EP0017201B1 - Direct current plasma torch - Google Patents

Direct current plasma torch Download PDF

Info

Publication number
EP0017201B1
EP0017201B1 EP80101692A EP80101692A EP0017201B1 EP 0017201 B1 EP0017201 B1 EP 0017201B1 EP 80101692 A EP80101692 A EP 80101692A EP 80101692 A EP80101692 A EP 80101692A EP 0017201 B1 EP0017201 B1 EP 0017201B1
Authority
EP
European Patent Office
Prior art keywords
cathode
plasma torch
torch according
gas
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP80101692A
Other languages
German (de)
French (fr)
Other versions
EP0017201A1 (en
Inventor
Erwin Gehringer
Werner Hennig
Helmut Dr.-Ing. Hügel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsches Zentrum fuer Luft und Raumfahrt eV
Original Assignee
Deutsche Forschungs und Versuchsanstalt fuer Luft und Raumfahrt eV DFVLR
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche Forschungs und Versuchsanstalt fuer Luft und Raumfahrt eV DFVLR filed Critical Deutsche Forschungs und Versuchsanstalt fuer Luft und Raumfahrt eV DFVLR
Publication of EP0017201A1 publication Critical patent/EP0017201A1/en
Application granted granted Critical
Publication of EP0017201B1 publication Critical patent/EP0017201B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/40Details, e.g. electrodes, nozzles using applied magnetic fields, e.g. for focusing or rotating the arc
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3436Hollow cathodes with internal coolant flow

Definitions

  • the invention relates to a direct current plasma torch with a rod-shaped cathode and a concentrically arranged, rotationally symmetrical anode and an annular gap between the cathode and the anode for supplying the gas to be heated, the cathode having an annular edge at its free end and the free end the cathode is located in an axially parallel, temporally constant magnetic field, while in the region located downstream of the free end of the cathode there is a temporally constant magnetic field which diverges in the direction of flow, such that the plasma arc which forms between the cathode and the anode is set in rotation.
  • gases can be heated in a direct or alternating current arc discharge.
  • the main technological problems lie in the control or reduction of the electrode erosion through the arc attachments, directly related to the guarantee of a sufficient service life of the electrodes and the cleanliness of the arc plasma as well as in the realization of the properties of the highly heated medium required for the application. In certain applications, for example, spatial homogeneity and constant temperature can be required.
  • the aim is still to operate the discharge at the highest possible voltage. Since the electrophysical electrode losses are proportional to the current strength, the constant the current intensity, the lower the power loss at the electrodes, the higher the arc voltage.
  • the electrode erosion can be reduced by shortening the dwell time of the arc attachment on a specific surface element of the electrode.
  • Devices which, for the purpose of moving the arc attachments, introduce the medium to be heated in its entirety or only partially tangentially into the space between the electrodes (German patents 1,564,333 and 2,236,487).
  • the arc attachment is driven in the circumferential direction, but because of the axial velocity component of the gas, which is caused by the flow through the hollow cylindrical electrodes, a longitudinal movement is also forced on it.
  • the arc oscillates between different foot spots, causing its column length and thus voltage to take on temporally variable values.
  • a constant in time and spatially homogeneous hot gas or plasma cannot be achieved in this way.
  • the cathode can also be produced from tungsten or thoriated tungsten in apparatus operated with direct current (DE-OS 2027626, DE-PS 2 033 072).
  • direct current DE-OS 2027626, DE-PS 2 033 072
  • the thermal load at the tip of a conical cathode becomes so high that the material melts in the arch approach and gets into the plasma as an impurity.
  • This effect is avoided in the technical design according to DE-PS 2 033 072, in that a certain amount of the arc gas flows into a hollow cathode and leads there to the arc attachment.
  • the bow does not find a preferred starting point, experience has shown it to perform an erratic movement, which in turn causes fluctuations in tension and ultimately temperature fluctuations.
  • an outlet channel for the plasma gases is surrounded by a number of individual electrodes in the shape of a cone (British Patent 1 112 935).
  • the entire arrangement is to be rotated so that the plasma arc begins successively on different individual electrodes.
  • the plasma arc begins at one of the many rod-shaped electrodes surrounding the gas outlet openings, it will maintain this starting point even during rotation, since the field distribution at the tip of this electrode is particularly favorable.
  • the mechanical rotation thus swirls the plasma arc, which will only tear off after considerable swirling and will jump over to another electrode. This results in an extremely unstable plasma arc.
  • severe erosion occurs at the tips of the individual electrodes, since the plasma arc emanates for a long time continuously from the same electrode tip.
  • the invention has for its object to improve a direct current plasma torch in such a way that it can be used to heat gases and gas mixtures at pressures of up to 20 bar to temperatures in the range from a few 100 degrees to approximately 20,000 K, with long service lives of the electrodes , Cleanliness of the plasma, high efficiency and stationarity and spatially uniform distribution of the gas properties are to be achieved.
  • This object is achieved according to the invention in a plasma torch of the type described in the introduction in that the cathode has a continuous inner bore through which part of the gas to be heated can be introduced into the plasma torch at such a flow rate that the cathode-side plasma arc attachment on the annular edge of the cathode is localized.
  • the advantages achieved by the invention are that the design of the cathode with an annular edge of the cathode approach and due to the axial gas flow and the anode approach of the arc are each fixed in a certain axial position, which results in a temporally constant arc length and arc voltage and finally Temperature results.
  • the arc as such is set in rotation by electromagnetic forces, as a result of which its electrode attachments move rapidly in the circumferential direction, which leads to an extremely short dwell time on a specific surface element. As a result, the electrode material does not melt, and long service lives and clean plasmas can be achieved.
  • the cathode consists of thorium tungsten.
  • the annular edge has a cutting shape.
  • the anode can have the shape of a circular cylinder and have an internal width which is larger than the outside diameter of the cathode.
  • the outside diameter of the cathode is preferably considerably smaller than the inside diameter of the anode, so that there is a relatively wide annular gap between the two.
  • the formation of a negative pressure on the inside of the cathode is avoided, so that the plasma arc also has no tendency to migrate away from the edge into the inside of the cathode.
  • the formation of a negative pressure on the inside of the cathode is also counteracted by the gas flowing through the inner bore.
  • a magnetic coil or a permanent magnet are arranged concentrically to the cathode axis in order to generate the magnetic field in such a way that their plane of symmetry in a region between the annular edge of the cathode and a maximum of five diameters of the annular edge in Countercurrent direction shifted level.
  • the cathode and / or the element generating the magnetic field are preferably adjustable in the axial direction.
  • the arc approach is in an essentially axially parallel magnetic field.
  • an equalization chamber with an outer housing and a jacket arranged therein connects to the combustion chamber and that an annular space extending essentially over the entire height of the equalization chamber is arranged between the housing and the jacket with a gas supply line and on the other hand via holes in the jacket with the interior of the compensation chamber in connection.
  • the jacket is preferably made of a refractory material. It is also favorable if the housing is machined on the side facing the annular space in a mirror-like manner.
  • This configuration enables a gas to be introduced into the space between the jacket and the housing by a gas supply, which gas extracts heat from the jacket before it enters the compensation chamber through inlet openings in the jacket.
  • the energy flow from the jacket to the cooled wall of the housing is reduced to 30% of the value that occurs in known devices in which the energy flow from the hot gas to the cooled wall takes place through convective heat transfer, since the energy flow from the jacket to the cooled wall the compensation chamber according to the invention can only be carried out by radiation transport.
  • the drawing shows a preferred embodiment of a plasma torch in longitudinal section.
  • a cylindrical housing 1 has a central longitudinal bore 2 which is lined in its upper area by means of an insulating sleeve 3 and in its lower area by means of a circular cylindrical anode 4.
  • a rod-shaped cathode 5 with a central longitudinal bore 6 projects into the longitudinal bore 2 from the open upper side.
  • the cathode 5 is tapered in the region of its free end, so that a cutting-shaped ring edge 7 results at the outlet of the longitudinal bore 6.
  • the outer diameter of the rod-shaped cathode 5 is smaller than the inside width of the insulating sleeve 3 and the anode 4, so that an annular gap 8 is formed between them and the cathode 5.
  • the cylindrical housing 1 is surrounded by a magnetic coil 9, which can be excited by a current source, not shown in the drawing.
  • the magnet coil 9 is displaceable in the direction of the longitudinal axis of the housing.
  • the rod-shaped cathode 5 can also be displaceable in the direction of the longitudinal axis of the housing.
  • an equalizing chamber 10 Downstream of the housing 1 there is an equalizing chamber 10 with a likewise cylindrical housing 11 and a cavity 12 connected to the longitudinal bore 2.
  • a circular cylindrical jacket 13 is inserted into the cavity 12 in such a way that in its end regions 14 and 15 it lies tightly against ring webs 16 and 17 at the upper and lower ends of the housing 11, while in the remaining region between the jacket 13 and the housing 11 an annular chamber 18 is formed.
  • This annular space 18 is connected via a channel-shaped line 19 to a gas source (not shown in the drawing) and via openings 20 in the jacket 13 to the interior 21 of the compensation chamber 10.
  • the side walls 22 of the annular space 18 on the housing side are machined in a mirror-like manner.
  • the jacket 13 is preferably made of a refractory material.
  • the working gas flows on the one hand through the annular gap 8 and on the other hand through the longitudinal bore 6 into the interior of the housing 1 and thereby flows essentially axially parallel to it.
  • An arc burns between the anode 4 and the cathode 5, the cathode-side arc attachment being located on the cutting-shaped ring edge 7.
  • the magnet coil 9 is excited and thereby generates a magnetic field which runs essentially axially parallel in the region of the ring edge 7, while diverging in a region located downstream. This magnetic field causes the arc to rotate around the longitudinal axis of the housing, so that the starting point of the arc on the cathode side travels along the cutting-shaped ring edge 7.
  • the starting point runs in a radial plane, so that the length of the arc does not change, so that the voltage and temperature of the arc remain constant during this migration. It is essential that the magnetic field in the area of the ring edge runs essentially axially parallel.
  • the magnet coil 9 is moved into a corresponding axial position, according to the invention it is arranged such that its plane of symmetry lies in a region between the annular edge 7 of the cathode 5 and a plane displaced in the countercurrent direction by a maximum of five diameters of the annular edge 7.
  • the length of the arc and thus its temperature can be influenced by changing the axial position of the magnetic coil 9 and / or the rod-shaped cathode.
  • the starting point on the anode side is also defined by the diverging magnetic field in the area of the anode in the axial direction, while a migration of the starting point is ensured in the circumferential direction.
  • cathodes made of conventional materials can be used even at high powers, but it is expedient to produce the cathode additionally from highly heat-resistant material, for example from thorium tungsten.
  • magnet coil 7 can be replaced by an appropriately magnetized permanent magnet.
  • the jacket 14 which preferably consists of a refractory material, together with the annular space 18 ensures good thermal insulation of the gases. Since the jacket 14 is only in direct thermal contact with the cooled housing 11 in a small area, heat can be transferred from the jacket 14 to the housing 11 essentially only by radiation. Radiation losses are additionally reduced by the reflective processing of the side walls 22 of the annular space 18 on the housing side. Overall, the jacket 14 thus acts as a heat shield.
  • a further gas or a gas mixture can be admixed to the heated gas in the interior 21 of the compensation chamber via the line 19, the annular space 18 and the openings 20.
  • This gas entering through the annular space 18 is preheated in the latter, so that part of the heat losses can be compensated for in this way.
  • the desired final temperature of the gas mixture emerging from the compensation chamber can be set by adding further gases. It is also favorable that gas components can be added to the superheated gas which cannot be heated to the high temperatures prevailing in the plasma torch itself, be it that they are decomposed at these temperatures or that they can cause harmful reactions at these temperatures with the components of the plasma torch.
  • the temperature control can be carried out in two ways, namely by moving the solenoid 9 and / or the cathode 5 and by admixing a gas in the compensation chamber. You get an extremely variable and simple combination.

Description

Die Erfindung betrifft einen Gleichstrom-Plasmabrenner mit einer stabförmigen Kathode und einer konzentrisch dazu angeordneten, rotationssymmetrischen Anode und einem Ringspalt zwischen Kathode und Anode zur Zuführung des zu erwärmenden Gases, wobei die Kathode an ihrem freien Ende eine ringförmige Kante aufweist und wobei sich das freie Ende der Kathode in einem achsparallelen, zeitlich konstanten Magnetfeld befindet, während im stromabwärts des freien Endes der Kathode gelegenen Bereich ein in Strömungsrichtung divergierendes, zeitlich konstantes Magnetfeld existiert, derart, daß der zwischen Kathode und Anode sich ausbildende Plasmabogen in Rotation versetzt wird.The invention relates to a direct current plasma torch with a rod-shaped cathode and a concentrically arranged, rotationally symmetrical anode and an annular gap between the cathode and the anode for supplying the gas to be heated, the cathode having an annular edge at its free end and the free end the cathode is located in an axially parallel, temporally constant magnetic field, while in the region located downstream of the free end of the cathode there is a temporally constant magnetic field which diverges in the direction of flow, such that the plasma arc which forms between the cathode and the anode is set in rotation.

In verschiedenen Bereichen der Verfahrenstechnik, bei Plasmawindkanal-Untersuchungen, in der Plasmachemie sowie zum Betrieb fluiddynamischer Laser benötigt man hocherhitzte Gasströme, deren Temperatur und Druck je nach Zweck des Einsatzes bestimmte Werte im Bereich zwischen einigen 100 und ca. 20 000 K und Drücken bis zu 20 bar betragen müssen.In various areas of process engineering, in plasma wind tunnel investigations, in plasma chemistry and for the operation of fluid dynamic lasers, highly heated gas flows are required, the temperature and pressure of which, depending on the purpose of use, have certain values in the range between a few 100 and approx. 20,000 K and pressures up to Must be 20 bar.

Zur Erzielung solcher Werte von Temperatur und Druck kann die Aufheizung von Gasen in einer Gleich- oder Wechselstromlichtbogenentladung vorgenommen werden. Die wesentlichen technologischen Probleme liegen hierbei in der Beherrschung bzw. Reduzierung der Elektrodenerosion durch die Bogenansätze, damit direkt zusammenhängend in der Gewähr einer hinreichenden Standzeit der Elektroden und der Sauberkeit des Lichtbogenplasmas sowie in der Realisierung der entsprechend des Einsatzes geforderten Eigenschaften des hocherhitzten Mediums. So kann beispielsweise bei bestimmten Anwendungen eine räumliche Homogenität und zeitliche Konstanz der Temperatur gefordert werden.To achieve such values of temperature and pressure, gases can be heated in a direct or alternating current arc discharge. The main technological problems lie in the control or reduction of the electrode erosion through the arc attachments, directly related to the guarantee of a sufficient service life of the electrodes and the cleanliness of the arc plasma as well as in the realization of the properties of the highly heated medium required for the application. In certain applications, for example, spatial homogeneity and constant temperature can be required.

Um einen hohen thermischen Wirkungsgrad, d. h., ein großes Verhältnis von im heißen Gas enthaltener Energie zu aufgewandter elektrischer Energie, zu erzielen, wird weiterhin angestrebt, die Entladung bei möglichst hoher Spannung zu betreiben. Da die elektrophysikalisch begründeten Elektrodenverluste proportional zur Stromstärke sind, ist bei konstanter Stromstärke die Verlustleistung an den Elektroden prozentual um so geringer, je höher die Bogenspannung ist.To achieve high thermal efficiency, i. that is, to achieve a large ratio of the energy contained in the hot gas to the electrical energy used, the aim is still to operate the discharge at the highest possible voltage. Since the electrophysical electrode losses are proportional to the current strength, the constant the current intensity, the lower the power loss at the electrodes, the higher the arc voltage.

Eine Herabsetzung der Elektrodenerosion läßt sich durch eine Verkürzung der Verweilzeit des Bogenansatzes auf einem bestimmten Flächenelement der Elektrode erzielen. Es sind Einrichtungen bekannt, die zum Zwecke einer Bewegung der Bogenansätze das zu erhitzende Medium in seiner Gesamtheit oder auch nur teilweise tangential in den Raum zwischen den Elektroden einbringen (deutsche Patentschriften 1 564 333 und 2236487). Bei einem auf diese Weise wirbelstabilisierten Lichtbogen wird der Bogenansatz zwar in Umfangsrichtung angetrieben, doch wird ihm infolge der axialen Geschwindigkeitskomponente des Gases, die durch die Durchströmung der hohlzylindrischen Elektroden hervorgerufen wird, auch eine Längsbewegung aufgezwungen. Der Lichtbogen oszilliert zwischen verschiedenen Fußpurkten, wodurch seine Säulenlänge und damit Spannung zeitlich veränderliche Werte annimmt. Naturgemäß läßt sich auf diese Weise ein zeitlich konstantes und räumlich homogenes Heißgas oder Plasma nicht erzielen.The electrode erosion can be reduced by shortening the dwell time of the arc attachment on a specific surface element of the electrode. Devices are known which, for the purpose of moving the arc attachments, introduce the medium to be heated in its entirety or only partially tangentially into the space between the electrodes (German patents 1,564,333 and 2,236,487). In the case of an arc that is vortex-stabilized in this way, the arc attachment is driven in the circumferential direction, but because of the axial velocity component of the gas, which is caused by the flow through the hollow cylindrical electrodes, a longitudinal movement is also forced on it. The arc oscillates between different foot spots, causing its column length and thus voltage to take on temporally variable values. Naturally, a constant in time and spatially homogeneous hot gas or plasma cannot be achieved in this way.

Andere Einrichtungen machen sich die physikalische Tatsache zunutze, daß ein Lichtbogen durch elektromagnetische Kräfte bewegt werden kann. Es sind technische Ausgestaltungen bekannt, bei denen das hierzu erforderliche Magnetfeld mittels in der Nähe einer oder beider Elektroden angeordneter Spulen erzeugt wird (deutsche Patentschriften 1 564 333 und 1 933 306). Diese Ausführungen sind indessen vom Prinzip her so beschaffen, daß ein wesentlicher Teil der Bogensäule und zumindest ein Bogenansatz sich in einen Bereich mit anwachsendem Magnetfeld erstrecken muß. Aus der Impulsgleichung läßt sich theoretisch ableiten und die praktische Erfahrung zeigt, daß dieser Effekt nicht nur zu einer Verkürzung der Bogensäule und damit Reduzierung der Spannung führt, sondern auch Anlaß zur Instabilität gibt, was sich nachteilig auf die Erzielung stationärer Plasmazustände auswirkt.Other devices take advantage of the physical fact that an arc can be moved by electromagnetic forces. Technical configurations are known in which the magnetic field required for this is generated by means of coils arranged in the vicinity of one or both electrodes (German patents 1 564 333 and 1 933 306). In principle, however, these explanations are such that a substantial part of the arch column and at least one arch extension must extend into an area with an increasing magnetic field. The momentum equation can be derived theoretically and practical experience shows that this effect not only leads to a shortening of the arch column and thus a reduction in tension, but also gives rise to instability, which has an adverse effect on the achievement of stationary plasma states.

Während die meisten Hochdruckplasmaerzeuger Elektroden aus Kupfer verwenden, läßt sich bei mit Gleichstrom betriebenen Apparaturen die Kathode auch aus Wolfram oder thoriertem Wolfram herstellen (DE-OS 2027626, DE-PS 2 033 072). Jedoch erweist sich in der Praxis, daß bei Drücken höher als etwa 2 bar und Stromstärken über etwa 250 bis 300 A die thermische Belastung an der Spitze einer kegelförmigen Kathode, wie sie entsprechend der DE-OS 2 027 626 ausgeführt wird, so hoch wird, daß das Material im Bogenansatz schmilzt und als Verunreinigung in das Plasma gelangt. Dieser Effekt wird zwar in der technischen Ausführung nach der DE-PS 2 033 072 vermieden, indem eine bestimmte Menge des Bogengases in eine hohlförmige Kathode strömt und dort zum Bogenansatz führt. Da der Bogen jedoch keinen bevorzugten Ansatzpunkt findet, vollführt er erfahrungsgemäß eine erratische Bewegung, welche ihrerseits Spannungsfluktuationen und letztlich Temperaturschwankungen nach sich zieht.While most high-pressure plasma generators use electrodes made of copper, the cathode can also be produced from tungsten or thoriated tungsten in apparatus operated with direct current (DE-OS 2027626, DE-PS 2 033 072). However, in practice it turns out that at pressures higher than about 2 bar and currents above about 250 to 300 A, the thermal load at the tip of a conical cathode, as is carried out in accordance with DE-OS 2 027 626, becomes so high that the material melts in the arch approach and gets into the plasma as an impurity. This effect is avoided in the technical design according to DE-PS 2 033 072, in that a certain amount of the arc gas flows into a hollow cathode and leads there to the arc attachment. However, since the bow does not find a preferred starting point, experience has shown it to perform an erratic movement, which in turn causes fluctuations in tension and ultimately temperature fluctuations.

Aus der deutschen Offenlegungsschrift 2609178 ist weiterhin ein Plasmabrenner bekannt, bei welchem eine stabförmige Kathode mit einer kegelförmigen Spitze vorgesehen ist. An dieser Spitze ergibt sich zwangsläufig eine Lokalisierung des Plasmabogens, so daß hier zwangsläufig eine ganz erhebliche Elektrodenerosion auftreten muß.From the German patent application 2609178 a plasma torch is also known, in which a rod-shaped cathode with a conical tip is provided. At this tip there is inevitably a localization of the plasma arc, so that here inevitably a very considerable electrode erosion must occur.

Bei einem weiteren bekannten Plasmabrenner ist ein Auslaßkanal für die Plasmagase kegelmantelförmig von einer Anzahl von Einzelelektroden umgeben (britische Patentschrift 1 112 935). Die ganze Anordnung soll gedreht werden, damit der Plasmabogen nacheinander an verschiedenen Einzelelektroden beginnt. Wenn jedoch der Plasmabogen an einer der vielen die Gasaustrittsöffnungen umgebenden stabförmigen Elektroden beginnt, wird er diesen Ausgangspunkt auch bei der Drehung beibehalten, da an der Spitze dieser Elektrode die Feldverteilung besonders günstig ist. Die mechanische Drehung verzwirbelt also den Plasmabogen, der erst nach einer erheblichen Verzwirbelung abreißen und auf eine andere Elektrode überspringen wird. Es ergibt somit ein außerordentlich instabiler Plasmabogen. Darüber hinaus tritt eine starke Erosion an den Spitzen der einzelnen Elektroden auf, da der Plasmabogen lange Zeit ununterbrochen von derselben Elektrodenspitze ausgeht.In a further known plasma torch, an outlet channel for the plasma gases is surrounded by a number of individual electrodes in the shape of a cone (British Patent 1 112 935). The entire arrangement is to be rotated so that the plasma arc begins successively on different individual electrodes. However, if the plasma arc begins at one of the many rod-shaped electrodes surrounding the gas outlet openings, it will maintain this starting point even during rotation, since the field distribution at the tip of this electrode is particularly favorable. The mechanical rotation thus swirls the plasma arc, which will only tear off after considerable swirling and will jump over to another electrode. This results in an extremely unstable plasma arc. In addition, severe erosion occurs at the tips of the individual electrodes, since the plasma arc emanates for a long time continuously from the same electrode tip.

Der Erfindung liegt die Aufgabe zugrunde, einen Gleichstrom-Plasmabrenner derart zu verbessern, daß mit ihm Gase und Gasgemische bei Drücken bis zu 20 bar auf Temperaturen im Bereich von einigen 100 Grad bis ca. 20 000 K aufgeheizt werden können, wobei hohe Standzeiten der Elektroden, Sauberkeit des Plasmas, hoher Wirkungsgrad sowie Stationarität und räumlich gleichförmige Verteilung der Gaseigenschaften erreicht werden sollen.The invention has for its object to improve a direct current plasma torch in such a way that it can be used to heat gases and gas mixtures at pressures of up to 20 bar to temperatures in the range from a few 100 degrees to approximately 20,000 K, with long service lives of the electrodes , Cleanliness of the plasma, high efficiency and stationarity and spatially uniform distribution of the gas properties are to be achieved.

Diese Aufgabe wird bei einem Plasmabrenner der eingangs beschriebenen Art erfindungsgemäß dadurch gelöst, daß die Kathode eine durchgehende Innenbohrung aufweist, durch die ein Teil des zu erwärmenden Gases in den Plasmabrenner mit einer solchen Strömungsgeschwindigkeit einführbar ist, daß der kathodenseitige Plasmabogenansatz an der ringförmigen Kante der Kathode lokalisiert ist.This object is achieved according to the invention in a plasma torch of the type described in the introduction in that the cathode has a continuous inner bore through which part of the gas to be heated can be introduced into the plasma torch at such a flow rate that the cathode-side plasma arc attachment on the annular edge of the cathode is localized.

Die mit der Erfindung erzielten Vorteile bestehen darin, daß durch die Ausgestaltung der Kathode mit einer ringförmigen Kante der Kathodenansatz und infolge der axialen Gasströmung auch der Anodenansatz des Lichtbogens jeweils in einer bestimmten axialen Position fixiert sind, wodurch sich eine zeitlich gleichbleibende Bogenlänge und Bogenspannung und schließlich Temperatur ergibt. Andererseits wird der Lichtbogen aber als solcher durch elektromagnetische Kräfte in Rotation versetzt, wodurch sich seine Elektrodenansätze in Umfangsrichtung rasch bewegen, was zu einer extrem kurzen Verweilzeit an einem bestimmten Flächenelement führt. Dadurch unterbleibt ein Abschmelzen des Elektrodenmaterials, und es können hohe Standzeiten und saubere Plasmen erzielt werden.The advantages achieved by the invention are that the design of the cathode with an annular edge of the cathode approach and due to the axial gas flow and the anode approach of the arc are each fixed in a certain axial position, which results in a temporally constant arc length and arc voltage and finally Temperature results. On the other hand, the arc as such is set in rotation by electromagnetic forces, as a result of which its electrode attachments move rapidly in the circumferential direction, which leads to an extremely short dwell time on a specific surface element. As a result, the electrode material does not melt, and long service lives and clean plasmas can be achieved.

Es ist dabei wichtig, daß ein Teil des zugeführten, zu erwärmenden Gases durch die Innenbohrung der Kathode zugeführt wird, da diese Strömung auf der Innenseite der Kathode den Ansatzpunkt des Plasmabogens von der Innenfläche der Kathode weg auf die ringförmige Kante verlagert. Nur beim Ansatz des Plasmabogens an der ringförmigen Kante verläuft der Bogenansatz parallel zum Magnetfeld, und nur dann ist gewährleistet, daß die Bogenlänge und damit die Bogenspannung im Betrieb des Plasmabrenners gleich bleibt.It is important that part of the supplied gas to be heated is supplied through the inner bore of the cathode, since this flow on the inside of the cathode shifts the starting point of the plasma arc away from the inner surface of the cathode onto the annular edge. Only when the plasma arc is attached to the annular edge does the arc approach parallel to the magnetic field, and only then is it ensured that the arc length and thus the arc voltage remain the same during operation of the plasma torch.

Günstig ist es, wenn die Kathode aus Thoriumwolfram besteht.It is favorable if the cathode consists of thorium tungsten.

Bei einer bevorzugten Ausführungsform der Erfindung ist vorgesehen, daß die ringförmige Kante Schneidenform hat.In a preferred embodiment of the invention it is provided that the annular edge has a cutting shape.

Die Anode kann Kreiszylinderform haben und eine lichte Weite aufweisen, die größer ist als der Außendurchmesser der Kathode. Vorzugsweise ist der Außendurchmesser der Kathode erheblich kleiner als die lichte Weite der Anode, so daß sich ein relativ breiter Ringspalt zwischen beiden ergibt. Dadurch strömt das zugeführte Gas mit relativ geringer Geschwindigkeit in den Plasmabrenner ein, so daß sich im Bereich der Unterkante der Kathode an deren Innenseite kein starker Unterdruck ausbildet. Die Ausbildung eines Unterdrucks wäre ungünstig, da der Plasmabogen die Tendenz hat, in das Gebiet niedrigeren Druckes zu wandern, so daß bei sehr rascher Strömung des'zufließenden Gases und starker Unterdruckbildung auf der Innenseite der Kathode der Ansatzpunkt des Plasmabogens an die Innenfläche der Kathode wandern würde. Eine solche Wanderung wäre nachteilig, da dann der Plasmabogenansatz nicht mehr parallel zu den Magnetfeldlinien verläuft. Dieser nichtparallele Verlauf führt zu einer Rotationsbewegung des Plasmabogenansatzes, und zwar in entgegengesetzter Richtung wie bei der Anode, so daß insgesamt eine Verzwirbelung des Plasmabogens eintritt, der dadurch nicht mehr die geforderte Gleichmäßigkeit aufweisen kann. Durch die Erweiterung des Einlaßspaltes für das zuströmende Gas wird die Ausbildung eines Unterdrucks an der Innenseite der Kathode vermieden, so daß auch der Plasmabogen keine Tendenz hat, von der Kante weg in das Innere der Kathode zu wandern. Zusätzlich wird im übrigen der Ausbildung eines Unterdrucks auf der Innenseite der Kathode noch durch das durch die Innenbohrung zuströmende Gas entgegengewirkt.The anode can have the shape of a circular cylinder and have an internal width which is larger than the outside diameter of the cathode. The outside diameter of the cathode is preferably considerably smaller than the inside diameter of the anode, so that there is a relatively wide annular gap between the two. As a result, the gas supplied flows into the plasma torch at a relatively low speed, so that no strong negative pressure forms on the inside of the lower edge of the cathode. The formation of a negative pressure would be unfavorable, since the plasma arc tends to migrate into the area of lower pressure, so that with very rapid flow of the gas to be flowing in and strong negative pressure formation on the inside of the cathode, the starting point of the plasma arc migrates to the inside surface of the cathode would. Such a migration would be disadvantageous since the plasma arc approach would then no longer run parallel to the magnetic field lines. This non-parallel course leads to a rotational movement of the plasma arc attachment, in the opposite direction to that of the anode, so that overall a swirling of the plasma arc occurs which, as a result, can no longer have the required uniformity. By expanding the inlet gap for the inflowing gas, the formation of a negative pressure on the inside of the cathode is avoided, so that the plasma arc also has no tendency to migrate away from the edge into the inside of the cathode. In addition, the formation of a negative pressure on the inside of the cathode is also counteracted by the gas flowing through the inner bore.

Bei einer weiteren vorteilhaften Ausgestaltung der Erfindung kann vorgesehen sein, daß zur Erzeugung des Magnetfeldes konzentrisch zur Kathodenachse eine Magnetspule oder ein Permanentmagnet derart angeordnet sind, daß deren Symmetrieebene in einem Bereich zwischen der ringförmigen Kante der Kathode und einer um maximal fünf Durchmesser der ringförmigen Kante in Gegenstromrichtung verschobenen Ebene liegt.In a further advantageous embodiment of the invention it can be provided that a magnetic coil or a permanent magnet are arranged concentrically to the cathode axis in order to generate the magnetic field in such a way that their plane of symmetry in a region between the annular edge of the cathode and a maximum of five diameters of the annular edge in Countercurrent direction shifted level.

Vorzugsweise sind die Kathode und/oder das Magnetfeld erzeugende Element in axialer Richtung verstellbar. Durch diese Anordnung befindet sich der Lichtbogenansatz in einem im wesentlichen achsparallelen Magnetfeld. Durch die axiale Verstellung der Kathode und/oder des magnetfelderzeugenden Elements lassen sich die effektive Länge des Lichtbogens und damit seine Spannung einstellen, wodurch wiederum die Temperatur veränderbar ist.The cathode and / or the element generating the magnetic field are preferably adjustable in the axial direction. With this arrangement, the arc approach is in an essentially axially parallel magnetic field. By the axial adjustment of the cathode and / or Magnetic field generating element, the effective length of the arc and thus its voltage can be adjusted, which in turn allows the temperature to be changed.

Bei einer weiteren vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, daß sich an den Brennraum eine Ausgleichskammer mit einem äußeren Gehäuse und einem darin angeordneten Mantel anschließt und daß zwischen Gehäuse und Mantel ein sich im wesentlichen über die gesamte Höhe der Ausgleichskammer erstrekkender Ringraum angeordnet ist, der einerseits mit einer Gaszufuhrleitung und andererseits über Bohrungen im Mantel mit dem Innenraum der Ausgleichskammer in Verbindung steht. Der Mantel besteht vorzugsweise aus einem refraktären Material. Günstig ist es auch, wenn das Gehäuse auf der dem Ringraum zugewandten Seite spiegelnd bearbeitet ist.In a further advantageous embodiment of the invention it is provided that an equalization chamber with an outer housing and a jacket arranged therein connects to the combustion chamber and that an annular space extending essentially over the entire height of the equalization chamber is arranged between the housing and the jacket with a gas supply line and on the other hand via holes in the jacket with the interior of the compensation chamber in connection. The jacket is preferably made of a refractory material. It is also favorable if the housing is machined on the side facing the annular space in a mirror-like manner.

Diese Ausgestaltung ermöglicht es, daß durch eine Gaszuführung in den Raum zwischen dem Mantel und dem Gehäuse ein Gas eingeleitet werden kann, welches dem Mantel Wärme entzieht, ehe es durch Einlaßöffnungen im Mantel in die Ausgleichskammer eintritt. Gleichzeitig wird der Energiefluß vom Mantel zur gekühlten Wand des Gehäuses auf 30% des Wertes reduziert, der in bekannten Einrichtungen auftritt, in denen der Energiefluß vom heißen Gas an die gekühlte Wand durch konvektiven Wärmeübergang vonstatten geht, da der Energiefluß vom Mantel zur gekühlten Wand bei der erfindungsgemäßen Ausgleichskammer nur durch Strahlungstransport erfolgen kann.This configuration enables a gas to be introduced into the space between the jacket and the housing by a gas supply, which gas extracts heat from the jacket before it enters the compensation chamber through inlet openings in the jacket. At the same time, the energy flow from the jacket to the cooled wall of the housing is reduced to 30% of the value that occurs in known devices in which the energy flow from the hot gas to the cooled wall takes place through convective heat transfer, since the energy flow from the jacket to the cooled wall the compensation chamber according to the invention can only be carried out by radiation transport.

Es wird also durch die Kombination von Strahlungskühlung und konvektiver Kühlung in der an den Entladungsraum anschließenden Ausgleichskammer der Wärmeverlust auf ein Mindestmaß reduziert. Dies führt zu hohen Werten des Gesamtwirkungsgrades der Einrichtung. Schließlich gestattet die Einblasung von Gasen durch die Öffnungen im Mantel zusätzlich, beliebige Temperaturen bei optimalen Betriebszuständen des Brenners auch in solchen Gasgemischen zu erzielen, bei denen eine Komponente schädliche Wirkungen auf die Kathode bei einer direkten Aufheizung in der Lichtbogenentladung hätte.The combination of radiation cooling and convective cooling in the compensation chamber adjoining the discharge space thus reduces the heat loss to a minimum. This leads to high values of the overall efficiency of the facility. Finally, the blowing in of gases through the openings in the jacket additionally allows any temperatures to be achieved under optimal operating conditions of the burner even in those gas mixtures in which one component would have deleterious effects on the cathode if the arc discharge were heated directly.

Weitere vorteilhafte Ausgestaltungen sind Gegenstand der Unteransprüche.Further advantageous embodiments are the subject of the dependent claims.

Nachfolgende Beschreibung einer bevorzugten Ausführungsform der Erfindung dient im Zusammenhang mit der Zeichnung der näheren Erläuterung. Die Zeichnung zeigt ein bevorzugtes Ausführungsbeispiel eines Plasmabrenners im Längsschnitt.The following description of a preferred embodiment of the invention serves in conjunction with the drawing for a more detailed explanation. The drawing shows a preferred embodiment of a plasma torch in longitudinal section.

Ein zylinderförmiges Gehäuse 1 weist eine zentrale Längsbohrung 2 auf, die in ihrem oberen Bereich mittels einer Isolierhülse 3 und in ihrem unteren Bereich mittels einer kreiszylinderförmigen Anode 4 ausgekleidet ist. In die Längsbohrung 2 ragt von der offenen Oberseite her eine stabförmige Kathode 5 mit einer zentralen Längsbohrung 6. Die Kathode 5 ist im Bereich ihres freien Endes konisch zugespitzt, so daß sich am Auslaß der Längsbohrung 6 eine schneidenförmige Ringkante 7 ergibt. Der Außendurchmesser der stabförmigen Kathode 5 ist kleiner als die lichte Weite der Isolierhülse 3 und der Anode 4, so daß zwischen diesen und der Kathode 5 ein Ringspalt 8 ausgebildet wird.A cylindrical housing 1 has a central longitudinal bore 2 which is lined in its upper area by means of an insulating sleeve 3 and in its lower area by means of a circular cylindrical anode 4. A rod-shaped cathode 5 with a central longitudinal bore 6 projects into the longitudinal bore 2 from the open upper side. The cathode 5 is tapered in the region of its free end, so that a cutting-shaped ring edge 7 results at the outlet of the longitudinal bore 6. The outer diameter of the rod-shaped cathode 5 is smaller than the inside width of the insulating sleeve 3 and the anode 4, so that an annular gap 8 is formed between them and the cathode 5.

Das zylinderförmige Gehäuse 1 ist von einer Magnetspule 9 umgeben, die durch eine in der Zeichnung nicht dargestellte Stromquelle erregt werden kann. Die Magnetspule 9 ist in Richtung der Gehäuselängsachse verschieblich. Ebenso kann die stabförmige Kathode 5 in Richtung der Gehäuselängsachse verschieblich sein.The cylindrical housing 1 is surrounded by a magnetic coil 9, which can be excited by a current source, not shown in the drawing. The magnet coil 9 is displaceable in the direction of the longitudinal axis of the housing. The rod-shaped cathode 5 can also be displaceable in the direction of the longitudinal axis of the housing.

An das Gehäuse 1 schließt sich stromabwärts eine Ausgleichskammer 10 mit einem ebenfalls zylinderförmigen Gehäuse 11 und einem mit der Längsbohrung 2 in Verbindung stehenden Hohlraum 12 an. In den Hohlraum 12 ist ein kreiszylindrischer Mantel 13 derart eingesetzt, daß er in seinen Endbereichen 14 und 15 an Ringstegen 16 und 17 am oberen und am unteren Ende des Gehäuses 11 dicht anliegt, während im übrigen Bereich zwischen Mantel 13 und Gehäuse 11 ein Ringraum 18 gebildet wird. Dieser Ringraum 18 steht über eine kanalförmige Leitung 19 mit einer in der Zeichnung nicht dargestellten Gasquelle und über Öffnungen 20 im Mantel 13 mit dem Innenraum 21 der Ausgleichskammer 10 in Verbindung. Die gehäuseseitigen Seitenwände 22 des Ringraumes 18 sind spiegelnd bearbeitet. Der Mantel 13 besteht vorzugsweise aus einem refraktären Material.Downstream of the housing 1 there is an equalizing chamber 10 with a likewise cylindrical housing 11 and a cavity 12 connected to the longitudinal bore 2. A circular cylindrical jacket 13 is inserted into the cavity 12 in such a way that in its end regions 14 and 15 it lies tightly against ring webs 16 and 17 at the upper and lower ends of the housing 11, while in the remaining region between the jacket 13 and the housing 11 an annular chamber 18 is formed. This annular space 18 is connected via a channel-shaped line 19 to a gas source (not shown in the drawing) and via openings 20 in the jacket 13 to the interior 21 of the compensation chamber 10. The side walls 22 of the annular space 18 on the housing side are machined in a mirror-like manner. The jacket 13 is preferably made of a refractory material.

Im Betrieb des beschriebenen Plasmabrenners strömt das Arbeitsgas einerseits durch den Ringspalt 8 und andererseits durch die Längsbohrung 6 in das Innere des Gehäuses 1 ein und fließt dabei im wesentlichen achsparallel durch diesen. Zwischen der Anode 4 und der Kathode 5 brennt ein Lichtbogen, wobei der kathodenseitige Lichtbogenansatz an der schneidenförmigen Ringkante 7 lokalisiert ist. Die Magnetspule 9 wird erregt und erzeugt dabei ein Magnetfeld, das im Bereich der Ringkante 7 im wesentlichen achsparallel verläuft, während es in einem stromabwärts gelegenen Bereich divergiert. Durch dieses Magnetfeld wird der Lichtbogen um die Gehäuselängsachse herum in Drehung versetzt, so daß der kathodenseitige Ansatzpunkt des Lichtbogens an der schneidenförmigen Ringkante 7 entlangwandert. Dabei verläuft der Ansatzpunkt in einer radialen Ebene, so daß sich die Länge des Lichtbogens nicht verändert, es bleiben also auch Spannung und Temperatur des Lichtbogens bei dieser Wanderung konstant. Wesentlich ist dabei, daß das Magnetfeld im Bereich der Ringkante im wesentlichen achsparallel verläuft. Zu diesem Zweck wird die Magnetspule 9 in eine entsprechende Axialposition verschoben, erfindungsgemäß wird sie derart angeordnet, daß ihre Symmetrieebene in einem Bereich zwischen der ringförmigen Kante 7 der Kathode 5 und einer um maximal fünf Durchmesser der ringförmigen Kante 7 in Gegenstromrichtung verschobenen Ebene liegt. Durch Veränderung der Axialposition der Magnetspule 9 und/oder der stabförmigen Kathode läßt sich die Länge des Lichtbogens und damit seine Temperatur beeinflussen. Es ist also in einfacher Weise möglich, eine gewünschte Temperatur einzustellen, die wegen der konstanten Länge des Lichtbogens auch zeitlich konstant bleibt. Dadurch, daß der kathodenseitige Lichtbogenansatz längs der Ringkante 7 wandert, ist die Verweilzeit des Ansatzes in einem bestimmten Flächenelement extrem kurz, und es tritt praktisch keine Elektrodenerosion ein. Auch der anodenseitige Ansatzpunkt ist durch das divergierende Magnetfeld im Bereich der Anode in axialer Richtung definiert, während in Umfangsrichtung eine Wanderung des Ansatzpunktes gewährleistet ist.In the operation of the plasma torch described, the working gas flows on the one hand through the annular gap 8 and on the other hand through the longitudinal bore 6 into the interior of the housing 1 and thereby flows essentially axially parallel to it. An arc burns between the anode 4 and the cathode 5, the cathode-side arc attachment being located on the cutting-shaped ring edge 7. The magnet coil 9 is excited and thereby generates a magnetic field which runs essentially axially parallel in the region of the ring edge 7, while diverging in a region located downstream. This magnetic field causes the arc to rotate around the longitudinal axis of the housing, so that the starting point of the arc on the cathode side travels along the cutting-shaped ring edge 7. The starting point runs in a radial plane, so that the length of the arc does not change, so that the voltage and temperature of the arc remain constant during this migration. It is essential that the magnetic field in the area of the ring edge runs essentially axially parallel. For this purpose, the magnet coil 9 is moved into a corresponding axial position, according to the invention it is arranged such that its plane of symmetry lies in a region between the annular edge 7 of the cathode 5 and a plane displaced in the countercurrent direction by a maximum of five diameters of the annular edge 7. The length of the arc and thus its temperature can be influenced by changing the axial position of the magnetic coil 9 and / or the rod-shaped cathode. It is therefore possible in a simple manner to set a desired temperature which, due to the constant length of the arc, also remains constant over time. Characterized in that the cathode-side arc approach moves along the ring edge 7, the dwell time of the approach in a certain surface element is extremely short, and there is practically no electrode erosion. The starting point on the anode side is also defined by the diverging magnetic field in the area of the anode in the axial direction, while a migration of the starting point is ensured in the circumferential direction.

Aufgrund der Wanderung des kathodenseitigen Ansatzpunktes können auch bei hohen Leistungen Kathoden aus üblichen Materialien verwendet werden, günstig ist es jedoch, die Kathode zusätzlich aus hochwärmefestem Material herzustellen, beispielsweise aus Thoriumwolfram.Because of the migration of the starting point on the cathode side, cathodes made of conventional materials can be used even at high powers, but it is expedient to produce the cathode additionally from highly heat-resistant material, for example from thorium tungsten.

Günstige Leistungsdaten ergeben sich insbesondere dann, wenn die Anode Kreiszylinderform hat und eine lichte Weite aufweist, die größer ist als der äußere Durchmesser der Kathode 5.Favorable performance data result in particular when the anode has the shape of a circular cylinder and has a clear width which is larger than the outer diameter of the cathode 5.

Selbstverständlich kann die Magnetspule 7 durch einen entsprechend magnetisierten Permanentmagneten ersetzt werden.Of course, the magnet coil 7 can be replaced by an appropriately magnetized permanent magnet.

Die durch den Lichtbogen erhitzten Gase treten nach dem Durchlaufen des Lichtbogens in die Ausgleichskammer 10 ein. Hier sorgt der vorzugsweise aus einem refraktären Material bestehende Mantel 14 zusammen mit dem Ringraum 18 für eine gute thermische Isolierung der Gase. Da der Mantel 14 nur in einem kleinen Bereich in direktem Wärmeleitungskontakt mit dem gekühlten Gehäuse 11 steht, kann Wärme vom Mantel 14 auf das Gehäuse 11 im wesentlichen nur durch Strahlung übertragen werden. Durch die spiegelnde Bearbeitung der gehäuseseitigen Seitenwände 22 des Ringraumes 18 werden Strahlungsverluste zusätzlich herabgesetzt. Insgesamt wirkt damit der Mantel 14 als Hitzeschild.The gases heated by the arc enter the compensation chamber 10 after passing through the arc. Here, the jacket 14, which preferably consists of a refractory material, together with the annular space 18 ensures good thermal insulation of the gases. Since the jacket 14 is only in direct thermal contact with the cooled housing 11 in a small area, heat can be transferred from the jacket 14 to the housing 11 essentially only by radiation. Radiation losses are additionally reduced by the reflective processing of the side walls 22 of the annular space 18 on the housing side. Overall, the jacket 14 thus acts as a heat shield.

Über die Leitung 19, den Ringraum 18 und die Öffnungen 20 kann dem erhitzten Gas im Innenraum 21 der Ausgleichskammer ein weiteres Gas oder eine Gasmischung zugemischt werden. Dieses durch den Ringraum 18 eintretende Gas wird in diesem vorgewärmt, so daß ein Teil der Wärmeverluste auf diese Weise wieder ausgeglichen werden kann. Durch die Zumischung weiterer Gase kann die gewünschte Endtemperatur des aus der Ausgleichskammer austretenden Gasgemisches eingestellt werden. Günstig ist es auch, daß dem hocherhitzten Gas Gasbestandteile zugemischt werden können, die nicht selbst im Plasmabrenner auf die dort herrschenden hohen Temperaturen erhitzt werden können, sei es, daß sie bei diesen Temperaturen zersetzt werden, sei es, daß sie bei diesen Temperaturen schädliche Reaktionen mit den Bauteilen des Plasmabrenners eingehen.A further gas or a gas mixture can be admixed to the heated gas in the interior 21 of the compensation chamber via the line 19, the annular space 18 and the openings 20. This gas entering through the annular space 18 is preheated in the latter, so that part of the heat losses can be compensated for in this way. The desired final temperature of the gas mixture emerging from the compensation chamber can be set by adding further gases. It is also favorable that gas components can be added to the superheated gas which cannot be heated to the high temperatures prevailing in the plasma torch itself, be it that they are decomposed at these temperatures or that they can cause harmful reactions at these temperatures with the components of the plasma torch.

Mit der Kombination des beschriebenen Plasmabrenners und der Ausgleichskammer gelingt es also, Gase auch bei hohen Drücken (bis 20 bar) auf extrem hohe Temperaturen (bis 20 000 K) zu erhitzen und gleichzeitig die Endtemperatur des Gases exakt, reproduzierbar und konstant einzustellen, wobei die Abnützung des Plasmabrenners im Betrieb auf ein Mindestmaß herabgesetzt wird. Die Temperaturregelung kann in zweifacher Weise erfolgen, nämlich durch Verschiebung der Magnetspule 9 und/ oder der Kathode 5 und durch Zumischung eines Gases in der Ausgleichskammer. Man erhält damit eine äußerst variable und im Aufbau einfache Kombination.With the combination of the described plasma torch and the compensation chamber, it is possible to heat gases even at high pressures (up to 20 bar) to extremely high temperatures (up to 20,000 K) and at the same time adjust the final temperature of the gas precisely, reproducibly and constantly, whereby the Wear of the plasma torch during operation is reduced to a minimum. The temperature control can be carried out in two ways, namely by moving the solenoid 9 and / or the cathode 5 and by admixing a gas in the compensation chamber. You get an extremely variable and simple combination.

Claims (12)

1. Direct current plasma torch comprising a bar-shaped cathode and an anode symmetrical with respect to rotation and disposed concentrically to said cathode and an annular clearance between cathode and anode for introducing the gas to be heated, the cathode having at its free end an annular edge and the free end of the cathode being located in an axially parallel magnetic field constant in time, while a magnetic field constant in time but diverging in the direction of flow exists in the area located downstream of the free end of the cathode such that the plasma arc forming between cathode and anode is caused to rotate, characterized in that the cathode (5) has a continuous inner bore (6), through which part of the gas to be heated is introduced into the plasma torch at such a velocity of flow that the point at which the plasma arc connects to the cathode is localized at the annular edge (7) of the cathode (5).
2. Plasma torch according to claim 1, characterized in that the cathode (5) consists of thoriated tungsten.
3. Plasma torch according to either of claims 1 or 2, characterized in that the annular edge (7) is wedge-shaped.
4. Plasma torch according to any of the preceding claims, characterized in that the anode (4) is circular-cylindrical in shape and has an inside diameter which is larger than the outside diameter of the cathode (5).
5. Plasma torch according to any of the preceding claims, characterized in that for generating the magnetic field a magnetic coil (9) or a permanent magnet are disposed concentrically to the cathode axis such that their plane of symmetry lies in the area between the annular edge (7) of the cathode (5) and a plane displaced in the direction of counterflow by a distance of maximum five times the diameter of the annular edge (7).
6. Plasma torch according to any of the preceding claims, characterized in that the cathode and/or the element (9) generating the magnetic field are displaceable in the axial direction.
7. Plasma torch according to any of the preceding claims, characterized in that the gas is introduced axially parallel.
8. Plasma torch according to any of the preceding claims, characterized in that an equalizing chamber (10) having an outer casing (11) and a jacket (14) disposed therein is connected to the combustion chamber and that an annular space (18) extending substantially through the entire length of the equalizing chamber (10) is disposed between casing (11) and jacket (14), said annular space (18) being connected to the inside space (21) of the equalizing chamber (10) on the one hand by a gas supply line (19) and on the other hand via holes (20) in the jacket (14).
9. Plasma torch according to claim 8, characterized in that the jacket (14) consists of a refractory material.
10. Plasma torch according to either of claims 8 or 9, characterized in that the casing (11) has a specular finish on the side facing the annular space (18).
11. Plasma torch according to any of claims 8, 9 or 10, characterized in that the equalizing chamber (10) has a cylindrical, semicylindrical, prismatic or spherical shape.
12. Plasma torch according to any of claims 8 to 11, characterized in that the main axis of the equalizing chamber (10) is disposed parallel or perpendicular to that of the plasma torch.
EP80101692A 1979-04-04 1980-03-29 Direct current plasma torch Expired EP0017201B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2913464A DE2913464C3 (en) 1979-04-04 1979-04-04 DC plasma torch
DE2913464 1979-04-04

Publications (2)

Publication Number Publication Date
EP0017201A1 EP0017201A1 (en) 1980-10-15
EP0017201B1 true EP0017201B1 (en) 1982-10-27

Family

ID=6067376

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80101692A Expired EP0017201B1 (en) 1979-04-04 1980-03-29 Direct current plasma torch

Country Status (2)

Country Link
EP (1) EP0017201B1 (en)
DE (2) DE2913464C3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9532440B2 (en) 2013-08-27 2016-12-27 Fronius International Gmbh Method and device for generating a plasma jet

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2514223A1 (en) * 1981-10-01 1983-04-08 Anvar Plasma generator, esp. for melting ceramics or extn. metallurgy - where powder to be melted or reduced is injected through bore of tubular cathode
US4625092A (en) * 1984-11-30 1986-11-25 Plasma Energy Corporation Plasma arc bulk air heating apparatus
US4862032A (en) * 1986-10-20 1989-08-29 Kaufman Harold R End-Hall ion source
DE3642375A1 (en) * 1986-12-11 1988-06-23 Castolin Sa METHOD FOR APPLYING AN INTERNAL COATING INTO TUBES OD. DGL. CAVITY NARROW CROSS SECTION AND PLASMA SPLASH BURNER DAFUER
DE4034731A1 (en) * 1990-10-30 1992-05-07 Mannesmann Ag PLASMA BURNER FOR MELTING AND KEEPING WARM MATERIALS TO BE TREATED
NO176300C (en) * 1991-12-12 1995-03-08 Kvaerner Eng Plasma burner device for chemical processes
DE19518208C2 (en) * 1994-05-20 2000-05-25 Steinbeis Transferzentrum Raum Plant for the thermal treatment of substances
AU4274196A (en) * 1995-11-27 1997-06-19 Volgogradskoe Otkrytoe Aktsionernoe Obschestvo "Khimprom" Process for obtaining titanium dioxide and a plasmo-chemical reactor for carrying out said process
DE19930925B4 (en) * 1998-07-06 2011-05-05 Laure, Stefan, Dr. plasma generator
DE19953928B4 (en) * 1999-11-10 2004-01-29 Steinbeis-Transferzentrum Raumfahrtsysteme-Reutlingen Plasma generating device for generating thermal arc plasmas
TWI274622B (en) * 2003-04-28 2007-03-01 Air Prod & Chem Apparatus and method for removal of surface oxides via fluxless technique involving electron attachment and remote ion generation
US7079370B2 (en) 2003-04-28 2006-07-18 Air Products And Chemicals, Inc. Apparatus and method for removal of surface oxides via fluxless technique electron attachment and remote ion generation
DE102004006636B4 (en) * 2004-02-10 2013-10-17 Dr. Laure Plasmatechnologie Gmbh Plasma generator and method for the reduction and purification of oxide-containing metal compounds
BR102012023179A2 (en) * 2012-09-14 2014-11-11 Roberto Nunes Szente MECHANICAL TERMINAL PROCESS FOR DRILLING
CN110519903A (en) * 2019-08-14 2019-11-29 成都金创立科技有限责任公司 Air tubular plasma generator interstitial structure

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA573701A (en) * 1959-04-07 E. Burk Robert Process for carrying out chemical reaction
DE1225311B (en) * 1965-04-12 1966-09-22 Siemens Ag Plasma torch
DE1514440A1 (en) * 1965-04-12 1969-08-21 Siemens Ag Plasma torch
US3400070A (en) * 1965-06-14 1968-09-03 Hercules Inc High efficiency plasma processing head including a diffuser having an expanding diameter
US3445191A (en) * 1965-07-14 1969-05-20 Westinghouse Electric Corp Arc heater apparatus for chemical processing
GB1112935A (en) * 1965-09-24 1968-05-08 Nat Res Dev Improvements in plasma arc devices
DE1276243B (en) * 1966-11-05 1968-08-29 Siemens Ag Plasma torch
US3569661A (en) * 1969-06-09 1971-03-09 Air Prod & Chem Method and apparatus for establishing a cathode stabilized (collimated) plasma arc
DE1933306B2 (en) * 1969-07-01 1972-02-10 Siemens AG, 1000 Berlin u 8000 München PROCEDURE FOR OPERATING A HIGH PRESSURE ARC FLASH TORCH AND ARRANGEMENT FOR CARRYING OUT THE PROCEDURE
GB1543164A (en) * 1975-03-05 1979-03-28 Nat Res Dev Plasma torches

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9532440B2 (en) 2013-08-27 2016-12-27 Fronius International Gmbh Method and device for generating a plasma jet

Also Published As

Publication number Publication date
DE3060990D1 (en) 1982-12-02
DE2913464C3 (en) 1983-11-10
EP0017201A1 (en) 1980-10-15
DE2913464B2 (en) 1981-04-02
DE2913464A1 (en) 1980-10-16

Similar Documents

Publication Publication Date Title
EP0017201B1 (en) Direct current plasma torch
DE2164270C3 (en) Plasma jet generator
DE4105408C1 (en)
EP0596830B1 (en) Plasma spray gun
DE3522888A1 (en) DEVICE FOR PRODUCING A PLASMA JET
DE2306022C3 (en) Plasma torch with axial supply of the stabilizing gas
EP0500492A1 (en) Plasma spray gun for spraying powdered or gaseous materials
DE2912843A1 (en) PLASMA BURNER, PLASMA BURNER ARRANGEMENT AND METHOD FOR PLASMA PRODUCTION
DE3341098A1 (en) DEVICE FOR ELECTRICALLY HEATING GASES
DE1564333C3 (en) Device for generating a gas discharge plasma
DE2633510C3 (en) Plasmatron
DE2000869C3 (en) Method and device for heating a gas by means of an electric arc
DE1764978C3 (en) High frequency plasma generator
DE2263709A1 (en) ROTARY CONTACT
DE1589207A1 (en) Plasma torch
DE1271852C2 (en) PLASMA BURNER
DE1300182B (en) Vortex stabilized arc plasma torch
DE2401490A1 (en) GAS FLOW SYSTEM FOR ELECTRIC ARC DISCHARGE
DE2334449C3 (en) Device for stabilizing a liquid arc plasma torch
AT224772B (en) Arc heater for gases
DE1440541B2 (en) ELECTRIC PLASMA DEVICE FOR HEATING, CUTTING AND WELDING A WORKPIECE
AT216480B (en) Arc torch
DE2334449B2 (en) DEVICE FOR THE STABILIZATION OF A LIQUID ARC PLASMA TORCH
AT256268B (en) Arrangement for nozzle-free production of a plasma jet
DE1790209C (en) Gas stabilized arc torch

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE FR GB

17P Request for examination filed

Effective date: 19801120

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE DE FR GB

REF Corresponds to:

Ref document number: 3060990

Country of ref document: DE

Date of ref document: 19821202

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19900403

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19910222

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19910305

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910318

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19920101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19920329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19920331

BERE Be: lapsed

Owner name: DEUTSCHE FORSCHUNGS- UND VERSUCHSANSTALT FUR LUFT

Effective date: 19920331

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19921130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT