EP0007931B2 - Mit Kautschuk modifizierte Terpolymere mit verbesserter Wärmeverformungsbeständigkeit - Google Patents
Mit Kautschuk modifizierte Terpolymere mit verbesserter Wärmeverformungsbeständigkeit Download PDFInfo
- Publication number
- EP0007931B2 EP0007931B2 EP78300909A EP78300909A EP0007931B2 EP 0007931 B2 EP0007931 B2 EP 0007931B2 EP 78300909 A EP78300909 A EP 78300909A EP 78300909 A EP78300909 A EP 78300909A EP 0007931 B2 EP0007931 B2 EP 0007931B2
- Authority
- EP
- European Patent Office
- Prior art keywords
- rubber
- polymer
- weight
- percent
- methacrylate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229920001897 terpolymer Polymers 0.000 title description 5
- 229920000642 polymer Polymers 0.000 claims description 44
- 239000000203 mixture Substances 0.000 claims description 32
- 229920001971 elastomer Polymers 0.000 claims description 28
- 239000005060 rubber Substances 0.000 claims description 28
- 239000000178 monomer Substances 0.000 claims description 15
- -1 alkyl methacrylate ester Chemical class 0.000 claims description 11
- 239000000758 substrate Substances 0.000 claims description 11
- 239000011159 matrix material Substances 0.000 claims description 10
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical group COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 claims description 7
- 125000003118 aryl group Chemical group 0.000 claims description 7
- 229920002857 polybutadiene Polymers 0.000 claims description 7
- 150000001990 dicarboxylic acid derivatives Chemical class 0.000 claims description 6
- 239000005062 Polybutadiene Substances 0.000 claims description 5
- 229920003193 cis-1,4-polybutadiene polymer Polymers 0.000 claims description 3
- 230000009477 glass transition Effects 0.000 claims description 3
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 13
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 12
- 239000003381 stabilizer Substances 0.000 description 9
- 238000007792 addition Methods 0.000 description 8
- 230000006872 improvement Effects 0.000 description 8
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 7
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 230000006835 compression Effects 0.000 description 5
- 238000007906 compression Methods 0.000 description 5
- 229920005669 high impact polystyrene Polymers 0.000 description 5
- 239000004797 high-impact polystyrene Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 150000008064 anhydrides Chemical class 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 239000003963 antioxidant agent Substances 0.000 description 3
- 230000003078 antioxidant effect Effects 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- VSAWBBYYMBQKIK-UHFFFAOYSA-N 4-[[3,5-bis[(3,5-ditert-butyl-4-hydroxyphenyl)methyl]-2,4,6-trimethylphenyl]methyl]-2,6-ditert-butylphenol Chemical compound CC1=C(CC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)C(C)=C(CC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)C(C)=C1CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 VSAWBBYYMBQKIK-UHFFFAOYSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- OJMIONKXNSYLSR-UHFFFAOYSA-N phosphorous acid Chemical compound OP(O)O OJMIONKXNSYLSR-UHFFFAOYSA-N 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 230000000379 polymerizing effect Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- JHPBZFOKBAGZBL-UHFFFAOYSA-N (3-hydroxy-2,2,4-trimethylpentyl) 2-methylprop-2-enoate Chemical compound CC(C)C(O)C(C)(C)COC(=O)C(C)=C JHPBZFOKBAGZBL-UHFFFAOYSA-N 0.000 description 1
- OMNYXCUDBQKCMU-UHFFFAOYSA-N 2,4-dichloro-1-ethenylbenzene Chemical compound ClC1=CC=C(C=C)C(Cl)=C1 OMNYXCUDBQKCMU-UHFFFAOYSA-N 0.000 description 1
- SZSWKGVWJBZNIH-UHFFFAOYSA-N 2-chloro-1-ethenyl-4-methylbenzene Chemical compound CC1=CC=C(C=C)C(Cl)=C1 SZSWKGVWJBZNIH-UHFFFAOYSA-N 0.000 description 1
- SBYMUDUGTIKLCR-UHFFFAOYSA-N 2-chloroethenylbenzene Chemical compound ClC=CC1=CC=CC=C1 SBYMUDUGTIKLCR-UHFFFAOYSA-N 0.000 description 1
- 239000005063 High cis polybutadiene Substances 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- WOLATMHLPFJRGC-UHFFFAOYSA-N furan-2,5-dione;styrene Chemical compound O=C1OC(=O)C=C1.C=CC1=CC=CC=C1 WOLATMHLPFJRGC-UHFFFAOYSA-N 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- NHARPDSAXCBDDR-UHFFFAOYSA-N propyl 2-methylprop-2-enoate Chemical compound CCCOC(=O)C(C)=C NHARPDSAXCBDDR-UHFFFAOYSA-N 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 239000011877 solvent mixture Substances 0.000 description 1
- 150000003440 styrenes Chemical class 0.000 description 1
- 125000003011 styrenyl group Chemical group [H]\C(*)=C(/[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F291/00—Macromolecular compounds obtained by polymerising monomers on to macromolecular compounds according to more than one of the groups C08F251/00 - C08F289/00
- C08F291/02—Macromolecular compounds obtained by polymerising monomers on to macromolecular compounds according to more than one of the groups C08F251/00 - C08F289/00 on to elastomers
Definitions
- This invention relates to terpolymers and specifically to styrene/maleic anhydride/methacrylate copolymers having a rubber modifier incorporated therein.
- Rubber-modified styrenic polymers commonly referred to a HIPS are very tough and durable and have seen broad acceptance in a variety of uses such as appliance housings and the like.
- HIPS begins to soften and lose its dimensional integrity under stress at temperatures below those at which it would be required to operate for a number of significant applications.
- a rubber-modified styrenic terpolymer composition has now been discovered that produces a surprising improvement in the heat distortion temperature by comparison with HIPS making it suitable for a wide range of uses for which HIPS is disqualified.
- the incorporation of the methacrylate termonomer has the effect of raising the tensile strength and the gloss of the rubber modified polymer in a most advantageous manner making the polymeric product most attractive for a broad spectrum of applications.
- a polymeric composition comprising a rubber substrate polymer having a glass transition temperature below 0°C. grafted with a superstrate polymer and dispersed in a matrix polymer, the superstrate and matrix polymers each comprising a monoalkenyl aromatic monomer, an unsaturated dicarboxylic acid anhydride and a C, to C 3 alkyl methacrylate ester characterised in that there is present in the superstrate and matrix polymers from 45 to 83 percent by weight of the monoalkenyl aromatic monomer, from 15 to 35 percent by weight of the unsaturated dicarboxylic acid anhydride and from 2 to 20 percent by weight of the C, to C 3 alkyl methacrylate ester, that the amount of rubber in the composition, calculated as ungrafted substrate, is from 2 to 30 percent of the composition weight and that said rubber substrate is a polybutadiene comprising at least 90 percent of cis-1,4,-polybutadiene units.
- a second advantage is that other physical properties such as multiaxial impact strength, tensile strength, elongation at fail and gloss of the polymer apparently increase with the amount of the methacrylate in the composition.
- the preferred polymer compositions within this range will depend largely on the properties desired. Generally, however, the polymers containing from 4 to 10% by weight of the methacrylate comonomer are preparred. This is because the heat distortion temperature, as is explained later, initially increases rapidly with methacrylate content to a broad peak between about 7 and 1 5% content and thereafter begins a gradual decline. Thus, roughly the same improvement is generally obtained at 7% as at 15% methacrylate content. Additionally, it is preferred to retain the thermal stability as high as possible so as to permit more flexibility in the application of forming processes to the polymers.
- the polymeric compositoin of the invention comprises a rubber substrate polymer having a glass transition temperature (Tg) below 0°C. grafted with a superstrate polymer and dispersed in a matrix polymer, the superstrate and the matrix polymers each comprising from 45 to 83% (preferably from 50 or 60 to 75%) by weight of a monoalkenyl aromatic monomer, from 15 to 35% (preferably 20-30%) by weight of an unsaturated dicarboxylic acid anhydride, and from 2 to 20% (preferably 4 to 10%) by weight of a C, to C 3 alkyl methacrylate ester, the amount of rubber in the composition, calculated as ungrafted substrate, being from 2 to 30% of the composition weight and the rubber substrate component ofthe polymeric composition being a polybutadiene which contains at least 90% by weight of cis 1,4-polybutadiene units.
- Tg glass transition temperature
- the monoalkenyl aromatic monomer is preferably styrene but styrene derivatives such as alphamethylstyrene, chlorostyrene, 2,4-dichlorostyrene and 2-chloro-4-methylstyrene may be substituted for styrene in whole or in part if desired.
- the unsaturated dicarboxylic acid anhydride is most preferably maleic anhydride though any of the homologues of mallic anhydride such as itaconic, citraconic and aconitic anhydrides can also be used.
- the polymeric composition further comprises a C, to C 3 alkyl ester of methacrylic acid.
- the methacrylic ester can be methyl methacrylate, ethyl methacrylate or propyl methacrylate.
- the preferred copolymerizable monomer is methyl methacrylate.
- the polymeric composition is conveniently prepared by dissolving the rubber in a solution of the monoalkenyl aromatic component and the methacrylate ester in a suitable solvent, and then polymerizing the solution with the anhydride component in the manner described in, for example, U.S.P. 2,971,939, U.S.P. 3,336,267 and U.S.P. 3,919,354.
- a suitable polymerization schedule can be devised on the basis of the relative reactivities of the monomers. Typical schedules involve preparing an initial reaction mixture comprising a solvent, the bulk of the alkenyl aromatic monomers, a very small amount (or none) of the anhydride monomer and the major portion of the methacrylate termonomer. The rubber is dissolved in this mixture and the balance of the monomers is added slowly during the polymerization.
- the amount of rubber substrate (ungrafted basis) in the polymeric composition, which includes the grafted superstrate and any matrix polymer present, is in the range from 2 to 30% by weight based on the weight of the polymeric composition. Preferably, however, the rubber substrate represents from 5 to 25% of the weight of the polymeric composition.
- antioxidant stabilizers for styrenic polymers is available but particularly satisfactory results can be obtained using 1,3,5-trimethyl-2,4,6-tris[3,5-di-tert-butyl-4-hydroxybenzyl]benzene and 2,2'-methyiene-bis-(4-methyi-6-tert-butyi phenol)terephthalate.
- the rubber component usually requires a different stabilizer such as a tris(alkylphenyl)phosphite though the prior art can supply others that would be effective. '
- the total amount of stabilizer that may be used is not critical but up to 5% by weight based on the total composition is usually found to be adequate. In general 0.1 to 2% is the range chosen for practical advantage.
- the polymeric composition can contain other additives such as for example, additional ungrafted rubber components such as the so-called block rubbers and radial block rubbers, flame retardants, smoke suppressants, U.V. stabilizers, lubricants, antistatic additives, colorants and fillers.
- additional ungrafted rubber components such as the so-called block rubbers and radial block rubbers, flame retardants, smoke suppressants, U.V. stabilizers, lubricants, antistatic additives, colorants and fillers.
- the polymer compositions are described on the basis of a combination of elemental analysis and titrimetric analysis techniques.
- the rubber concentration is determined on the basis of material balances in the polymer composition. Unless otherwise stated the rubber used was a medium-cis polybutadiene rubber available from Firestone Corp. under the trade name "Diene 55".
- the Examples illustrate the results of varying the amount of the methacrylate ester in the composition and the surprising advantages obtained by maintaining the level in the range of 2 to 20% by weight.
- the multiaxial impact strength is shown. This is commonly called the F.D.I. and is measured according to ASTM D-1709 on a sample 2.9 mm in thickness.
- the Izod impact strengths were measured using 3.2 x 12.7 x 63.5 mm unannealed compression molded samples, notched 2.54 mm.
- the DTUL values given are for 3.2 x 12.7 x 127 mm unannealed compression molded samples tested under a 18.6 kg/sq.cm. stress.
- Unannealed compression molded samples were chosen in preference to injection molded samples so as to eliminate the variations that occur in the preparation of injection molded samples which become partially oriented during the forming process.
- the choice of unannealed compression molded samples which are not oriented during formation eliminates, one result-affecting variable and makes the comparison more significant.
- Example 1 The polymer used in Example 1 was prepared as follows: An agitated resin kettle was charged with 323 g. of styrene, 15 g. of methyl methacrylate, 0.1 g. of trisnonylphenyl phosphite (a stabilizer for the rubber) and a solvent mixture consisting of 50 g. of methyl ethyl ketone (MEK) and 75 g. of toluene. In this mixture were dissolved 54 g. of a high cis polybutadiene rubber. After the rubber was completely dissolved, a solution of 4 g. of maleic anhydride in 25 g. of MEK was added. The reaction mixture was raised to 85°C. and maintained at that level for the entire reaction period.
- MEK methyl ethyl ketone
- the polymer was then separated from the solvent and the residual monomer removed by a conventional method.
- the isolated polymer was blended with any desired additives, such as stabilizers, and compression molded into samples for evaluation.
- compositions contained 0.3% by weight of 1,3,5-trimethyl-2,4,6-tris[3,5-di-tert-butyl-4-hydroxybenzyl]benzene as an antioxidant stabilizer.
- Examples 1-3 and 6 used high-cis rubber while Examples 4 and 5 (Comparative) used the medium-cis rubber described above.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Graft Or Block Polymers (AREA)
Claims (3)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US927429 | 1978-07-24 | ||
US05/927,429 US4341695A (en) | 1977-12-27 | 1978-07-24 | Rubber modified terpolymers with improved heat distortion resistance |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0007931A1 EP0007931A1 (de) | 1980-02-20 |
EP0007931B1 EP0007931B1 (de) | 1982-05-12 |
EP0007931B2 true EP0007931B2 (de) | 1984-11-28 |
Family
ID=25454707
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP78300909A Expired EP0007931B2 (de) | 1978-07-24 | 1978-12-27 | Mit Kautschuk modifizierte Terpolymere mit verbesserter Wärmeverformungsbeständigkeit |
Country Status (8)
Country | Link |
---|---|
EP (1) | EP0007931B2 (de) |
JP (1) | JPS5518479A (de) |
AU (1) | AU520708B2 (de) |
BR (1) | BR7808510A (de) |
CA (1) | CA1121084A (de) |
DE (1) | DE2861838D1 (de) |
IT (1) | IT1102788B (de) |
MX (1) | MX150448A (de) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS582313A (ja) * | 1981-06-30 | 1983-01-07 | Daicel Chem Ind Ltd | 耐熱・耐衝撃性樹脂の製造方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2858281A (en) * | 1954-01-22 | 1958-10-28 | Goodrich Co B F | Insoluble, acid and alkali-resistant carboxylic polymers |
US3676526A (en) * | 1967-06-02 | 1972-07-11 | Eugene G Sommerfeld | Polymeric dispersion of a diene-acrylonitrite graft copolymer with a different graft copolymer |
CA882187A (en) * | 1968-03-13 | 1971-09-28 | Farbenfabriken Bayer Aktiengesellschaft | Thermoplastic-elastic moulding compounds |
US3919354A (en) * | 1972-09-08 | 1975-11-11 | Dow Chemical Co | Impact resistant polymers of a resinous copolymer of an alkenyl aromatic monomer and unsaturated dicarboxylic anhydride |
US3832274A (en) * | 1973-06-06 | 1974-08-27 | Lord Corp | Fast curing adhesives |
DE2329585C2 (de) * | 1973-06-09 | 1984-01-05 | Bayer Ag, 5090 Leverkusen | Polycarbonat-Formmassen |
US3900528A (en) * | 1973-10-09 | 1975-08-19 | Monsanto Co | Process for impact modification of high nitrile polymers |
US3900529A (en) * | 1973-10-09 | 1975-08-19 | Monsanto Co | Rubber modified high nitrile polymers and polymer blends produced thereby |
IT1043117B (it) * | 1975-10-03 | 1980-02-20 | Snam Progetti | Resine antiurto e metodo per la loro areparazione |
JPS52112692A (en) * | 1976-03-19 | 1977-09-21 | Toyo Soda Mfg Co Ltd | Method for carboxylation of ethylene-vinyl acetate copolymers |
US4097551A (en) * | 1976-12-20 | 1978-06-27 | Arco Polymers, Inc. | Rubber modified dicarboxylic acid copolymer blends |
-
1978
- 1978-12-26 JP JP16599478A patent/JPS5518479A/ja active Granted
- 1978-12-26 BR BR7808510A patent/BR7808510A/pt unknown
- 1978-12-27 CA CA000318620A patent/CA1121084A/en not_active Expired
- 1978-12-27 IT IT31344/78A patent/IT1102788B/it active
- 1978-12-27 DE DE7878300909T patent/DE2861838D1/de not_active Expired
- 1978-12-27 EP EP78300909A patent/EP0007931B2/de not_active Expired
- 1978-12-28 AU AU42921/78A patent/AU520708B2/en not_active Expired
-
1979
- 1979-01-03 MX MX176147A patent/MX150448A/es unknown
Also Published As
Publication number | Publication date |
---|---|
JPS6219446B2 (de) | 1987-04-28 |
IT1102788B (it) | 1985-10-07 |
DE2861838D1 (en) | 1982-07-01 |
CA1121084A (en) | 1982-03-30 |
BR7808510A (pt) | 1980-05-20 |
AU520708B2 (en) | 1982-02-25 |
MX150448A (es) | 1984-05-09 |
JPS5518479A (en) | 1980-02-08 |
EP0007931A1 (de) | 1980-02-20 |
AU4292178A (en) | 1980-01-31 |
IT7831344A0 (it) | 1978-12-27 |
EP0007931B1 (de) | 1982-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4197376A (en) | Tough polyblends with improved heat distortion resistance | |
US4341695A (en) | Rubber modified terpolymers with improved heat distortion resistance | |
US4305869A (en) | Terpolymers with improved heat distortion resistance | |
EP1448640B1 (de) | Transparentes acrylnitril-butadien-styrol-copolymerharz mit überlegener chemischer beständigkeit und transparenz und dessen herstellung | |
EP0060601A1 (de) | Zusammensetzungen, die Mischungen von einem Polyesterharz und einem schlagfesten Copolymer enthalten | |
CA1110377A (en) | Impact resistant acrylic polymer composition | |
US5932655A (en) | Weatherable resinous composition having improved opacity and impact strength | |
US6706814B2 (en) | Monovinylidene aromatic polymers based on highly linear high molecular weight polybutadiene rubbers and a process for their preparation | |
EP0525156B1 (de) | Transparente schlagfeste legierung | |
EP1084166B1 (de) | Witterungsbeständige harzartige polymerzusammensetzung mit verbesserter opazität und kerbschlagzähigkeit | |
WO2003051973A1 (en) | Transparent high impact alloy | |
US4959410A (en) | Polymer mixtures having high tensile strength and good tear propagation resistance | |
US4223096A (en) | Rubber-modified terpolymer with improved molding characteristics | |
US5382625A (en) | Thermoplastic moulding compositions with high notched impact strength | |
US5747587A (en) | HCFC resistant resin composition | |
EP0007931B2 (de) | Mit Kautschuk modifizierte Terpolymere mit verbesserter Wärmeverformungsbeständigkeit | |
US6051650A (en) | Rubber-reinforced thermoplastic resin composition containing particles of graft polymer | |
US6855786B2 (en) | Method for preparing graft copolymer of methylmethacrylate-butadiene-styrene having superior anti-stress whitening properties | |
US4262096A (en) | Rubber-modified terpolymer with improved molding characteristics | |
US5276091A (en) | Flame retardant polymer with stable polymeric additive | |
US4960822A (en) | Thermoplastic moulding compounds with good processing properties and great toughness | |
CA2128077C (en) | Tough glossy polymer blends | |
JPH0334499B2 (de) | ||
CA2249899A1 (en) | Weatherable resinous compositions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): BE DE FR GB SE |
|
17P | Request for examination filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): BE DE FR GB SE |
|
REF | Corresponds to: |
Ref document number: 2861838 Country of ref document: DE Date of ref document: 19820701 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
26 | Opposition filed |
Opponent name: NAAMLOZE VENNOOTSCHAP DSM Effective date: 19830110 |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
27A | Patent maintained in amended form | ||
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): BE DE FR GB SE |
|
ET2 | Fr: translation filed ** revision of the translation of the modified patent after opposition | ||
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
R26 | Opposition filed (corrected) |
Opponent name: NAAMLOZE VENNOOTSCHAP DSM Effective date: 19830110 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19931110 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19931116 Year of fee payment: 16 Ref country code: GB Payment date: 19931116 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19931122 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19931129 Year of fee payment: 16 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19941227 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19941228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Effective date: 19941231 |
|
EAL | Se: european patent in force in sweden |
Ref document number: 78300909.5 |
|
BERE | Be: lapsed |
Owner name: MONSANTO CY Effective date: 19941231 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19941227 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19950831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19950901 |
|
EUG | Se: european patent has lapsed |
Ref document number: 78300909.5 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |