EP0013764B1 - Hydrophilic polycarbonate fibres having a high second order transition point and process for manufacturing them - Google Patents

Hydrophilic polycarbonate fibres having a high second order transition point and process for manufacturing them Download PDF

Info

Publication number
EP0013764B1
EP0013764B1 EP79105408A EP79105408A EP0013764B1 EP 0013764 B1 EP0013764 B1 EP 0013764B1 EP 79105408 A EP79105408 A EP 79105408A EP 79105408 A EP79105408 A EP 79105408A EP 0013764 B1 EP0013764 B1 EP 0013764B1
Authority
EP
European Patent Office
Prior art keywords
spinning
filaments
fibers
process according
polycarbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP79105408A
Other languages
German (de)
French (fr)
Other versions
EP0013764A1 (en
Inventor
Ulrich Dr. Reinehr
Bela Dr. Von Falkai
Horst Wilschinsky
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Publication of EP0013764A1 publication Critical patent/EP0013764A1/en
Application granted granted Critical
Publication of EP0013764B1 publication Critical patent/EP0013764B1/en
Expired legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • D01F6/64Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters from polycarbonates
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/04Dry spinning methods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2935Discontinuous or tubular or cellular core
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2964Artificial fiber or filament
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2973Particular cross section
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31507Of polycarbonate

Definitions

  • DE-OS 2554124 describes producing hydrophilic threads and fibers from thread-forming synthetic polymers by adding 5 to 50% by weight, based on solvent and solid, of a substance which is essentially a non-solvent for the polymer to the spinning solvent which has a higher boiling point than the solvent used and which is readily miscible with the spinning solvent and a liquid suitable as a washing liquid for the threads, and then washes this non-solvent out of the threads produced.
  • Preferred non-solvents in this process are polyhydric alcohols such as glycerin, sugar and glycols.
  • Such z. B. fibers spun from acrylonitrile polymers have a core / shell structure and have a water retention capacity of at least 10%.
  • hydrophilic polycarbonate fibers having a core / sheath structure with high glass transition temperatures are obtained when the spinning process is carried out in the presence of water vapor.
  • the invention therefore relates to dry-spun hydrophilic, core / sheath structure threads or fibers made of polycarbonate with a porosity and a water retention capacity of at least 10%, a mercury density less than 1.0 g / cm 3 , a strength of at least 1.5 cN / dtex and a freezing temperature of at least 125 ° C.
  • the invention further relates to a process for the production of these hydrophilic polycarbonate fibers by a dry spinning process, which is characterized in that the threads at shaft temperatures of at most 140 ° C. immediately after they emerge from the spinneret, but at the latest at a time when the thread is still solidifying is not completed, comes into contact with water vapor and then stretches the threads.
  • This spinning process is in principle a conventional dry spinning process, preferably from strongly polar organic solvents such as dimethylformamide, dimethylacetamide and dimethyl sulfoxide, which have a boiling point above 100 ° C.
  • strongly polar organic solvents such as dimethylformamide, dimethylacetamide and dimethyl sulfoxide, which have a boiling point above 100 ° C.
  • lower boiling solvents e.g. B. methylene chloride
  • the width of the outer surface and the hydrophilicity and thus also the pore volume and the density of the threads can be controlled.
  • the achievable hydrophilicity and fiber density are - in addition to the shaft temperature - also dependent on the amount of water vapor used. In general, an increase in the hydrophilicity and a decrease in the fiber density is observed with increasing amount of steam (cf. Examples 2-5).
  • the amount of water vapor required to achieve a desired hydrophilicity can therefore be easily determined.
  • the minimum amount of water vapor injected is that of a spinning process in a vapor / air atmosphere sphere with 30 m 3 / h is required to produce hydrophilic core sheath fibers with water retention greater than 10%, at about 2 kg per 1 kg of spun material.
  • the steam is preferably blown in above the spinneret in the direction of the air flow and the thread take-off.
  • hydrophilic polycarbonate threads Another important property of the hydrophilic polycarbonate threads is a sufficient strength of at least 1.5, preferably at least 2.2 centinewtons / dtex, in order to achieve good processability and usability.
  • the usual stretching of approx. 1: 5-1: 6 over heating godets at temperatures above the freezing temperature at 180-220 ° C. is not possible with the hydrophilic core sheath fibers made of polycarbonate according to the invention because the porosity is lost at the high temperatures.
  • boiling water only reaches a maximum stretch of 1: 2, which corresponds to a fiber strength of less than 1.5 centinewtons / dtex. With higher stretching, capillary cracks appear more.
  • the degree of stretching can be increased to approximately 1: 3.5-1: 3.8 if the hydrophilic polycarbonate threads in water containing approximately 30% by weight of DMF at 95-100 ° C. and residence times stretched by a maximum of 2 seconds. With longer dwell times, the individual capillaries stick together. If the composition of the stretching bath liquid is changed, the maximum degree of stretching decreases again.
  • the hydrophilic polycarbonate threads can only be stretched a maximum of 1: 2.7 times in 50% by weight DMF-containing water. With 40% by weight of DMF-containing water, the maximum degree of stretching increases to 1: 3.6 and in 30% by weight of DMF-containing water a stretching by 1: 3.8 can also be achieved.
  • Double stretching is likewise advantageous in that first stretching in air is carried out immediately after leaving the threads of the shaft and then the described bath stretching. In this way, total stretching ratios above the maximum stretching ratio mentioned in the stretching bath, for example those of 1: 6, can be achieved.
  • Hydrophilic polycarbonate fibers produced in this way have a strength of at least 1.5 centinewtons / dtex.
  • Threads or fibers according to the method according to the invention have a matt, wadded appearance. They are particularly suitable as self-absorbent fleeces and tampons. Because of their resistance to cooking, they are preferred for hygiene articles.
  • the Hg density (mean, apparent density) is determined by volume measurements in mercury at an overpressure of 10 bar
  • He Helium density determination
  • the helium density (“true density” is determined by measuring the volume in helium with a gas comparison pycnometer.
  • the water retention capacity is determined on the basis of DIN specification 53814 (cf. Melliand Textile Reports 4 [1973], page 350).
  • the temperature of the spinning solution was 125 ° C. 40 m 3 of air / hour at 420 ° C. were also blown in. About 9 kg of steam were consumed per kg of spinning material.
  • the threads with a total denier of 2400 dtex were collected from bobbins and brought together to form a cable of 240,000 dtex.
  • the cable was then stretched 3.8 times at 100 ° C. in 30% dimethylformamide-containing water. The dwell time in the stretching tub was approximately 2 seconds. It was then washed, provided with an antistatic preparation, dried at 120 ° C., crimped and cut into staple fibers 60 mm in length.
  • the individual fibers with a final titer of 3.3 dtex have a strength of 2. centinewton / dtex and a water retention capacity according to DIN 53 814 of 93%.
  • the fibers have a pronounced core-shell structure with a round cross-sectional shape.
  • the proportion of the outer surface of the total cross-sectional area is approximately 18%.
  • the freezing temperature of the fibers was 129 ° C.
  • the individual fibers had a helium density of 1.225 g / cm 3 and a mercury density of 0.572 g / cm 3 ; the porosity was 53.3%.
  • Example 1 a The spinning solutions were spun as described in Example 1 a) to give core sheath fibers with a final titer of 3.3 dtex and aftertreated.
  • the amount of steam and the shaft temperature were varied during the spinning process. Constant were the air volume with 40 cbm / hour, the air temperature with 420 ° C and the spinning solution temper; with 125 ° C. With air volumes ⁇ 20 cbm / hour, air temperatures ⁇ 300 ° C and solution temperatures ⁇ 110 ° C, spinning was no longer possible (missing thread consolidation).
  • the polymer described above was used as a solid in the weight ratios specified therein.
  • the threads with a total titer of 2400 dtex were collected on spools and brought together to form a cable of 240,000 dtex.
  • the cable was then stretched 1: 2 times in boiling water, washed, provided with antistatic preparation, dried at 120 ° C., crimped and cut into staple fibers of 60 mm.
  • the individual fibers with a final titre of 6.3 dtex had a water retention capacity of 12%.
  • the fibers. again had a core-shell structure with a dumbbell-shaped cross-sectional shape. The proportion of the outer surface of the total cross-sectional area is approximately 80%.
  • the fiber's freezing temperature is 97 ° C. According to gas chromatographic analysis, the fibers still contain 6.9% tetraethylene glycol.
  • Example 11 Further examples are given in Table 11 below.
  • the spinning solutions were spun as described in Example 6 to give core sheath fibers with a final titer of 6.7 dtex and aftertreated by the method of Examples 6a) and 6b).
  • the weight ratio of polymer solid to non-solvent was varied. Tetraethylene glycol was used as the non-solvent.
  • core mantet fibers with dumbbell-shaped to oval cross-sectional shape are obtained.

Description

In der DE-OS 2554124 ist beschrieben, hydrophile Fäden und Fasern aus fadenbildenden synthetischen Polymeren herzustellen, indem man dem Spinnlösungsmittel 5 bis 50 Gew.-%, bezogen auf Lösungsmittel und Feststoff, einer Substanz zusetzt, die für das Polymere im wesentlichen ein Nichtlösungsmittel darstellt, die einen höheren Siedepunkt hat als das verwendete Lösungsmittel und die mit dem Spinnlösungsmittel und einer als Waschflüssigkeit für die Fäden geeigneten Flüssigkeit gut mischbar ist und anschließend dieses Nichtlösungsmittel aus den hergestellten Fäden wieder auswäscht. Bevorzugte Nichtlösungsmittel in diesem Verfahren sind mehrwertige Alkohole, wie Glycerin, Zucker und Glykole.DE-OS 2554124 describes producing hydrophilic threads and fibers from thread-forming synthetic polymers by adding 5 to 50% by weight, based on solvent and solid, of a substance which is essentially a non-solvent for the polymer to the spinning solvent which has a higher boiling point than the solvent used and which is readily miscible with the spinning solvent and a liquid suitable as a washing liquid for the threads, and then washes this non-solvent out of the threads produced. Preferred non-solvents in this process are polyhydric alcohols such as glycerin, sugar and glycols.

Derartige z. B. aus Acrylnitrilpolymerisaten gesponnene Fasern weisen eine Kern/Mantel-Struktur auf und haben ein Wasserrückhaltevermögen von mindestens 10%.Such z. B. fibers spun from acrylonitrile polymers have a core / shell structure and have a water retention capacity of at least 10%.

Aus der DE-OS 2 713 456 ist ferner bekannt, hydrophile Polyacrylnitrilfäden und -fasern dadurch zu erzeugen, daß man die Fäden unmittelbar nach Austritt aus der Spinndüse mit Wasserdampf in Berührung bringt.From DE-OS 2 713 456 it is also known to produce hydrophilic polyacrylonitrile threads and fibers by bringing the threads into contact with water vapor immediately after emerging from the spinneret.

Überträgt man nun das Prinzip der DE-OS 2 554 124 zur Herstellung von hydrophilen Fasern aus Polycarbonate, z. B. dem Polycarbonat auf der Basis 4,4'-Dihydroxydiphenyl-2,2-propan, so erhält man unter geeigneten Spinnbedingungen zwar auch hydrophile, Kern/Mantel-Struktur veisende Polycarbonatfasern mit einem Wasserrückhaltevermögen von mindestens 10%, jede st deren Einfriertemperatur stark erniedrigt und liegt in der Regel bei ca. 75°C, wa. end reine Polycarbonatfasern eine Einfriertemperatur von 148-158°C aufweisen (vgl. B. v. Falkai, Lenzinger Berichte, Folge 32, Dezember 1971, Seite 43). Damit geht ein wesentlicher Vorteil der Polycarbonatfasern, nämlich ihre Knitter- und Kochbeständigkeit, verloren.If you now transfer the principle of DE-OS 2 554 124 for the production of hydrophilic fibers from polycarbonates, for. B. the polycarbonate based on 4,4'-dihydroxydiphenyl-2,2-propane, so you get under suitable spinning conditions even hydrophilic, core / shell structure vieving polycarbonate fibers with a water retention of at least 10%, each st their freezing temperature strong lowered and is usually around 75 ° C, wa. end pure polycarbonate fibers have a freezing temperature of 148-158 ° C (cf. B. v. Falkai, Lenzinger reports, episode 32, December 1971, page 43). This means that an essential advantage of polycarbonate fibers, namely their resistance to creasing and boiling, is lost.

Offenbar wirkt das zugesetzte Nichtlösungsmittel, z. B. Tetraäthylenglykol, als innerer Weichmacher, wodurch die Einfriertemperatur abnimmt (s. Vergleichsbeispiel 6 und Tabelle 11). Es wurde deshalb versucht, die hydrophilen Fäden, nach einem derartigen Spinnprozeß hergestellt, dadurch auf eine hohe Einfriertemperatur zu bringen, daß man das Nichtlösungsmittel vor dem Streckprozeß durch starkes Auswaschen entfernt. Wie die Vergleichsbeispiele 7 bis 9 (vgl. Tabelle 11) zeigen, gelingt es trotz Intensivwäsche über mehrere Stunden nicht, den Nichtlöseranteil unter 10% zu senken.Apparently the added non-solvent, e.g. B. tetraethylene glycol, as an internal plasticizer, whereby the glass transition temperature decreases (see Comparative Example 6 and Table 11). It has therefore been attempted to bring the hydrophilic filaments, produced by such a spinning process, to a high glass transition temperature by removing the non-solvent by vigorous washing before the drawing process. As the comparative examples 7 to 9 (cf. Table 11) show, despite intensive washing for several hours, it is not possible to reduce the non-solvent content below 10%.

Es wurde nun überraschenderweise gefunden, daß man hydrophile, Kern/Mantel-Struktur aufweisende Polycarbonatfasern mit hohen Einfriertemperaturen erhält, wenn man den Spinnprozeß in Gegenwart von Wasserdampf durchführt.It has now surprisingly been found that hydrophilic polycarbonate fibers having a core / sheath structure with high glass transition temperatures are obtained when the spinning process is carried out in the presence of water vapor.

Die Erfindung betrifft daher trockengesponnene hydrophile, Kern/Mantel-Struktur aufweisende Fäden oder Fasern aus Polycarbonat mit einer Porosität und einem Wasserrückhaltevermögen von mindestens 10%, einer Quecksilberdichte kleiner 1,0 g/cm3, einer Festigkeit von mindestens 1,5 cN/dtexund einer Einfriertemperatur von mindestens 125° C.The invention therefore relates to dry-spun hydrophilic, core / sheath structure threads or fibers made of polycarbonate with a porosity and a water retention capacity of at least 10%, a mercury density less than 1.0 g / cm 3 , a strength of at least 1.5 cN / dtex and a freezing temperature of at least 125 ° C.

Die Erfindung betrifft ferner ein Verfahren zur Herstellung dieser hydrophilen Polycarbonatfasern nach einem Trocken-Spinnprozeß, das dadurch gekennzeichnet ist, daß man bei Schachttemperaturen von höchstens 140° C die Fäden unmittelbar nach Austritt aus der Spinndüse, spätestens aber zu einem Zeitpunkt, wo die Fadenverfestigung noch nicht abgeschlossen ist, mit Wasserdampf in Berührung bringt und die Fäden anschließend verstreckt.The invention further relates to a process for the production of these hydrophilic polycarbonate fibers by a dry spinning process, which is characterized in that the threads at shaft temperatures of at most 140 ° C. immediately after they emerge from the spinneret, but at the latest at a time when the thread is still solidifying is not completed, comes into contact with water vapor and then stretches the threads.

Dieses Spinnverfahren ist im Prinzip ein herkömmliches Trocken-Spinnverfahren, vorzugsweise aus stark polaren organischen Lösungsmitteln, wie Dimethylformamid, Dimethylacetamid und Dimethylsulfoxid, welche einen Siedepunkt oberhalb 100°C haben. Bei niedrig siedenderen Lösungsmitteln, z. B. Methylenchlorid, besteht bei den angewandten Spinnbedingungen die Gefahr einer zu starken Lösungsmittelverarmung im Spinnschacht, wodurch das Nichtlösungsmittel Wasserdampf nicht mehr so intensiv in die Fäden eindringen kann, weil sie schon zu stark verfestigt sind. Hierdurch geht ein Großteil der Hydrophilie verloren.This spinning process is in principle a conventional dry spinning process, preferably from strongly polar organic solvents such as dimethylformamide, dimethylacetamide and dimethyl sulfoxide, which have a boiling point above 100 ° C. With lower boiling solvents, e.g. B. methylene chloride, there is a risk of excessive solvent depletion in the spinning shaft in the spinning conditions used, whereby the non-solvent water vapor can no longer penetrate the threads so intensely because they are already too strongly consolidated. As a result, much of the hydrophilicity is lost.

Je nach Ort und Intensität der Dampfeinblasung auf die Polymerfäden sowie den thermischen Bedingungen im Spinnschacht lassen sich die Breite der Mantelfläche und die Hydrophile und somit auch das Porenvolumen und die Dichte der Fäden steuern.Depending on the location and intensity of the steam injection onto the polymer threads as well as the thermal conditions in the spinning shaft, the width of the outer surface and the hydrophilicity and thus also the pore volume and the density of the threads can be controlled.

Es wurde gefunden, daß man immer dann eine Kern-Mantelstruktur, ein Wasserrückhaltevermögen größer als 10% und Faserdichten kleiner als 1,0 g/cm3 erhält, wenn man die Verspinnung bei niedrigen Schachttemperaturen von maximal 140°C durchführt. Um eine zu starke Kondensation von Wasserdampf und Lösungsmittel im Spinnschacht zu vermeiden, hat sich eine Schachttemperatur von über 100°C, vorzugsweise 105-125°C, als optimal erwiesen. Bei höheren Schachttemperaturen, insbesondere oberhalb 160°C, erhält man deutlich niedrigere Wasserrückhaltewerte teilweise unterhalb von 10% und höhere Faserdichten normalerweise mehr als 1,0 g/cm3.It has been found that a core-shell structure, a water retention capacity greater than 10% and fiber densities less than 1.0 g / cm 3 are always obtained if the spinning is carried out at low shaft temperatures of maximum 140 ° C. In order to avoid excessive condensation of water vapor and solvent in the spinning shaft, a shaft temperature of over 100 ° C., preferably 105-125 ° C., has proven to be optimal. At higher shaft temperatures, especially above 160 ° C, significantly lower water retention values are sometimes obtained below 10% and higher fiber densities normally more than 1.0 g / cm 3 .

Die erzielbare Hydrophilie und die Faserdichte ist - neben der Schachttemperatur - auch von der eingesetzten Wasserdampfmenge abhängig. Allgemein wird mit zunehmender Dampfmenge eine Zunahme der Hydrophilie und eine Abnahme der Faserdichte beobachtet (vgl. Beispiele 2-5).The achievable hydrophilicity and fiber density are - in addition to the shaft temperature - also dependent on the amount of water vapor used. In general, an increase in the hydrophilicity and a decrease in the fiber density is observed with increasing amount of steam (cf. Examples 2-5).

Je nach den übrigen Spinnbedingungen kann daher die zur Erzielung einer gewünschten Hydrophilie erforderliche Wasserdampfmenge leicht ermittelt werden. Im allgemeinen liegt die Mindestmenge an eingeblasenem Wasserdampf, die bei einem Spinnprozeß in Dampf/Luft-Atmosphäre mit 30 m3/h erforderlich ist, um hydrophile Kern-Mantelfasern mit Wasserrückhaltevermögen größer als 10% zu erzeugen, bei ca. 2 kg pro 1 kg Spinngut.Depending on the other spinning conditions, the amount of water vapor required to achieve a desired hydrophilicity can therefore be easily determined. In general, the minimum amount of water vapor injected is that of a spinning process in a vapor / air atmosphere sphere with 30 m 3 / h is required to produce hydrophilic core sheath fibers with water retention greater than 10%, at about 2 kg per 1 kg of spun material.

Beim erfindungsgemäßen Verfahren wird der Dampf bevorzugt oberhalb der Spinndüse in Richtung des Luftstromes und des Fadenabzuges eingeblasen. Es ist jedoch auch eine Anblasung quer zu den Fäden unterhalb der Düse möglich, wenn die Anblasung so erfolgt, daß keine zu starke Turbulenz auftritt.In the method according to the invention, the steam is preferably blown in above the spinneret in the direction of the air flow and the thread take-off. However, it is also possible to blow crosswise to the threads below the nozzle if the blowing takes place in such a way that excessive turbulence does not occur.

Beim Trockenspinnen von Polycarbonatlösungen aus Dimethylformamid sind Lösungstemperaturen oberhalb 120°C erwünscht, um die Lösungen fließfähig und spinnbar zu halten. Ebenso haben sich hohe Lufttemperaturen größer 300° C und Luftmengen größer 30 m3/Stunde bewährt, um die Fäden zu verfestigen. Beim erfindungsgemäßen Verfahren wird daher ein Spinnprozeß in Dampf/Luft-Atmosphäre bevorzugt.When dry spinning polycarbonate solutions made from dimethylformamide, solution temperatures above 120 ° C. are desirable in order to keep the solutions flowable and spinnable. Likewise, high air temperatures greater than 300 ° C and air volumes greater than 30 m 3 / hour have proven themselves to solidify the threads. In the method according to the invention, a spinning process in a steam / air atmosphere is therefore preferred.

Eine weitere wichtige Eigenschaft der hydrophilen Polycarbonatfäden ist eine ausreichende Festigkeit von mindestens 1,5, vorzugsweise mindestens 2, Centinewton/dtex, um eine gute Verarbeitbarkeit und Gebrauchstüchtigkeit zu erzielen. Die normalerweise übliche Verstreckung von ca. 1 : 5-1 : 6 über Heizgaletten bei Temperaturen oberhalb der Einfriertemperatur bei 180-220°C ist bei den erfindungsgemäßen hydrophilen Kern-Mantelfasern aus Polycarbonat nicht möglich, weil bei den hohen Temperaturen die Porosität verlorengeht. Andererseits erreicht man in kochendem Wasser nur eine maximale Verstreckung von 1 : 2, was einer Faserfestigkeit von unter 1,5 Centinewton/dtex entspricht. Bei höherer Verstreckung treten verstärkt Kapillarrisse auf. Es wurde nun gefunden, daß man den Streckgrad auf ca. 1:3,5-1:3,8 steigern kann, wenn man die hydrophilen Polycarbonatfäden in ca. 30 Gew.-% DMF enthaltenden Wasser bei 95-100°C und Verweilzeiten von maximal 2 Sekunden verstreckt. Bei längeren Verweilzeiten verkleben die Einzelkapillaren. Ändert man die Zusammensetzung der Streckbadflüssigkeit, so geht der maximale Verstreckungsgrad wieder zurück. Beispielsweise lassen sich die hydrophilen Polycarbonatfäden in 50 Gew.-% DMF-haltigem Wasser maximal nur noch 1 : 2,7fach verstrecken. Bei 40 Gew.-% DMF-haltigem Wasser steigt der maximale Streckgrad auf 1 : 3,6 und in 30 Gew.-% DMF-haltigem Wasser ist noch eine Verstreckung um 1 : 3,8 realisierbar. Es hat sich als vorteilhaft erwiesen, die Verstreckung im Streckbad möglichst bald nach dem Spinnprozeß durchzuführen, da nach einer Zwischenlagerung von einigen Tagen die maximalen Streckverhältnisse deutlich niedriger sein können. Ebenso vorteilhaft ist eine Zweifachverstreckung derart, daß zuerst eine Verstreckung in Luft unmittelbar nach Verlassen der Fäden des Schachts und anschließend die beschriebene Badverstreckung durchgeführt wird. Auf diese Weise lassen sich Gesamtstreckverhältnisse noch über dem genannten Maximalstreckverhältnis im Streckbad, beispielsweise solche von 1 : 6, erzielen.Another important property of the hydrophilic polycarbonate threads is a sufficient strength of at least 1.5, preferably at least 2.2 centinewtons / dtex, in order to achieve good processability and usability. The usual stretching of approx. 1: 5-1: 6 over heating godets at temperatures above the freezing temperature at 180-220 ° C. is not possible with the hydrophilic core sheath fibers made of polycarbonate according to the invention because the porosity is lost at the high temperatures. On the other hand, boiling water only reaches a maximum stretch of 1: 2, which corresponds to a fiber strength of less than 1.5 centinewtons / dtex. With higher stretching, capillary cracks appear more. It has now been found that the degree of stretching can be increased to approximately 1: 3.5-1: 3.8 if the hydrophilic polycarbonate threads in water containing approximately 30% by weight of DMF at 95-100 ° C. and residence times stretched by a maximum of 2 seconds. With longer dwell times, the individual capillaries stick together. If the composition of the stretching bath liquid is changed, the maximum degree of stretching decreases again. For example, the hydrophilic polycarbonate threads can only be stretched a maximum of 1: 2.7 times in 50% by weight DMF-containing water. With 40% by weight of DMF-containing water, the maximum degree of stretching increases to 1: 3.6 and in 30% by weight of DMF-containing water a stretching by 1: 3.8 can also be achieved. It has proven to be advantageous to carry out the drawing in the drawing bath as soon as possible after the spinning process, since the maximum drawing conditions can be significantly lower after an intermediate storage of a few days. Double stretching is likewise advantageous in that first stretching in air is carried out immediately after leaving the threads of the shaft and then the described bath stretching. In this way, total stretching ratios above the maximum stretching ratio mentioned in the stretching bath, for example those of 1: 6, can be achieved.

Derartig hergestellte hydrophile Polycarbonatfasern haben eine Festigkeit von mindestens 1,5 Centinewton/dtex.Hydrophilic polycarbonate fibers produced in this way have a strength of at least 1.5 centinewtons / dtex.

Fäden oder Fasern nach dem erfindungsgemäßen Verfahren haben ein mattiertes, wattiges Aussehen. Sie eignen sich besonders als selbstaufsaugende Vliese und Tampons. Wegen ihrer Kochbeständigkeit kommen sie bevorzugt für Hygieneartikel in Frage.Threads or fibers according to the method according to the invention have a matt, wadded appearance. They are particularly suitable as self-absorbent fleeces and tampons. Because of their resistance to cooking, they are preferred for hygiene articles.

Die Bestimmung der im vorgehenden erwähnten physikalischen Größen wurden wie nachstehend beschrieben ausgeführt. Diese Methoden beziehen sich auf gefärbte bzw. blindgefärbte, von Präparation befreite Fasern, Garne oder Textilflächengebilde, Die Querschnittsstruktur der Kern-Mantelfasern wurde anhandvon elektronenmikroskopischen Aufnahmen bestimmt.The determination of the physical quantities mentioned above was carried out as described below. These methods relate to dyed or blind-dyed, preparation-free fibers, yarns or textile fabrics. The cross-sectional structure of the core-sheath fibers was determined on the basis of electron micrographs.

MethodenMethods Quecksilber-Dichte-Bestimmung (QHg)Mercury density determination ( Q Hg)

Nach Ausheizen der Probe bei 50°C unter Vakuum (10-2 mbar) wird die Hg-Dichte (mittlere, scheinbare Dichte) durch Volumenmessungen in Quecksilber bei einem Überdruck von 10 bar festgestelltAfter heating the sample at 50 ° C under vacuum (10 -2 mbar ) , the Hg density (mean, apparent density) is determined by volume measurements in mercury at an overpressure of 10 bar

Helium-Dichte-Bestimmung (He)Helium density determination (He)

Nach Ausheizen der Probe bei 50°C unter Vakuum (10-2 bar) wird die Helium-Dichte (»wahre Dichte« durch Volumenmessung in Helium mit einem Gasvergleichspyknometer festgestellt.After heating the sample at 50 ° C under vacuum (10- 2 bar), the helium density ("true density" is determined by measuring the volume in helium with a gas comparison pycnometer.

Definition der Porosität (P)Definition of porosity (P)

Figure imgb0001
Figure imgb0001

Das Wasserrückhaltevermögen wird in Anlehnung an die DIN-Vorschrift 53814 (vgl. Melliand Textilberichte 4 [1973], Seite 350) bestimmt.The water retention capacity is determined on the basis of DIN specification 53814 (cf. Melliand Textile Reports 4 [1973], page 350).

Die Faserproben werden 2 Stunden in Wasser getaucht, das 0,1% Netzmittel enthält. Danach werden die Fasern 10 Minuten mit einer Beschleunigung von 10000m/sec2 zentrifugiert und die Wassermenge gravimetrisch ermittelt, die in und zwischen den Fasern zurückgehalten wird. Zui Bestimmung des Trockengewichtes werden die Fasern bis zur Feuchtekonstanz bei 105° C getrocknet Das Wasserrückhaltevermögen (WR) in Gewichtsprozent ist:

Figure imgb0002

  • mf = Gewicht des feuchten Fasergutes
  • mtr = Gewicht des trockenen Fasergutes.
The fiber samples are immersed in water containing 0.1% wetting agent for 2 hours. The fibers are then centrifuged for 10 minutes at an acceleration of 10000 m / sec 2 and the amount of water, which is retained in and between the fibers, is determined gravimetrically. To determine the dry weight, the fibers are dried to constant moisture at 105 ° C. The water retention capacity (WR) in percent by weight is:
Figure imgb0002
  • m f = weight of the moist fiber material
  • m tr = weight of the dry fiber material.

Bestimmung der Einfriertemperatur (ET)Determination of the freezing temperature (E T )

Die Faserprobe wird in einem Ofen unter einer Vorspannung von 15 mN/tex und einer Heizrate vor 5°C/Min. aufgeheizt und mit dem thermomechanischen Analysator TMS-1 der Firma Perkin-Elme untersucht. Bei Erreichen der Einfriertemperatur setzt ein starkes plastisches Fließen der Fasern ein Durch Extrapolation im Temperatur-Dehnungsdiagramm (Abszisse = Aufheiztemperatur) auf die Temperaturachse wird die entsprechende Einfriertemperatur (ET) erhalten.The fiber sample is placed in an oven under a pre-tension of 15 mN / tex and a heating rate before 5 ° C / min. heated and examined with the thermomechanical analyzer TMS-1 from Perkin-Elme. Upon reaching the glass transition temperature of a strong plastic flow set of the fibers, the corresponding glass transition temperature (T E) is obtained by an extrapolation in the temperature-strain diagram (abscissa = heating temperature) to the temperature axis.

Die folgenden Beispiele dienen der weiteren Erläuterung der Erfindung. Teil- und Prozentangabei beziehen sich, wenn nicht anders vermerkt, auf das Gewicht.The following examples serve to further explain the invention. Unless otherwise noted, partial and percentage figures relate to weight.

Beispiele 1-5Examples 1-5

1 a) 74 kg Dimethylformamid werden mit einem Polykohlensäureester des 4,4'-Dihydroxydiphenyl-2,2 propan (MG ca. 80000; ηrei=2,2 in 0,5%iger Methylenchloridlösung) in einem Kessel be Raumtemperatur vermischt. Anschließend wird die Mischung 3-4 Stunden unter Rühren au 130°C erhitzt und die Spinnlösung über eine Zahnradpumpe einer Aufheizvorrichtung zugeführ und auf 130° C gehalten. Die Verweilzeit in der Aufheizvorrichtung betrug 3 Minuten. Anschließen wurde die Spinnlösung filtriert und direkt einer 240-Loch-Düse zugeführt. In den Spinnschach wurde oberhalb der Düse 40 kg Sattdampf pro Stunde eingeblasen. Die Schachttemperatu betrug 125°C und die Temperatur der Spinnlösung, gemessen an der Düseneintrittsstelle ebenfalls 125° C. Es wurden ferner 40 m3 Luft/Stunde von 420° C eingeblasen. Pro kg erstellte Spinngut wurden ca. 9 kg Dampf verbraucht. Die Fäden vom Gesamttiter 2400 dtex wurden au Spulen gesammelt und zu einem Kabel von 240 000 dtex zusammengeführt. Anschließend wurd das Kabel in 30% Dimethylformamid-haltigem Wasser 1 3,8fach bei 100°C verstreckt. Di Verweilzeit in der Streckwanne betrug ca. 2 Sekunden. Hierauf wurde gewaschen, m antistatischer Präparation versehen, bei 120°C getrocknet, gekräuselt und zu Stapelfasern vo 60 mm Länge eingeschnitten. Die Einzelfasern vom Endtiter 3,3 dtex haben eine Festigkeit von 2, Centinewton/dtex, ein Wasserrückhaltevermögen nach DIN 53 814 von 93%. Die Fasern besaße eine ausgesprochene Kern-Mantelstruktur bei runder Querschnittsform. Der Anteil de Mantelfläche von der gesamten Querschnittsfläche beträgt ca. 18%. Die Einfriertemperatur de Fasern betrug 129° C.1 a) 74 kg of dimethylformamide are mixed with a polycarbonate of 4,4'-dihydroxydiphenyl-2,2-propane (MW approx. 80,000; η rei = 2.2 in 0.5% methylene chloride solution) in a kettle at room temperature. The mixture is then heated to 130 ° C. for 3-4 hours with stirring and the spinning solution is fed to a heating device via a gear pump and kept at 130 ° C. The residence time in the heating device was 3 minutes. The spinning solution was then filtered and fed directly to a 240-hole nozzle. 40 kg of saturated steam per hour were blown into the spinning chess above the nozzle. The shaft temperature was 125 ° C. and the temperature of the spinning solution, also measured at the nozzle entry point, was 125 ° C. 40 m 3 of air / hour at 420 ° C. were also blown in. About 9 kg of steam were consumed per kg of spinning material. The threads with a total denier of 2400 dtex were collected from bobbins and brought together to form a cable of 240,000 dtex. The cable was then stretched 3.8 times at 100 ° C. in 30% dimethylformamide-containing water. The dwell time in the stretching tub was approximately 2 seconds. It was then washed, provided with an antistatic preparation, dried at 120 ° C., crimped and cut into staple fibers 60 mm in length. The individual fibers with a final titer of 3.3 dtex have a strength of 2. centinewton / dtex and a water retention capacity according to DIN 53 814 of 93%. The fibers have a pronounced core-shell structure with a round cross-sectional shape. The proportion of the outer surface of the total cross-sectional area is approximately 18%. The freezing temperature of the fibers was 129 ° C.

Die Einzelfasern hatten eine Helium-Dichte von 1,225 g/cm3 und eine Quecksilber-Dichte vo 0,572 g/cm3; die Porosität betrug 53,3%.The individual fibers had a helium density of 1.225 g / cm 3 and a mercury density of 0.572 g / cm 3 ; the porosity was 53.3%.

1 b) Ein Teil des gefachten Faserkabels vom Gesamttiter 240 000 dtex wurde in kochendem Wasse verstreckt. Der maximale Streckgrad lag bei ca. 200-220%, dann treten verstärkt Kapillarrisse i der Streckwanne auf. Die Festigkeit derart nachbehandelter Fasern betrug bei einer Einzelendtiter von 4,6 dtex 1,3 Centinewton/dtex.1 b) A part of the fiber cable with a total denier of 240,000 dtex was stretched in boiling water. The maximum degree of stretch was approx. 200-220%, then there are increased capillary cracks in the stretching tub. The strength of such post-treated fibers was 1.3 centinewtons / dtex with a single final titer of 4.6 dtex.

In der folgenden Tabelle I sind weitere Beispiele angeführt. Die Spinnlösungen wurden wie i Beispiel 1 a) beschrieben zu Kern-Mantelfasern vom Endtiter 3,3 dtex versponnen und nachbehandel Variiert wurden die Dampfmenge und die Schachttemperatur während des Spinnprozesses. Konstan waren die Luftmenge mit 40 cbm/Stunde, die Lufttemperatur mit 420° C und die Spinnlösungstemper; tur mit 125°C. Bei Luftmengen < 20 cbm/Stunde, Lufttemperaturen < 300°C und Lösungstemperati ren < 110°C war kein Spinnen mehr möglich (fehlende Fadenverfestigung). Als Feststoff wurde da oben beschriebene Polymerisat in den dort angegebenen Gewichtsverhältnissen eingesetzt.

Figure imgb0003
Further examples are given in Table I below. The spinning solutions were spun as described in Example 1 a) to give core sheath fibers with a final titer of 3.3 dtex and aftertreated. The amount of steam and the shaft temperature were varied during the spinning process. Constant were the air volume with 40 cbm / hour, the air temperature with 420 ° C and the spinning solution temper; with 125 ° C. With air volumes <20 cbm / hour, air temperatures <300 ° C and solution temperatures <110 ° C, spinning was no longer possible (missing thread consolidation). The polymer described above was used as a solid in the weight ratios specified therein.
Figure imgb0003

Beispiele 6-9Examples 6-9 (Vergleichsbeispiele)(Comparative examples)

6a) 74 kg Dimethylformamid werden mit 26 kg Polycarbonat aus Beispiel 1 wie in Beispiel 1 beschrieben vermischt, gelöst, über eine Aufheizvorrichtung geschickt und filtriert. Man erhält eine 26%ige Lösung von Polycarbonat in DMF. Über einen Dreiwegehahn wird 130°C warmes Tetraäthylenglykol mittels einer Zahnradpumpe so zudosiert, daß das Gewichtsverhältnis Polycarbonatfeststoff zu Tetraäthylenglykol = 3,65 : 1 beträgt. Nach dem Zumischen werden die 130°C heißen Lösungen über Mischkämme homogenisiert und direkt aus einer 240-Loch-Düse versponnen. Die Schachttemperatur beträgt 180°C, die Lufttemperatur 300° C und die verwendete Luftmenge war 40 cbm/Stunde. Die Fäden vom Gesamttiter 2400 dtex wurden auf Spulen gesammelt und zu einem Kabel von 240 000 dtex zusammengeführt. Anschließend wurde das Kabel 1 : 2,Ofach in kochendem Wasser verstreckt, gewaschen, mit antistatischer Präparation versehen, bei 120°C getrocknet, gekräuselt und zu Stapelfasern von 60 mm geschnitten. Die Einzelfasern vom Endtiter 6,3 dtex hatten ein Wasserrückhaltevermögen von 12%. Die Fasern . besaßen wieder eine Kern-Mantelstruktur mit hantelförmiger Querschnittsform. Der Anteil der Mantelfläche von der gesamten Querschnittsfläche beträgt ca. 80%. Die Einfriertemperatur der Faser liegt bei 97° C. Laut gaschromatografischer Analyse enthalten die Fasern noch 6,9% Tetraäthylenglykol.6a) 74 kg of dimethylformamide are mixed with 26 kg of polycarbonate from Example 1 as described in Example 1, dissolved, sent through a heating device and filtered. A 26% solution of polycarbonate in DMF is obtained. Via a three-way tap, 130 ° C warm tetraethylene glycol is metered in using a gear pump so that the weight ratio of polycarbonate solid to tetraethylene glycol = 3.65: 1. After mixing, the 130 ° C hot solutions are homogenized using mixing combs and spun directly from a 240-hole nozzle. The shaft temperature is 180 ° C, the air temperature is 300 ° C and the air volume used was 40 cbm / hour. The threads with a total titer of 2400 dtex were collected on spools and brought together to form a cable of 240,000 dtex. The cable was then stretched 1: 2 times in boiling water, washed, provided with antistatic preparation, dried at 120 ° C., crimped and cut into staple fibers of 60 mm. The individual fibers with a final titre of 6.3 dtex had a water retention capacity of 12%. The fibers. again had a core-shell structure with a dumbbell-shaped cross-sectional shape. The proportion of the outer surface of the total cross-sectional area is approximately 80%. The fiber's freezing temperature is 97 ° C. According to gas chromatographic analysis, the fibers still contain 6.9% tetraethylene glycol.

6b) Ein Teil des gefachten Faserkabels wurde vor dem Streckprozeß mehrfach mit kochendem Wasser behandelt, um das Nichtlösungsmittel Tetraäthylenglykol zu entfernen. Anschließend wurde das Kabel wie oben beschrieben zu Fasern nachbehandelt. Die Einfriertemperatur der Fasern liegt bei 99°C und der Gehalt. an Nichtlöser Tetraäthylenglykol war 6,4%. Das Wasserrückhaltevermögen lag unverändert bei 12%. Es gelingt offenbar trotz intensiver Wäsche nicht, den Nichttöser vollständig herauszuwaschen.6b) A part of the fiber cable was treated several times with boiling water before the stretching process in order to remove the non-solvent tetraethylene glycol. The cable was then post-treated into fibers as described above. The freezing temperature of the fibers is 99 ° C and the content. non-solvent tetraethylene glycol was 6.4%. The water retention capacity remained unchanged at 12%. Despite intensive washing, it is apparently not possible to completely wash out the non-detergent.

In der nachfolgenden Tabelle 11 sind weitere Beispiele angegeben. Die Spinnlösungen wurden wie in Beispiel 6 beschrieben zu Kern-Mantelfasern vom Endtiter 6,7 dtexversponnen und nach der Methode von Beispiel 6a) und 6b), nachbehandelt. Variiert wurde das Gewichtsverhältnis Polymerfeststoff zu Nichtlöser. Als Nichtlösungsmittel wurde Tetraäthylenglykol verwendet. Man erhält in allen Fällen wiederum Kern-Mantetfasern mit hantelförmiger bis ovaler Querschnittsform.

Figure imgb0004
Further examples are given in Table 11 below. The spinning solutions were spun as described in Example 6 to give core sheath fibers with a final titer of 6.7 dtex and aftertreated by the method of Examples 6a) and 6b). The weight ratio of polymer solid to non-solvent was varied. Tetraethylene glycol was used as the non-solvent. In all cases core mantet fibers with dumbbell-shaped to oval cross-sectional shape are obtained.
Figure imgb0004

Claims (9)

1. Dry spun, hydrophilic filaments or fibres of a corejacket structure produced from a polycarbonate having a porosity and a water retention capacity of at least 10%, a mercury density of less than 1.0 g/cc, a strength of at least 1.5 cN/dtex and a second order transition temperature of at least 1250 C.
2. Filaments or fibres according to Claim 1, characterised in that the polycarbonate used is a polycarbonic acid ester of 4,4'-dihydroxydiphenyl-2,2-propane.
3. A process for producing the filaments or fibres according to Claim 1 by a dry spinning process, characterised in that, immediately on leaving the spinning jet, but at the latest at a time when they have not completely solidified, the filaments are brought into contact with steam at duct temperatures of at most 140° C, and the filaments are thereafter drawn.
4. A process according to Claim 3, characterised in that the polycarbonate used is a polycarbonic acid ester of4,4'-dihydroxydipheny)-2,2-propane.
5. A process according to Claims 3 and 4, characterised in that the steam is blown into the spinning duct above the jet in the spinning direction.
6. A process according to Claims 3 to 5, characterised in that the filaments are drawn in an aqueous solution containing spinning solvent.
7. A process according to Claim 6, characterised in that the aqueous solution contains approximately 30% by weight of the spinning solvent.
8. A process according to Claims 6 and 7, characterised in that drawing is carried out in a ratio of from 1 : 3.5 to 1 : 3.8.
9. A process according to Claims 3 to 8, characterised in that the spinning solvent is dimethyl formamide.
EP79105408A 1979-01-10 1979-12-31 Hydrophilic polycarbonate fibres having a high second order transition point and process for manufacturing them Expired EP0013764B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2900703 1979-01-10
DE19792900703 DE2900703A1 (en) 1979-01-10 1979-01-10 METHOD FOR PRODUCING HYDROPHILIC POLYCARBONATE FIBERS WITH HIGH FREEZING TEMPERATURE

Publications (2)

Publication Number Publication Date
EP0013764A1 EP0013764A1 (en) 1980-08-06
EP0013764B1 true EP0013764B1 (en) 1981-11-25

Family

ID=6060277

Family Applications (1)

Application Number Title Priority Date Filing Date
EP79105408A Expired EP0013764B1 (en) 1979-01-10 1979-12-31 Hydrophilic polycarbonate fibres having a high second order transition point and process for manufacturing them

Country Status (4)

Country Link
US (1) US4265971A (en)
EP (1) EP0013764B1 (en)
JP (1) JPS5593817A (en)
DE (2) DE2900703A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120045752A1 (en) 2010-08-17 2012-02-23 Reseach Triangle Institute Fiber sampler for recovery of bioaerosols and particles

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1282842B (en) * 1963-04-11 1969-02-20 Bayer Ag Finely crystalline stretchable threads or films made of high molecular weight linear polycarbonates and processes for their production
US3454526A (en) * 1964-12-10 1969-07-08 Bayer Ag Method for solution spinning polycarbonate filaments
GB1093034A (en) * 1965-04-22 1967-11-29 Bayer Ag Improved filaments and films of polycarbonates
JPS497095B1 (en) * 1970-09-25 1974-02-18
DE2554124C3 (en) * 1975-12-02 1986-07-10 Bayer Ag, 5090 Leverkusen Process for the production of hydrophilic fibers and threads from acrylonitrile polymers
DE2609829A1 (en) * 1976-03-10 1977-09-15 Bayer Ag PROCESS FOR MANUFACTURING HYDROPHILIC FIBERS AND FABRICS FROM SYNTHETIC POLYMERS
DE2713456C2 (en) * 1977-03-26 1990-05-31 Bayer Ag, 5090 Leverkusen Process for the production of hydrophilic fibers

Also Published As

Publication number Publication date
US4265971A (en) 1981-05-05
DE2900703A1 (en) 1980-07-24
JPS5593817A (en) 1980-07-16
DE2961482D1 (en) 1982-01-28
EP0013764A1 (en) 1980-08-06

Similar Documents

Publication Publication Date Title
DE2554124C3 (en) Process for the production of hydrophilic fibers and threads from acrylonitrile polymers
DE2625908C2 (en) Hydrophilic bicomponent threads made from acrylonitrile polymers and their production
DE2607071C2 (en) Synthetic fibers and threads with high moisture absorption and high water retention capacity
DE2951803C2 (en)
DE2607996A1 (en) HYDROPHILIC FIBERS AND FABRICS MADE FROM SYNTHETIC POLYMERS
DE1469044B2 (en) Process for the production of threads from an acrylonitrile polymer
EP0019870B1 (en) Filaments and fibres of acrylonitrile copolymer blends, and process for manufacturing them
DE1256838B (en) Process for producing threads by wet spinning a polyvinylidene fluoride solution
DE2713456C2 (en) Process for the production of hydrophilic fibers
EP0000740A1 (en) Process for the manufacture of hydrophilic fibres and filaments by the dry-jet wet spinning process
EP0013764B1 (en) Hydrophilic polycarbonate fibres having a high second order transition point and process for manufacturing them
DE2719019C2 (en)
EP0051189B2 (en) Method for producing of dry-spun polyacrylonitrile filaments and fibres with a shaped cross-section
DE3214610A1 (en) Antimicrobial acrylonitrile polymer fibres, process for the preparation thereof and fibre mixture with a content thereof
DE2611193A1 (en) PROCESS FOR MANUFACTURING HYDROPHILIC FIBERS AND FABRICS FROM SYNTHETIC POLYMERS
DE2657144C2 (en) Process for making hydrophilic fibers
DE2532120A1 (en) METHOD FOR MANUFACTURING HIGH-SHRINKABLE WET-SPUN ACRYLIC FIBERS OR FIBERS
DE1291050B (en) Process for the production of regenerated cellulose threads
DE2609829A1 (en) PROCESS FOR MANUFACTURING HYDROPHILIC FIBERS AND FABRICS FROM SYNTHETIC POLYMERS
DE2752821A1 (en) LOW DENSITY HYDROPHILIC ACRYLIC FIBERS
DE2909785A1 (en) PROCESS FOR THE MANUFACTURING OF FIBERS OR FIBERS FROM POLYMERIZED CONTAINING ACRYLIC NITRILE WITH INCREASED WATER-RETENTION CAPACITY
DD154720A5 (en) CROSS-SECTION STABILIZED, HYGROSCOPIC CORE / COAT STRUCTURE FIBERS AND FAEDES AND METHOD FOR THE PRODUCTION THEREOF
DE2607659A1 (en) HYDROPHILIC FIBERS AND FABRICS MADE FROM SYNTHETIC POLYMERS
AT363168B (en) METHOD FOR PRODUCING HYDROPHILIC FIBERS OR FIBERS FROM AN ACRYLNITRILE HOMO OR COPOLYMER
DE2724952A1 (en) Non-flammable moisture absorbent acrylonitrile! polymer fibres - obtd. by treating fibres having core and mantle structure with hydroxylamine or hydrazine, and opt. complexing with a metal

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed
AK Designated contracting states

Designated state(s): DE FR GB IT

ITF It: translation for a ep patent filed

Owner name: SOCIETA' ITALIANA BREVETTI S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 2961482

Country of ref document: DE

Date of ref document: 19820128

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19841130

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19841210

Year of fee payment: 6

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19860829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19860902

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881118

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT