EP0014156B1 - Electroluminescent chromatic transducer with additive synthesis - Google Patents

Electroluminescent chromatic transducer with additive synthesis Download PDF

Info

Publication number
EP0014156B1
EP0014156B1 EP80400117A EP80400117A EP0014156B1 EP 0014156 B1 EP0014156 B1 EP 0014156B1 EP 80400117 A EP80400117 A EP 80400117A EP 80400117 A EP80400117 A EP 80400117A EP 0014156 B1 EP0014156 B1 EP 0014156B1
Authority
EP
European Patent Office
Prior art keywords
layers
luminescent
light
electroluminescent
amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP80400117A
Other languages
German (de)
French (fr)
Other versions
EP0014156A1 (en
Inventor
Denis Etienne Victor Tarragon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LA MARGUERITE DITE Ste
Original Assignee
La Marguerite Dite Ste
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by La Marguerite Dite Ste filed Critical La Marguerite Dite Ste
Priority to AT80400117T priority Critical patent/ATE5499T1/en
Publication of EP0014156A1 publication Critical patent/EP0014156A1/en
Application granted granted Critical
Publication of EP0014156B1 publication Critical patent/EP0014156B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/10Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes
    • H01J31/20Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes for displaying images or patterns in two or more colours
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/10Screens on or from which an image or pattern is formed, picked up, converted or stored

Definitions

  • the invention relates to a light current transducer device of a special image tube comprising an electroluminescent assembly associated with a cathode scan allowing the television reproduction of color images.
  • Another two-color picture tube known by the technical name of "penetron” was designed around 1934 and improved by numerous patents (US-A-2,446,248, US-A-2,445,710, US-A-2,704,783, US-A- 2,730,653, US-A-2,590,018).
  • the operating principle is different: two superimposed cathodoluminescent thin films present their maximum emission at distinct levels of the energy of the incident electrons.
  • the luminescent materials of the two layers are suitably chosen, the color of the light emitted can be varied by varying the acceleration voltage of the incident electrons.
  • the low energy electrons excite the luminescence of the first layer, but cannot penetrate the second. We only observe the luminescence of the first layer. If the energy is increased (increase in the high acceleration voltage), it is possible to excite both the luminescence of the first layer and that of the second layer, and with possible predominance of the luminance of the second layer.
  • the tube with "shadow mask” requires, for industrial production, significant investments, expensive specific tools, and the cost price of a tube represents 50% of the manufacturing price of a color TV receiver.
  • the image tube and its supply circuits are large consumers of energy, the electrons are intercepted by the color selection electrode (shadow mask).
  • the present technological innovation is to overcome the difficulties of tubes using color selection masks and the technical disadvantages of "penetration tubes", while retaining the advantages of thin films for maximum resolution.
  • the proposed innovation makes it possible to use a single-channel tube, identical electronically to that of a tube used for reception of television in. black and white. Only the electroluminescent front panel is different.
  • the invention makes it possible to improve the resolution and the stability of the dots reproduced, thus avoiding the confusion of the signs B and 8, C and 0, D and 0, S and 8 etc ... in the reproduction of texts in telematics by giving a perfect restitution, and a marked improvement in the reproduction of the image is felt.
  • the electroluminescent assembly having at least two layers, emits lights of different wavelengths.
  • each electroluminescent capacitor exit outside the tube and allow the metering of the light intensities by means of an amplification controlled by the signals supplied by the decoding of the chrominance signal.
  • the color selection and mixing are done point by point on the front of the tube.
  • a specific physical property of certain cathodoluminescent substances namely "image amplification" by the action of a high electric field, is used.
  • the light spot of a point weakly irradiated by an electron beam is amplified when a variable electric field is applied in a capacitor containing phosphors.
  • the brightness and the mixing of the colors are obtained on the one hand by the cathode current for the luminance, and on the other hand by the electroluminescent transducers for the chrominances.
  • the additive synthesis carried out by the organ of sight allows by the mixture of the three fundamental colors to reconstitute the white light.
  • This white light can be effected with light sources radiating color directly.
  • the phenomenon essentially resides in the direct excitation of the luminescent centers by accelerated electrons, in a high electric field.
  • Electroluminescence is an unfamiliar phenomenon. In 1936 Professor Georges Destriau, of the University of Paris, discovered that zinc sulfide could emit light under the direct action of an alternating electric field. This new phenomenon was of great importance since, for the first time, a solid body directly transformed electrical energy into light energy.
  • a thin film of the above-mentioned luminescent compound coated in an insulator is placed between two plates which are both transparent and conductive, generally two glass plates on which a thin layer of antimony chloride or oxide has been sprayed. tin.
  • the electroluminescent cell thus produced constitutes a capacitor. If we connect the two conductive strips of this capacitor to a periodic voltage generator we see, through the glass slides, shine the luminescent compound. This brightness increases both with the value of the applied voltage and with its frequency. The light emitted is blue, green, yellow or red, depending on the nature of the basic product and the activator. Luminescent cells comprising such materials arranged in layers from 20 to 50 ⁇ m thick, called “powder-light emitting capacitors", have been the subject of numerous experimental tests.
  • thin films structure "thin layer"
  • argon an inert gas
  • the whole of a cell is in the form of a thin layer having a thickness of 0.4 to 3, u.
  • annealing at 500 ° for 20 to 30 minutes under an argon atmosphere is recommended.
  • These thin layers have high chemical reliability, stable and homogeneous characteristics over all their surfaces and thicknesses. They operate with relatively low excitation voltages and their minimum lifespan is 10 4 hours.
  • the electroluminescent transducer ( Figure 1) comprises a luminescent layer (1) made of a material both cathodoluminescent and electroluminescent, on either side of which are arranged two conductive layers (2 and 3) each connected to a respective terminal a generator (4).
  • a threadlike electron beam (6) scans the surface (7) on the empty side. These electrons (6) have sufficient energy to penetrate the luminescent layer (1), but the power of the beam is sufficiently low so that in the absence of periodic voltage between the layers (2 and 3) the luminescent material (1 ) emits at the point of impact (8) of the electron beam (6) only a low intensity spot.
  • a periodic voltage with an amplitude of 100 to 140 volts is applied between the layers (2 and 3) during a short period of time, for example 10- 4 seconds, a flash of light, represented schematically by the arrow ( 10) is emitted at the point of impact (8).
  • the wavelength of this light depends on the nature of the impurity atoms constituting the luminogenic centers of the material (1).
  • buffer layer (1 and 2) made of a material which is good insulator of electricity and has a high dielectric constant.
  • electroluminescent transducers identical to that of FIG. 1 can be used to obtain colored images from video-color signals.
  • a television picture tube with a single electron gun is used, and 3 chromatic electroluminescent transducers.
  • Electromagnetic deflection coils provide a suitable deflection of the electron beam (18), coming from the electron gun (13 to 17), so that this beam (18) scans in a known manner the surface of the "slab" (19) .
  • This slab (19) is formed by the outer wall of the image tube (20) located opposite the barrel (13 to 17).
  • the bulb would then have plates X ,, X 2 and Y 1 ' Y 2 to ensure the deflection of the electron beam along two dimensions.
  • this glass slab (21) is provided on its inner face with a filtering layer (gray filter) (22), and a stack of thin layers comprising three superimposed light-emitting transducers.
  • These three transducers consist of three luminescent layers (23, 24 and 25) and four conductive layers (26, 27, 28 and 29), the luminescent layers (23, 24 and 25) are made of a material that is both electroluminescent and cathodoluminescent, each of them containing a doper of different nature, allowing respectively the emission of green, red and blue light.
  • each light-emitting layer (23, 24 and 25) is located between two conductive layers 26-27, 27-28 and 28-29 respectively.
  • buffer layers (30) are interposed between the luminescent layers (23 to 25) and the conductive layers (26 to 29).
  • the conductive layer (29) located on the side of the interior of the tube (20) may be a thin layer of aluminum or copper, brought to a high positive potential.
  • the purpose of this thin layer is to increase the conductivity of the screen and to act as a mirror for the light rays emitted by the luminescent layers, the light rays all being reflected forward.
  • Layers 23, 24 and 25 are formed from zinc sulfide (ZnS), associated with dopant molecules and containing oxysulfides to limit the interactions of said molecules and zinc sulfur.
  • ZnS zinc sulfide
  • the layers 26, 27 and 28 are layers of tin oxide Sn0 2 or indium oxide In 2 0 3 .
  • the layers 30 are layers of yttrium oxide Y 2 0 3 '
  • the conductive layer 29 is a 1000 A aluminum layer.
  • the tube (20) reproduces the color images of a television program in the following manner: a reception and demodulation block (31) picks up the HF waves on its terminal (31 A) and delivers the video signal of luminance Y on the terminal 31 B connected to the cathode (14) of tube (20). The video signal from chrominance delivered on the terminal (31 C) is applied to the input (32 A) of the chrominance decoding block (32).
  • This decoding assembly processes the green, red and blue chrominance signals respectively on the output terminals (32 B, 32 C and 32 D). These voltages delivered in 32 B, 32 C and 32 D are proportional to the green, red and blue chromatic components of the emission and are applied respectively between layers 26 and 27, 27 and 28, 28 and 29.
  • the chrominance signal decoder 32 does not deliver any signal at the output of the green, red blue amplifiers at 32 B, 32 C, 32 D.
  • the television works like a black television and plain white.
  • the kinetic energy of the electrons on the electroluminescent parts of the three transducers causes a white point of light to appear, with a brightness proportional to the voltage of the video-luminance signals applied to the tube cathode.
  • the brightness amplification coefficient an essential characteristic of the invention is from 10 to 15 for each transducer. This allows, for a brightness equivalent to normal color television reception, to decrease the video amplification. It is even conceivable, instead of using an analog amplifier operating at a supply voltage of 150 to 180 volts, to use a digital amplifier operating at 15 to 25 volts.
  • a suitable order of stacking of the transducers makes it possible to respect the fundamental equation of the luminance signal, containing all the information necessary for the reproduction of the image in "black and white", ensuring the principle of compatibility of the emissions “black and white “and colors as stated by Georges Valensi; to know: about 30% red, 60% green, 10% blue.
  • the light emitted by the first transducer, towards the observer is green, and it undergoes no attenuation; the second light emitted by the second transducer is red, it undergoes a natural attenuation of approximately 40% by crossing the first transducer, as for the third transducer, its light emission is blue and it undergoes an approximation attenuation from 60% to 80% .
  • Another advantage of the invention is that the brightness of the tube with transducers is very important, and by slightly increasing the supply voltages of the tube, projection on a large screen by Schmitt optics is possible.
  • color television is an important but not limiting application of the invention.

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Illuminated Signs And Luminous Advertising (AREA)
  • Video Image Reproduction Devices For Color Tv Systems (AREA)
  • Luminescent Compositions (AREA)

Abstract

1. Apparatus for generating images in at least two colors comprising an image reproduction screen, means for directing an energizing electronic beam over the entire surface of said screen, the intensity of which beam is dependent on the amplitude of a brightness control signal, and means for imparting a scanning movement to the said energizing beam so that its point of impact on the surface of the screen moves according to two dimensions, the said image generating apparatus being characterized in that it further comprises : a) a superimposition of at least two layers (23-25) each one produced in a luminescent material radiating light of a predetermined wavelength, different from the wavelength of the light radiated by the other layers, the luminescent materials used, radiating light under the action of an electronic bombardment and adapting to an amplification of the light intensity thus radiated by superposition of an electroluminescent effect, b) an appropriate control device, associated to each luminescent layer to generate therein a pulsating electric field, the frequency and amplitude of which are dependent on the amplitude of a corresponding color signal so as to ensure the restitution of the different chromatic components, and c) generators (31, 32) supplying the said signals controlling the color and brightness.

Description

L'invention concerne un dispositif transducteur courantlumière d'un tube image spécial comprenant un ensemble électroluminescent associé à un balayage cathodique permettant la reproduction télévisuelle d'images en couleur.The invention relates to a light current transducer device of a special image tube comprising an electroluminescent assembly associated with a cathode scan allowing the television reproduction of color images.

Depuis le début de la télévision en couleur, l'ensemble des récepteurs sont équipés d'un tube image constitué de trois canons à électrons (un par couleur), qui excitent chacun un élément de l'écran où se trouvent déposés des luminophores émettant de la lumière verte, rouge ou bleue. Avant l'impact sur les luminophores, les faisceaux d'électrons traversent un système de grilles chargées de focaliser les électrons, afin d'obtenir l'excitation du point lumineux désiré. Ce tube-image trichrome à masque perforé est connu sous le nom tube à masque d'ombre (la description et le principe de fonctionnement sont abondamment développés dans la littérature technique).Since the start of color television, all receivers have been equipped with a picture tube made up of three electron guns (one per color), which each excite an element of the screen where phosphors emitting light are deposited. green, red or blue light. Before the impact on the phosphors, the electron beams pass through a system of grids responsible for focusing the electrons, in order to obtain the excitation of the desired light point. This trichromatic image tube with shadow mask is known as a shadow mask tube (the description and the operating principle are abundantly developed in the technical literature).

Un autre tube image, bichrome, connu sous ta dénomination technique de "pénétron" a été conçu vers 1934 et amélioré par de nombreux brevets (US-A-2,446,248, US-A-2,445,710, US-A-2,704,783, US-A-2,730,653, US-A-2,590,018). Le principe de fonctionnement est différent: deux films minces cathodoluminescents superposés présentent leur maximum d'émission à des niveaux distincts de l'énergie des électrons incidents. Lorsque les matériaux luminescents des deux couches sont convenablement choisis, on peut faire varier la couleur de la lumière émise en faisant varier la tension d'accélération des électrons incidents. Les électrons de faible énergie excitent la luminescence de la première couche, mais ne peuvent pénétrer dans le seconde. On observe uniquement la luminescence de la première couche. Si on augmente l'énergie (augmentation de la haute tension d'accélération) on peur exciter à la fois la luminescence de la première couche et celle de la seconde couche, et avec prédominance possible de la luminance de la seconde couche.Another two-color picture tube, known by the technical name of "penetron", was designed around 1934 and improved by numerous patents (US-A-2,446,248, US-A-2,445,710, US-A-2,704,783, US-A- 2,730,653, US-A-2,590,018). The operating principle is different: two superimposed cathodoluminescent thin films present their maximum emission at distinct levels of the energy of the incident electrons. When the luminescent materials of the two layers are suitably chosen, the color of the light emitted can be varied by varying the acceleration voltage of the incident electrons. The low energy electrons excite the luminescence of the first layer, but cannot penetrate the second. We only observe the luminescence of the first layer. If the energy is increased (increase in the high acceleration voltage), it is possible to excite both the luminescence of the first layer and that of the second layer, and with possible predominance of the luminance of the second layer.

Le tube à "masque perforé" nécessite, pour une fabrication industrielle, des investissements importants, un outillage spécifique onéreux, et le prix de revient d'un tube représente 50% du prix de fabrication d'un récepteur de T.V. en couleurs.The tube with "shadow mask" requires, for industrial production, significant investments, expensive specific tools, and the cost price of a tube represents 50% of the manufacturing price of a color TV receiver.

En outre, la reconstitution d'une image colorée au moyen de ce tube image présente plusieurs difficultés à savoir:

  • 1/ la convergence dynamique et la pureté des couleurs
  • 2/ les aberrations de l'image, que l'on corrige par des circuits complexes, ainsi que:
  • 3/ la sensibilité au champ magnétique terrestre, laquelle impose la présence de blindages et de circuits de démagnétisation.
In addition, the reconstruction of a colored image using this image tube presents several difficulties, namely:
  • 1 / dynamic convergence and purity of colors
  • 2 / the aberrations of the image, which are corrected by complex circuits, as well as:
  • 3 / sensitivity to the earth's magnetic field, which requires the presence of shields and demagnetization circuits.

En plus, le tube image et ses circuits d'alimentation sont de gros consommateurs d'énergie, les électrons sont interceptés par l'électrode de sélection de couleurs (masque d'ombre).In addition, the image tube and its supply circuits are large consumers of energy, the electrons are intercepted by the color selection electrode (shadow mask).

Les derniers perfectionnement technologiques (autoconvergence, précision In Line, P.I.L.) ont pour but de diminuer d'une part le coté pointu des réglages, et d'autre part d'améliorer par des grilles élaborées le mélange des faisceaux juste au niveau de l'écran. Ces systèmes n'augmentent que faiblement la résolution et la stabilité des images.The latest technological improvements (autoconvergence, precision In Line, PIL) aim to reduce on the one hand the pointed side of the settings, and on the other hand to improve by elaborate grids the mixture of the beams just at the level of the screen. These systems only slightly increase the resolution and stability of the images.

Le "pénétron" possède les avantages des films minces cathodoluminescents. Ces films obtenus par évaporation thermique ou pulvérisation par vaporisation sur un support, au lieu de sédimentation de poudre pour le tube à masque, présentent divers avantages.

  • 1/ réflexion diffuse de l'écran négligeable, donc possibilité d'obtenir une image visible même en présence de lumière extérieure,
  • 2/ résolution optimale, car l'absence de diffusion dans les films minces réduit le diamètre du point lumineux au diamètre du faisceau d'électrons incident,
  • 3/ géométrie favorable à la diffusion de la chaleur, facilité d'évacuation par le substrat qui forme radiateur.
The "penetron" has the advantages of thin cathodoluminescent films. These films obtained by thermal evaporation or spraying by vaporization on a support, instead of sedimentation of powder for the mask tube, have various advantages.
  • 1 / negligible diffuse reflection of the screen, therefore possibility of obtaining a visible image even in the presence of outside light,
  • 2 / optimal resolution, because the absence of diffusion in thin films reduces the diameter of the light point to the diameter of the incident electron beam,
  • 3 / geometry favorable to the diffusion of heat, ease of evacuation by the substrate which forms a radiator.

Malgré ces avantages, le pénétron présente de grosses difficultés techniques à savoir:

  • 1/ commutation difficile des différentes hautes tensions pour obtenir les niveaux distincts de couleur,
  • 2/ diffusion d'une couche dans l'autre en cours de fonctionnement et tout se passe comme s'ilny avait qu'une seule couche,
  • 3/ accumulation de charges électriques à la surface de séparation des deux couches, il se produit des émissions secondaires indésirables, altérant les couleurs émises.
Despite these advantages, the penetrant presents major technical difficulties, namely:
  • 1 / difficult switching of the different high voltages to obtain distinct levels of color,
  • 2 / diffusion from one layer to the other during operation and everything happens as if there was only one layer,
  • 3 / accumulation of electrical charges on the separation surface of the two layers, undesirable secondary emissions occur, altering the colors emitted.

La présente innovation technologique est de s'affranchir des difficultés des tubes utilisant des masques de sélection de couleurs et des inconvénients techniques des "tubes à pénétration", tout en conservant les avantages des films minces pour une résolution maximale.The present technological innovation is to overcome the difficulties of tubes using color selection masks and the technical disadvantages of "penetration tubes", while retaining the advantages of thin films for maximum resolution.

Ainsi, l'innovation proposée permet d'utiliser un tube monocanon, identique électronique- ment à celui d'un tube utilisé pour la réception de la télévision en. noir et blanc. Seule le face avant électroluminescente est différente.Thus, the proposed innovation makes it possible to use a single-channel tube, identical electronically to that of a tube used for reception of television in. black and white. Only the electroluminescent front panel is different.

La technologie du tube monocanon est connue, et les avantages obtenus sont:

  • 1/ une facilité de fabrication,
  • 2/ une fiabilité incontestable,
  • 3/ une géométrie de l'image parfaite,
  • 4/ une résolution optimale,
  • 5/ une tension d'accélération et des éléments de déviation plus faciles à construire.
The technology of the single-channel tube is known, and the advantages obtained are:
  • 1 / ease of manufacture,
  • 2 / undeniable reliability,
  • 3 / a perfect image geometry,
  • 4 / an optimal resolution,
  • 5 / an acceleration voltage and deflection elements easier to build.

L'invention, telle qu'elle est définie dans les revendications, permet d'améliorer la résolution et la stabilité des points reproduits, évitant ainsi la confusion des signes B et 8, C et 0, D et 0, S et 8 etc... dans la reproduction des textes en télématique en donnant une restitution parfaite, et une nette amélioration de la reproduction de l'image est ressentie.The invention, as defined in the claims, makes it possible to improve the resolution and the stability of the dots reproduced, thus avoiding the confusion of the signs B and 8, C and 0, D and 0, S and 8 etc ... in the reproduction of texts in telematics by giving a perfect restitution, and a marked improvement in the reproduction of the image is felt.

A cette fin, pour la réalisation d'un générateur d'images en couleurs, il est prévu de disposer dans un tube cathodique monocanon, un écran constitué par des condensateurs électroluminescents superposés.To this end, for the production of a color image generator, provision is made in a single-channel cathode-ray tube, a screen constituted by superposed electroluminescent capacitors.

Sous l'influence du bombardement du faisceau d'électrons, asservi à l'intensité du signal de luminance, l'ensemble électroluminescent, ayant au moins deux couches, émet des lumières de longueurs d'onde différentes.Under the influence of the bombardment of the electron beam, subject to the intensity of the luminance signal, the electroluminescent assembly, having at least two layers, emits lights of different wavelengths.

Les armatures métalliques de chaque condensateur électroluminescent sortent à l'extérieur du tube et permettent le dosage des intensités lumineuses par le biais d'une amplification asservie aux signaux fournis par le décodage du signal de chrominance.The metal fittings of each electroluminescent capacitor exit outside the tube and allow the metering of the light intensities by means of an amplification controlled by the signals supplied by the decoding of the chrominance signal.

La sélection et le mélange colorimétriques sont faits point par point sur la face avant du tube. Pour ce faire une propriété physique, spécifique de certaines substances cathodo- luminescentes, à savoir "l'amplification de brillance" par action d'un champ électrique élevé, est utilisée.The color selection and mixing are done point by point on the front of the tube. To do this, a specific physical property of certain cathodoluminescent substances, namely "image amplification" by the action of a high electric field, is used.

Le spot lumineux d'un point faiblement irradié par un faisceau d'électrons se trouve amplifié quand un champ électrique variable est appliqué dans un condensateur contenant des luminophores.The light spot of a point weakly irradiated by an electron beam is amplified when a variable electric field is applied in a capacitor containing phosphors.

La brillance et le mélange des couleurs sont obtenus d'une part par le courant cathodique pour la luminance, et d'autre part par les transducteurs électroluminescents pour les chrominances.The brightness and the mixing of the colors are obtained on the one hand by the cathode current for the luminance, and on the other hand by the electroluminescent transducers for the chrominances.

Le principe du tube image monocanon à transducteurs électroluminescents chromatiques, conforme à l'invention se fonde sur l'utilisation de plusieurs phénomènes physiques:

  • - sur les particularités physiologiques de l'oeil,
  • - sur les lois de la colorimétrie,
  • -sur les propriétés de la cathodolumine- scence, associés à celles de l'électroluminescence en "couches minces".
The principle of the single-channel image tube with chromatic electroluminescent transducers, in accordance with the invention is based on the use of several physical phenomena:
  • - on the physiological particularities of the eye,
  • - on the laws of colorimetry,
  • -on the properties of cathodoluminescence, associated with those of electroluminescence in "thin layers".

Brièvement, on rapelle que depuis les travaux de Newton en 1669, on sait décomposer la lumière blanche en trois couleurs fondamentales et on utilise pour la reproduction la recomposition des trois images superposées pour obtenir toutes les teintes visibles (photographie couleur, litographies multichromes). A la différence, en télévision on n'a jusqu'à présent pas trouvé une solution valable permettant de transmettre simultanément tous les détails d'une scène complète. Tous les points de l'image sont donc explorés et transmis les uns après les autres, suivant une loi bien déterminée, l'analyse consistant à déplacer le spot lumineux qui parcourt l'écran de la même manière que se déplace le regard d'un lecteur sur une page d'un livre, en commençant par la lère ligne de la page, de gauche à droite. Les détails sont transmis l'un après l'autre en explorant point par point, ligne après ligne, trame après trame. Les détails à transmettre sont convertis en un signal électrique variable en fonction du temps. Les différents éléments qui composent l'image ont chacun une certaine luminance et une couleur propre. Ces luminances varient d'un élément à l'autre et produisent des signaux à niveau variable.Briefly, we recall that since the work of Newton in 1669, we know how to decompose white light into three fundamental colors and we use for reproduction the recomposition of the three superimposed images to obtain all visible hues (color photography, multi-color litographies). On the difference, in television we have so far not found a valid solution allowing to transmit simultaneously all the details of a complete scene. All the points of the image are therefore explored and transmitted one after the other, according to a well-determined law, the analysis consisting in moving the light spot which travels the screen in the same way as the gaze of a reader on a page of a book, starting with the first line of the page, from left to right. The details are transmitted one after the other, exploring point by point, line after line, frame after frame. The details to be transmitted are converted into an electrical signal which varies over time. The different elements that make up the image each have a certain luminance and their own color. These luminances vary from one element to another and produce signals at variable level.

La fonction d'un récepteur de télévision consiste à transformer une énergie électrique en énergie lumineuse et à reproduire exactement à la réception:

  • -la position dans le plan, de chacun des points de l'image explorée,
  • - les variations instantanées de luminosité de ces points en fonction du temps.
The function of a television receiver is to transform electrical energy into light energy and to reproduce exactly at reception:
  • -the position in the plane, of each point of the explored image,
  • - instantaneous variations in the brightness of these points as a function of time.

La synthèse additive effectuée par l'organe de la vue, permet par le mélange des trois couleurs fondamentales de reconstituer la lumière blanche. Cette lumière blanche peut s'effecteur avec des sources lumineuses rayonnant directement la couleur.The additive synthesis carried out by the organ of sight, allows by the mixture of the three fundamental colors to reconstitute the white light. This white light can be effected with light sources radiating color directly.

En outre, on rappelle que la luminescence est l'émission soutenue de lumière, à partir de substances spéciales, quand elles sont irradiées:

  • 1/ par des photons basse énergie, lumière visible ou ultra-violette (photoluminescence),
  • 2/ par des photons de haute énergie, rayons X (roentgénoluminescence),
  • 3/ par des rayons cathodiques (cathodo- luminescence),
  • 4/ par un champ électrique (électroluminescence),
  • 5/ par des particules alpha (ionolumin- escence),
  • 6/ par des particules ou des radiations nucléaires (radioluminescence).
In addition, it is recalled that luminescence is the sustained emission of light, from special substances, when they are irradiated:
  • 1 / by low energy photons, visible or ultra-violet light (photoluminescence),
  • 2 / by high energy photons, X-rays (roentgenoluminescence),
  • 3 / by cathode rays (cathodoluminescence),
  • 4 / by an electric field (electroluminescence),
  • 5 / by alpha particles (ionolumin- escence),
  • 6 / by particles or nuclear radiation (radioluminescence).

Le phénomène réside essentiellement dans l'excitation directe des centres luminescents par des électrons accélérés, dans un champ électrique élevé.The phenomenon essentially resides in the direct excitation of the luminescent centers by accelerated electrons, in a high electric field.

L'électroluminescence est un phénomène peu familier. En 1936 le professeur Georges Destriau, de l'Université de Paris, a découvert que le sulfure de zinc pouvait émettre de la lumière sous l'action directe d'un champ électrique alternatif. Ce phénomène nouveau avait une grande importance puisque, pour la première fois, un corps solide transformait directement de l'énergie électrique en énergie lumineuse.Electroluminescence is an unfamiliar phenomenon. In 1936 Professor Georges Destriau, of the University of Paris, discovered that zinc sulfide could emit light under the direct action of an alternating electric field. This new phenomenon was of great importance since, for the first time, a solid body directly transformed electrical energy into light energy.

Un composé solide électroluminescent comprend:

  • 1/ un produit de base sous forme cristalline, comme le sulfure de zinc, l'oxyde de zinc, le sulfure de strontium, le tungstate de calcium, le silicate de zinc, le fluorure de calcium, le germanate de magnésium, le sulfure de cadmium, le fluorure de cadmium,
  • 2/ des traces d'un élément étranger, dit "activateur", en proportion très faible (10-2 à 10-4 en poids) tels que le cuivre, l'or, l'argent, le manganèse, le plomb, le chrome, le bismuth et différentes terres rares.
A solid electroluminescent compound comprises:
  • 1 / a basic product in crystalline form, such as zinc sulfide, zinc oxide, strontium sulfide, calcium tungstate, zinc silicate, calcium fluoride, magnesium germanate, sulfide cadmium, cadmium fluoride,
  • 2 / traces of a foreign element, said "activator", in very small proportion (10- 2 to 10- 4 by weight) such as copper, gold, silver, manganese, lead, chromium, bismuth and different rare earths.

Ces éléments constituent les centres "luminogènes" du composé électroluminescent..These elements constitute the "luminogenic" centers of the electroluminescent compound.

Une fine pellicule du composé luminescent ci-dessus mentionné enrobé dans un isolant est disposée entre deux lames à la fois transparentes et conductrices, généralement deux plaques de verre sur lesquelles on a projeté une fine couche de chlorure d'antimoine ou d'oxyde d'étain.A thin film of the above-mentioned luminescent compound coated in an insulator is placed between two plates which are both transparent and conductive, generally two glass plates on which a thin layer of antimony chloride or oxide has been sprayed. tin.

La cellule électroluminescente ainsi fabriquée, constitue un condensateur. Si on relie les deux lames conductrices de ce condensateur à un générateur de tension périodique on voit, à travers les lames de verre, briller le composé luminescent. Cette brillance croît à la fois avec la valeur de la tension appliquée et avec sa fréquence. La lumière émise est bleue, verte, jaune ou rouge, suivant la nature du produit de base et de l'activateur. Des cellules luminescentes comprenant de tels matériaux disposés suivant des couches de 20 à 50,u d'épaisseur, appelés "condensateurs électroluminescents à poudre", ont fait l'objet de nombreux essais expérimentaux.The electroluminescent cell thus produced constitutes a capacitor. If we connect the two conductive strips of this capacitor to a periodic voltage generator we see, through the glass slides, shine the luminescent compound. This brightness increases both with the value of the applied voltage and with its frequency. The light emitted is blue, green, yellow or red, depending on the nature of the basic product and the activator. Luminescent cells comprising such materials arranged in layers from 20 to 50 μm thick, called "powder-light emitting capacitors", have been the subject of numerous experimental tests.

Depuis plus d'une décénnie, le diamètre moyen des produits cristallins est inférieur au micron. La fabrication de fines pellicules (structure en "couche minces") est réalisable par un procédé relevant de la technique de pulvérisation cathodique radiofréquence dans une enceinte sous vide (pression des gaz résiduels inférieure à 10-5 torr) en présence d'un gaz inerte (argon).For more than a decade, the average diameter of crystalline products has been less than a micron. The manufacture of thin films (structure "thin layer") is achievable by a process falling within the radio frequency sputtering technique in a vacuum chamber (pressure of the residual gases of less than 10- 5 torr) in the presence of an inert gas (argon).

L'ensemble d'une cellule se présente sous forme d'une couche mince ayant une épaisseur de 0,4 à 3,u. Pour augmenter l'efficacité lumineuse un recuit à 500° durant 20 à 30 minutes sous atmosphère d'argon est conseillé.The whole of a cell is in the form of a thin layer having a thickness of 0.4 to 3, u. To increase the luminous efficiency, annealing at 500 ° for 20 to 30 minutes under an argon atmosphere is recommended.

Ces couches minces possèdent une grande fiabilité chimique, des caractéristiques stables et homogènes sur toutes leurs surfaces et leurs épaisseurs. Elles fonctionnent avec des tensions d'excitation relativement faibles et leur durée de vie minimum est de 104 heures.These thin layers have high chemical reliability, stable and homogeneous characteristics over all their surfaces and thicknesses. They operate with relatively low excitation voltages and their minimum lifespan is 10 4 hours.

Un nouvel effet, "l'effet électrorenforçateur de brillance", a été découvert en 1953 par Destriau. Certains matériaux qui sont luminescents sous l'action d'une excitation extérieure ont une sensibilité accrue, c'est à dire deviennent beaucoup plus lumineux quand ils sont soumis simultanément à l'action de l'excitation extérieure et à celle du champ électrique alternatif appliqué entre les armatures du condensateur. Le renforcement de la brillance, dépend des produits luminogènes employés, et surtout de la tension et de la fréquence du champ électrique.A new effect, "the shine boosting effect", was discovered in 1953 by Destriau. Certain materials which are luminescent under the action of an external excitation have an increased sensitivity, that is to say become much brighter when they are subjected simultaneously to the action of external excitation and to that of the applied alternating electric field. between the capacitor plates. The enhancement of the brightness depends on the luminogenic products used, and especially on the voltage and the frequency of the electric field.

Ce principe est décrit sous le nom "d'électro- cathodoluminescence" par D. A. Cusano (Cathodo, Photo and D.C. Electroluminescence in Zinc Sulfide Layers"-Luminescence of organic and inorganic Matérials-Ed. By H. Kallmann, John Wiley, London (1962) Pages 501 et suivantes). L'activateur employé est le manganèse (Mn).This principle is described under the name "electro-cathodoluminescence" by DA Cusano (Cathodo, Photo and DC Electroluminescence in Zinc Sulfide Layers "-Luminescence of organic and inorganic Materials-Ed. By H. Kallmann, John Wiley, London (1962) ) Pages 501 et seq. The activator used is manganese (Mn).

En outre, le brevet français n°, 1 115 162, intitulé "Ecran à rayons cathodiques et procédé de renforcement de la luminescence" de Westinghouse Electric Corporation et brevet US-A-2 992 349 de D. A. Cusano, intitulé "Field Enhanced Luminescence System", utilisent ce phénomène physique dans des écrans monochromes. Mais l'effet renforçateur est plus important dans les condensateurs électroluminescents "à couches minces" et présente un rendement élevé lorsque le luminophore est le sulfure de zinc (ZnS) et que l'activateur est constitué par des molécules d'un ou plusieurs oxysulfures, en particulier, des fluorures trivalents de la famille des lanthanides, (dénommés "terres rares"). Les effets de ces activateurs, (comme le terbium, l'europium, le thulium, le praséodyme, le néodyme, le samarium, le gadolinium, le holmium, l'erbium, le dysprosium) ont été appelés en 1968: "effets lumocen" (Luminescence from Molécular Centers). Les luminophores dopés avec les fluorures de terres rares émettent les lumières vertes, rouges et bleues d'une très grande brillance.In addition, French Patent No. 1,115,162, titled "Cathode Ray Screen and Luminescence Enhancement Process" from Westinghouse Electric Corporation and U.S. Patent A-2,992,349 to DA Cusano, titled "Field Enhanced Luminescence System ", use this physical phenomenon in monochrome screens. However, the reinforcing effect is greater in "thin-film" electroluminescent capacitors and has a high efficiency when the phosphor is zinc sulfide (ZnS) and the activator consists of molecules of one or more oxysulfides, in particular, trivalent fluorides of the lanthanide family (called "rare earths"). The effects of these activators, (like terbium, europium, thulium, praseodymium, neodymium, samarium, gadolinium, holmium, erbium, dysprosium) were called in 1968: "lumocen effects" (Luminescence from Molécular Centers). The phosphors doped with rare earth fluorides emit very bright green, red and blue lights.

Un transducteur électroluminescent chromatique, selon un mode de réalisation de l'invention se présente sous la forme d'une cellule électroluminescente d'une épaisseur d'un micron environ. Il comprend:

  • 1/ une couche électroluminescente d'une épaisseur de 6000 A, composée de sulfure de zinc associé à un oxysulfure.
  • 2/ deux couches tampons d'oxyde d'yttrium (Y203) de 2000 A d'épaisseur entre lesquelles est intercalée ladite couche électroluminescente, ces deux couches étant sensiblement transparentes et leurs faces extérieures étant rendues conductrices par un dépôt d'oxyde d'étain (Sn02) ou d'oxyde d'indium (I"O3).
A chromatic electroluminescent transducer, according to an embodiment of the invention is in the form of an electroluminescent cell with a thickness of approximately one micron. He understands:
  • 1 / an electroluminescent layer with a thickness of 6000 A, composed of zinc sulphide associated with an oxysulphide.
  • 2 / two buffer layers of yttrium oxide (Y 2 0 3 ) of 2000 A thickness between which said electroluminescent layer is interposed, these two layers being substantially transparent and their outer faces being made conductive by an oxide deposit tin (S n 0 2 ) or indium oxide (I " O 3 ).

Si l'on dirige un faisceau électronique avec une tension de post accélération de 5KV sur ce transducteur, un fin spot de lumière apparaît, au point d'impact du faisceau sur la couche luminescente. Cette émission de lumière est amplifiée localement lorsqu'une impulsion de tension est appliquée aux bornes du transducteur.If we direct an electron beam with a post-acceleration voltage of 5KV on this transducer, a fine spot of light appears, at the point of impact of the beam on the luminescent layer. This light emission is locally amplified when a voltage pulse is applied across the transducer.

L'invention est exposée plus en détail à l'aide de dessins représentant seulement un mode d'exécution.

  • -la figure 1, est une vue schématique en coupe transversale d'un transducteur électroluminescent,
  • - la figure 2, est une vue schématique en coupe d'un tube image utilisant le principe de l'invention,
  • -la figure 3, est une coupe suivant AA de la dalle avant du tube image de la figure 2,
  • -la figure 4, est le schéma synoptique d'un récepteur de télévision utilisant le tube à transducteurs.
The invention is explained in more detail using drawings representing only one embodiment.
  • FIG. 1 is a schematic view in cross section of an electroluminescent transducer,
  • FIG. 2 is a schematic sectional view of an image tube using the principle of the invention,
  • FIG. 3 is a section along AA of the front panel of the image tube of FIG. 2,
  • FIG. 4 is the block diagram of a television receiver using the tube with transducers.

Le transducteur électroluminescent (figure 1) comprend une couche luminescente (1) constituée d'un matériau à la fois cathodoluminescent et électroluminescent, de part et d'autre de laquelle sont disposées deux couches conductrices (2 et 3) reliées chacune à une borne respective d'un générateur (4).The electroluminescent transducer (Figure 1) comprises a luminescent layer (1) made of a material both cathodoluminescent and electroluminescent, on either side of which are arranged two conductive layers (2 and 3) each connected to a respective terminal a generator (4).

Des moyens non représentés, maintiennent un vide assez poussé dans l'espace (5) situé d'un côté de l'empilage des couches (1, 2 et 3). Un faisceau filiforme d'électrons (6) balaye la surface (7) côté vide. Ces électrons (6) possèdent une énergie suffisante pour pénétrer dans la couche luminescente (1), mais la puissance du faisceau est suffisamment faible pour qu'en l'absence de tension périodique entre les couches (2 et 3) le matériau luminescent (1) n'émette au point d'impact (8) du faisceau électronique (6) qu'un spot de faible intensité.Means not shown, maintain a fairly high vacuum in the space (5) located on one side of the stack of layers (1, 2 and 3). A threadlike electron beam (6) scans the surface (7) on the empty side. These electrons (6) have sufficient energy to penetrate the luminescent layer (1), but the power of the beam is sufficiently low so that in the absence of periodic voltage between the layers (2 and 3) the luminescent material (1 ) emits at the point of impact (8) of the electron beam (6) only a low intensity spot.

Si on applique entre les couches (2 et 3) une tension périodique d'une amplitude de 100 à 140 volts pendant un intervalle de temps de faible durée, par exemple 10-4 secondes, un éclair de lumière, représenté schématiquement par la flêche (10) est émis au point d'impact (8).If a periodic voltage with an amplitude of 100 to 140 volts is applied between the layers (2 and 3) during a short period of time, for example 10- 4 seconds, a flash of light, represented schematically by the arrow ( 10) is emitted at the point of impact (8).

La longueur d'onde de cette lumière dépend de la nature des atomes d'impureté constituant les centres luminogènes du matériau (1).The wavelength of this light depends on the nature of the impurity atoms constituting the luminogenic centers of the material (1).

Il est avantageux d'interposer entre la couche luminescente (1) et chacune des couches conductrices (2 et 3), une couche dite dite tampon (1 et 2) constituée en un matériau bon isolant de l'électricité et présentant une constante diélectrique élevée. Ces couches (11 et 12) permettent d'appliquer entre les deux couches conductrices (2 et 3) des tensions élevées, pour obtenir un champ électrique important dans le matériau (1).It is advantageous to interpose between the luminescent layer (1) and each of the conductive layers (2 and 3), a so-called buffer layer (1 and 2) made of a material which is good insulator of electricity and has a high dielectric constant. . These layers (11 and 12) make it possible to apply high voltages between the two conductive layers (2 and 3), in order to obtain a large electric field in the material (1).

Plusieurs transducteurs électroluminescents identiques à celui de la figure 1 peuvent être utilisés à l'obtention d'images colorées à partir de signaux vidéo-couleur.Several electroluminescent transducers identical to that of FIG. 1 can be used to obtain colored images from video-color signals.

A cet effet, comme le montre la figure 2, on utilise un tube image de télévision à un seul canon à électrons, et 3 transducteurs électroluminescents chromatiques.For this purpose, as shown in FIG. 2, a television picture tube with a single electron gun is used, and 3 chromatic electroluminescent transducers.

On peut voir sur la coupe schématique figure 2, le filament (13) du canon à électrons, la cathode (14) sur laquelle est appliquée le signal de luminance Y, le wenehlt (15) de réglage de la luminosité de l'image, la grille accélératrice (16) et la grille de concentration (17). Des bobines de déviation électromagnétiques non représentées assurent une déviation convenable du faisceau électronique (18), issu du canon à électrons (13 à 17), afin que ce faisceau (18) balaye de façon connue la surface de la "dalle" (19).We can see on the schematic section in Figure 2, the filament (13) of the electron gun, the cathode (14) on which the luminance signal Y is applied, the wenehlt (15) for adjusting the brightness of the image, the accelerating grid (16) and the concentration grid (17). Electromagnetic deflection coils, not shown, provide a suitable deflection of the electron beam (18), coming from the electron gun (13 to 17), so that this beam (18) scans in a known manner the surface of the "slab" (19) .

Cette dalle (19), est constituée par la paroi extérieure du tube image (20) situé à l'opposé du canon (13 à 17).This slab (19) is formed by the outer wall of the image tube (20) located opposite the barrel (13 to 17).

Le résultat serait équivalent, si au lieu d'un tube à déviation électromagnétique on employait un tube à déviation électrostatique, l'ampoule comporterait alors des plaques X,, X2 et Y1' Y2 pour assurer la déviation du faisceau d'électrons suivant deux dimensions.The result would be equivalent, if instead of an electromagnetic deflection tube an electrostatic deflection tube was used, the bulb would then have plates X ,, X 2 and Y 1 ' Y 2 to ensure the deflection of the electron beam along two dimensions.

Comme le montre la figure 3, cette dalle en verre (21) est munie à sa face intérieure d'une couche de filtrage (filtre gris) (22), et d'un empilage de couches minces comprenant trois transducteurs électroluminescents superposés. Ces trois transducteurs se composent de trois couches luminescentes (23, 24 et 25) et quatre couches conductrices (26, 27, 28 et 29), les couches luminescentes (23, 24 et 25) sont constituées en un matériau à la fois électroluminescent et cathodoluminescent, chacune d'elles contenant un dopeur de nature différente, permettant respectivement l'émission de lumière .verte, rouge et bleue. A cet effet, chaque couche électroluminescentes (23, 24 et 25) est située entre deux couches conductrices respectivement 26-27, 27-28 et 28-29. Comme dans le cas de la figure 1, des couches tampons (30) sont interposées entre les couches luminescentes (23 à 25) et les couches conductrices (26 à 29).As shown in Figure 3, this glass slab (21) is provided on its inner face with a filtering layer (gray filter) (22), and a stack of thin layers comprising three superimposed light-emitting transducers. These three transducers consist of three luminescent layers (23, 24 and 25) and four conductive layers (26, 27, 28 and 29), the luminescent layers (23, 24 and 25) are made of a material that is both electroluminescent and cathodoluminescent, each of them containing a doper of different nature, allowing respectively the emission of green, red and blue light. For this purpose, each light-emitting layer (23, 24 and 25) is located between two conductive layers 26-27, 27-28 and 28-29 respectively. As in the case of FIG. 1, buffer layers (30) are interposed between the luminescent layers (23 to 25) and the conductive layers (26 to 29).

La couche conductrice (29) située du côté de l'intérieur du tube (20) peut-être une couche mince d'aluminium ou de cuivre, portée à un potentiel positif élevé. Cette couche fine a pour but d'augmenter la conductibilité de l'écran et de faire office de miroir pour les rayons lumineux émis par les couches luminescentes, les rayons lumineux étant tous réfléchis vers l'avant.The conductive layer (29) located on the side of the interior of the tube (20) may be a thin layer of aluminum or copper, brought to a high positive potential. The purpose of this thin layer is to increase the conductivity of the screen and to act as a mirror for the light rays emitted by the luminescent layers, the light rays all being reflected forward.

Les couches 23, 24 et 25 sont formées de sulfure de zinc (ZnS), associé à des molécules de dopant et contenant des oxysulfures pour limiter les interactions desdites molécules et du sulfur de zinc.Layers 23, 24 and 25 are formed from zinc sulfide (ZnS), associated with dopant molecules and containing oxysulfides to limit the interactions of said molecules and zinc sulfur.

Les activateurs sont:

  • - pour 23 du terbium (Tb), donnant une lumière de longueur d'onde 545 nm (nano- mètre) lumière verte,
  • -pour 24 de l'europium (Eu), donnant une lumière de longueur d'onde 620 nm (rouge),
  • - pour 25 du Thullium (Tm), donnant une lumière de longueur d'onde 450 nm (bleu).
The activators are:
  • - for 23 terbium (Tb), giving a light of wavelength 545 nm (nanometer) green light,
  • -for 24 of europium (Eu), giving a light of wavelength 620 nm (red),
  • - for 25 Thullium (Tm), giving a light of wavelength 450 nm (blue).

Les couches 26, 27 et 28 sont des couches d'oxyde d'étain Sn02 ou d'oxyde d'indium In203.The layers 26, 27 and 28 are layers of tin oxide Sn0 2 or indium oxide In 2 0 3 .

Les couches 30 sont des couches d'oxyde d'yttrium Y203' The layers 30 are layers of yttrium oxide Y 2 0 3 '

La couche conductrice 29 est une couche d'aluminium de 1000 A.The conductive layer 29 is a 1000 A aluminum layer.

Comme le montre la figure 4, le tube (20) restitue les images couleur d'une émission de télévision de la manière suivante: un bloc de réception et de démodulation (31) capte les ondes HF sur sa borne (31 A) et délivre le signal vidéo de luminance Y sur la borne 31 B reliée à la cathode (14) de tube (20). Le signal vidéo de chrominance délivré sur la borne (31 C) est appliqué à l'entrée (32 A) du bloc de décodage de chrominance (32). Cet ensemble de décodage élabore les signaux de chrominance vert, rouge et bleu respectivement sur les bornes de sortie (32 B, 32 C et 32 D). Ces tensions délivrées en 32 B, 32 C et 32 D sont proportionnelles aux composantes chromatiques verte, rouge, bleue de l'émission et sont appliquées respectivement entre les couches 26 et 27, 27 et 28, 28 et 29.As shown in FIG. 4, the tube (20) reproduces the color images of a television program in the following manner: a reception and demodulation block (31) picks up the HF waves on its terminal (31 A) and delivers the video signal of luminance Y on the terminal 31 B connected to the cathode (14) of tube (20). The video signal from chrominance delivered on the terminal (31 C) is applied to the input (32 A) of the chrominance decoding block (32). This decoding assembly processes the green, red and blue chrominance signals respectively on the output terminals (32 B, 32 C and 32 D). These voltages delivered in 32 B, 32 C and 32 D are proportional to the green, red and blue chromatic components of the emission and are applied respectively between layers 26 and 27, 27 and 28, 28 and 29.

Pour la compatibilité dans tous les standards, en noir et blanc, le décodeur de signaux de chrominance 32 ne délivre aucun signal à la sortie des amplificateurs vert, rouge bleu en 32 B, 32 C, 32 D. Le téléviseur fonctionne comme un téléviseur noir et blanc ordinaire. Au point d'impact du bombardement cathodique, l'énergie cinétique des électrons sur les parties électroluminescentes des trois transducteurs fait apparaître un point lumineux blanc, avec une brillance proportionnelle à la tension des signaux vidéo-luminance appliquée à la cathode tube.For compatibility in all standards, in black and white, the chrominance signal decoder 32 does not deliver any signal at the output of the green, red blue amplifiers at 32 B, 32 C, 32 D. The television works like a black television and plain white. At the point of impact of the cathodic bombardment, the kinetic energy of the electrons on the electroluminescent parts of the three transducers causes a white point of light to appear, with a brightness proportional to the voltage of the video-luminance signals applied to the tube cathode.

En partant du synoptique de la figure 4 on voit qu'en remplaçant le tube image monochrome d'une récepteur de télévision en noir et blanc par un tube image à transducteurs électroluminescents conforme à l'invention et en associant audit récepteur un étage décodeur du type précédemment décrit, il est possible de produire une image en couleurs dont la résolution et la restitution des teintes et nuances sont optimales. Pour la reproduction en télévision couleurs, les teintes différentes devant être reproduites sont, le jaune, le cyan, le pourpre, le vert, le bleu, le rouge, le blanc. Les transducteurs verts, rouges, et bleus par leur fonctionnement séparé ou simultanément 2 par 2 déterminent l'ensemble colorimétrique.Starting from the block diagram in FIG. 4, it can be seen that by replacing the monochrome picture tube of a black and white television receiver with a picture tube with light-emitting transducers according to the invention and by associating with said receiver a decoder stage of the type previously described, it is possible to produce a color image whose resolution and restitution of tints and shades are optimal. For reproduction in color television, the different shades to be reproduced are, yellow, cyan, purple, green, blue, red, white. The green, red, and blue transducers by their separate operation or simultaneously 2 by 2 determine the colorimetric unit.

Le coefficient d'amplification de brillance, caractéristique essentielle de l'invention est de 10 à 15 pour chaque transducteur. Ceci permet, pour une brillance équivalente à une réception normale de télévision en couleurs, de diminuer l'amplification vidéo. Il est même envisageable, au lieu d'employer un amplificateur analogique fonctionnant sous une tension d'alimentation de 150 à 180 volts, d'employer un amplificateur numérique fonctionnant sous 15 à 25 volts.The brightness amplification coefficient, an essential characteristic of the invention is from 10 to 15 for each transducer. This allows, for a brightness equivalent to normal color television reception, to decrease the video amplification. It is even conceivable, instead of using an analog amplifier operating at a supply voltage of 150 to 180 volts, to use a digital amplifier operating at 15 to 25 volts.

Un ordre convenable d'empilage des transducteurs permet de respecter l'équation fondamentale du signal de luminance, contenant toute l'information nécessaire à la reproduction de l'image en "noir et blanc", assurant le principe de compatibilité des émissions "noir et blanc" et couleurs tel que l'a énoncé Georges Valensi; à savoir:

Figure imgb0001
soit environ 30% de rouge, 60% de vert, 10% de bleu.A suitable order of stacking of the transducers makes it possible to respect the fundamental equation of the luminance signal, containing all the information necessary for the reproduction of the image in "black and white", ensuring the principle of compatibility of the emissions "black and white "and colors as stated by Georges Valensi; to know:
Figure imgb0001
about 30% red, 60% green, 10% blue.

La lumière émise par le premier transducteur, vers l'observateur est le vert, et elle ne subit aucune atténuation; la second lumière émise par le deuxième transducteur est le rouge, elle subit une atténuation naturelle d'environ 40% en traversant le premier transducteur, quant au troisième transducteur, son émission lumineuse est bleue et elle subit une atténuation approximative de 60% à 80%.The light emitted by the first transducer, towards the observer is green, and it undergoes no attenuation; the second light emitted by the second transducer is red, it undergoes a natural attenuation of approximately 40% by crossing the first transducer, as for the third transducer, its light emission is blue and it undergoes an approximation attenuation from 60% to 80% .

Un autre avantage de l'invention est que la luminosité du tube à transducteurs est très importante, et en augmentant légérement les tensions d'alimentation du tube, une projection sur grand écran par un optique de Schmitt est possible.Another advantage of the invention is that the brightness of the tube with transducers is very important, and by slightly increasing the supply voltages of the tube, projection on a large screen by Schmitt optics is possible.

L'utilisation pour la télévision en couleurs est une application importante mais non limitative de l'invention.The use for color television is an important but not limiting application of the invention.

Des applications dans des branches très diverses telles que: la visualisation des données, l'oscillographie, le radar, la télématique, l'informatique, la bureaumatique doivent apporter de nouveaux débouchés industriels.Applications in very diverse branches such as: data visualization, oscillography, radar, telematics, computer science, office automation must bring new industrial outlets.

L'adaptabilité de cette innovation technologique à la réception des signaux de télévision dans tous les standards mondiaux, sa compatibilité avec la reproduction en noir et blanc, sa grande fiabilité, la facilité de construction qu'elle autorise et l'abaissement du prix de revient qui en résulte, devraient conduire à un développement rapide, notamment dans le domaine des récepteurs de télévision en couleur.The adaptability of this technological innovation to the reception of television signals in all world standards, its compatibility with black and white reproduction, its high reliability, the ease of construction it allows and the lowering of the cost price. resulting, should lead to rapid development, especially in the field of color television receivers.

Claims (8)

1. Apparatus for generating images in at least two colors comprising an image reproduction screen, means for directing an energizing electronic beam over the entire surface of said screen, the intensity of which beam is dependent on the amplitude of a brightness control signal, and means for imparting a scanning movement to the said energizing beam so that its point of impact on the surface of the screen moves according to two dimensions, the said image generating apparatus being characterized in that it further comprises:
a) a superimposition of at least two layers (23-25) each one produced in a luminescent material radiating light of a predetermined wavelength, different from the wavelength of the light radiated by the other layers, the luminescent materials used, radiating light under the action of an electronic bombardment and adapting to an amplification of the light intensity thus radiated by superposition of an electroluminescent effect,
b) an appropriate control device, associated to each luminescent layer to generate therein a pulsating electric field, the frequency and amplitude of which are dependent on the amplitude of a corresponding color signal so as to ensure the restitution of the different chromatic components, and
c) generators (31, 32) supplying the said signals controlling the color and brightness.
2. Apparatus according to claim 1, characterized in that each luminescent layer has a thickness between 0.4 and 2µ and preferably between 0.4 and 0.811.
3. Apparatus according to one of claims 1 and 2, characterized in that the material constituting the luminescent layers is selected from the following materials: zinc sulfide, zinc oxide, strontium sulfide, calcium tungstate, zinc silicate, calcium fluoride, magnesium germanate, cadmium sulfide, cadmium fluoride doped with at least one of the following activators: praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolimium (Gd), terbium (Tb), holmium (Ho), erbium (Er), thulium (Tm) fluorides.
4. Apparatus according to one of claims 1 to 3, characterized in that, to increase the electric field in the electroluminescent layer, one or two buffer layers (30), produced in an insulating material of high electrical constant, are placed on one side or on either side of the electroluminescent layer.
5. Apparatus according to claim 4, characterized in that, each buffer layer has a thickness between 0.2 and 0.8µ and in that the material used is yttrium oxide (Yz03).
6. Apparatus according to one of claims 1 to 5, characterized in that the control device associated to an electroluminescent layer and the buffer layers comprise two semi-transparent conducting layers (26-27, 27-28, 28-29) placed on either side and connected to the generator (32) of the signal controlling the chrominances.
7. Apparatus according to claim 6, characterized in that the conducting layers (26-29) are produced in a material such as tin oxide (Sn02) or indium oxide (In03).
8. Apparatus according to one of the preceding claims, characterized in that the superimposition comprises three luminescent layers (23, 24, 25), radiating respectively in green, red and blue.
EP80400117A 1979-01-29 1980-01-24 Electroluminescent chromatic transducer with additive synthesis Expired EP0014156B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT80400117T ATE5499T1 (en) 1979-01-29 1980-01-24 ELECTROLUMINESCENT COLOR CONVERTER WITH ADDITIVE SYNTHESIS.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR7902237A FR2447607A1 (en) 1979-01-29 1979-01-29 CHROMATIC ELECTROLUMINESCENT TRANSDUCER AND ITS APPLICATIONS IN ADDITIVE SYNTHESIS
FR7902237 1979-01-29

Publications (2)

Publication Number Publication Date
EP0014156A1 EP0014156A1 (en) 1980-08-06
EP0014156B1 true EP0014156B1 (en) 1983-11-30

Family

ID=9221318

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80400117A Expired EP0014156B1 (en) 1979-01-29 1980-01-24 Electroluminescent chromatic transducer with additive synthesis

Country Status (4)

Country Link
EP (1) EP0014156B1 (en)
AT (1) ATE5499T1 (en)
DE (1) DE3065737D1 (en)
FR (1) FR2447607A1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2780731A (en) * 1951-08-24 1957-02-05 Westinghouse Electric Corp Controlling the luminosity of a phosphor screen
FR1155162A (en) * 1955-06-27 1958-04-23 Westinghouse Electric Corp cathode ray screen and method of enhancing luminescence
US2863084A (en) * 1955-06-27 1958-12-02 Westinghouse Electric Corp Cathode-ray device
US2992349A (en) * 1957-10-24 1961-07-11 Gen Electric Field enhanced luminescence system
GB1594357A (en) * 1976-08-19 1981-07-30 Bbc Brown Boveri & Cie Production of electroluminescent powder
US4155030A (en) * 1977-12-19 1979-05-15 International Business Machines Corporation Multicolor display device using electroluminescent phosphor screen with internal memory and high resolution

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
D.A. Cusano. "Thin film studies and electro optical effects. *
J. Benoit. "Thèse présentée pour obtenir le grade de Dr. ès Sc. Phys. *

Also Published As

Publication number Publication date
ATE5499T1 (en) 1983-12-15
DE3065737D1 (en) 1984-01-05
EP0014156A1 (en) 1980-08-06
FR2447607A1 (en) 1980-08-22
FR2447607B1 (en) 1982-08-27

Similar Documents

Publication Publication Date Title
US6838743B2 (en) Optoelectronic material, device using the same and method for manufacturing optoelectronic material
US6077458A (en) Phosphor, and cathode-ray tube and display using the same
US6940221B2 (en) Display device
FR2530851A1 (en) PLAN VIEWING APPARATUS FOR TELEVISIONS AND TERMINALS
FR2626732A1 (en) VISUALIZATION DEVICE IN COLOR-MONOCHROME
Wang et al. Photo-luminescent screens for optically written displays based on upconversion of near infrared light
EP0014156B1 (en) Electroluminescent chromatic transducer with additive synthesis
US2992349A (en) Field enhanced luminescence system
US2957940A (en) Projection color television with photo-electroluminescent screen
Rosenthal A system of large-screen television reception based on certain electron phenomena in crystals
US3904502A (en) Method of fabricating a color display screen employing a plurality of layers of phosphors
US5543862A (en) Video display and image intensifier system
EP0670078B1 (en) Image-generating device using the luminescence effect
US2928980A (en) Color information presentation system
JPH09275075A (en) Manufacture of photoelectronic material, and application element and application device using the photoelectronic material
JPH0689075A (en) Production of display device and fluorescent screen used therein
Feldman Development and applications of transparent cathode-ray screens
US2967262A (en) Multi-color display tube
US4242371A (en) High-luminance color screen for cathode-ray tubes and the method for manufacturing the same
US6275270B1 (en) Video display and image intensifier system
FR2502842A1 (en) IMAGE INTENSIFIER TUBE TARGET AND VIDEO OUTPUT INTENSIFICATION TUBE PROVIDED WITH SUCH TARGET
US4680461A (en) Picture intensifier tube with memorization
Heyman et al. High contrast thermal-erase cathodochromic sodalite storage-display tubes
EP0806787B1 (en) Fabrication of an anode of a flat viewing screen
WO2010043793A1 (en) Cold cathode electronic tube, method for making same, and use thereof for a display screen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE GB IT NL SE

17P Request for examination filed

Effective date: 19810205

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LA MARGUERITE, SOCIETE DITE:

AK Designated contracting states

Designated state(s): AT BE CH DE GB IT NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19831130

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19831130

Ref country code: AT

Effective date: 19831130

REF Corresponds to:

Ref document number: 5499

Country of ref document: AT

Date of ref document: 19831215

Kind code of ref document: T

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19831223

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19831231

Year of fee payment: 5

REF Corresponds to:

Ref document number: 3065737

Country of ref document: DE

Date of ref document: 19840105

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19841220

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19850112

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19860131

Ref country code: BE

Effective date: 19860131

BERE Be: lapsed

Owner name: LA MARGUERITE S.A.

Effective date: 19860131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19860801

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19861001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881118