommen, diese Energie für den Antrieb von Booten oder militätischen Einrichtungen nutzbar zu machen.It is known that a body floating in water, in the presence of waves, moves through the action of the wave movement in the direction of the wave. However, if you want to move a floating body against the direction of the wave, you need energy. In addition to the frictional forces that arise in the water, the so-called wave resistance must also be overcome. Since there is kinetic and potential energy in the wave movement itself, attempts have often been made to use this energy for the propulsion of boats or military facilities.
Die Patente USA 212,847, USA 3.872,819, GB 11,437 sowie die Offenlegungsschrift BRD 2,848,864 zeigen sogenannte Wellenantriebe für Boote.The patents USA 212,847, USA 3,872,819, GB 11,437 and the published document FRG 2,848,864 show so-called shaft drives for boats.
Allen diesen Patenten ist gemeinsam, dass infolge Wellengang, die verursachte Schaukelbewegung oder das Heben und Senken des Bootes auf auslenkbare Flossen übertragen wird. Diese durch die Bewegung des Bootes gewonnene Energie, soll in den Flossen in einen Antriebseffekt umgewandelt werden.All of these patents have in common that due to waves, the rocking movement caused or the lifting and lowering of the boat is transferred to deflectable fins. This energy gained through the movement of the boat is to be converted into a drive effect in the fins.
Wellenantriebe dieser Art funktionieren nur in aber nicht gegen die Wellenaufrichtung. Dies deshalb, weil bei einem Antrieb gegen die Wellenaufrichtung, die benötigte Energie für das Anheben des Bootes bei einem Wellenberg annähernd gleich der wiedergewonnenen Energie beim Abfallen des Bootes in ein Wellental ist. Gleiche Ueberlegungen sind auch für eine Schaukelbewegung gültig.Shaft drives of this type only work in but not against shaft erection. This is because with a drive against the direction of the shaft, the energy required for lifting the boat at a wave crest is approximately equal to that recovered energy when the boat dropped into a wave valley. The same considerations also apply to a swing movement.
Die Nutzung der Wellenenergie in stationären Anlagen für die Stromerzeugung erfolgt bekannterweise meistens über verankerte Schwimmkörper. Sobald ein Schwimmkörper verankert ist, sich also nicht in Wellenlaufrichtung fortbewegen kann, ist eine Energienutzung möglich. Der Schwimmkörper muss nicht mehr auf den Wellenberg gehoben werden. Er wird infolge Verankerung durch die Wellenenergie angehoben. Eine derartige Vorrichtung zeigt das Patent GB 1,447,758.As is known, the use of wave energy in stationary systems for power generation mostly takes place via anchored floating bodies. As soon as a floating body is anchored, i.e. cannot move in the direction of the waves, energy can be used. The floating body no longer has to be lifted onto the crest of the waves. It is raised as a result of anchoring through the wave energy. Such a device shows the patent GB 1,447,758.
Eine andere bekannte Vorrichtung arbeitet mit über dem Wellengang angeordneten Luftkammern, wobei das infolge Wellengang veränderte Luftvolumen entsprechenden Luftturbinen zugeführt wird.Another known device works with air chambers arranged above the swell, the air volume changed as a result of the swell being fed to corresponding air turbines.
Nachteilig an allen bisher bekannten Vorrichtungen für die Energiegewinnung ist die begrenzte örtliche Nutzbarkeit des Wellenganges. Um grosse Leistungseinheiten zu erzielen, müssen eine Vielzahl gleicher Einheiten zusammengeschaltet werden. Weiters wirken sich Veränderungen der Wellenlänge und der Wellenlaufrichtung sehr nachteilig auf den Wirkungsgrad dieser Vorrichtungen aus. Ein zusätzliches Problem sind die auftretenden relativ hohen Verankerungskräfte bei Sturm, sowie die diesbezügliche Robustheit der Vorrichtungen.A disadvantage of all previously known devices for energy generation is the limited local usability of the swell. To achieve large power units, a large number of identical units must be interconnected. Furthermore, changes in the wavelength and the direction of the wave have a very disadvantageous effect on the efficiency of these devices. An additional problem is the relatively high anchoring forces that occur during storms and the robustness of the devices in this regard.
Das Ziel der Erfindung ist es, diese aufgeführten Nachteile zu beheben und einen Wellenantrieb zu schaffen, der unabhängig von der Wellenlaufrichtung mit einem hohen Wirkungsgrad arbeitet.The aim of the invention is to remedy these disadvantages and to create a shaft drive that works with a high degree of efficiency regardless of the direction of the shaft.
Erfindungsgemäss wird dies dadurch erreicht, dass eine überflutbare, annähernd horizontal im Wasser liegende Flosse mit einem Stabilisator verbunden ist, der die Wellenbewegung nicht oder nur in einem stark vermindertem Masse mitverfolgt.According to the invention, this is achieved in that a submersible fin, lying approximately horizontally in the water, is connected to a stabilizer which does not follow the wave movement or only follows it to a greatly reduced extent.
Im folgenden werden anhand der beiliegenden Zeichnungen Ausführungsbeispiele der Erfindung näher beschrieben. Es zeigen: Fig 1: eine schematische Darstellung einer Vorrichtung in einer Wellenbewegung, in Seitenansicht, Fig 2: mehrere Flossen mit einem trägheitswirkenden Stabilisator, in Seitenansicht, Fig 3: mehrere Flossen in einer Ebene mit zwei Stabilisatoren, Fig 4: eine schematische Darstellung einer Flosse mit flächenartigem Stabilisator in Seitenansicht, Fig 5: eine Vorrichtung mit flügelartigen Stabilisatoren, Fig 6: eine starre Flosse mit flächenartigem Stabilisator, in Seitenansicht, Fig 7: eine deltaartige Flosse mit analogem Stabilisator, Fig 8: eine Vorrichtung mit über den Flossen angeordneten unterflutbarem Podest, Fig 9: eine Seiten-Teilansicht einer Vorrichtung mit bieg- oderfaltbaren Flossen, Fig 10: eine Vorrichtung mit über die Strömung angetriebenem Motor, in Seitenansicht, Fig 11: mehrere Flossen an einem über zwei Rollen laufendem Band, in Seitenansicht, Fig 12: Flossen in Rotoranordnurig, in Aufsicht, Fig 13: Flossen in einer scheibenähnlicher Anordnung, in Aufsicht, Fig 14: Flossen in einer ringflächigen Anordnung, in Aufsicht, Fig 15: Flossen in Rotationsanordnung mit festem Stabilisator, in Seitenansicht, Fig 16: Flossen mit einem schwebenden Stabilisator und mit rotierenden Motoren, in Seitenansicht, Fig 17: Flossen in Rotationsanordnung mit über den Flossen liegenden Stabilisatoren, in Seitenansicht,Exemplary embodiments of the invention are described in more detail below with reference to the accompanying drawings. 1: a schematic representation of a device in a wave motion, in a side view, FIG. 2: several fins with an inertia-acting stabilizer, in a side view, FIG. 3: several fins in one plane with two stabilizers, FIG. 4: a schematic representation of a Fin with flat stabilizer in side view, Fig. 5: a device with wing-like stabilizers, Fig. 6: a rigid fin with flat stabilizer, in side view, Fig. 7: a delta-like fin with analog stabilizer, Fig. 8: a device with submersible over the fins Pedestal, Fig. 9: a partial side view of a device with flexible or foldable fins, Fig. 10: a device with a motor driven by the flow, in side view, Fig. 11: several fins on a belt running over two rollers, in side view, Fig. 12 : Fins in rotor arrangement only, in supervision, Fig. 13: fins in a disc-like arrangement, in up view, Fig. 14: Fins in a ring-shaped arrangement, in supervision, Fig. 15: Fins in a rotating arrangement with fixed stabilizer, in a side view, Fig. 16: Fins with a floating stabilizer and with rotating motors, in a side view, Fig. 17: Fins in a rotating arrangement with over the Finned stabilizers, in side view,
Fig 18: Flossen in Rotationsanordnung mit ruhendem Stabilisator, in Seitenansicht, Fig 19: Flossen in Rotationsanordnung mit Verbindungen zu Auftriebskammern, in Seitenansicht, Fig 20: Flossen in Rotationsanordnung, als Kraftwerk, in Seitenansicht, Fig 21: Teilansicht der Fig 20. Fig. 18: fins in a rotating arrangement with stationary stabilizer, in side view, Fig. 19: fins in a rotating arrangement with connections to buoyancy chambers, in side view, Fig. 20: fins in a rotating arrangement, as a power plant, in side view, Fig. 21: partial view of Fig. 20.
In Fig 1 ist eine elastische Flosse 1 über eine drehmomentwirksame Halterung 2 mit einem länglichen waagrechten Stabilisator 3 verbunden und liegt ohne Einwirkung einer Strömungskraft in der Achsrichtung 4. Weist die Wasseroberfläche 5 eine Wellenbewegung in Richtung 6 auf, so werden die darunterliegenden Wassermassen vertikal oszillierend in Richtung 7 und 8 mit einer Verschiebung um 1/4 der Wellenlänge 9 bewegt. Die elastisch verformbare Flosse 1 wird unter der Kraftwirkung der Strömung in Richtung 7 um den Winkel 10 verformt. Die vertikal gerichtete Strömung wird dabei annähernd in Richtung 11 abgelenkt. Gemäss dem Impulsgesetz können die dabei entstehenden Kraftwirkungen im Kräftedreieck in die Richtungen 12 und 13 zerlegt werden.In FIG. 1, an elastic fin 1 is connected to an elongated horizontal stabilizer 3 via a bracket 2, which acts as a torque, and lies in the axial direction 4 without the influence of a flow force. If the water surface 5 has a wave movement in the direction 6, the underlying water masses become vertically oscillating in Direction 7 and 8 moved with a shift of 1/4 of the wavelength 9. The elastically deformable fin 1 is deformed under the force of the flow in the direction 7 by the angle 10. The vertically directed flow is approximately deflected in the direction 11. According to the momentum law, the resulting force effects in the triangle of forces can be broken down into directions 12 and 13.
Der Stabilisator 3 ist nun zweckmässig so ausgebildet, dass er eine möglichst grosse Massenträgheit oder Stabilität, gegenüber der Kraftwirkung in Richtung 12 aufweist. Weiters ist die Formgebung so gestaltet, dass er gegenüber den Strömungsbewegungen in Richtung 7 und 8 weitgehend unempfindlich ist. Infolge dieser Bedingungen wird die Strömungskraft in Richtung 13, gemäss Aktion gleich Reaktion als Antriebskraft 14 für die Bewegung in Richtung 15 der Vorrichtung wirksam.The stabilizer 3 is now expediently designed such that it has the greatest possible inertia or stability with respect to the force effect in the direction 12. Furthermore, the shape is designed so that it is largely insensitive to the flow movements in the direction 7 and 8. As a result of these conditions, the flow force in direction 13, according to the action equal to reaction, becomes effective as driving force 14 for the movement in direction 15 of the device.
Dieser Wellenantrieb funktioniert, wie Versuche gezeigt haben, in beliebiger Richtung 15 der Vorrichtung zur Richtung 6 der Wellenbewegungen. Der Stabilisator 3 und die Flosse 1 weisen zweckmässig ein Gewicht, das gleich oder leicht geringer als das durch ihr Volumen verdrängtes Gewicht an Wasser ist, auf.As shown by tests, this shaft drive works in any direction 15 of the device for direction 6 of the shaft movements. The stabilizer 3 and the fin 1 expediently have a weight that is equal to or slightly less than the weight of water displaced by their volume.
In Fig 2 sind mehrere Flossen 16 über eine Halterung 17 mit einem gemeinsamen Stabilisator 18 verbunden, der an seinen Enden 19 und 20 massenintensive schwimmfähige Elemente 21 und 22 zur Erhöhung der Stabilität aufweist. Die mehrfache Hintereinanderschaltung der Flossen 16 hat den Vorteil, dass sich die vertikal nach oben und unten gerichteten Kraftkomponenten 23 und 24 gegenseitig teilweise aufheben und dadurch ein hoher Wirkungsgrad für die Antriebskraft erreichbar ist. Die Richtung 25 zeigt den Wellengang und die Richtung 26 die Fortbewegung der Vorrichtung an.In FIG. 2, several fins 16 are connected via a holder 17 to a common stabilizer 18, which at its ends 19 and 20 has mass-intensive floatable elements 21 and 22 to increase stability. The multiple connection of the fins 16 in series has the advantage that the vertically upward and downward force components 23 and 24 partially cancel each other, thereby achieving a high level of efficiency for the driving force. The direction 25 indicates the swell and the direction 26 the locomotion of the device.
In Fig 3 sind in der Ebene 28 eine Vielzahl von Flossen 27 neben und hintereinander in gleicher Antriebskraftwirkung, Richtung 29 zusammengeschaltet. Die einzelnen Flossen 27 sind über Halterungen 30 mit zwei schwimmfähigen Stabilisatoren 31 und 32 verbunden, die Lastkammern 33 bis 36 für die Erhöhung der Stabilität sowie zwei vertikale Ruder 37.38, die. für die Richtungssteuerung in Lagern 40,41 schwenkbar sind, aufweisen. Die gesamte Flossenfläche wird zweckmässig so dimensioniert, dass die Wellen im Durchlauf in Richtung 42 ihre Energie voll an die Flossen 27 abgeben, das heisst, dass nach dem Durchlauf der Flossen 37 praktisch keine Wellenbewegung mehr vorliegt. Die seitliche Höhe 43 der Stabilisatoren 31 und 32 wird möglichst kleingehalten, damit auch ein seitlicher Wellengang als Antriebsenergie nutzbar ist.In FIG. 3, a plurality of fins 27 are interconnected in the plane 28 next to and behind one another in the same driving force effect, direction 29. The individual fins 27 are connected via brackets 30 to two floating stabilizers 31 and 32, the load chambers 33 to 36 for increasing stability and two vertical rudders 37.38. are pivotable for directional control in bearings 40, 41. The entire fin surface is expediently dimensioned such that the waves in the passage 42 give their energy fully to the fins 27, that is to say that after the passage of the fins 37 there is practically no wave movement. The lateral height 43 of the stabilizers 31 and 32 is kept as small as possible so that a lateral swell can also be used as drive energy.
Die Fig 4 zeigt eine Welle 44 mit der Wellenlänge 9 und der Mittelachse 45.4 shows a shaft 44 with the wavelength 9 and the central axis 45.
In der Welle 44 bewegt sich jedes Wasserteilchen 46 senkrecht zur Fortpflanzungsrichtung 47 der Welle 44 . Bei einer Wassertiefe 48 von etwa der halben Wellenlänge 9 ist die Vertikalbewegung 49 fast völlig abgeklungen.In the shaft 44, each water particle 46 moves perpendicular to the direction of propagation 47 of the shaft 44. At a water depth 48 of approximately half the wavelength 9, the vertical movement 49 has almost completely subsided.
Ein wirksamer auf Strömungsbasis beruhender Stabilisator 50 ist deshalb vorteilhaft in einer Wassertiefe 51 grösser oder gleich ddr halben Wellenlänge 9 angeordnet.An effective flow-based stabilizer 50 is therefore advantageously arranged in a water depth 51 greater than or equal to half the wavelength 9.
Die antreibende Flosse 52 liegt vorteilhaft dicht unter der Mittelachse 45 der Welle 44 und ist über Streben 53 mit dem Stabilisator 50 verbunden. Damit die Vorrichtung sich stabil in Richtung 15 bewegt, ist der Stabilisator 50 mit einem Rumpf 54 und einem Leitwerk 55 ausgerüstet.The driving fin 52 is advantageously located close to the central axis 45 of the shaft 44 and is connected to the stabilizer 50 via struts 53. So that the device moves stably in direction 15, the stabilizer 50 is equipped with a fuselage 54 and a tail unit 55.
Dem Stabilisator 50 vorgelagert ist am Rumpf 54 ein Massenkörper 56 angeordnet. Der Schwerpunkt 57 der im Wasser ruhenden Vorrichtung liegt im Bereich 58 des Stabilisators 50. Für die seitliche Stabilitätserhöhung ist ein vertikales Schwert59 am Rumpf 54 im Bereich des Stabilisators 50 angeordnet.A mass body 56 is arranged in front of the stabilizer 50 on the fuselage 54. The center of gravity 57 of the device resting in the water lies in the area 58 of the stabilizer 50. A vertical sword 59 is arranged on the hull 54 in the area of the stabilizer 50 for increasing the lateral stability.
In Fig 5 sind die antreibenden Flossen 52 an einem Holm 60 befestigt und bilden zusammen eine antreibende Fläche 61, die über einen Körper 62, den Streben 63,64 und dem Rumpf 54 mit dem Stabilisator 50 verbunden ist. Unterhalb des Rumpfes 54 ist ein Schwert 59 und am Ende desselben ein .Leitwerk 55 angeordnet.5, the driving fins 52 are fastened to a spar 60 and together form a driving surface 61, which is connected to the stabilizer 50 via a body 62, the struts 63, 64 and the fuselage 54. A sword 59 is arranged below the fuselage 54 and a tail unit 55 is arranged at the end of the same.
Der Stabilisator 50 und das Leitwerk 55 sind mit Rudern 65,66, 67,68 ausgerüstet, die über nicht eingezeichnete Elemente mittels eines am Körper 62 angeordneten doppelten Hebels 69 steuerbar sind. Die Ruderwirkung ist von der Flugtechnik her bekannt und von ähnlicher Wirkung.The stabilizer 50 and the tail unit 55 are equipped with rudders 65, 66, 67, 68, which can be controlled via elements (not shown) by means of a double lever 69 arranged on the body 62. The rowing effect is known from flight technology and has a similar effect.
Der Körper 62 ist zweckmässig schwimmfähig ausgebildet, sodass die ganze Vorrichtung im ruhenden Wasser bis zum Niveau 70 eintaucht.The body 62 is expediently designed to float, so that the entire device is immersed in the still water up to level 70.
Der Abstand 71 zwischen der Fläche 61 und dem Stabilisator 50 ist verstellbar, damit auch in wenig tiefem Wasser gefahren werden kann. Zwecks dieser Verstellung sind die Streben 63,64 in denken 72,73,74,75 am Rumpf 54 und am Körper 62 befestigt. Die Verlängerung 76 der Strebe 64 durchtritt den Körper 62 in einem Schlitz 77 und ist mit einem Griff 78 ausgerüstet.The distance 71 between the surface 61 and the stabilizer 50 is adjustable so that it can also be used in shallow water. For the purpose of this adjustment, the struts 63, 64 in FIG. 72, 73, 74, 75 are fastened to the fuselage 54 and to the body 62. The extension 76 of the strut 64 passes through the body 62 in a slot 77 and is equipped with a handle 78.
In der Platte 79 und in der Verlängerung 77 sind Bohrungen 80 angeordnet, durch die ein Bolzen 8l steckbar ist. Durch Aenderung der Winkelstellung 82 der Verlängerung 76 ist somit der gewünschte Abstand 71 einstellbar. Am Körper 62 ist eine Lasche 83 angeordent, in der die Zugkraft der Vorrichtung auf andere nicht gezeigte schwimmfähige Körper übertragbar ist.Bores 80 are arranged in the plate 79 and in the extension 77, through which a bolt 8l can be inserted. The desired distance 71 can thus be set by changing the angular position 82 of the extension 76. A tab 83 is arranged on the body 62, in which the tensile force of the device can be transferred to other floatable bodies, not shown.
Im Normalfall liegt die Vorrichtung benützende Person im Wasser und hält sich am doppelten Hebel 69, der zugleich zur Steuerung der Vorrichtung dient, fest.Normally, the person using the device lies in the water and holds on to the double lever 69, which also serves to control the device.
Unter Welleneinwirkung bewegt sich die Vorrichtung bei normaler Steuerläge in Richtung 15. Ein Abbremsen der Vorrichtung ist durch das steuerungsmässige Ausfahren der Fläche 61 über das Niveau 70 möglich.Under the influence of waves, the device moves in the direction 15 at normal steering positions. Braking of the device is possible by the control-oriented extension of surface 61 above level 70.
Die Person kann auch liegend auf einem nicht gezeigten Schwimmkörper der über eine Leine an der Lasche 83 befestigt ist, die Vorrichtung bedienen.The person can also operate the device lying on a floating body, not shown, which is attached to the tab 83 via a line.
In Fig 6 ist eine im Bereich des Wellenganges liegende Flosse 84 über die Strebe 85 mit einem flächenartigen Stabilisator 86 ver bunden. Falls zumindest, die Flosse 84 oder der Stabilisator 86 ein Strömungsprofil 87 aufweisen, ist keine Elastizität oder Auslenkbarkeit der Flösse 84, des Stabilisators 86 oder Strebe 85 erforderlich. Der Antriebseffekt wird, durch einen relativ längeren Abströmteil 88 zum Anströmteil 89 erreicht. Ein ähnlicher Effekt wie eine zur Fortbewegungsachse 90 auslenkbare Flosse erzeugen hierbei die Abströmwinkel 91 und 92. Wird jedoch anstelle eines Strömungsprofils 87 eine nicht gezeigte annähernd gleich dick verlaufende Platte verwendet, so muss eine Auslenkbarkeit der Flosse 84 gegenüber dem Stabilisator 86 vorliegen.In Fig. 6, a fin 84 lying in the region of the swell is connected via the strut 85 with a flat stabilizer 86. If at least the fin 84 or the stabilizer 86 have a flow profile 87, no elasticity or deflectability of the fin 84, the stabilizer 86 or strut 85 is required. The drive effect is achieved by a relatively longer outflow part 88 to the inflow part 89. The outflow angles 91 and 92 produce a similar effect to a fin that can be deflected relative to the axis of movement 90. However, if a plate (not shown) of approximately the same thickness is used instead of a flow profile 87, the fin 84 must be able to be deflected relative to the stabilizer 86.
In Fig 7 ist die Flosse 84 über die Strebe 85 mit einem Stabilisator 86 verbunden. Der Aufriss der Flosse und des Stabilisators sind annähernd dreieckig, trapez-oder deltaflächig. Der Mittelteil 93 weist einen Antigϊjeistschutz auf und dient als Steh-oder Liegefläche für eine oder mehrere Personen, die je nach Fall sich in den Oeffnungen 9^ oder an den an der Flosse 84 befestigten Leinen 95 mit Griffen 96 festhalten.7, the fin 84 is connected to a stabilizer 86 via the strut 85. The outline of the fin and the stabilizer are approximately triangular, trapezoidal or delta-shaped. The middle part 93 has an anti-ice protection and serves as a standing or lying surface for one or more people who, depending on the case, are in the openings 9 or on the ones on the fin 84 hold fastened lines 95 with handles 96.
Entscheidend für einen befriedigenden Antriebseffekt ist, dass die gesamte Vorrichtung einschliesslich Personen keinen oder nureinen geringen Auftrieb erzeugt, sodass die Flosse 84 zumindestens von den Wellenbergen überflutet wird. Die Steuerung der Vorrichtung erfolgt über Gewichtsverlagerung der Bedienungsperson.It is crucial for a satisfactory drive effect that the entire device, including people, generates little or no lift, so that the fin 84 is at least flooded by the wave crests. The device is controlled by shifting the weight of the operator.
Die Fig 8 zeigt in perspektivischer Ansicht die unter Wellenwirkung bewegbaren Flossen 97 bis 106, die an den Stabilisatorenl07 und 108 befestigt sind. In einer relativ zu den Flossen 97 bis 106 höheren Lage ist ein Podest 109 über vertikale Streben 110 mit den Stabilisatoren 107 und 108 verbunden.FIG. 8 shows a perspective view of the fins 97 to 106 which can be moved under the action of waves and which are fastened to the stabilizers 107 and 108. In a position higher than the fins 97 to 106, a platform 109 is connected to the stabilizers 107 and 108 via vertical struts 110.
Die Auftriebsverhältnisse der Vorrichtung mit der Schwerkraftwirkung der Bedienungsperson sind über eine Pumpe 111 die über die Leitungen 112 bis 115 mit den Baiastkammern 116 bis 119 eine Verbindung aufweist durch zu-oder abpumpen von Flüssigkeit so steuerbar, dass die Stabilisatoren 107. 108 annähernd waagrecht bis zur Eintauchlinie 120 im Wasser liegen. In dieser Lage befindet sich das Podest 109 so weit über der Eintauchlinie 120, dass bei einem normalen Seegang die Wellen unter dem Podest 109 ohne d.essen Berührung durchlaufen können.The buoyancy conditions of the device with the gravitational effect of the operator can be controlled via a pump 111, which has a connection via lines 112 to 115 to the ballast chambers 116 to 119 by pumping in or pumping out liquid such that the stabilizers 107 . 108 lie almost horizontally up to the immersion line 120 in the water. In this position, the pedestal 109 is so far above the immersion line 120 that the waves can pass under the pedestal 109 in normal sea conditions without it touching it.
Das Podest 109 ist schwimmfähig ausgebildet, mit einer in Fahrtrichtung 121 gegen hohen Wellengang leicht hochgezogenen Nase 122, mit zwei Haltergriffen 123 und einer am Podestende 124 vertikal gelagerten über Fussbügel 125 steuerbarem Ruder 126 zur Beeinflussung der Fahrtrichtung 121.The platform 109 is designed to be floatable, with a nose 122 slightly raised in the direction of travel 121 against high swell, with two holder handles 123 and a rudder 126 which is vertically mounted on the platform end 124 and which can be controlled via the stirrups 125 to influence the direction of travel 121.
Die Flossen 99,102,105 sind in den Stabilisatoren 107,108 schwenkbar gelagert und mit einem Hebel 127 verbunden, dessen Stellung in einer Rasterplatte 128 fixierbar ist. Durch Schwenken des Hebels 127 können die Flossen 99,102,105 um den Winkel 129 verstellt werden. Damit wird eine Fahifeabbremsung erreicht. Jeder der beiden Stabilisatoren 107 und 108 weist unten ein vertikales Schwert 130 auf. Die Stabilisatoren 107,108 sind in Fahrtrichtung 121 dem Podest 109 vorgelagert und an der Spitze 131 mit einem Gummipuffer 132 gegen Verletzungen, sowie mit vertikalen Sichtflossen 133 ausgerüstet.The fins 99, 102, 105 are pivotally mounted in the stabilizers 107, 108 and connected to a lever 127, the position of which can be fixed in a grid plate 128. The fins 99, 102, 105 can be adjusted by the angle 129 by pivoting the lever 127. In this way, braking is achieved. Each of the two stabilizers 107 and 108 has a vertical sword 130 at the bottom. The stabilizers 107, 108 are upstream of the platform 109 in the direction of travel 121 and are equipped at the tip 131 with a rubber buffer 132 against injuries and with vertical viewing fins 133.
Der Querschnitt 134 der Stabilisatoren entspricht vorteilhaft einer schlanken stehenden Ellipse und der Querschnitt 135 der StrebenllO ist zweckmässig flossenärtig ausgebildet, damit die Strömungsverluste gering sind. Um eine möglichst stabile Lage zu erreichen, ist es angebracht, wenn die Streben 110 beim Eintauchen keinen oder nur einen geringen Auftrieb erzeugen.The cross-section 134 of the stabilizers advantageously corresponds to a slender standing ellipse and the cross-section 135 of the struts 10 is expediently finned so that the flow losses are low. In order to achieve a position that is as stable as possible, it is appropriate if the struts 110 generate little or no buoyancy when immersed.
Die Abmessungen des Podestes 109 sind zweckmässig so ausgelegt, dass mehrere Personen darauf platznehmen können.The dimensions of the platform 109 are expediently designed so that several people can sit on them.
In Fig 9 ist eine zumindest teilweise bieg-oder faltbare Flosse 136 an zwei gegenüberliegenden Enden 137,138 über zwei ungleich lange Verbindungen 139,140 an in Fahrtrichtung 121 liegenden Halterungen 141,142 geführt oder befestigt.In FIG. 9, an at least partially bendable or foldable fin 136 is guided or fastened at two opposite ends 137, 138 via two unequal connections 139, 140 to brackets 141, 142 lying in the direction of travel 121.
Die kürzere Verbindung 140 liegt in Fahrtrichtung 121 und kann zweckmässig auch entfernt sein, sodass das Ende 137 direkt an der Halterung 141 befestigt ist.The shorter connection 140 lies in the direction of travel 121 and can also be expediently removed, so that the end 137 is attached directly to the holder 141.
Unter der nach oben eingezeichneten Druckwirkung 143 wird die Flosse 136 zur Druckseite 144 hin kankav verformt und stellt sich in einen für die Anströmung günstigen Winkel 145.Under the pressure effect 143 drawn in upwards, the fin 136 is cankaved towards the pressure side 144 and is positioned at an angle 145 which is favorable for the inflow.
Der Ausschlag 146 der Flosse 136 ist durch Längenänderung der Verbindungen 139,140 oder durch Verschiebung der Halterungen 141, 142 auf der Achse 147 einstellbar .The deflection 146 of the fin 136 can be adjusted by changing the length of the connections 139, 140 or by moving the brackets 141, 142 on the axis 147.
Zur Erzeugung einer Vorspannung auf die Flosse 136 ist entweder die Flosse 136 selber oder die Verbindung 139,140 aus einem elastischen Material hergestellt..To generate a prestress on the fin 136, either the fin 136 itself or the connection 139, 140 is made of an elastic material.
Diese Ausführungsart ermöglicht es, die Vorrichtung mit einem möglichst geringen Aufwand trotz guter Antriebsleistung herzustellen. In Fig 10 sind an einem Stabilisator 148 der durch Trägheit oder durch seinen geringen Auftrieb so ausgebildet ist, dass er die Wellenbewegung möglichst nicht mitverfolgt, mehrere Flossen 149 befestigt, die den Schwimmkörper in Fahrtrichtung 121 antreiben. Die Energienutzung erfolgt über einen am Stabilisator 148 befestigten, durch die Strömung 150 über Turbinen 151 angetriebenen Motor 152. Die so abgenommene Energie wird entweder in einem Stabilisator 148 nicht gezeichneten Speicher zugeführt und gelegentlich entladen, oder über ein Seekabel 153 direkt weitergeleitet.This embodiment makes it possible to manufacture the device with as little effort as possible despite good drive power. In FIG. 10, a plurality of fins 149, which drive the floating body in the direction of travel 121, are fastened to a stabilizer 148, which is designed by inertia or by its low buoyancy in such a way that it does not follow the wave movement as far as possible. The energy is used via a motor 152 attached to the stabilizer 148 and driven by the flow 150 via turbines 151. The energy thus removed is either supplied to a stabilizer 148 (not shown) and occasionally discharged, or is passed on directly via a submarine cable 153.
In der Fig 11 sind mehrere Flossen 154 an einer endlosen kettenoder bandartigen Halterung 155 befestigt und umlaufen zwei Rollen 156,157, die an einem Support 158, der an einem Ende 159 einen schwimmfähigen Stabilisator 160 und am anderen Ende 161 einen im Boden 162 verankerten Lagerbock 163 aufweist. Infolge des Antriebseffektes bewegen sich die Flossen in Richtung 164 und geben über Rollen 156,157 und nicht gezeigte weitere Uebertragungselemente die Energie zu Verbrauchern weiter. Prinzipiell kann diese Vorrichtung auch an verankerten Flossen oder Schiffen befestigt werden.In FIG. 11, a plurality of fins 154 are fastened to an endless chain-like or belt-like holder 155 and run around two rollers 156, 157 which have a support 158 which has a floatable stabilizer 160 at one end 159 and a bearing block 163 anchored in the bottom 162 at the other end 161 . As a result of the drive effect, the fins move in the direction of 164 and pass on the energy to consumers via rollers 156, 157 and further transmission elements (not shown). In principle, this device can also be attached to anchored fins or ships.
In der Fig 12 bilden mehrere Flossen 165 mit ihrem Stabilisator 166 einen horizontal im Wasser liegenden Rotor 167 mit dem Drehpunkt 168. Die Wellenberge 169 und die Wellentäler 170 durchlaufen den Rotor 167 in Richtung 171. Da der Winkel der Richtung 171 des Wellenganges keinen Einfluss auf die Antriebsrichtung 172 der Flossen 165 haben, erzeugt jede Flosse 165 einen gleichsinnigen Dreheffekt dessen Energie nutzbar gemacht werden kann. Die Wellenlänge 9 hat hierbei praktisch keinen Einfluss auf den Antriebseffekt.In FIG. 12, several fins 165 with their stabilizer 166 form a rotor 167 lying horizontally in the water with the fulcrum 168. The wave crests 169 and the wave troughs 170 pass through the rotor 167 in the direction of 171. Since the angle of the direction 171 of the swell has no influence have the drive direction 172 of the fins 165, each fin 165 produces a rotation effect in the same direction whose energy can be harnessed. The wavelength 9 has practically no influence on the drive effect.
In Fig 13 bilden die Flossen 173 eine annähernd geschlossene Scheibe 174. Damit werden auch als Langsamläufer hohe Wirkungsgrade erreicht. In Fig 14 bilden die Antriebsflossen 173 eine Ringfläche 175. die über Halterungen 176 im Zentrum 177 verbunden sind. Diese Ausführung ist besonders für Grossanlagen interessant, da über elastische Verbindungen eine hohe Betriebssicherheit erreichba ist.In FIG. 13, the fins 173 form an approximately closed disc 174. This means that high efficiencies are also achieved as slow-running machines. In FIG. 14, the drive fins 173 form an annular surface 175 which are connected via brackets 176 in the center 177. This version is particularly interesting for large systems, since high operational reliability can be achieved via elastic connections.
In Fig 15 ist ein Wellenenergierotor 178 mit Flossen 173 und Stabilisator 179 zentral an einem fest im Boden 162 verankertem Stabilisator 180 an der Stelle 181 gelagert. Diese Anordnung eigent sich für Kleinkraftwerke. Die Verankerung könnte auch über dem Wasser, zum Beispiel an Bohrtürmen oder an entsprechend grossen Flossen oder Schiffen erfolgen. Die Energienutzung erfolgt dabei zweckmässig über die Drehmomentwirkung.In FIG. 15, a wave energy rotor 178 with fins 173 and stabilizer 179 is mounted centrally on a stabilizer 180 firmly anchored in the floor 162 at position 181. This arrangement is suitable for small power plants. It could also be anchored above the water, for example on derricks or on correspondingly large fins or ships. The energy is appropriately used via the torque effect.
In Fig 16 schwebt der Wellenenergierotor 182 infolge Auftrieb im Wasser. Die Eintauchtiefe 183 der Antriebsflossen 173 wird über eine seil-oder kettenartige Halterung 184, die an einem massenintensivem Stabilisator 185 am Boden 162 aufliegt, stabil gehalten. Zweckmässig ist die Länge 186 der Haltenng 184 mittels in einer Zentrale 187 angeordneten nicht gezeigten Vorrichtung verstellbar.In Fig. 16, the wave energy rotor 182 floats in the water due to buoyancy. The immersion depth 183 of the drive fins 173 is kept stable by means of a rope-like or chain-like holder 184, which rests on a mass-intensive stabilizer 185 on the bottom 162. The length 186 of the holder 184 is expediently adjustable by means of a device (not shown) arranged in a center 187.
Die Energieabnähme erfolgt über strömungsangetriebene MotorenThe energy consumption takes place via flow-driven motors
188 mit Turbinen 151, die unter den Flossen 173 an Halterungen188 with turbines 151 attached under the fins 173 to brackets
189 befestigt sind und mit den Flossen 173 ebenfalls eine Kreisbewegung ausführen. Die so gewonnene Energie wird über bekannte nicht gezeigte Elemente der Zentrale I87 zugeführt. Diese besteht aus einem rotierenden Teil 190 und einem in ihm gelagerten ruhenden Teil 191. Aus der Zentrale 187 wird die Energie über eine Leitung 191 abeführt. Diese Anordnung hat den Vorteil, dass die von den Flossen 173 aufgenommene Energie direkt in mitrotierende Motoren 188 eingeleitet wird. Damit ist ein zentral, wirkendes Gegendrehmoment überflüssig und es können in leichter Bauweise relativ grosse leistungsfähige Wellenenergierotoren erstellt werden. In Fig 17 weist der Wellenenergierotor 192 einen scheibenartigen Rotor 193 mit Antriebsflossen 173 und Motoren 188 auf. Der Rotor 193 ist in einer ruhenden Zentrale 194 gelagert und über einen Anker 195 mit dem Boden 162 verbunden. Am äusseren Ende 196 des Rotors 193 sind über Halterungen 197 höher gelegene, auftriebsfähige Stabilisatoren 198 befestigt, die ebenfalls als Flossen wirksam sind. Die über die Motoren 188 eingeleitete Energie wird über nicht gezeichnete Elemente über die Zentrale 194 und die Leitung 191 abgeführt. Ist der Wellengang in Richtung 171 so wird infolge des Wellenwiderstandes, der Wellenenergierotor 192 in die gleiche Richtung 171 verschoben, sodass der Anker 195 einen Winkel 199 einnimmt. In dieser Stellung kann der Anker 195 auch geringe Drehmomente, die in der Zentrale 187 durch die Rotorlagerung 200 oder durch Uebertragungselemente entstehen, aufnehmen. Zweckmässig ist die Halterung 197 für die Stabilisatoren 198 inbezug auf die Eintauchtiefe 183 verstellbar.189 are attached and also perform a circular movement with the fins 173. The energy obtained in this way is fed to the control center I87 via known elements (not shown). This consists of a rotating part 190 and a resting part 191 stored in it. The energy is removed from the control center 187 via a line 191. This arrangement has the advantage that the energy absorbed by the fins 173 is introduced directly into co-rotating motors 188. This means that a central, counter-torque is superfluous and relatively large, powerful wave energy rotors can be created in a lightweight design. 17, the wave energy rotor 192 has a disk-like rotor 193 with drive fins 173 and motors 188. The rotor 193 is mounted in a stationary center 194 and is connected to the base 162 via an armature 195. At the outer end 196 of the rotor 193, buoyant stabilizers 198, which are also effective as fins, are fastened via brackets 197. The energy introduced via the motors 188 is dissipated via elements (not shown) via the control center 194 and the line 191. If the waves are in direction 171, the wave energy rotor 192 is displaced in the same direction 171 as a result of the wave resistance, so that the armature 195 makes an angle 199. In this position, the armature 195 can also absorb small torques which arise in the control center 187 from the rotor bearing 200 or from transmission elements. The holder 197 for the stabilizers 198 is expediently adjustable with respect to the immersion depth 183.
In Fig 18 weist der Wellenenergierotor 201 am ruhenden Teil 202 der Zentrale 203 einen flächenartigen Stabilisator 204 auf. Die Zentrale 203 ist auftriebsfähig und die Eintauchtiefe 183 des Rotors 205 wird durch Veränderung einer Baiastkammer 206 geregelt. Der Schwerpunkt des ganzen Wellenenergierotors liegt vorteilhaft möglichst tief.In FIG. 18, the wave energy rotor 201 has a flat stabilizer 204 on the stationary part 202 of the control center 203. The center 203 is buoyant and the immersion depth 183 of the rotor 205 is regulated by changing a baiast chamber 206. The center of gravity of the whole wave energy rotor is advantageously as deep as possible.
In Fig 19 weist der Wellenenergierotor 207 mehrere regelbare Auftriebskammern 208,209,210 auf, die über Halterungen 211,212 am Rotor 213 und in der Zentrale 214 angeordnet sind. Die Auftriebskammern 208,209,210 sind dabei so bemessen, dass es wie gezeigt möglich ist, den gesamten Rotor 213 über die Wasseroberfläche 5 zu heben. In dieser Stellung ist kein Antriebseffekt wirksam und es können relativ einfach Unterhaltsarbeiten vorgenommen werden.In FIG. 19, the wave energy rotor 207 has a plurality of controllable buoyancy chambers 208, 209, 210, which are arranged on the rotor 213 and in the center 214 via holders 211, 212. The buoyancy chambers 208, 209, 210 are dimensioned such that, as shown, it is possible to lift the entire rotor 213 above the water surface 5. In this position there is no drive effect and maintenance work can be carried out relatively easily.
In der Fig 20 sind mehrere Flossen 215 über die Halterungen 216,217 mit einem tiefer liegenden flächenartigen Stabilisator 218 und über die Halterungen 219 mit einem höher liegenden Stabilisator 220 sowie über die Halterung 221 und dem Flächenkδrper 222 mit über Turbinen 223 angetriebene Motoren 224 verbunden. Am Flächenkörper 222 sind vertikal nach unten gestellte steuerbare Ruder 225 befestigt. Die Antriebsflossen 215 und der Stabilisator 218 sind über die Halterungen 216 und die Streben 226,227 mit der Zentrale 228 bestehend aus einem mitrotierendem Teil 229, mit Generator 230, Schaltzentrale 231, Landedeck 232, Einsteiglucke 233 und ruhendem Teil 234 mit Lager 235 verbundenIn FIG. 20 there are several fins 215 via the holders 216, 217 with a lower surface-like stabilizer 218 and connected via the brackets 219 to a higher-level stabilizer 220 and via the bracket 221 and the surface body 222 with motors 224 driven by turbines 223. Controllable rudders 225 which are set vertically downward are fastened to the surface body 222. The drive fins 215 and the stabilizer 218 are connected via the brackets 216 and the struts 226, 227 to the control center 228 consisting of a rotating part 229, with generator 230, control center 231, landing deck 232, access hatch 233 and resting part 234 with bearing 235
Der ruhende Teil 234 weist einen Support 236, mit im Lager 327 über einen nicht gezeigten Motor und Steuerung, angetriebene, schwenkbare Schiffsschraube 238, sowie eine Ankerwinde 239 und Seekabelwinde 240 auf. Ebenfalls im ruhenden Teil 234 angeordnet sind ein Energieübertragungselement 241 und regelbare Balastkammern 242, 243. Für die bessere Manöverierbarkeit ist auch ein Schwert 244 mit einem Ruder 245 auf Teil 234 befestigt. Regelbare Baiastkammern 246 weist auch der Stabilisator 218 auf. Die über zweckmässig mehrere Motoren 224 aufgenommene Energie wird über Energieleiter 247 einem zentralen mitrotierendem Generator 230 zugeführt und über das Energieübertragungelement 24l dem Seekabel 191 weitergeleitet.The resting part 234 has a support 236, with a swiveling propeller 238 driven in the bearing 327 via a motor and control, not shown, as well as an anchor winch 239 and submarine cable winch 240. Also arranged in the stationary part 234 are an energy transmission element 241 and controllable ballast chambers 242, 243. For better maneuverability, a sword 244 with a rudder 245 is also attached to part 234. The stabilizer 218 also has adjustable ballast chambers 246. The energy absorbed via expediently a plurality of motors 224 is fed to a central co-rotating generator 230 via energy conductors 247 and passed on to the submarine cable 191 via the energy transmission element 24l.
Die antreibbare Schiffsschraube 238, kann je nach Stellung zum Drehmomentausgleich der Reibungskräfte oder als Fortbewegungsantrieb bei wellenloser See dienen. Herrscht ein Wellengang, so kann eine Fortbewegung der ganzen Einehit auch über den Antriebseffekt der vertikalen Ruder 225 erfolgen. Diese werden dann in Abhängigkeit der Rotordrehung im Winkel zu ihrer Kreistangente jeweils verstellt. Die Zugänglichkeit zum Teil 234 erfolgt über Oeffnungen 248,249,250. Wellenenergierotoren dieser Bauart weisen zweckmässig einen Durchmesser 251 von mehreren hundert Metern auf.The drivable propeller 238, depending on the position, can be used for torque compensation of the frictional forces or as a propulsion drive in a wave-free sea. If there is a swell, the entire unit can also move using the drive effect of the vertical rudders 225. These are then adjusted depending on the rotor rotation at an angle to their tangent to the circle. Access to part 234 is via openings 248, 249, 250. Wave energy rotors of this type expediently have a diameter 251 of several hundred meters.
In der Fig 21 bilden die Flossen 215 mit ihren Halterungen 216 und dem darunter liegenden Stabilisator 218, ein Segment 252, das mit anderen teilweise gezeichneten Segmenten 253,254 eine Ringfläche bildet. An einzelnen Segmenten 252 sind über strömungsmässig günstig ausgelegte Flächenkörper 222 mit Turbinen 223 angetriebene Motoren 224 befestigt. Für die Regelung der Eintauchtiefe des Rotors und für das schnelle Untertauchen bei Sturm weist der Flächenkörper 222 ein steuerbares Ruder 255 auf. Die Fixierung der Segmente 252 zur Zentrale erfolgt über die Streben 226,227. Uber die Halterung 219 ist ein auftriebsfähiger Stabilisator 220 befestigt, der ebenfalls als Antrieb nutzbar ist. 21, the fins 215 form with their holders 216 and the underlying stabilizer 218, a segment 252, which forms an annular surface with other partially drawn segments 253, 254. Motors 224 which are driven by turbines 223 are fastened to individual segments 252 via flat bodies 222 which are designed to be favorable in terms of flow. The flat body 222 has a controllable rudder 255 for regulating the immersion depth of the rotor and for rapid submersion in a storm. The segments 252 are fixed to the center via the struts 226, 227. A buoyant stabilizer 220 is attached via the bracket 219 and can also be used as a drive.

Claims

Patentanpsrüche: Claims:
1. Vorrichtung zur Erzeugung eines Fortbewegungsantriebes durch Nutzung der Wellenenergie in Seen und Meeren, dadurch gekennzeichnet, dass eine überflutbare annähernd horizontal im Wasser liegende Flosse (1,16,27,52,84,97, 136,149,154,165,173,215) mit einem Stabilisator (3,18, 31,32,50,86,107,148,160,185,198,218,220) verbunden ist, der die Wellenbewegung nicht oder nur in einem stark vermindertem Masse mitverfolgt.1.Device for generating a propulsion system by using the wave energy in lakes and seas, characterized in that a floodable fin lying approximately horizontally in the water (1,16,27,52,84,97, 136,149,154,165,173,215) with a stabilizer (3,18 , 31,32,50,86,107,148,160,185,198,218,220), which does not follow the wave movement or only to a greatly reduced extent.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Flosse (l,l6,13δ) zur Fortbewegungsachse (90) durch eigene Elastizität oder durch entsprechende Lagerung anströmseitig keine oder eine geringere Auslenkbarkeit aufweist als abströmseitig.2. Device according to claim 1, characterized in that the fin (l, l6, 13δ) to the locomotion axis (90) has no or less deflectability on the inflow side than its outflow side due to its own elasticity or by corresponding storage.
3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass die Auslenkbarkeit der Flosse (99,102,105,136) steuer- oder regelbar ist.3. Device according to claim 2, characterized in that the deflectability of the fin (99, 102, 105, 136) can be controlled or regulated.
4. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass quer zur Fortbewegungsachse mehrere unterteilte Flossen (27,215) angeordnet sind.4. The device according to claim 1, characterized in that a plurality of divided fins (27, 215) are arranged transversely to the axis of locomotion.
5. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass das von der Flosse verdrängte Flüssigkeitsgewicht annähernd gleich dem Eigengewicht der Flosse entspricht. 5. The device according to claim 1, characterized in that the liquid weight displaced by the fin corresponds approximately to the dead weight of the fin.
6. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die gesamte Vorrichtung kein oder nur ein geringer Auftrieb erzeugt.6. The device according to claim 1, characterized in that the entire device generates little or no lift.
7. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Stabilisator (18,31,32, 107,108) aislänglicher im Wasser schwebender überflutbarer Körper ohne oder mit geringem Auftrieb ausgebildet ist und einen Eintauchquerschnitt kleiner des Eintauchquerschnittes aller Flossen (16,27,97 bis 106) aufweist.7. The device according to claim 1, characterized in that the stabilizer (18, 31, 32, 107, 108) is formed as an oblong floodable body floating in the water without or with little buoyancy and an immersion cross section smaller than the immersion cross section of all fins (16, 27, 97 to 106).
8. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Stabilisator (50,86,204,218) flächenartig ist und unter der Flosse (52, 84, 215) liegt.8. The device according to claim 1, characterized in that the stabilizer (50,86,204,218) is flat and is located under the fin (52, 84, 215).
9. Vorrichtung nach Anspruch 1 und 8, dadurch gekennzeichnet, dass die Flosse (136) und oder der Stabilisator aus einem faltbaren Material erstellt ist.9. The device according to claim 1 and 8, characterized in that the fin (136) and or the stabilizer is made of a foldable material.
10. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Stabilisator (17,107,108) mit einem vertikal stehenden Schwert (59,130) in Verbindung steht.10. The device according to claim 1, characterized in that the stabilizer (17,107,108) with a vertically standing sword (59,130) is connected.
11. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass die Flosse (84) und oder der Stabilisator (86) einen trapez-oder dreiecksähnlichen Aufriss aufweisen.11. The device according to claim 8, characterized in that the fin (84) and or the stabilizer (86) have a trapezoidal or triangular-like elevation.
12. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Stabilisator (31,32,107,108) mit regelbaren Balastoder Auftriebskammern (33 bis 36, 116 bis 119, 208 bis 210, 246) verbunden ist. 12. The device according to claim 1, characterized in that the stabilizer (31,32,107,108) with adjustable balast or buoyancy chambers (33 to 36, 116 to 119, 208 to 210, 246) is connected.
13. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass der Abstand zwischen der Flosse (52) und dem Stabilisator (57) verstellbar ist.13. The apparatus according to claim 8, characterized in that the distance between the fin (52) and the stabilizer (57) is adjustable.
14. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Stabilisator oder die Flosse Verbindungen mit Rudern (65,67,68,255) zur Steuerung oder Regelung des Tiefganges aufweisen.14. The apparatus according to claim 1, characterized in that the stabilizer or the fin have connections with rudders (65,67,68,255) for controlling or regulating the draft.
15. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Stabilisator (107,108) mit einem Podest (109) in Verbindung steht das relativ zur Flosse (97 bis 106) in einer höheren Lage über der Eintauchlinie (120) angeordnet ist.15. The device according to claim 1, characterized in that the stabilizer (107, 108) is connected to a platform (109) which is arranged relative to the fin (97 to 106) in a higher position above the immersion line (120).
16. Vorrichtung nach Anspruch 15, dadurch gekennzeichnet, dass das Podest als Notschwimmkörper ausgebildet ist.16. The apparatus according to claim 15, characterized in that the platform is designed as an emergency float.
17. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Flosse (149, 173, 215) in Fortbewegungsachse kraftschlüssig mit Motoren (152,188,224) die durch die relative Strömung angetrieben werden, verbunden sind.17. The apparatus according to claim 1, characterized in that the fin (149, 173, 215) are non-positively connected in the movement axis with motors (152, 188, 224) which are driven by the relative flow.
18. Vorrichtung nach Anspruch 17, dadurch gekennzeichnet, dass die Motoren direkt oder indirekt Elektrogeneratoren (230) antreiben.18. The apparatus according to claim 17, characterized in that the motors drive electric generators (230) directly or indirectly.
19. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Fortbewegung der Flossen in eine wiederkehrende Bahn eingeleitet wird.19. The apparatus according to claim 1, characterized in that the locomotion of the fins is initiated in a recurring path.
20. Vorrichtung nach Anspruch 19, dadurch gekennzeichnet, dass die Flossen (165) eine horizontale Kreisbahn durchlaufen. 20. The apparatus according to claim 19, characterized in that the fins (165) run through a horizontal circular path.
21. Vorrichtung nach Anspruch 19, dadurch gekennzeichnet, dass die Flossen mit ihren Verbindungen annähernd eine Ringfläche (175) bilden.21. The apparatus according to claim 19, characterized in that the fins with their connections form approximately an annular surface (175).
22. Vorrichtung nach Anspruch 19 und 20, dadurch gekennzeichnet, dass die Flossen mit ihren Verbindungen annähernd eine Scheibe (174) bilden.22. The apparatus of claim 19 and 20, characterized in that the fins with their connections form approximately a disc (174).
23. Vorrichtung nach Anspruch 19, dadurch gekennzeichnet, dass die Kreisbahn durch Bildung eines im Wasser schwebenden Rotors (167,193,205,213) mit vertikaler Drehachse erreicht wird.23. The device according to claim 19, characterized in that the circular path is achieved by forming a rotor (167, 193, 205, 213) floating in the water with a vertical axis of rotation.
24. Vorrichtung nach Anspruch 19 und 23, dadurch gekennzeichnet, dass der Rotor im Zentrum eine Zentrale (228) mit einem ruhenden Teil (234) und einem rotierenden Teil (229) aufweist.24. The device according to claim 19 and 23, characterized in that the rotor in the center has a center (228) with a stationary part (234) and a rotating part (229).
25. Vorrichtung nach Anspruch 19 und 23, dadruch gekennzeichnet, dass schwimmfähige Stabilisatoren (198) über den Flossen (173) angeordnet sind.25. The apparatus of claim 19 and 23, characterized in that floatable stabilizers (198) are arranged over the fins (173).
26. Vorrichtung nach Anspruch 19 und 23, dadurch gekennzeichnet, dass der schwebende Rotor (193) eine ketten-oder seilartige Verbindung zu einem Anker (195) aufweist. 26. The device according to claim 19 and 23, characterized in that the floating rotor (193) has a chain-like or rope-like connection to an anchor (195).
EP80900295A 1979-02-09 1980-08-25 Device for exploiting the wave energy of lakes and seas Withdrawn EP0023501A1 (en)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
CH126279 1979-02-09
CH1262/79 1979-02-09
CH296279 1979-03-28
CH2962/79 1979-03-28
CH452979 1979-05-16
CH4529/79 1979-05-16
CH6715/79 1979-07-19
CH671579 1979-07-19
CH36680 1980-01-17
CH366/80 1980-01-17

Publications (1)

Publication Number Publication Date
EP0023501A1 true EP0023501A1 (en) 1981-02-11

Family

ID=27508822

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80900295A Withdrawn EP0023501A1 (en) 1979-02-09 1980-08-25 Device for exploiting the wave energy of lakes and seas

Country Status (2)

Country Link
EP (1) EP0023501A1 (en)
WO (1) WO1980001674A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO812789L (en) * 1980-08-27 1982-03-01 Chaplin R V DEVICE FOR EXPLOITATION OF BULK ENERGY.
FR2530296A1 (en) * 1982-07-16 1984-01-20 Avez Jacques Driven appliance for transforming the energy of a fluid propelled by a translational movement into a rotary movement of a shaft
US4404490A (en) * 1983-09-12 1983-09-13 Taylor George W Power generation from waves near the surface of bodies of water
ZA87512B (en) * 1986-01-24 1987-09-30 Helmsville Pty Ltd Wave energy devices
GB9804770D0 (en) 1998-03-07 1998-04-29 Engineering Business Ltd Apparatus for extracting power from moving water
EP2350450A2 (en) 2008-10-29 2011-08-03 Inventua APS Rotating apparatus
DE102011105170A1 (en) * 2011-06-17 2012-12-20 Robert Bosch Gmbh Wave energy converter and method of operating a wave energy converter
DE102011105178A1 (en) * 2011-06-17 2012-12-20 Robert Bosch Gmbh Wave energy converter and method for operating a wave energy converter
GB201514901D0 (en) * 2015-08-21 2015-10-07 Cetus Technology Ltd Device for linear propulsion
US10514019B2 (en) 2016-07-26 2019-12-24 Gaynor Dayson Floating piezoelectric assembly for generating energy from waves
GB2612792B (en) 2021-11-10 2024-06-12 Autonomous Devices Ltd Wave-propelled vehicles

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR390576A (en) * 1907-07-05 1908-10-09 Charles Godfrey Roehr Apparatus for using the ripples and the ebb and flow movements of a body or stream of water, for the production of motive force
US2021815A (en) * 1934-09-06 1935-11-19 Ray D Strout Marine propulsion
FR1240326A (en) * 1958-11-12 1960-09-02 Device associated with the hull of a ship and using the movements of pitch and roll to propel the ship and to dampen these movements
FR1540022A (en) * 1967-09-06 1968-09-20 Organ and propulsion system with flexible fins for vehicles navigating in water
GB1504104A (en) * 1976-05-26 1978-03-15 Pitzer H Generating station for the production of power from marine currents in particular tidal currents

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8001674A1 *

Also Published As

Publication number Publication date
WO1980001674A1 (en) 1980-08-21

Similar Documents

Publication Publication Date Title
DE69630218T2 (en) SPIRAL TURBINE FOR GENERATING ELECTRICAL OR DRIVE ENERGY
DE60014071T2 (en) ONE SLEEVE NEARBY WATER SPREAD TURBINE
DE60131072T2 (en) FLOATING OFFSHORE WIND POWER PLANT
EP1966485B1 (en) Device and system for producing regenerative and renewable hydraulic energy
DE10256864B4 (en) Hydropower plant
DE2933907A1 (en) PLANT FOR TAKING ELECTRICAL ENERGY FROM FLOWING WATERS AND TURBINE UNIT FOR SUCH A PLANT
EP0077914A1 (en) Wind power plant with at least one rotating blade
EP0023501A1 (en) Device for exploiting the wave energy of lakes and seas
DE102005040808A1 (en) Floating offshore wind energy system stabilization device, has regulating-and control device with components for operation of damping process and for generating power production management for utilization of energy of sea current, at board
DE19744174A1 (en) Air flow converter for generating electrical energy without harmful substances on ocean
DE19629417C2 (en) Process and suspended energy converter for the use of flow energy
DE4112730C2 (en) Device for the generation of electric current by hydropower
EP0045353A1 (en) Electric-energy producing device powered by seawater movement
DE202017002323U1 (en) Device for generating energy
DE60010268T2 (en) HYDRO ENERGY CONVERTER
WO2013017213A1 (en) Hydroelectric power plant
DE102005040797A1 (en) Floating carrier base for offshore-wind power plant, has floating body engaged to ocean current by change of adjustment angle of another body, such that ocean current exerts force for correcting inclination position of system components
DE3508780A1 (en) Device for obtaining useful energy by utilising the vertical lift of water waves
EP0193624A1 (en) Wind power propulsion
DE10302203A1 (en) Mobile flowing water power unit has flow channel through the belly of a ship to drive a water wheel
DE202008011923U1 (en) Power generator for water courses with water level adjustment
DE3627130A1 (en) Bladed wheel having automatically pivoting blades of different shapes
DE3303547A1 (en) Wind power unit
DE2723147A1 (en) POWER PLANT TO USE THE ENERGY FROM SEA CURRENTS, IN PARTICULAR TIDAL CURRENTS
DE66844C (en) Rudder device for watercraft and for aircraft

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): FR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19810219