EP0017221A1 - Process and device for the temporal and spatial coordination of the proceeding of a field desorption ionisation - Google Patents
Process and device for the temporal and spatial coordination of the proceeding of a field desorption ionisation Download PDFInfo
- Publication number
- EP0017221A1 EP0017221A1 EP19800101759 EP80101759A EP0017221A1 EP 0017221 A1 EP0017221 A1 EP 0017221A1 EP 19800101759 EP19800101759 EP 19800101759 EP 80101759 A EP80101759 A EP 80101759A EP 0017221 A1 EP0017221 A1 EP 0017221A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- field
- ionization
- field electrode
- electrodes
- process steps
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/02—Details
- H01J49/10—Ion sources; Ion guns
- H01J49/16—Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission
Definitions
- the field desorption ionization technique is a well-known, worldwide developed method for the gentle ionization of thermolabile, hardly volatile substances developed for mass spectrometry.
- the main disadvantage of the method is that the method is time-consuming and requires a lot of intervention by the operating personnel.
- the field electrodes must be prepared in a separate device by means of a chemical process called “activation” (cultivation of the dendrites) which, depending on the method, takes from 10 minutes to several hours. After activation, the field electrode must be removed from the activation apparatus and loaded with the analysis substance to be examined outside the apparatus. Then the loaded field electrode has to be introduced into the ion source, the vacuum is high and the analysis of the analyte is initiated. After the examination, the field electrode used must be removed from the ion source and can be reactivated after thorough cleaning.
- activation cultivation of the dendrites
- the field desorption ionization method requires not only a lot of time for a measurement process from the activation of a field electrode to its cleaning for the next activation, but also a large number of actions and measures by the personnel performing the analysis. In this form, the process cannot be fully automated. A direct coupling to a repetitive (e.g. fraction collector or automatic sampler) or continuous (e.g. high pressure liquid chromatograph) device is not possible.
- the object of the invention is to provide a method for the temporal and spatial coordination of the process sequences of the field desorption ionization method with the aid of a device in which all process sequences of the field desorption ionization method are integrated.
- a device in which at least four chambers are arranged in a housing, such that these chambers have at their lower end an opening to an axial bore in the housing, that a body in the axial bore simultaneously supports the field electrodes for sealing the chambers can be inserted against each other, and that all chambers are assigned connections for evacuation and gas introduction.
- a cylindrical body 1 for example a ceramic tube, serves as a transport body, the outer jacket surface 2 of which acts as an “endless” transport surface, in the recess 3 of which the field electrodes 4 with their holders 5 are embedded.
- the body 1 and the cylindrical bore 6 of a compact housing 7 are dimensioned so that the body 1 before commissioning took the device can be inserted sliding into the bore 6 and lies tight against the wall 8 of the bore 6.
- the housing 7 has numerous bores 9 to 16, which differ significantly in their dimensions and functions and are described in principle below.
- the large bores 9 to 12 represent the individual process rooms in which the processes described in the four following sections run simultaneously.
- a field electrode 4 previously cleaned in bore 12 is activated in that particles of the gas phase are deposited on electrode 4 from a supplied gas phase in a manner known per se as dendritic microneedles.
- the aids for the deposition and the current supply to the individual electrodes 4 are not shown for the sake of clarity.
- a field electrode 4 previously activated in bore 9 is dripped with the liquid analysis solution, while at the same time another electrode 4 is activated in bore 9.
- the analyte remains on the dendrites of the activated electrode 4, so that the electrode 4 is loaded with the analyte in this way.
- the analysis substance previously deposited in bore 10 on the activated field electrode 4 is made accessible to the analysis by ionization.
- the ionization is carried out by field desorption ionization, laser ionization, chemical ionization or a suitable other solid-state ionization method.
- a field electrode 4 previously used in bore 11 for ionization is freed of the dendritic microneedles and any residues of the analytical substance adhering to them.
- This so-called cleaning of the field electrode 4 can be carried out mechanically by stripping the dendrites or, more appropriately, by burning off the dendrites in an electrical discharge.
- the body 1 is rotated through 90 o so that the activated in bore 9 electrode 4 to the load compartment of the bore 10, in bore 10 with analyte loaded electrode 4 into the ionization chamber of bore 11, the electrode 4 used for bore ionization in bore 11 into the cleaning chamber of bore 12 and the electrode 4 cleaned in bore 12 again into the activation chamber of bore 9.
- control of the individual processes, their interruption and the rotational movement of the body 1 between the repetitive process sequences can be carried out in a simple manner, for example by means of a suitable time switch or electronically.
- the bore 6 is closed on both sides during operation by a fixed closure or by a cover, into which the passage for driving the rotary movement of the body 1 and bushings for electrical leads can be integrated.
- a device for electron impact ionization and / or chemical ionization is introduced in one or more recesses 3 of the body 1. The same can also be done according to FIG. 2 in the depressions 29; 30; 31; Introduce 32 of the body 21.
- the second exemplary embodiment shown in FIGS. 2 and 3 does not differ in principle from the one described above, but only in the type of field electrodes.
- the different tasks which the four field electrodes 4 master in the process spaces are performed in the second exemplary embodiment by discrete segments 41 of a coherent thin wire 24 in the process spaces 29 to 32.
- the wire 24 is guided by the stationary, cylindrical, laterally slotted body 21 in a radially circumferential notch 23 through the process spaces 29 to 32.
- the body 21 does not act as the transport body, but rather the wire 24, which is unwound, for example, from a supply spool 20 and wound onto an empty spool 25 which can be driven by a motor, or according to Fig. 3 is drawn in the form of an endless wire loop from the guide and drive rollers 17 to 19 around the tube 21 in the direction of the arrow through the notch 23.
- Room 29 acts as an activation room
- room 30 acts as a loading room
- room 31 is the ionization room
- room 32 is the cleaning room. These rooms have the same effect as the corresponding rooms in the first example.
- any segment 41 of the wire 24, for example about 1 mm long, is successively activated in this way in room 29, loaded with analysis substance in room 30, used in room 31 for ionizing the analysis substance and finally in room 32 of the dendrites and possible substance leftovers free.
- the spaces 29 to 32 need not be arranged at right angles or at equal distances from one another. It is sufficient if the distances between the spaces 29 to 32 correspond to whole multiples of the wire segments 41 serving as field electrodes and leave enough space for the suction bores 33 to 40.
- the bores 33 to 38 are evacuated together by a pump system and are intended to prevent gases from one of the process spaces 29 to 32 from reaching the adjacent process space.
- the bores 39 and 40 are pumped differentially from the bores 33 to 38 by a further pump system, so that the high vacuum which is generally required for the ionization can be maintained in space 31 despite a certain leak rate through the notch 23.
- the wall 22 of the body 21 lies tightly against the wall 28 of the bore 26 of the metal block 27.
- the body 21 is inserted into the bore 26.
- the bore 26 is tightly closed during operation.
- the passages for the drive for moving the wire 24 and bushings for electrical leads can be incorporated into the closure.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Electron Tubes For Measurement (AREA)
Abstract
Description
Verfahren und Vorrichtung zur zeitlichen und räumlichen Koordination der Prozeßabläufe einer Felddesorptions-Ionisierung.Method and device for the temporal and spatial coordination of the processes of a field desorption ionization.
Die Felddesorptions-Ionisierungstechnik ist eine bekannte, für die Massenspektrometrie entwickelte, weltweit verbreitete Methode zur schonenden Ionisierung von thermolabilen, schwer flüchtigen Substanzen. Der Nachteil der Methode liegt vor allem darin, daß das Verfahren zeitraubend ist und viele Eingriffe des Bedienungspersonals erfordert.The field desorption ionization technique is a well-known, worldwide developed method for the gentle ionization of thermolabile, hardly volatile substances developed for mass spectrometry. The main disadvantage of the method is that the method is time-consuming and requires a lot of intervention by the operating personnel.
Die Feldelektroden müssen in einer eigenen Vorrichtung durch einen "Aktivierung" (Züchtung der Dendriten) genannten chemischen Prozeß präpariert werden, der je nach Verfahren einen Zeitraum von 10 Minuten bis zu mehreren Stunden beansprucht. Nach der Aktivierung muß die Feldelektrode der Aktivierungsapparatur entnommen und außerhalb der Apparatur mit der zu untersuchenden Analysensubstanz beladen werden. Sodann muß die beladene Feldelektrode in die Ionenquelle geschleust werden, in der Hochvakuum herrscht und die Untersuchung der Analysensubstanz eingeleitet wird. Nach der Untersuchung muß die verwendete Feldelektrode aus der Ionenquelle ausgeschleust werden und kann nach einer gründlichen Reinigung neu aktiviert werden.The field electrodes must be prepared in a separate device by means of a chemical process called "activation" (cultivation of the dendrites) which, depending on the method, takes from 10 minutes to several hours. After activation, the field electrode must be removed from the activation apparatus and loaded with the analysis substance to be examined outside the apparatus. Then the loaded field electrode has to be introduced into the ion source, the vacuum is high and the analysis of the analyte is initiated. After the examination, the field electrode used must be removed from the ion source and can be reactivated after thorough cleaning.
Das Felddesorptions-Ionisierungsverfahren erfordert für einen Meßvorgang von der Aktivierung einer Feldelektrode bis zu ihrer Reinigung für die nächste Aktivierung nicht nur viel Zeit, sondern auch eine große Zahl von Handgriffen und Maßnahmen des die Analyse durchführenden Personals. Das Verfahren ist in dieser Form nicht voll automatisierbar. Eine direkte Kopplung an ein repetitiv (z.B, Fraktionssammler oder automatischer Probengeber) oder kontinuierlich (z.B. Hoohdruck-Flüssigkeitschromatograph) arbeitendes Gerät ist nicht möglich.The field desorption ionization method requires not only a lot of time for a measurement process from the activation of a field electrode to its cleaning for the next activation, but also a large number of actions and measures by the personnel performing the analysis. In this form, the process cannot be fully automated. A direct coupling to a repetitive (e.g. fraction collector or automatic sampler) or continuous (e.g. high pressure liquid chromatograph) device is not possible.
Die Aufgabe der Erfindung besteht darin, ein Verfahren zur zeitlichen und räumlichen Koordination der Prozeßabläufe des Felddesorptions-Ionisierungsverfahrens zu schaffen mit Hilfe einer Vorrichtung, in der alle Prozeßabläufe des Felddesorptions-Ionisierungsverfahrens integriert sind.The object of the invention is to provide a method for the temporal and spatial coordination of the process sequences of the field desorption ionization method with the aid of a device in which all process sequences of the field desorption ionization method are integrated.
Diese Aufgabe wird erfindungsgemäß durch ein Verfahren gelöst, durch das die Prozesse "Aktivierung der Feldelektrode", "Beladen der aktivierten Feldelektrode mit Analysensubstanz", "Ionisierung der Analysensubstanz an der aktivierten Feldelektrode" und "Reinigung der zur Ionisierung benutzten Feldelektrode" in unmittelbar aufeinander folgenden, zeitlich aufeinander abgestimmten Prozeßschritten an mehreren Feldelektroden oder diskreten Feldelektrodensegmenten simultan durchgeführt werden.This object is achieved according to the invention by a method by which the processes “activation of the field electrode”, “loading of the activated field electrode with analysis substance”, “ionization of the analysis substance on the activated field electrode” and “cleaning of the field electrode used for ionization” are carried out in immediate succession , time-coordinated process steps are carried out simultaneously on several field electrodes or discrete field electrode segments.
Zur Durchführung dieses Verfahrens dient eine Vorrichtung, bei der in einem Gehäuse mindestens vier Kammern angeordnet sind, derart, daß diese Kammern an ihrem unteren Ende eine Öffnung zu einer im Gehäuse liegenden Axialbohrung besitzen, daß in der Axialbohrung ein Körper gleichzeitig Träger der Feldelektroden zur Abdichtung der Kammern gegeneinander einführbar ist, und daß allen Kammern Anschlüsse zum Evakuieren und zum Gaseinleiten zugeordnet sind.To carry out this method, a device is used in which at least four chambers are arranged in a housing, such that these chambers have at their lower end an opening to an axial bore in the housing, that a body in the axial bore simultaneously supports the field electrodes for sealing the chambers can be inserted against each other, and that all chambers are assigned connections for evacuation and gas introduction.
Die Beschreibung des Verfahrens und der Vorrichtung erfolgt im einzelnen an Hand von Ausführungsbeispielen, bei denen das zuerst beschriebene Beispiel einzelne Feldelektroden und das zweite Beispiel Feldelektrodensegmente als diskrete Abschnitte eines langen, dünnen Drahtes als Basis hat.The method and the device are described in detail on the basis of exemplary embodiments, in which the example described first has individual field electrodes and the second example has field electrode segments as discrete sections of a long, thin wire as the basis.
In dem in Fig. 1 dargestellten Ausführungsbeispiel dient ein zylindrischer Körper 1 , beispielsweise ein Keramikrohr, als Transportkörper, dessen äußere Mantelfläche 2 als "endlose" Transportfläche wirkt, in deren Vertiefung 3 die Feldelektroden 4 mit ihren Halterungen 5 eingelassen sind. Der Körper 1 und die zylindrische Bohrung 6 eines kompakten Gehäuses 7 sind so dimensioniert, daß die Körper 1 vor der Inbetriebnahme der Vorrichtung gleitend in die Bohrung 6 eingeführt werden kann und an der Wandung 8 der Bohrung 6 dicht anliegt.In the exemplary embodiment shown in FIG. 1, a
Das Gehäuse 7 weist zahlreiche Bohrungen 9 bis 16 auf, die sich in ihren Abmessungen und Funktionen deutlich unterscheiden um im folgenden prinzipiell beschrieben werden.The
Entsprechend der Anzahl der vier in den Körper 1 inkorporierten Feldelektroden 4 werden vier rechtwinklig zu einander versetzt angebrachte große Bohrungen 9 bis 12 und jeweils zwischen diesen insgesamt vier kleine Bohrungen 13 bis 16 vorgesehen. In Verbindung mit den Vertiefungen 3 stellen die großen Bohrungen 9 bis 12 die einzelnen Prozeßräume dar, in denen die in den vier folgenden Abschnitten beschriebenen Prozesse simultan ablaufen.Corresponding to the number of four
In Bohrung 9 wird eine zuvor in Bohrung 12 gereinigte Feldelektrode 4 dadurch aktiviert, daß auf der Elektrode 4 aus einer zugeführten Gasphase in an sich bekannter Weise Teilchen der Gasphase als dendritische Mikronadeln abgeschieden werden. Die Hilfsmittel für die Abscheidung sowie die Stromzufuhr zu den einzelnen Elektroden 4 sind der besseren Übersicht wegen nicht eingezeichnet.In
In Bohrung 10 wird eine zuvor in Bohrung 9 aktivierte Feldelektrode 4 mit der flüssigen Analysenlösung betropft, während gleichzeitig in Bohrung 9 eine andere Elektrode 4 aktiviert wird. Bei der Verdunstung des Lösungsmittels verbleibt die Analysensubstanz auf den Dendriten der aktivierten Elektrode 4 , so daß die Elektrode 4 auf diese Weise mit Analysensubstanz beladen wird.In
In Bohrung 11 wird die zuvor in Bohrung 10 auf der aktivierten Feldelektrode 4 deponierte Analysensubstanz durch Ionisierung der Analyse zugänglich gemacht. Die Ionisierung erfolgt durch Felddesorptions-Ionisierung, Laser-Ionisierung, Chemische Ionisierung oder ein geeignetes anderes Festkörper-Ionisierungsverfahren.In
In Bohrung 12 wird eine zuvor in Bohrung 11 zur Ionisierung benutzte Feldelektrode 4 von den dendritischen Mikronadeln und evtl. an diesen haftenden Resten der Analysensubstanz befreit. Diese sogenannte Reinigung der Feldelektrode 4 kann mechanisch durch Abstreifen der Dendriten erfolgen oder zweckmäßiger durch Abbrennen der Dendriten in einer elektrischen Entladung.In
Nachdem die in den vier vorangehenden Abschnitten beschriebenen Elektrodenprozesse ausreichend lange, beispielsweise 10 Minuten lang, abgelaufen sind, wird der Körper 1 um 90o gedreht, so daß die in Bohrung 9 aktivierte Elektrode 4 zum Beladeraum der Bohrung 10, die in Bohrung 10 mit Analysensubstanz beladene Elektrode 4 in den Ionisierungsraum der Bohrung 11, die in Bohrung 11 zum Ionisieren benutzte Elektrode 4 in den Reinigungsraum der Bohrung 12 und die in Bohrung 12 gereinigte Elektrode 4 erneut in den Aktivierungsraum der Bohrung 9 gelangen.After the electrode processes described in the four preceding paragraphs are sufficiently long, for example 10 minutes, has expired, the
Während der Drehung des Körpers 1 gleiten alle Elektroden 4 gleichzeitig an den Bohrungen 13 bis 16 vorbei, durch welche die in den Vertiefungen 3 verbliebenen Gasreste des vorangegangenen Prozesses vor dem Erreichen des jeweils nächst folgenden Prozeßraums 9 bis 12 weitgehend abgesaugt werden. Die Gasanschlüsse und Absaugleitungen sind der besseren Übersicht wegen nicht eingezeichnet.During the rotation of the
Die Steuerung der einzelnen Prozesse, ihre Unterbrechung und die Drehbewegung des Körpers 1 zwischen den sich wiederholenden Prozeßabläufen kann in einfacher Weise beispielsweise durch eine geeignete Schaltuhr oder auf elektronischem Wege erfolgen.The control of the individual processes, their interruption and the rotational movement of the
Die Bohrung 6 wird während des Betriebs beidseitig durch einen festen Verschluß bzw. durch einen Deckel verschlossen, in die der Durchgriff für den Antrieb der Drehbewegung des Körpers 1 und Durchführungen für elektrische Zuleitungen integriert sein können.The
Zur Erfassung von gasförmigen Substanzen wird erfindungsgemäß in einer oder mehreren Vertiefungen 3 des Körpers 1 eine Einrichtung zur Elektronenstoß-Ionisierung und/oder zur chemischen Ionisierung eingebracht. Das gleiche läßt sich auch gemäß Fig. 2 in die Vertiefungen 29; 30; 31; 32 des Körpers 21 einbringen.To detect gaseous substances, a device for electron impact ionization and / or chemical ionization is introduced in one or
Das in den Fig. 2 und 3 dargestellte zweite Ausführungsbeispiel unterscheidet sich von dem zuvor beschriebenen nicht prinzipiell, sondern nur durch die Art der Feldelektroden. Die unterschiedlichen Aufgaben, die die vier Feldelektroden 4 in den Prozeßräumen bewältigen, werden in dem zweiten Ausführungsbeispiel von diskreten Segmenten 41 eines zusammenhängenden dünnen Drahts 24 in den Prozeßräumen 29 bis 32 wahrgenommen. Der Draht 24 wird dabei von dem stationären, zylinderförmigen, seitlich geschlitzten Körper 21 in einer radial umlaufenden Kerbe 23 durch die Prozeßräume 29 bis 32 geführt. Als Transportkörper wirkt nicht der Körper 21, sondern der Draht 24, der beispielsweise von einer Vorratsspule 20 abgewickelt und auf eine motorisch antreibbare Leerspule 25 aufgewickelt oder gem. Fig. 3 in Form einer endlosen Drahtschleife von den Führungs- und Antriebsrollen 17 bis 19 um das Rohr 21 in Pfeilrichtung durch die Kerbe 23 gezogen wird.The second exemplary embodiment shown in FIGS. 2 and 3 does not differ in principle from the one described above, but only in the type of field electrodes. The different tasks which the four
Hierbei treten prinzipiell die gleichen Prozeßräume auf wie zuvor erwähnt.In principle, the same process rooms occur as previously mentioned.
Raum 29 wirkt als Aktivierungsraum, Raum 30 wirkt als Beladeraum, Raum 31 ist der Ionisierungsraum und Raum 32 ist der Reinigungsraum. Diese Räume wirken genauso wie die entsprechenden Räume im ersten Beispiel.
In den Räumen 29 bis 32 laufen an diskreten Drahtsegmenten 41 prinzipiell die gleichen Prozesse simultan ab. Jedes beliebige, beispielsweise etwa 1 mm lange Segment 41 des Drahts 24 wird auf diese Weise sukzessive in Raum 29 aktiviert, in Raum 30 mit Analysensubstanz beladen, in Raum 31 zur Ionisierung der Analysensubstanz benutzt und schließlich in Raum 32 von den Dendriten und von möglichen Substanzresten befreit. Im Gegensatz zu dem ersten Ausführungsbeispiel müssen die Räume 29 bis 32 nicht im rechten Winkel bzw. in gleichen Abständen zu einander angeordnet sein. Es genügt, wenn die Abstände der Räume 29 bis 32 zu einander jeweils ganzen Vielfachen der als Feldelektroden dienenden Drahtsegmenten 41 entsprechen und genügend Zwischenraum für die Absaugbohrungen 33 bis 40 belassen. Die Bohrungen 33 bis 38 werden gemeinsam von einem Pumpsystem evakuiert und sollen verhindern, daß Gase von einem der Prozeßräume 29 bis 32 in den jeweils benachbarten Prozeßraum gelangen. Die Bohrungen 39 und 40 werden von einem weiteren Pumpsystem differentiell zu den Bohrungen 33 bis 38 abgepumpt, so daß in Raum 31 trotz einer gewissen Leckrate durch die Kerbe 23 das Hochvakuum aufrecht erhalten werden kann, das für die Ionisierung im allgemeinen erforderlich ist.In principle, the same processes run simultaneously in
Ähnlich wie im ersten Ausführungsbeispiel liegt die Wandung 22 des Körpers 21 dicht an der Wandung 28 der Bohrung 26 des Metallblocks 27 an. Vor der Inbetriebnahme der Vorrichtung oder bei einem Wechsel des Drahts 24 wird der Körper 21 in die Bohrung 26 eingeführt. Während des Betriebs ist die Bohrung 26 fest verschlossen. In den Verschluß können die Durchgriffe für den Antrieb zur Bewegung des Drahts 24 und Durchführungen für elektrische Zuleitungen inkorporiert sein.Similar to the first exemplary embodiment, the
Claims (9)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2913897 | 1979-04-06 | ||
DE19792913897 DE2913897A1 (en) | 1979-04-06 | 1979-04-06 | METHOD AND DEVICE FOR TIME AND SPATIAL COORDINATION OF THE PROCESS SEQUENCE OF A FIELD DESORPTION IONIZATION |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0017221A1 true EP0017221A1 (en) | 1980-10-15 |
Family
ID=6067640
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19800101759 Withdrawn EP0017221A1 (en) | 1979-04-06 | 1980-04-02 | Process and device for the temporal and spatial coordination of the proceeding of a field desorption ionisation |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0017221A1 (en) |
JP (1) | JPS55139751A (en) |
DE (1) | DE2913897A1 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4041346A (en) * | 1975-10-22 | 1977-08-09 | E. I. Du Pont De Nemours And Company | Electrochemical generation of field desorption emitters |
-
1979
- 1979-04-06 DE DE19792913897 patent/DE2913897A1/en not_active Withdrawn
-
1980
- 1980-04-02 EP EP19800101759 patent/EP0017221A1/en not_active Withdrawn
- 1980-04-05 JP JP4407680A patent/JPS55139751A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4041346A (en) * | 1975-10-22 | 1977-08-09 | E. I. Du Pont De Nemours And Company | Electrochemical generation of field desorption emitters |
Non-Patent Citations (2)
Title |
---|
JOURNAL OF PHYSICS E, SCIENTIFIC INSTRUMENTS, Band 12, Nr. 2, Januar 1979, London, GB, H.D. BECKEY: "Experimental techniques in field ionisation and field desorption mass spectrometry", Seiten 72-83 * Seite 74, linke Spalte, letzter Absatz bis Seite 76, rechte Spalte, Absatz 1; Seite 78, linke Spalte, Absatz 4 bis Seite 79, linke Spalte, Absatz 5 * * |
JOURNAL OF PHYSICS E, SCIENTIFIC INSTRUMENTS, Band 9, Nr. 3, Marz 1976, London, GB, B.S. PRAHALLADA RAO et al.: "Vacuum lock-sample changer for a mass spectrometer", Seiten 205-207 * Seite 206, linke Spalte, Absatz 2 bis rechte Spalte, Absatz 1 * * |
Also Published As
Publication number | Publication date |
---|---|
DE2913897A1 (en) | 1980-10-23 |
JPS55139751A (en) | 1980-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69927983T2 (en) | METHOD FOR SEPARATING AND ENRICHING ISOTOPES IN THE GAS PHASE | |
DE102004002729B4 (en) | Ionization of desorbed analyte molecules at atmospheric pressure | |
DE69023633T2 (en) | CATHODE SPRAYER AND CATHODE SPRAYER. | |
DE3303435A1 (en) | METHOD AND DEVICE FOR DEPOSITING A LAYER ON A CARRIER | |
DD297868A5 (en) | CORONA DISCHARGE ARRANGEMENT WITH IMPROVED REMOVAL OF HARMFUL SUBSTANCES CAUSED BY THE CORONATION DISCHARGE | |
DE2552783B2 (en) | METHOD AND ARRANGEMENT FOR GENERATING IONS | |
DE4405747A1 (en) | Sputtering arrangement, supported by a magnetic field, and vacuum treatment plant equipped therewith | |
DE3331136C2 (en) | ||
DE102007017055A1 (en) | Measuring the mobility of mass-selected ions | |
EP0550003A1 (en) | Vacuum treatment apparatus and its applications | |
DE102005054605A1 (en) | Automatic cleaning of ion sources | |
EP3292561A1 (en) | Method for examining a gas by mass spectrometry and mass spectrometer | |
DE1914747B2 (en) | H.F. CATHODE DISPLACEMENT DEVICE | |
DE2827120C2 (en) | Device for detecting small amounts of gases or vapors in air or other gas mixtures | |
EP0017221A1 (en) | Process and device for the temporal and spatial coordination of the proceeding of a field desorption ionisation | |
DE2739099C2 (en) | Device for the manufacture of electric lamps | |
DE2449081A1 (en) | METHOD AND DEVICE FOR DETERMINING THE GAS CONTENT OF MATERIALS | |
DE3002643C2 (en) | Device for coating workpiece surfaces with reflective metal and protective layers | |
DE1107368B (en) | Method for operating an ion pump and device for carrying out the method | |
DE102004027989B4 (en) | Workpiece carrier device for holding workpieces | |
DE2305359C3 (en) | Device for reactive vapor deposition of thin layers on substrates | |
DE4317749A1 (en) | Mass spectrometer with means for monitoring the radiation emitted when ions collide with a target gas | |
US4311910A (en) | Field desorption ionization | |
DE2027301B2 (en) | Device for coating parts of objects by means of ion plasma deadening | |
DE2542362C3 (en) | Ion scattering spectroscopic method and apparatus for carrying out the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): BE FR GB IT NL |
|
17P | Request for examination filed |
Effective date: 19810211 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
18W | Application withdrawn |
Withdrawal date: 19830910 |