EP0021944A1 - Nouveau système de pilotage de missile et missile piloté - Google Patents

Nouveau système de pilotage de missile et missile piloté Download PDF

Info

Publication number
EP0021944A1
EP0021944A1 EP80400837A EP80400837A EP0021944A1 EP 0021944 A1 EP0021944 A1 EP 0021944A1 EP 80400837 A EP80400837 A EP 80400837A EP 80400837 A EP80400837 A EP 80400837A EP 0021944 A1 EP0021944 A1 EP 0021944A1
Authority
EP
European Patent Office
Prior art keywords
missile
piloting
orders
actuators
remote control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP80400837A
Other languages
German (de)
English (en)
Inventor
Philippe Ottenheimer
Pierre Haon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0021944A1 publication Critical patent/EP0021944A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/20Direction control systems for self-propelled missiles based on continuous observation of target position
    • F41G7/30Command link guidance systems

Definitions

  • the present invention relates to a new missile piloting system, more particularly applicable to a remote-controlled missile. It also relates to the missile produced for this piloting system.
  • the guidance function calculates the lateral accelerations that the missile must execute and the piloting function concerns the execution of these orders by the missile.
  • the guidance orders will relate to the controlled lateral accelerations and the steering orders will relate to the actuator position orders.
  • an actuator is called any on-board mechanical device, the control of which makes it possible to vary the forces exerted on the missile.
  • Actuators are for example aerodynamic control surfaces acting with amplification, that is to say placed at the front or at the rear of the missile, or acting without aerodynamic amplification if they are placed in the vicinity of the center of gravity; they are also gas jets perpendicular to the axis of the missile and located either at the front or at the rear, also acting with amplification or propulsion jet deflection systems.
  • the invention relates to piloting the missile, and in this context, a piloting system in which the lateral acceleration which causes the center of gravity of the missile to evolve has a totally or partially aerodynamic origin, that is to say results from the action of the relative speed of the surrounding air. These accelerations are controlled by means of the actuators described above.
  • FIG. 1 represents, under the prior art, the block diagram of a missile piloting system which will be called conventional with a guidance part and which comprises on board the missile an automatic pilot, performing the comparison of the orders defining the desired movement of the missile and the movement executed by it, measured by feelers. The error determined by this comparison makes it possible to correct the order which has been given to the missile.
  • a missile piloting and guidance system of the prior art then comprises a part situated on the ground and a part placed on board, the automatic pilot. On the ground, we find in 1, a device responsible for developing the gap existing between the missile's trajectory and the theoretical trajectory that it should follow according to the guidance method adopted, in general guidance by alignment. This deviation device is followed by a computer 2 which determines the guidance orders for acceleration, yaw and pitch, which supplies a remote control transmitter 3 with a transmit antenna 4.
  • the yaw control chain C1 is constituted by a loop comprising a motor 7 with its power supply, controlling the yaw actuator; in 8 we find the response of the missile actuator driven by the motor 7, in 9 the symbolization of the transfer function of the missile cell delivering in 10 and 11 respectively the yaw angular speed information of the missile and d lateral yaw acceleration performed by the missile. This information is applied respectively to a gyrometer 13 and to an accelerometer 14, associated with corrective networks 16 and 17 of the feedback and speed feedback loops.
  • the response 8 of the missile actuator is measured by a sensor 12 followed by a corrector network 15 of the feedback loop in position.
  • the yaw loop which has just been described is connected to the output of the receiver 6 by an adder-subtractor member 18.
  • certain systems comprise only one of the two gyrometric or accelerometric loops.
  • the pitch loop C2 identical to the lace loop Cl which has just been described, is connected to the output of the receiver 6 by the adder-subtractor member 181. All the other constituent circuits of the loop C2 bear the same references as the corresponding circuits of the CI loop but assigned the sign one.
  • the aim is to define a missile piloting system which does not include an on-board automatic pilot.
  • the construction of this missile is therefore simplified, its development is easier and therefore the costs are reduced.
  • the system for piloting a missile by controlling actuators arranged on the missile having on board at least one remote control receiver and possibly a command distributor is characterized in that it comprises a part on the ground comprising a computer issuing the orders for positioning the actuators of the missile, powered by a computer for guidance orders and a remote control transmitter transmitting the piloting orders to the missile and a part on board the missile comprising a receiver remote control, controlling directly or through an order distributor, the devices for applying piloting orders to the missile actuators.
  • FIG. 2 represents a control system according to the invention. It comprises a part on the ground I comprising at 1 a circuit for developing the deviations of the missile with respect to the theoretical trajectory which it must follow, at 2, a computer for yaw and pitch guidance orders, in acceleration, connected to the deviation circuit. This circuit and the guidance computer are not part of the invention. This guidance computer is connected to a computer 19 developing the piloting orders by which the actuators of the missile in question are placed in the appropriate position.
  • the piloting orders which have to control the actuators are transmitted to a remote control transmitter 3 equipped with an antenna 4.
  • the part of the piloting system placed on board the missile II comprises a reception remote control antenna 5 connected to a remote control receiver 6.
  • the remote control receiver is connected to a circuit 20 called coordinate transformer and order distributor which is connected to a roll gyroscope 31, taking into account the roll of the missile when the latter is not stabilized in roll.
  • the order distributor 20 are connected respectively by means of circuits 27 and 28 of subtraction, circuits 21 and 22 for controlling the missile actuators, commands developed on the ground in circuit 19 as has been said.
  • the responses of the actuators are collected, which are on the one hand returned to a correction network 25-26 of feedback loops which close on the subtraction circuits 27-28 and on the other hand to circuits 29 and 30 representing the transfer, yaw and pitch functions of the missile.
  • the operation of the control system in FIG. 2 is as follows.
  • the deviation measurements are carried out by circuit 1 and the computer 2 determines from the measured deviations the yaw and pitch guidance orders in the form of acceleration commands which are transformed in the computer 19 in piloting orders.
  • the computer 19 has all the data necessary to calculate with sufficient accuracy the positions to be given to the actuators which will make it possible to execute the desired acceleration orders.
  • These initial data may include, as appropriate, the thrust profile of the missile's thrusters, the characteristics of the atmosphere (pressure, temperature, wind) and its aerodynamic parameters, its mass, its inertias as a function of time, the variation of its center of gravity and actuator transfer functions.
  • the computer 19 which can be a microprocessor suitably programmed according to the flight equations of the missile.
  • the computer 2 for guidance orders in the case for example of guidance in alignment, operates on the basis of angular deviation data measured in circuit 1, of the angular velocities in elevation and in bearing of the line of sight provided by a gyroscopic box, the reduction correction due to gravity and the distance of the missile measured or calculated from its speed profile stored in memory.
  • the command or commanded acceleration order, issued by the computer 2 is transformed by the computer 19 an steering angle of the control surfaces for example, yaw and depth, calculated in a system of axes independent of the roll of the missile.
  • These steering control orders are sent to the missile via the remote control assembly 3 and its antenna 4, where they are received by the reception antenna 5 connected to the remote control receiver 6.
  • the remote control transmitter transmits, for example on a carrier of the order of 1000 MHz, a repetitive message comprising the address of the missile and the various orders to be sent to it.
  • the transmitter on the ground is not assigned to a single missile, and in the overall weapon system to which the present invention relates, a certain number of missiles can be launched simultaneously and it must be possible to distinguish them.
  • the orders sent include those for turning the control surfaces when the missile is equipped with such control surfaces or more generally orders for positioning the actuators, this term covering, as has already been recalled, any mechanical device acting to exert a mechanical force. from a control signal, generally of low level, intended to communicate to the missile the load factor ordered, orders of remote destruction, etc. These orders are usually sent in the form of binary words.
  • Control orders for steering the control surfaces are received by the remote control receiver 5 which transmits them to the circuit 20 known as the coordinate transformer and the order distributor also connected to a circuit 31 which is a roll gyroscope.
  • the orders are calculated independently of the roll, on the ground, that is to say in a system of axes linked to the ground.
  • the steering control orders are applied respectively to circuits 21 and 22 by the command distributor 20 which is a computer carrying out the change of axes necessary to pass from the axes on the ground to the axes of the missile.
  • the circuits 21 and 22 group together, for the sake of simplification, the yaw and pitch control motors, with their power supply, amplifiers and a power stage. These motors are mounted in a feedback loop, comprising a corrector network 25-26 and a subtraction circuit 27-28 allowing the control of the correct execution of the order.
  • These yaw and pitch control commands appear in ⁇ l and ⁇ t.
  • FIG. 3 represents the piloting system according to the invention, in the case of a missile stabilized in roll.
  • the ground part I is identical to that of FIG. 2; only the part on board II of the missile is simplified, the elements 20, coordinate transformer and distributor of orders and 31, roll gyroscope being eliminated.
  • on board there will be, although it is not part of the invention, a roll stabilizing device which will not be described, forming part of the known art. In Figure 3 it is simply indicated by the reference 32.
  • FIG. 4 represents an example of a missile piloted by the system according to the invention and which, compared with known missiles, does not have an automatic pilot, which simplifies its design.
  • the proximity rocket 34 In the front part 33 of the missile are the proximity rocket 34, the control surfaces 35 with their motor 36; in the next part 37, there is the remote control receiver 38, the command distributor 39, the roll gyroscope 31 and a reservoir of electrical energy 40.
  • part 41 is the military charge, in parts 42 and 43, the propulsion devices and in part 44 the rear wing which can incorporate the aerial of the remote control receiver.
  • the relative arrangement of the various components of the missile shown in FIG. 4 is not linked to the invention. It simply results from a balancing of the masses of the components, specific to the architecture of a specific example ensuring the flight stability of this missile.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

Système de pilotage de missile, guidé par alignement. Comporte au sol, un calculateur (19) des ordres de pilotage et à bord, un distributeur (20) des ordres de pilotage aux circuits de commande (21-22) des actuateurs du missile, montés en contre-réaction. Application aux systèmes d'armes.

Description

  • La présente invention concerne un nouveau système de pilotage de missile, plus particulièrement applicable à un missile télécommandé. Elle concerne également le missile réalisé justiciable de ce système de pilotage.
  • Un certain nombre d'opérations sont nécessaires pour amener un missile qui a été lancé, sans que l'on précise encore les modalités de ce lancement, à remplir sa mission, c'est-à-dire atteindre le but sur lequel il doit agir ou tout au moins s'en rapprocher de façon suffisante pour que sa destruction soit assurée dans les meilleures conditions.
  • Dans les opérations qui consistent à amener le missile de son point de lancement au but, on distingue celles qui relèvent du guidage et celles qui relèvent du pilotage.
  • Par définition, la fonction guidage calcule les accélérations latérales que doit exécuter le missile et la fonction pilotage concerne l'exécution de ces ordres par le missile. Dans la suite de la description, les ordres de guidage seront relatifs aux accélérations latérales commandées et les ordres de pilotage seront relatifs aux ordres de position des actuateurs.
  • On peut préciser également que, dans le cadre de l'invention, on appelle actuateur tout dispositif mécanique embarqué, dont la commande permet de faire varier les forces exercées sur le missile. Des actuateurs sont par exemple des gouvernes aérodynamiques agissant avec amplification, c'est-à-dire placées à l'avant ou à l'arrière du missile, ou agissant sans amplification aérodynamique s'ils sont placés au voisinage du centre de gravité ; ce sont aussi des jets de gaz perpendiculaires à l'axe du missile et situés soit à l'avant, soit à l'arrière, agissant également avec amplification ou des systèmes de déviation de jets de propulsion.
  • L'invention concerne le pilotage du missile, et dans ce cadre, un système de pilotage dans lequel l'accélération latérale qui fait évoluer le centre de gravité du missile a une origine totalement ou partiellement aérodynamique, c'est-à-dire résulte de l'action de la vitesse relative de l'air environnant. Ces accélérations sont commandées au moyen des actuateurs précédemment décrits.
  • La figure 1 représente au titre de l'art antérieur, le bloc diagramme d'un système de pilotage de missile que l'on appellera classique avec une partie guidage et qui comporte à bord du missile un pilote automatique, effectuant la comparaison des ordres définissant le mouvement désiré du missile et le mouvement exécuté par lui, mesuré par des eapteurs. L'erreur déterminée par cette comparaison permet de corriger l'ordre qui a été donné au missile. Un système de pilotage de missile et de guidage de l'art antérieur comporte alors une partie située au sol et une partie placée à bord, le pilote automatique. Au sol, on trouve en 1, un dispositif chargé d'élaborer l'écart existant entre la tràjectoire du missile et la trajectoire théorique qu'il devrait suivre suivant le mode de guidage adopté, en général le guidage par alignement. Ce dispositif d'élaboration des écarts est suivi par un calculateur 2 qui détermine les ordres de guidage en accélération, en lacet et en tangage, qui alimente un émetteur 3 de télécommande avec une antenne d'émission 4.
  • A bord du missile, on trouve le pilote automatique recevant les commandes du sol par une antenne 5 de télécommande réception, connectée à un récepteur de télécommande 6. A ce récepteur sont connectées deux chaînes de pilotage en lacet et en tangage respectivement, CI et C2. La chaîne de pilotage en lacet Cl est constituée par une boucle comportant un moteur 7 avec son alimentation, commandant l'actuateur de lacet ; en 8 on trouve la réponse de l'actuateur du missile entraîné par le moteur 7, en 9 la symbolisation de la fonction de transfert de la cellù- le du missile délivrant en 10 et 11 respectivement les informations de vitesse angulaire lacet du missile et d'accélération latérale lacet exécutée par le missile. Ces informations sont appliquées respectivement à un gyromètre 13 et à un accéléromètre 14, associés à des réseaux correcteurs 16 et 17 des boucles de contre-réaction en vitesse et en accélération. La réponse 8 de l'actuateur du missile est mesurée par un capteur 12 suivi d'un réseau correcteur 15 de la boucle de contre-réaction en position. La boucle de lacet qui vient d'être décrite est connectée à la sortie du récepteur 6 par un organe additionneur-soustracteur 18. Cependant on pourra noter que certains systèmes ne comportent qu'une seule des deux boucles gyrométrique ou accélérométrique.
  • La boucle de tangage C2, identique à la boucle de lacet Cl qui vient d'être décrite est connectée à la sortie du récepteur 6 par l'organe additionneur- soustracteur 181. Tous les autres circuits constitutifs de la boucle C2 portent les mêmes références que les circuits correspondants de la boucle CI mais affectés du signe un.
  • On peut remarquer, suite à la description de l'art antérieur que la fabrication du missile qui doit contenir un pilote automatique est compliquée, principalement son contrôle et sa mise au point, sans oublier les contrôles sur le site et que dans ces conditions son coût est élevé.
  • Suivant l'invention, on vise à définir un système de pilotage d'un missile qui ne comporte pas de pilote automatique embarqué. La construction de ce missile est donc par le fait simplifiée, sa mise au point est plus facile et par conséquent les coûts sont diminués.
  • Suivant l'invention, le système de pilotage d'un missile par commande d'actuateurs disposés sur le missile ayant à son bord au moins un récepteur de télécommande et éventuellement un distributeur d'ordres, est caractérisé par le fait qu'il comporte une partie au sol comprenant un calculateur délivrant les ordres de mise en position des actuateurs du missile, alimenté par un calculateur d'ordres de guidage et un émetteur de télécommande transmettant les ordres de pilotage au missile et une partie à bord du missile comprenant un récepteur de télécommande, commandant directement ou par l'intermédiaire d'un distributeur d'ordres, les dispositifs d'application des ordres de pilotage aux actuateurs du missile.
  • D'autres avantages et caractéristiques de l'in= vention apparaîtront au cours de la description d'un exemple de réalisation donné à l'aide des figures, qui outre la figure 1, représentent :
    • - la figure 2, le système de pilotage suivant l'invention ;
    • - la figure 3, le système de la figure 2 dans le cas où le missile est stabilisé en roulis ;
    • - la figure 4, un missile piloté par un système conforme à celui de l'invention.
  • La figure 2 représente un système de pilotage suivant l'invention. Il comporte une partie au sol I comprenant en 1 un circuit d'élaboration des écarts du missile par rapport à la trajectoire théorique qu'il doit suivre, en 2, un calculateur des ordres de guidage en lacet et tangage, en accélération, connecté au circuit d'élaboration des écarts. Ce circuit et le calculateur de guidage ne font pas partie de l'invention. Ce calculateur de guidage est connecté à un calculateur 19 élaborant les ordres de pilotage grâce auxquels les actuateurs du missile considéré sont mis dans la position idoine.
  • Les ordres de pilotage devant commander les actuateurs sont transmis à un émetteur de télécommande 3 équipé d'une antenne 4.
  • La partie du système de pilotage placée à bord du missile II comporte une antenne de télécommande de réception 5 connectée à un récepteur de télécommande 6. Le récepteur de télécommande est connecté à un circuit 20 dit transformateur de coordonnées et distributeur d'ordres qui est connecté à un gyroscope 31 de roulis, prenant en compte le roulis du missile quand celui-ci n'est pas stabilisé en roulis. Au distributeur d'ordres 20 sont connectés respectivement par l'intermédiaire de circuits 27 et 28 de soustraction, des circuits 21 et 22 de commande des actuateurs du missile, commandes élaborées au sol dans le circuit 19 comme cela a été dit. En 23 et 24, respectivement, on recueille les réponses des actuateurs qui sont d'une part renvoyées dans un réseau correcteur 25-26 de boucles de contre-réaction qui se referment sur les circuits de soustraction 27-28 et d'autre part aux circuits 29 et 30 représentant les fonctions de transfert, lacet et tangage du missile.
  • Le fonctionnement du système de pilotage de la figure 2 est le suivant. Lorsque le missile est lancé, les mesures d'écartométrie sont effectuées par le circuit 1 et le calculateur 2 détermine à partir des écarts mesurés les ordres de guidage en lacet et tangage sous la forme de commandes d'accélération qui sont transformées dans le calculateur 19 en ordres de pilotage. Dans ce but, le calculateur 19 dispose de toutes les données nécessaires pour calculer avec suffisamment d'exactitude les positions à donner aux actuateurs qui permettront d'exécuter les ordres d'accélération désirés. Ces données initiales peuvent comporter suivant le cas, le profil de poussée des propulseurs du missile, les caractéristiques de l'atmosphère (pression, température, vent) et ses paramètres aérodynamiques, sa masse, ses inerties en fonction du temps, la variation de son centre de gravité et les fonctions de transfert des actuateurs. Toutes ces données sont introduites dans le calculateur 19 qui peut être un microprocesseur programmé de façon convenable suivant les équations de vol du missile. Le calculateur 2 des ordres de guidage, dans le cas par exemple d'un guidage en alignement, fonctionne à partir des données d'écartométrie angulaire mesurée dans le circuit 1, des vitesses angulaires en site et en gisement de la ligne de visée fournies par un boîtier gyroscopique, de la correction d'abaissement due à la pesanteur et de la distance du missile mesurée ou calculée à partir de son profil de vitesse mis en mémoire.
  • L'ordre de guidage ou accélération commandée, délivré par le calculateur 2 est transformé par le calculateur 19 an angles de braquage des gouvernes par exemple, en lacet et profondeur, calculés dans un système d'axes indépendants du roulis du missile. Ces ordres de braquage des gouvernes sont envoyés au missile par l'intermédiaire de l'ensemble de télécommande 3 et de son antenne 4, où ils sont reçus par l'antenne de réception 5 connectée au récepteur 6 de télécommande. L'émetteur de télécommande émet, à titre d'exemple sur une porteuse de l'ordre de 1000 MHz, un message répétitif comprenant l'adresse du missile et les différents ordres à lui envoyer. En effet, l'émetteur au sol n'est pas affecté à un seul missile, et dans le système d'arme global auquel la présente invention se rattache, un certain nombre de missiles peuvent être lancés simultanément et il faut pouvoir les distinguer. Quant aux ordres envoyés, ils comprennent ceux de braquage des gouvernes quand le missile est équipé de telles gouvernes ou plus généralement des ordres de mise en position des actuateurs, ce terme couvrant comme cela a été déjà rappelé tout dispositif mécanique agissant pour exercer un effort mécanique à partir d'un signal de commande, généralement de faible niveau, destiné à communiquer au missile le facteur de charge commandé, des ordres de télédestruction, etc. Ces ordres sont généralement envoyés sous la forme de mots binaires. Les ordres de commande de braquage des gouvernes, calculés comme cela a été déjà dit dans le calculateur 19 sont reçus par le récepteur de télécommande 5 qui les transmet au circuit 20 dit transformateur de coordonnées et distributeur d'ordres connecté par ailleurs à un circuit 31 qui est un gyroscope de roulis. De fait, les ordres sont calculés indépendamment du roulis, au sol, c'est-à-dire dans un système d'axes liés au sol. Pour être applicables au missile, il est nécessaire d'élaborer ces ordres dans un système d'axes liés au missile et tenant compte de la rotation du missile autour de son axe longitudinal. Dans ces conditions, les ordres de braquage des gouvernes sont appliqués respectivement aux circuits 21 et 22 par le distributeur d'ordres 20 qui est un calculateur effectuant le changement d'axes nécessaire pour passer des axes au sol aux axes du missile. Les circuits 21 et 22 regroupent par mesure de simplification les moteurs de commande en lacet et tangage, avec leur alimentation, des amplificateurs et un étage de puissance. Ces moteurs sont montés dans une boucle de contre-réaction, comprenant un réseau correcteur 25-26 et un circuit de soustraction 27-28 permettant le contrôle de l'exécution correcte de l'ordre. Ces ordres de commande en lacet et en tangage apparaissent en γℓ et γt.
  • La figure 3 représente le système de pilotage suivant l'invention, dans le cas d'un missile stabilisé en roulis. La partie au sol I est identique à celle de la figure 2 ; seule la partie à bord II du missile est simplifiée, les éléments 20, transformateur de coordonnées et distributeur d'ordres et 31, gyroscope de roulis étant supprimés. Cependant, à bord, se trouvera, bien qu'il ne fasse pas partie de l'invention, un dispositif stabilisateur de roulis qui ne sera pas décrit, faisant partie de l'art connu. Dans la figure 3 il est simplement indiqué par la référence 32.
  • La figure 4 représente un exemple de missile piloté par le système suivant l'invention et qui, par rapport à des missiles connus, ne présente pas de pilote automatique, ce qui en simplifie la conception. Dans la partie avant 33 du missile se trouvent la fusée de proximité 34, les gouvernes 35 avec leur moteur 36 ; dans la partie suivante 37, on trouve le récepteur de télécommande 38, le distributeur d'ordres 39, le gyroscope de roulis 31 et un réservoir d'énergie électrique 40. Dans la partie 41 se trouve la charge militaire, dans les parties 42 et 43, les dispositifs de propulsion et dans la partie 44 la voilure arrière pouvant incorporer l'aérien du récepteur de télécommande.
  • La disposition relative des divers composants du missile représentée figure 4 n'est pas liée à l'invention. Elle résulte simplement d'un équilibrage des masses des composants, propre à l'architecture d'un exemple précis assurant la stabilité en vol de ce missile.
  • On a ainsi décrit un nouveau système de pilotage de missile et un missile piloté par ce système.

Claims (5)

1. Système de pilotage d'un missile par commande d'actuateurs disposés sur le missile ayant à son bord au moins un récepteur de télécommande et éventuellement un distributeur d'ordres, caractérisé par le fait qu'il comporte une partie au sol (I) compre- nant un calculateur (19) délivrant les ordres de mise en position des actuateurs du missile, alimenté par un calculateur (2) d'ordres de guidange et un émetteur de télécommande (3) transmettant les ordres de pilotage au missile et une partie à bord (II) comprenant un récepteur de télécommande (5), commandant directement ou par l'intermédiaire d'un distributeur d'ordres (20), les dispositifs d'application (21-22) des ordres de pilotage aux actuateurs du missile.
2. Système de pilotage suivant la revendication 1, caractérisé par le fait que les dispositifs d'application (21-22) des ordres de pilotage aux actuateurs sont insérés dans des boucles de contre-réaction comprenant un réseau correcteur (25-26) et un circuit de soustraction (27-28).
3. Système de-pilotage d'un missile comportant un dispositif de stabilisation en roulis, caractérisé par le fait que le récepteur de télécommande à bord du missile, agit directement sur les dispositifs d'application (21-22) des ordres de pilotage aux actuateurs du missile.
4. Système de pilotage suivant la revendication 2, caractérisé par le fait que le distributeur d'ordres (20) comprend un transformateur de coordonnées délivrant les ordres de pilotage, calculés au sol dans un système d'axes liés au sol, dans un système d'axes liés au missile.
5. Missile piloté à l'aide du système objet de l'une quelconque des revendications 1 à 4, caractérisé par le fait qu'il comprend un récepteur de télécommande recevant les ordres de pilotage calculés au sol, et des dispositifs d'application de ces ordres de pilotage aux actuateurs, un distributeur d'ordres étant éventuellement prévu pour un missile non stabilisé en roulis.
EP80400837A 1979-06-27 1980-06-10 Nouveau système de pilotage de missile et missile piloté Withdrawn EP0021944A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR7916559 1979-06-27
FR7916559A FR2459955A1 (fr) 1979-06-27 1979-06-27 Nouveau systeme de pilotage de missile et missile pilote

Publications (1)

Publication Number Publication Date
EP0021944A1 true EP0021944A1 (fr) 1981-01-07

Family

ID=9227174

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80400837A Withdrawn EP0021944A1 (fr) 1979-06-27 1980-06-10 Nouveau système de pilotage de missile et missile piloté

Country Status (3)

Country Link
US (1) US4383661A (fr)
EP (1) EP0021944A1 (fr)
FR (1) FR2459955A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4898220A (en) * 1988-05-06 1990-02-06 Mecanique Des 3 Moutiers Conical screw auger machine for splitting a log of wood
GB2302224A (en) * 1982-07-30 1997-01-08 Secr Defence Gun-launched guided projectile system

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2655448B1 (fr) * 1989-12-04 1992-03-13 Vigilant Ltd Systeme de controle d'un aeronef teleguide.
US5118050A (en) * 1989-12-07 1992-06-02 Hughes Aircraft Company Launcher control system
US6845938B2 (en) * 2001-09-19 2005-01-25 Lockheed Martin Corporation System and method for periodically adaptive guidance and control
US8661980B1 (en) 2003-05-08 2014-03-04 Lone Star Ip Holdings, Lp Weapon and weapon system employing the same
US7530315B2 (en) * 2003-05-08 2009-05-12 Lone Star Ip Holdings, Lp Weapon and weapon system employing the same
US7081729B2 (en) * 2004-03-23 2006-07-25 The Boeing Company Variable-structure diagnostics approach achieving optimized low-frequency data sampling for EMA motoring subsystem
US7690304B2 (en) 2005-09-30 2010-04-06 Lone Star Ip Holdings, Lp Small smart weapon and weapon system employing the same
US7895946B2 (en) 2005-09-30 2011-03-01 Lone Star Ip Holdings, Lp Small smart weapon and weapon system employing the same
US8541724B2 (en) 2006-09-29 2013-09-24 Lone Star Ip Holdings, Lp Small smart weapon and weapon system employing the same
US8117955B2 (en) * 2006-10-26 2012-02-21 Lone Star Ip Holdings, Lp Weapon interface system and delivery platform employing the same
US9068803B2 (en) 2011-04-19 2015-06-30 Lone Star Ip Holdings, Lp Weapon and weapon system employing the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2634414A (en) * 1945-08-28 1953-04-07 Gordon W Andrew Proportional control
FR1325343A (fr) * 1961-07-07 1963-04-26 Contraves Ag Montage électrique de transformation dans un missile aérien téléguidé
US3168264A (en) * 1960-02-23 1965-02-02 Short Brothers & Harland Ltd Guidance systems for missiles and other moving bodies
US3450373A (en) * 1966-08-25 1969-06-17 British Aircraft Corp Ltd Plural modulation of radio-frequency carrier wave for remote missile control systems
US3588002A (en) * 1967-10-24 1971-06-28 Albert J White Adaptive missile guidance systems
FR2129948A1 (fr) * 1971-03-23 1972-11-03 Thomson Csf
US3998406A (en) * 1964-05-28 1976-12-21 Aeronutronic Ford Corporation Guided missile system
US4097007A (en) * 1974-10-15 1978-06-27 The United States Of America As Represented By The Secretary Of The Army Missile guidance system utilizing polarization

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2352308A (en) * 1940-12-23 1944-06-27 Lockheed Aircraft Corp Lateral control system for aircraft
US2603434A (en) * 1945-09-28 1952-07-15 Merrill Grayson Pilotless aircraft
US3156435A (en) * 1954-08-12 1964-11-10 Bell Telephone Labor Inc Command system of missile guidance
FR1458137A (fr) * 1965-03-16 1966-03-04 Nord Aviation Procédé et dispositif de guidage d'un aérodyne

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2634414A (en) * 1945-08-28 1953-04-07 Gordon W Andrew Proportional control
US3168264A (en) * 1960-02-23 1965-02-02 Short Brothers & Harland Ltd Guidance systems for missiles and other moving bodies
FR1325343A (fr) * 1961-07-07 1963-04-26 Contraves Ag Montage électrique de transformation dans un missile aérien téléguidé
US3998406A (en) * 1964-05-28 1976-12-21 Aeronutronic Ford Corporation Guided missile system
US3450373A (en) * 1966-08-25 1969-06-17 British Aircraft Corp Ltd Plural modulation of radio-frequency carrier wave for remote missile control systems
US3588002A (en) * 1967-10-24 1971-06-28 Albert J White Adaptive missile guidance systems
FR2129948A1 (fr) * 1971-03-23 1972-11-03 Thomson Csf
US4097007A (en) * 1974-10-15 1978-06-27 The United States Of America As Represented By The Secretary Of The Army Missile guidance system utilizing polarization

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2302224A (en) * 1982-07-30 1997-01-08 Secr Defence Gun-launched guided projectile system
GB2302224B (en) * 1982-07-30 1997-07-02 Secr Defence Gun-launched guided projectile system
US4898220A (en) * 1988-05-06 1990-02-06 Mecanique Des 3 Moutiers Conical screw auger machine for splitting a log of wood

Also Published As

Publication number Publication date
FR2459955A1 (fr) 1981-01-16
US4383661A (en) 1983-05-17
FR2459955B1 (fr) 1983-07-18

Similar Documents

Publication Publication Date Title
EP0081421B1 (fr) Méthode de guidage terminal et missile guidé opérant selon cette méthode
EP0394897B1 (fr) Procédé de mise à poste d'un satellite de télécommunications géostationnaire
EP0021944A1 (fr) Nouveau système de pilotage de missile et missile piloté
EP2181923B1 (fr) Procédé et système de désaturation des roues d'inertie d'un engin spatial
EP3248079B1 (fr) Procédé et dispositif de contrôle d'attitude d'un engin spatial
EP3276591A1 (fr) Drone ayant un systeme d'evitement d'obstacles
EP0209429B1 (fr) Procédé et dispositif d'injection de satellite sur orbite géostationnaire avec stabilisation suivant les trois axes
US4123019A (en) Method and system for gravity compensation of guided missiles or projectiles
US2603434A (en) Pilotless aircraft
US3330503A (en) Re-entry guidance system
CA1267949A (fr) Procedure de repointage rapide des satellites a pointage terrestre, et notamment des satellites geostationnaires de telecommunication a stabilisation par volant d'inertie
FR2859782A1 (fr) Systemes d'armes
US3282541A (en) Attitude control system for sounding rockets
EP1422587B1 (fr) Procédé d'élaboration d'un ordre de commande pour un organe permettant le pilotage d'un projectile girant
FR2780774A1 (fr) Dispositif d'autoprotection passive pour engin mobile tel qu'un helicoptere
EP1311428B1 (fr) Utilisation de la trajectoire de la fusee de lancement dans le mesureur inertiel d'une charge utile
EP0062563B1 (fr) Procédé de pilotage en facteur de charge d'un missile et systèmes d'armes correspondants
EP0047211B1 (fr) Procédé de changement d'orbite d'un satellite, notamment d'injection en orbite géostationnaire et satellite mettant en oeuvre ledit procédé
EP0420760B1 (fr) Procédé et système de guidage autonome vers une cible d'un projectile balistique aéroporté propulsé
EP0985900A1 (fr) Procédé et dispositif de guidage d'un engin volant, notamment un missile, sur une cible
EP0474556B1 (fr) Procédé de pilotage d'un engin spatial doté d'un mouvement de précession et dispositif pour sa mise en oeuvre
JPH0920298A (ja) スラスタ制御装置
WO2012146835A1 (fr) Procédé de gestion automatique d'un autodirecteur monté sur un engin volant, en particulier sur un missile
FR2685283A1 (fr) Engin volant sans pilote et installation le mettant en óoeuvre.
EP1174677B1 (fr) Système de stabilisation d'un drone et système de pilotage d'un drone utilisant un tel système de stabilisation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE GB IT NL SE

17P Request for examination filed

Effective date: 19810121

18D Application deemed to be withdrawn

Effective date: 19830104

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HAON, PIERRE

Inventor name: OTTENHEIMER, PHILIPPE