EP0007842B1 - Device for the detection and localization of radiation - Google Patents

Device for the detection and localization of radiation Download PDF

Info

Publication number
EP0007842B1
EP0007842B1 EP79400472A EP79400472A EP0007842B1 EP 0007842 B1 EP0007842 B1 EP 0007842B1 EP 79400472 A EP79400472 A EP 79400472A EP 79400472 A EP79400472 A EP 79400472A EP 0007842 B1 EP0007842 B1 EP 0007842B1
Authority
EP
European Patent Office
Prior art keywords
anodes
cathode
insulating support
potential
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP79400472A
Other languages
German (de)
French (fr)
Other versions
EP0007842A1 (en
Inventor
Georges Comby
Philippe Mangeot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP0007842A1 publication Critical patent/EP0007842A1/en
Application granted granted Critical
Publication of EP0007842B1 publication Critical patent/EP0007842B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J47/00Tubes for determining the presence, intensity, density or energy of radiation or particles
    • H01J47/08Geiger-Müller counter tubes

Definitions

  • the present invention relates to a device for detecting and locating radiation and in particular phenomena releasing electrons.
  • the first of these operations consists in converting any photon into one or more electrons.
  • the second operation consists of a multiplication of these electrons, in order to obtain a measurable electrical signal.
  • Vacuum or gas photoelectric cells, photoconductive or photovoltaic cells, photomultipliers are used to measure light fluxes.
  • Photomultipliers in particular have a high sensitivity, making it possible to measure very low light fluxes, to detect and locate a single photoelectron. However, they require very careful, delicate and therefore very expensive manufacturing.
  • Their quantum efficiency, of the order of 10%, is linked to the efficiency of the photocathode.
  • Multiplication factor is of the order of 10 5 to 10 6 to their dark current is about 10 -7 A.
  • the aim of the present invention is to remedy these drawbacks and, in particular, to produce a device for detecting and locating a radiation in which it is possible to detect and locate a single photon either by photoelectric effect on a photosensitive deposit, either by photoionization of a gaseous mixture and, as the case may be, by the two routes simultaneously.
  • the device of the invention also aims to allow electrostatic focusing of photoelectrons on repairable multiplier zones, thus ensuring localization of the place of conversion.
  • the multiplier zone has a high gain and thus makes it possible to obtain pulses whose large amplitude makes it easy to distinguish them from the background noise of the electronic equipment.
  • the design of the device of the invention is such that its elements can be repaired, in the event of faulty operation.
  • the subject of the invention is a device for detecting and locating radiation, comprising in a sealed enclosure, at least one cathode brought to a first potential with respect to a reference potential, a plurality of filiform anodes isolated between them, the ends of these anodes having the shape of points, the axes of these anodes coinciding with the axes of meshes produced in a metal layer forming a cathode, the sealed enclosure being provided with a window transparent to the radiation concerned, situated opposite the cathode and the anodes, photosensitive means also contained in the enclosure, as well as an insulating support having two faces, characterized in that a part of a face, situated opposite the porthole, is coated with said metal layer forming a network of meshes constituting the cathode, the tips of the anodes being arranged in withdrawal with respect to the face of the insulating support coated with the network of conductive meshes, the ends of the anodes being thus separated from each other by the insulating support.
  • the internal face of the window is coated with a frame of a conductive material, brought to a second potential relative to a reference potential.
  • the photosensitive means consist of a network of photosensitive material having the same shape as the network constituting the cathode and deposited in layers on this network.
  • the photosensitive means consist of at least one photoionizable gas circulating inside the enclosure.
  • the device of the invention further comprises means for detecting and locating the anodes which have a potential difference with respect to the reference potential.
  • the other face of the insulating support is coated with another network of meshes of a conductive material, parallel to the meshes of the network constituting the cathode, this other network being brought to a third potential with respect to the potential of reference.
  • the insulating support is pierced with holes corresponding to the meshes of the network constituting the cathode.
  • FIG. 1 there is shown in section, a device for detecting and locating radiation, according to a first embodiment of the invention.
  • This device comprises, in a sealed enclosure 1, at least one cathode such as 2, brought to a first potential V 2 with respect to a reference potential and a plurality of filiform anodes 3, isolated from each other by an insulating part 4.
  • This device also includes photosensitive means which will be described in more detail.
  • the sealed enclosure 1 is provided with a transparent window 5 which is situated opposite the cathode 2 and the anodes 3.
  • the cathode 2 consists of a layer 14 of a conductive material forming a network of meshes; this layer is deposited on an insulating support 6, on the face 7 of the support opposite the insulating porthole 5.
  • the anodes 3 are filiform, their ends 8 are in the form of points.
  • photosensitive means are provided and are constituted by a photoionizable gas mixture circulating in the inside the enclosure.
  • the means which allow the circulation of this gas or of this gaseous mixture have not been shown in this figure.
  • the insulating support 6 is pierced with holes 9 which correspond respectively to the meshes of the network constituting the cathode.
  • this insulating support may not be pierced with holes corresponding to the meshes of the network forming the cathode.
  • the gas or gas mixture which is contained in the enclosure 1 ensures a high and stable electronic multiplication in the electric field zone, in the vicinity of the tips of the anodes.
  • the conversion of the photoelectrons is obtained by photoionization of the gas or of one of the constituents of the gas mixture or by the photoelectric effect of the photosensitive deposit, introduced into the enclosure 1.
  • the internal face 10 of the insulating window 5 can be coated with a frame of a conductive material brought to a second potential V, relative to the reference potential.
  • This frame can be deposited in a thin layer on the internal face of the porthole or consist of a mesh or a sheet of wires of very small diameter.
  • a gas or a gaseous mixture circulates inside the enclosure 1, so that the electronic multiplication is carried out in the electric field zone, in the vicinity of the tips anodes.
  • the photoelectrons are converted by photoionization of the gases or of the gas mixture contained in the enclosure.
  • the conductive frame 11, arranged on the internal face 10 of the porthole 5 is brought to the potential V 1 and allows efficient drainage of the photoelectrons in the electric field zone in the vicinity of the anodes, with better efficiency.
  • the other face 12 of the insulating support 6 can be coated with a network of meshes 13, of a conductive material; these meshes are parallel to those of the network constituting the cathode; they are brought to a third potential V 3 , relative to the reference potential.
  • this network can be deposited on the face 12, in the form of a thin layer. It can also be constituted by a network of isolated wires which makes it possible to collect information signals concerning the location of the radiations which reach the hubtot.
  • a gas or a gaseous mixture circulates inside the sealed enclosure 1 and that the photoelectronic conversion is carried out by photoionization of the gas or the gaseous mixture circulating in this pregnant.
  • the sealed enclosure 1 does not contain any photoionizable gas or gas mixture, but the photosensitive means consist, in this case, of a deposit 17 of a photosensitive material, deposited on the face 7 of the insulating support 6, in the form of a thin layer for example.
  • the radiation R acts on the photosensitive deposit 17 which releases electrons.
  • a network of a conductive material 13 can cover the other face 12 of the insulating support 6; in the same way, it can be envisaged that a network or a conductive frame 11 covers the internal face of the transparent porthole 5.
  • this enclosure is filled with a gas or a gas mixture; under these conditions, the photoelectronic conversion takes place simultaneously by photoelectric effect due to the photosensitive layer 14 and by photoionization in the gas or the gaseous mixture circulating in the enclosure 1.
  • the photosensitive means are therefore of these two types and it results therefrom that the photoelectric conversion can be carried out simultaneously by the two effects mentioned above; this can allow the detection and localization of two radiations of different wavelengths. It is obvious that, in the case where the array of cathodes is covered by a photosensitive deposit, these cathodes constitute an electrode distinct from the photosensitive deposit, even if the latter accepts the same material support.
  • spacers 15, 16 are also shown which support the insulating support 6 between the anode support 4 and the transparent window 5, inside the wall 17 of the enclosure 1.
  • the electronic multiplication takes place at the Geiger regime or almost -geiger, in the electric field of a tip or anode tips.
  • the mixture circulates in the body of the device by means which have not been shown, at a pressure adapted to the stability of the operation of the device.
  • the elements of the device and, in particular, the anodes and their support, the cathode network and its support can be produced in a single piece or according to a mosaic of discrete elements making it possible to produce detectors of very large dimensions and various shapes, spherical for example.
  • the overall thickness is very small and the device can be used by stacking. It makes it possible to detect and locate all kinds of nuclear radiation producing a greater number of primary electrons. As each anode is independent, this device makes it possible to record a high rate of events per second. In addition, it can be associated with various types of converters, such as gamma radiation, neutron converters, etc. .... Machine, there is also shown in this figure, means 18 which make it possible to detect and locate the anodes for which a potential difference appears compared to the reference potential. Indeed, all of these anodes play a role analogous to that of the microchannel wafers in a photomultiplier.
  • the means 18 which make it possible to detect and locate the anodes which have a potential difference with respect to the reference potential are well known in the state of the art and have not been described in detail. They are generally constituted by logic circuits which make it possible to identify the anode or anodes which have a potential difference with respect to the reference potential; these means also include means for measuring this potential difference.
  • FIG. 2 there is shown in section another form of the insulating support 6 and cathodes 2.
  • This support is not perforated as in the previous embodiments and it supports the tips 8 of the anodes 3.
  • the tips of these anodes as in the previous embodiments are set back relative to the level of the cathodes.
  • the face 12 of the support 6 could possibly comprise a network of conductive meshes opposite the network of meshes constituting the cathodes 2, carried by the face 7 of the support 6.
  • the face 7 of the support 6 can also be coated with a photosensitive layer 14.
  • FIG. 3 there is shown in top view, the face 7 of the insulating support 6 on which is deposited a network 2 of conductive meshes constituting the cathode.
  • This network in this particular embodiment has a honeycomb shape and it has been assumed that the anodes 3 were located at the center of holes 9 which pierce the insulating support 6.
  • the cathode is constituted by a conductive layer 2, deposited on the surface of the insulating support 6; the anodes 3 are located in the center of the holes 9 of the insulating support 6.
  • the cathode could be covered with a photosensitive layer and that the opposite face of the insulating support 6, not shown in these figures, could be covered with conductive layers forming a network identical to that shown.
  • the arrangement and the independence of the anodes facilitate very varied electronic geometric compositions with a view to selecting configurations of events in space and in time.

Landscapes

  • Measurement Of Radiation (AREA)
  • Electron Tubes For Measurement (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Description

La présente invention concerne un dispositif de détection et de localisation de rayonnements et notamment de phénomènes libérant des électrons.The present invention relates to a device for detecting and locating radiation and in particular phenomena releasing electrons.

Elle s'applique plus particulièrement à la détection de photons issus de rayonnements ultraviolets et visibles. Elle permet la représentation de phénomènes physiques produisant simultanément un nombre important de photons.It applies more particularly to the detection of photons from visible and ultraviolet radiation. It allows the representation of physical phenomena simultaneously producing a large number of photons.

On sait que, pour détecter des photons, il est nécessaire de procéder à deux opérations successives: la première de ces opérations consiste à convertir tout photon en un ou plusieurs électrons. La seconde opération consiste en une multiplication de ces électrons, dans le but d'obtenir un signal électrique mesurable.We know that, to detect photons, it is necessary to carry out two successive operations: the first of these operations consists in converting any photon into one or more electrons. The second operation consists of a multiplication of these electrons, in order to obtain a measurable electrical signal.

Lorsque la conversion du photon en électron fournit un seul électron, la détection devient difficile. C'est le cas par exemple des photons qui présentent une énergie inférieure à 12,3 eV correspondant à une lumière dont la longueur d'onde est supérieure à 1000 A. Si en plus de la détection, il est nécessaire de localiser sur le détecteur le lieu de la conversion du photon, il est important que cette conversion permette d'obtenir un signal électrique d'amplitude suffisante, correspondant à ce seul électron.When the conversion of the photon into an electron provides a single electron, detection becomes difficult. This is the case for example of photons which have an energy lower than 12.3 eV corresponding to a light whose wavelength is higher than 1000 A. If in addition to the detection, it is necessary to locate on the detector the place of conversion of the photon, it is important that this conversion makes it possible to obtain an electrical signal of sufficient amplitude, corresponding to this single electron.

Les cellules photoélectriques à vide ou à gaz, les cellules photoconductrices ou photovoltaïques, les photomultiplicateurs permettent de mesurer des flux lumineux. Les photomultiplicateurs en particulier présentent une grande sensibilité, permettant de mesurer des flux lumineux très faibles, de détecter et de localiser un photoélectron unique. Ils nécessitent cependant une fabrication très soignée, délicate et donc très coûteuse. Leur efficacité quantique, de l'ordre de 10%, est liée au rendement de la photocathode. Malgré l'apparition des microcanaux, les photomultiplicateurs resent volumineux, même si l'utilisation des microcanaux permet de diminuer considérablement leur longueur. Leur facteur de multiplication est de l'ordre de 105 à 106 et leur courant d'obscurité est d'environ 10-7 A. De plus, les ions positifs issus des gaz résiduels contenus dans ces photomultiplicateurs, provoquent une destruction progressive de la photocathode. Enfin, le spectre des impulsions correspondant à un photo-électron unique se discerne difficilement des impulsions de bruit de fond thermoionique de la photocathode. Lorsque la conversion fournit un seul électron, la détection du rayonnement et sa localisation sont très difficiles car la probabilité de perdre cet électron est très élevée. C'est le cas pour tous les photons dont l'énergie est inférieure à 12,3 eV qui présentent une longueur d'onde supérieure à 1000 À. La détection ne peut être efficace et exploitable que si la multiplication électronique est importante, afin de produire un signal se distinguant nettement du bruit de fond. Si de plus, on souhaite localiser le lieu de conversion du photo-électron, il est nécessaire d'associer le photomultiplicateur à une zone multiplicatrice repérable fondée par exemple sur le principe d'une focalisation de proximité, sur l'utilisation de lentilles électrostatiques etc.Vacuum or gas photoelectric cells, photoconductive or photovoltaic cells, photomultipliers are used to measure light fluxes. Photomultipliers in particular have a high sensitivity, making it possible to measure very low light fluxes, to detect and locate a single photoelectron. However, they require very careful, delicate and therefore very expensive manufacturing. Their quantum efficiency, of the order of 10%, is linked to the efficiency of the photocathode. Despite the appearance of microchannels, photomultipliers remain bulky, even if the use of microchannels makes it possible to considerably reduce their length. Multiplication factor is of the order of 10 5 to 10 6 to their dark current is about 10 -7 A. In addition, the positive ions of residual gases contained in these photomultipliers, causes a progressive destruction of the photocathode. Finally, the pulse spectrum corresponding to a single photo-electron is difficult to discern from the thermionic background noise pulses of the photocathode. When the conversion supplies a single electron, detection of the radiation and its location are very difficult since the probability of losing this electron is very high. This is the case for all photons whose energy is less than 12.3 eV which have a wavelength greater than 1000 Å. Detection can only be effective and exploitable if the electronic multiplication is large, in order to produce a signal clearly distinguished from background noise. If moreover, one wishes to locate the place of conversion of the photo-electron, it is necessary to associate the photomultiplier with a locatable multiplying zone founded for example on the principle of a focusing of proximity, on the use of electrostatic lenses etc .

On connaît aussi un détecteur panoramique de rayonnements présentant une multiplicité de chambres d'ionisation, électriquement isolées et remplies d'un gaz ionisable tel que décrit dans le brevet US N° 3418474. Le détecteur de ce brevet comprend une pluralité d'anodes en forme de pointes maintenues par un support isolant et situées en regard d'un hublot dont la forme est telle que les cloisons qu'il forme viennent entourer chacune de ces électrodes. Des parois conductrices (cathode) entourent ainsi les extrémités des anodes. Ce détecteur ne permet pas de détecter et localiser un photon unique, ni d'obtenir des impulsions dont l'amplitude permette de les distinguer d'un bruit de fond.There is also known a panoramic radiation detector having a multiplicity of ionization chambers, electrically isolated and filled with an ionizable gas as described in US Pat. No. 3418474. The detector of this patent comprises a plurality of shaped anodes spikes held by an insulating support and located opposite a porthole whose shape is such that the partitions which it forms surround each of these electrodes. Conductive walls (cathode) thus surround the ends of the anodes. This detector does not make it possible to detect and locate a single photon, nor to obtain pulses whose amplitude makes it possible to distinguish them from background noise.

Pour la détection d'un photo-électron unique, le seul dispositif connu actuellement est un photomultiplicateur du type "Quantacon", dans lequel le spectre d'impulsions se distingue du bruit de fond thermoélectronique. Cependant, un tel photomultiplicateur, comme d'ailleurs les photomultiplicateurs à microcanaux, nécessite aussi une fabrication extrêmement soignée, délicate et donc coûteuse. Il présente également une efficacité quantique réduite, de l'ordre de 10%, liée au rendement de la photocathode. Ce photomultiplicateur est également assez volumineux.For the detection of a single photo-electron, the only device currently known is a "Quantacon" type photomultiplier, in which the pulse spectrum is distinguished from thermoelectronic background noise. However, such a photomultiplier, like incidentally photomultipliers with microchannels, also requires extremely careful, delicate and therefore expensive manufacturing. It also has a reduced quantum efficiency, of the order of 10%, linked to the efficiency of the photocathode. This photomultiplier is also quite bulky.

La présente invention a pour but de remédier à ces inconvénients et, notamment, de réaliser un dispositif de détection et de localisation d'un rayonnement dans lequel il est possible de détecter et de localiser un photon unique soit par effet photoélectrique sur un dépôt photosensible, soit par photoionisation d'un mélange gazeux et selon le cas par les deux voies simultanément. Le dispositif de l'invention a aussi pour but de permettre une focalisation électrostatique des photoélectrons sur des zones multiplicatrices réparables, assurant ainsi une localisation du lieu de la conversion. La zone multiplicatrice présente un gain élevé et permet ainsi d'obtenir des impulsions dont l'amplitude importante permet de les distinguer facilement du bruit de fond de l'appareillage électronique. La conception du dispositif de l'invention est telle que ses éléments sont réparables, en cas de fonctionnement défectueux.The aim of the present invention is to remedy these drawbacks and, in particular, to produce a device for detecting and locating a radiation in which it is possible to detect and locate a single photon either by photoelectric effect on a photosensitive deposit, either by photoionization of a gaseous mixture and, as the case may be, by the two routes simultaneously. The device of the invention also aims to allow electrostatic focusing of photoelectrons on repairable multiplier zones, thus ensuring localization of the place of conversion. The multiplier zone has a high gain and thus makes it possible to obtain pulses whose large amplitude makes it easy to distinguish them from the background noise of the electronic equipment. The design of the device of the invention is such that its elements can be repaired, in the event of faulty operation.

L'invention a pour objet un dispositif de détection et de localisation de rayonnements, comprenant dans une enceinte étanche, au moins une cathode portée à un premier potentiel par rapport à un potentiel de référence, une pluralité d'anodes filiformes isolées entre elles, les extrémités de ces anodes ayant la forme de pointes, les axes de ces anodes coïncidant avec les axes de mailles réalisées dans une couche métallique formant une cathode, l'enceinte étanche étant munie d'un hublot transparent aux rayonnements concernés, situé en regard de la cathode et des anodes, des moyens photosensibles aussi contenus dans l'enceinte, ainsi qu'un support isolant présentant deux faces caractérisé en ce qu'une partie d'une face, située en regard du hublot, est revêtue de ladite couche métallique formant un réseau de mailles constituant la cathode, les pointes des anodes étant disposées en retrait par rapport à la face du support isolant revêtue du réseau de mailles conductrices, les extrémités des anodes étant ainsi séparées entre elles par le support isolant.The subject of the invention is a device for detecting and locating radiation, comprising in a sealed enclosure, at least one cathode brought to a first potential with respect to a reference potential, a plurality of filiform anodes isolated between them, the ends of these anodes having the shape of points, the axes of these anodes coinciding with the axes of meshes produced in a metal layer forming a cathode, the sealed enclosure being provided with a window transparent to the radiation concerned, situated opposite the cathode and the anodes, photosensitive means also contained in the enclosure, as well as an insulating support having two faces, characterized in that a part of a face, situated opposite the porthole, is coated with said metal layer forming a network of meshes constituting the cathode, the tips of the anodes being arranged in withdrawal with respect to the face of the insulating support coated with the network of conductive meshes, the ends of the anodes being thus separated from each other by the insulating support.

Selon une autre caractéristique de l'invention, la face interne du hublot est revêtue d'une trame d'un matériau conducteur, portée à un deuxième potentiel par rapport à un potentiel de référence.According to another characteristic of the invention, the internal face of the window is coated with a frame of a conductive material, brought to a second potential relative to a reference potential.

Selon une caractéristique particulière, les moyens photosensibles sont constitués par un réseau de matériau photosensible ayant la même forme que le réseau constituant le cathode et déposé en couches sur ce réseau.According to a particular characteristic, the photosensitive means consist of a network of photosensitive material having the same shape as the network constituting the cathode and deposited in layers on this network.

Selon une autre caractéristique particulière les moyens photosensibles sont constitués par au moins un gaz photoionisable circulant à l'intérieur de l'enceinte.According to another particular characteristic, the photosensitive means consist of at least one photoionizable gas circulating inside the enclosure.

Selon une autre caractéristique, le dispositif de l'invention comprend en outre des moyens de détection et de localisation des anodes qui présentent une différence de potentiel par rapport au potentiel de référence.According to another characteristic, the device of the invention further comprises means for detecting and locating the anodes which have a potential difference with respect to the reference potential.

Selon une caractéristique avantageuse, l'autre face du support isolant est revêtue d'un autre réseau de mailles d'un matériau conducteur, parallèles aux mailles du réseau constituant la cathode, cet autre réseau étant porté à un troisième potentiel par rapport au potentiel de référence.According to an advantageous characteristic, the other face of the insulating support is coated with another network of meshes of a conductive material, parallel to the meshes of the network constituting the cathode, this other network being brought to a third potential with respect to the potential of reference.

Enfin, selon une autre caractéristique, le support isolant est percé de trous correspondant aux mailles du réseau constituant la cathode.Finally, according to another characteristic, the insulating support is pierced with holes corresponding to the meshes of the network constituting the cathode.

D'autres caractéristiques et avantages de l'invention ressortiront mieux de la description qui va suivre, donnée à titre purement illustratif, en référence aux dessins annexés dans lesquels:

  • - la figure 1 représente en coupe partielle le dispositif conforme à l'invention;
  • - la figure 2 représente en coupe transversale un autre mode de réalisation du dispositif, dans lequel le support de cathode a une forme différente de celle représentée à la figure 1 ;
  • - la figure 3 représente en vue de dessus le support de cathode, cette cathode ayant une forme en réseau, dont la trame est dite "en nid d'abeilles";
  • - la figure 4 représente une vue de dessus du support de cathode, cette cathode étant formée d'une couche conductrice, déposée à la surface du support isolant troué en regard des anodes.
Other characteristics and advantages of the invention will emerge more clearly from the description which follows, given purely by way of illustration, with reference to the appended drawings in which:
  • - Figure 1 shows in partial section the device according to the invention;
  • - Figure 2 shows in cross section another embodiment of the device, in which the cathode support has a shape different from that shown in Figure 1;
  • - Figure 3 shows a top view of the cathode support, this cathode having a network shape, the frame of which is said to be "honeycomb";
  • - Figure 4 shows a top view of the cathode support, this cathode being formed of a conductive layer, deposited on the surface of the insulating support perforated opposite the anodes.

En référence à la figure 1, on a représenté en coupe, un dispositif de détection et de localisation de rayonnements, conforme à un premier mode de réalisation de l'invention.Referring to Figure 1, there is shown in section, a device for detecting and locating radiation, according to a first embodiment of the invention.

Ce dispositif comprend, dans une enceinte étanche 1, au moins une cathode telle que 2, portée à un premier potentiel V2 par rapport à un potentiel de référence et une pluralité d'anodes 3 filiformes, isolées entre elles par une pièce isolante 4. Ce dispositif comprend également des moyens photosensibles qui seront décrits plus en détail. L'enceinte étanche 1 est munie d'un hublot transparent 5 qui est situé en regard de la cathode 2 et des anodes 3. La cathode 2 est constituée d'une couche 14 d'un matériau conducteur formant un réseau de mailles; cette couche est déposée sur un support isolant 6, sur la face 7 du support en regard du hublot isolant 5. Les anodes 3 sont filiformes, leurs extrémités 8 sont en forme de pointes. Les axes de ces anodes coïncident respectivement avec les axes des mailles du réseau qui forment la cathode. Les pointes 8 des anodes sont situées en retrait par rapport à la face 7 du support isolant 6. Dans ce mode de réalisation du dispositif conforme à l'invention, des moyens photosensibles sont prévus et sont constitués par un mélange gazeux photoionisable circulant à l'intérieur de l'enceinte. Les moyens qui permettent la circulation de ce gaz ou de ce mélange gazeux n'ont pas été représentés sur cette figure. Dans le mode de réalisation du dispositif qui est représenté sur la figure, le support isolant 6 est percé de trous 9 qui correspondent respectivement aux mailles du réseau constituant la cathode. Comme on le verra plus loin en détail, ce support isolant peut ne pas être percé de trous correspondant aux mailles du réseau formant la cathode. Le gaz ou mélange gazeux qui est contenu dans l'enceinte 1 assure une multiplication électronique élevée et stable dans la zone de champ électrique, au voisinage des pointes des anodes. Dans ce premier mode de réalisation du dispositif de l'invention, la conversion des photoélectrons est obtenue par photoionisation du gaz ou de l'un des constituants du mélange gazeux ou par effet photoélectrique du dépôt photosensible, introduit dans l'enceinte 1.This device comprises, in a sealed enclosure 1, at least one cathode such as 2, brought to a first potential V 2 with respect to a reference potential and a plurality of filiform anodes 3, isolated from each other by an insulating part 4. This device also includes photosensitive means which will be described in more detail. The sealed enclosure 1 is provided with a transparent window 5 which is situated opposite the cathode 2 and the anodes 3. The cathode 2 consists of a layer 14 of a conductive material forming a network of meshes; this layer is deposited on an insulating support 6, on the face 7 of the support opposite the insulating porthole 5. The anodes 3 are filiform, their ends 8 are in the form of points. The axes of these anodes coincide respectively with the axes of the meshes of the network which form the cathode. The tips 8 of the anodes are set back with respect to the face 7 of the insulating support 6. In this embodiment of the device according to the invention, photosensitive means are provided and are constituted by a photoionizable gas mixture circulating in the inside the enclosure. The means which allow the circulation of this gas or of this gaseous mixture have not been shown in this figure. In the embodiment of the device which is shown in the figure, the insulating support 6 is pierced with holes 9 which correspond respectively to the meshes of the network constituting the cathode. As will be seen in detail below, this insulating support may not be pierced with holes corresponding to the meshes of the network forming the cathode. The gas or gas mixture which is contained in the enclosure 1 ensures a high and stable electronic multiplication in the electric field zone, in the vicinity of the tips of the anodes. In this first embodiment of the device of the invention, the conversion of the photoelectrons is obtained by photoionization of the gas or of one of the constituents of the gas mixture or by the photoelectric effect of the photosensitive deposit, introduced into the enclosure 1.

Selon un autre mode de réalisation du dispositif conforme à l'invention, la face interne 10 du hublot isolant 5 peut être revêtue d'une trame d'un matériau conducteur porté à un deuxième potentiel V, par rapport au potentiel de référence. Cette trame peut être déposée en couche mince sur la face interne du hublot ou être constituée d'un grillage ou d'une nappe de fils de très faible diamètre. Selon cet autre mode de réalisation du dispositif conforme à l'invention, un gaz ou un mélange gazeux circule à l'intérieur de l'enceinte 1, de sorte que la multiplication électronique est réalisée dans la zone de champ électrique, au voisinage des pointes des anodes. La conversion des photoélectrons est obtenue par photoionisation des gaz ou du mélange gazeux contenus dans l'enceinte. La trame conductrice 11, disposée sur la face interne 10 du hublot 5 est portée au potentiel V1 et permet un drainage efficace des photoélectrons dans la zone de champ électrique au voisinage des anodes, avec un meilleur rendement.According to another embodiment of the device according to the invention, the internal face 10 of the insulating window 5 can be coated with a frame of a conductive material brought to a second potential V, relative to the reference potential. This frame can be deposited in a thin layer on the internal face of the porthole or consist of a mesh or a sheet of wires of very small diameter. According to this other embodiment of the device according to the invention, a gas or a gaseous mixture circulates inside the enclosure 1, so that the electronic multiplication is carried out in the electric field zone, in the vicinity of the tips anodes. The photoelectrons are converted by photoionization of the gases or of the gas mixture contained in the enclosure. The conductive frame 11, arranged on the internal face 10 of the porthole 5 is brought to the potential V 1 and allows efficient drainage of the photoelectrons in the electric field zone in the vicinity of the anodes, with better efficiency.

Selon un autre mode de réalisation du dispositif conforme à l'invention, l'autre face 12 du support isolant 6 peut être revêtue d'un réseau de mailles 13, d'un matériau conducteur; ces mailles sont parallèles à celles du réseau constituant la cathode; elles sont portées à un troisième potentiel V3, par rapport au potentiel de référence. Il est bien évident, comme dans le cas de réseau de mailles formant la cathode que ce réseau peut être déposé sur la face 12, sous forme d'une couche mince. Il peut également être constitué par un réseau de fils isolés qui permet de recueillir des signaux d'informations concernant la localisation des rayonnements qui atteignent le hubtot. est bien évident aussi que, comme dans le mode de réalisation décrit précédemment, un gaz ou un mélange gazeux circule à l'intérieur de l'enceinte étanche 1 et que la conversion photoélectronique est réalisée par photoionisation du gaz ou du mélange gazeux circulant dans cette enceinte.According to another embodiment of the device according to the invention, the other face 12 of the insulating support 6 can be coated with a network of meshes 13, of a conductive material; these meshes are parallel to those of the network constituting the cathode; they are brought to a third potential V 3 , relative to the reference potential. It is obvious, as in the case of a network of meshes forming the cathode, that this network can be deposited on the face 12, in the form of a thin layer. It can also be constituted by a network of isolated wires which makes it possible to collect information signals concerning the location of the radiations which reach the hubtot. It is also obvious that, as in the embodiment described above, a gas or a gaseous mixture circulates inside the sealed enclosure 1 and that the photoelectronic conversion is carried out by photoionization of the gas or the gaseous mixture circulating in this pregnant.

Selon un autre mode de réalisation du dispositif conforme à l'invention, l'enceinte étanche 1 ne contient aucun gaz ou mélange gazeux photoionisable mais les moyens photosensibles sont constitués, dans ce cas, par un dépôt 17 d'un matériau photosensible, déposé sur la face 7 du support isolant 6, sous forme d'une couche mince par exemple. Dans ce cas, le rayonnement R agit sur le dépôt photosensible 17 qui libère des électrons. Ceux-ci sont drainés par les lignes de force du champ électrique reliant le réseau de cathodes 2 à l'anode ou aux anodes où se produisent des avalanches. Il est bien évident que dans cet autre mode de réalisation du dispositif de l'invention, dans lequel un dépôt photosensible recouvre le réseau de cathodes, une structure conforme aux différents modes de réalisation décrits précédemment pourrait être envisagée. En effet, comme dans le cas précédent, un réseau d'un matériau conducteur 13 peut recouvrir l'autre face 12 du support isolant 6; de la même manière, il peut être envisagé qu'un réseau ou une trame conductrice 11 recouvre la face interne du hublot transparent 5. De plus, dans ce mode de réalisation, il est bien évident que cette enceinte est remplie d'un gaz ou d'un mélange gazeux; dans ces conditions, la conversion photoélectronique s'effectue simultanément par effet photoélectrique dû à la couche photosensible 14 et par photoionisation dans le gaz ou le mélange gazeux circulant dans l'enceinte 1. Les moyens photosensibles sont donc de ces deux types et il en résulte que la conversion photoélectrique peut s'effectuer simultanément par les deux effets mentionnés précédemment; ceci peut permettre la détection et la localisation de deux rayonnements de longueurs d'ondes différentes. Il est bien évident que, dans le cas où le réseau de cathodes est re- couvert par un dépôt photosensible, ces cathodes constituent une électrode distincte du dépôt photosensible, même si ce dernier admet le même support matériel.According to another embodiment of the device according to the invention, the sealed enclosure 1 does not contain any photoionizable gas or gas mixture, but the photosensitive means consist, in this case, of a deposit 17 of a photosensitive material, deposited on the face 7 of the insulating support 6, in the form of a thin layer for example. In this case, the radiation R acts on the photosensitive deposit 17 which releases electrons. These are drained by the lines of force of the electric field connecting the network of cathodes 2 to the anode or to the anodes where avalanches occur. It is obvious that in this other embodiment of the device of the invention, in which a photosensitive deposit covers the array of cathodes, a structure in accordance with the various embodiments described above could be envisaged. Indeed, as in the previous case, a network of a conductive material 13 can cover the other face 12 of the insulating support 6; in the same way, it can be envisaged that a network or a conductive frame 11 covers the internal face of the transparent porthole 5. Furthermore, in this embodiment, it is quite obvious that this enclosure is filled with a gas or a gas mixture; under these conditions, the photoelectronic conversion takes place simultaneously by photoelectric effect due to the photosensitive layer 14 and by photoionization in the gas or the gaseous mixture circulating in the enclosure 1. The photosensitive means are therefore of these two types and it results therefrom that the photoelectric conversion can be carried out simultaneously by the two effects mentioned above; this can allow the detection and localization of two radiations of different wavelengths. It is obvious that, in the case where the array of cathodes is covered by a photosensitive deposit, these cathodes constitute an electrode distinct from the photosensitive deposit, even if the latter accepts the same material support.

Sur la figure, on a également représenté des cales 15, 16 qui soutiennent le support isolant 6 entre le support d'anodes 4 et le hublot transparent 5, à l'intérieur de la paroi 17 de l'enceinte 1.In the figure, spacers 15, 16 are also shown which support the insulating support 6 between the anode support 4 and the transparent window 5, inside the wall 17 of the enclosure 1.

Pour des modes de réalisation du dispositif conformes à l'invention, qui présentent l'introduction d'un gaz ou d'un mélange gazeux à l'intérieur de l'enceinte étanche 1, la multiplication électronique s'effectue au régime Geiger ou quasi-geiger, dans le champ électrique d'une pointe ou des pointes d'anodes. Le mélange circule dans le corps du dispositif grâce à des moyens qui n'ont pas été représentés, à une pression adaptée à la stabilité du fonctionnement du dispositif. Il est à remarquer que les éléments du dispositif et, en particulier, les anodes et leur support, le réseau de cathodes et son support, peuvent être réalisés en une seule pièce ou selon une mosaïque d'éléments discrets permettant de réaliser des détecteurs de très grandes dimensions et de formes variées, sphérique par exemple. Ceci facilite l'adaptation du détecteur à différentes sources de rayonnement et permet également d'assurer sa maintenance de façon aisée. L'encombrement en épaisseur est très réduit et le dispositif peut être utilisé par empilement. Il permet de détecter et de localiser toutes sortes de rayonnements nucléaires produisant un nombre plus important d'électrons primaires. Comme chaque anode est indépendante, ce dispositif permet d'enregistrer un fort taux d'évènements par seconde. De plus, il peut être associé à divers types de convertisseurs, tels que des convertisseurs de rayonnements gamma, à neutrons, etc.... Engin, on a également représenté sur cette figure, des moyens 18 qui permettent de détecter et de localiser les anodes pour lesquelles apparaît une différence de potentiel par rapport au potentiel de référence. En effet, l'ensemble de ces anodes joue un rôle analogue à celui des galettes de microcanaux dans un photomultiplicateur. Ces anodes permettent de multiplier le nombre d'électrons, de manière importante, afin d'obtenir un signal aisément mesurable. Les moyens 18 qui permettent de détecter et de localiser les anodes qui présentent une différence de potentiel par rapport au potentiel de référence sont bien connus dans l'état de la technique et n'ont pas été décrits en détail. Ils sont généralement constitués par des circuits logiques qui permettent de repérer la ou les anodes qui présentent une différence de potentiel par rapport au potentiel de référence; ces moyens comprennent également des moyens de mesure de cette différence de potentiel.For embodiments of the device according to the invention, which present the introduction of a gas or a gaseous mixture inside the sealed enclosure 1, the electronic multiplication takes place at the Geiger regime or almost -geiger, in the electric field of a tip or anode tips. The mixture circulates in the body of the device by means which have not been shown, at a pressure adapted to the stability of the operation of the device. It should be noted that the elements of the device and, in particular, the anodes and their support, the cathode network and its support, can be produced in a single piece or according to a mosaic of discrete elements making it possible to produce detectors of very large dimensions and various shapes, spherical for example. This facilitates the adaptation of the detector to different sources of radiation and also makes it possible to ensure its maintenance easily. The overall thickness is very small and the device can be used by stacking. It makes it possible to detect and locate all kinds of nuclear radiation producing a greater number of primary electrons. As each anode is independent, this device makes it possible to record a high rate of events per second. In addition, it can be associated with various types of converters, such as gamma radiation, neutron converters, etc. .... Machine, there is also shown in this figure, means 18 which make it possible to detect and locate the anodes for which a potential difference appears compared to the reference potential. Indeed, all of these anodes play a role analogous to that of the microchannel wafers in a photomultiplier. These anodes make it possible to multiply the number of electrons, in a significant manner, in order to obtain an easily measurable signal. The means 18 which make it possible to detect and locate the anodes which have a potential difference with respect to the reference potential are well known in the state of the art and have not been described in detail. They are generally constituted by logic circuits which make it possible to identify the anode or anodes which have a potential difference with respect to the reference potential; these means also include means for measuring this potential difference.

En référence à la figure 2, on a représenté en coupe une autre forme du support isolant 6 et de cathodes 2. Ce support n'est pas troué commedans les modes de réalisation précédents et il supporte les pointes 8 des anodes 3. Les pointes de ces anodes comme dans les modes de réalisation précédents, sont disposées en retrait par rapport au niveau des cathodes. Il est bien évident que, comme dans les cas précédents, la face 12 du support 6 pourrait éventuellement comporter un réseau de mailles conductrices en regard du réseau de mailles constituant les cathodes 2, portées par la face 7 du support 6. Il est bien évident aussi que la face 7 du support 6 peut être également revêtue d'une couche photosensible 14.Referring to Figure 2, there is shown in section another form of the insulating support 6 and cathodes 2. This support is not perforated as in the previous embodiments and it supports the tips 8 of the anodes 3. The tips of these anodes as in the previous embodiments, are set back relative to the level of the cathodes. It is obvious that, as in the previous cases, the face 12 of the support 6 could possibly comprise a network of conductive meshes opposite the network of meshes constituting the cathodes 2, carried by the face 7 of the support 6. It is quite obvious also that the face 7 of the support 6 can also be coated with a photosensitive layer 14.

En référence à la figure 3, on a représenté en vue de dessus, la face 7 du support isolant 6 sur laquelle est déposé un réseau 2 de mailles conductrices constituant la cathode. Ce réseau dans ce mode de réalisation particulier, a une forme en nid d'abeilles et on a supposé que les anodes 3 étaient situées au centre de trous 9 qui ajourent le support isolant 6.Referring to Figure 3, there is shown in top view, the face 7 of the insulating support 6 on which is deposited a network 2 of conductive meshes constituting the cathode. This network in this particular embodiment has a honeycomb shape and it has been assumed that the anodes 3 were located at the center of holes 9 which pierce the insulating support 6.

En référence à la figure 4, on a représenté en vue de dessus, le support isolant 6. Dans ce mode de réalisation particulier, la cathode est constituée par une couche conductrice 2, déposée à la surface du support isolant 6; les anodes 3 sont situées au centre des trous 9 du support isolant 6.Referring to Figure 4, there is shown in top view, the insulating support 6. In this particular embodiment, the cathode is constituted by a conductive layer 2, deposited on the surface of the insulating support 6; the anodes 3 are located in the center of the holes 9 of the insulating support 6.

Il est bien évident que, dans la description qui vient d'être faite en référence aux figures 3 et 4, la cathode pourrait être recouverte d'une couche photosensible et que la face opposée du support isolant 6, non représentée sur ces figures, pourrait être recouverte de couches conductrices formant un réseau identique à celui qui est représenté.It is obvious that, in the description which has just been given with reference to FIGS. 3 and 4, the cathode could be covered with a photosensitive layer and that the opposite face of the insulating support 6, not shown in these figures, could be covered with conductive layers forming a network identical to that shown.

Dans le dispositif qui vient d'être décrit, la disposition, et l'indépendance des anodes facilitent les compositions géométriques électroniques très variées en vue de sélectionner des configurations d'évènements dans l'espace et dans le temps.In the device which has just been described, the arrangement and the independence of the anodes facilitate very varied electronic geometric compositions with a view to selecting configurations of events in space and in time.

Claims (8)

1. Apparatus for the detection and location of radiation comprising a gas-tight container (1) holding at least one cathode (2) having a first potential (V 2) with respect to a reference potential, a plurality of mutually-isolated filamentary anodes (3), the tips (8) of said anodes being points, the axes of said anodes (3) coinciding with the axes of meshes (14) in a metal layer forming a cathode, the gas-tight container having a window (5), transparent to the radiation concerned, facing the cathode and the anodes, photosensitive means (17) also contained in the container, as well as an insulating support (6) having two surfaces, characterized in that a part of one surface (7) facing the window, is faced with said metal layer forming a mesh grid (14) constituting the cathode, the points (8) of the anodes being set back with respect to the surface (7) of the insulating support faced with the conductive mesh grid, the tips of the anodes being thereby mutually separated by the insulating support (6).
2. Apparatus for the detection and location of radiation according to the Claim 1, characterized in that the internal surface (10) of the window is faced with a grid (11) of conductive material, having a second potential (V,) with respect to the reference potential.
3. Apparatus according to Claim 2, characterized in that said photosensitive means (17) comprise a layer of photosensitive material on the upper surface (7) of the insulating support.
4. Apparatus according to Claim 3, characterized in that the photosensitive means additionally comprise at least one photoionizable gas circulating in the interior of the container (1
5. Apparatus according to Claim 2, characterized in that said photosensitive means comprise at least one photoionizable gas circulating in the interior of the container (1).
6. Apparatus for the detection and location of radiation according to any one of Claims 3 to 5, characterized in that it additionally comprises means (18) for detecting and locating anodes having a potential difference with respect to the reference potential.
7. Apparatus for the detection and location of radiation according to Claim 6, characterized in that the other surface (12) of the insulating support (6) is faced with another grid (13) of mesh of conductive material, parallel to the mesh of grid (14) constituting the cathode, said other grid having a third potential (V3) with respect to the reference potential.
8. Apparatus according to Claim 7, characterized in that the insulating support (6) is pierced by holes (9) corresponding to the meshes (14) of the grid constituting the cathode.
EP79400472A 1978-07-12 1979-07-09 Device for the detection and localization of radiation Expired EP0007842B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR7820807 1978-07-12
FR7820807A FR2431185A1 (en) 1978-07-12 1978-07-12 RADIATION DETECTION AND LOCATION DEVICE

Publications (2)

Publication Number Publication Date
EP0007842A1 EP0007842A1 (en) 1980-02-06
EP0007842B1 true EP0007842B1 (en) 1984-08-08

Family

ID=9210668

Family Applications (1)

Application Number Title Priority Date Filing Date
EP79400472A Expired EP0007842B1 (en) 1978-07-12 1979-07-09 Device for the detection and localization of radiation

Country Status (5)

Country Link
US (1) US4280075A (en)
EP (1) EP0007842B1 (en)
JP (1) JPS5515096A (en)
DE (1) DE2967161D1 (en)
FR (1) FR2431185A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5386625A (en) * 1977-09-14 1978-07-31 Hitachi Metals Ltd Permanent magnet alloy
US4578125A (en) * 1981-07-03 1986-03-25 Tokyo Shibaura Denki Kabushiki Kaisha Permanent magnet
FR2534688A1 (en) * 1982-10-19 1984-04-20 Commissariat Energie Atomique DEVICE FOR EXAMINING SAMPLES BY ELECTRONIC TRANSMISSION
GB2195204B (en) * 1986-09-19 1990-08-15 Senichi Masuda Apparatus for detecting ultra-fine particles
US5138168A (en) * 1988-07-08 1992-08-11 Oxford Positron Systems Limited Method and apparatus for quantitative autoradiography analysis
JP3248323B2 (en) * 1993-12-08 2002-01-21 石川島播磨重工業株式会社 Particle accelerator beam monitor
JPH07218643A (en) * 1994-02-08 1995-08-18 Aloka Co Ltd Incident position detector for radiation
JP3354551B2 (en) * 2000-06-27 2002-12-09 科学技術振興事業団 Particle beam image detector using gas amplification with pixel electrodes
US7586888B2 (en) * 2005-02-17 2009-09-08 Mobitrum Corporation Method and system for mesh network embedded devices
US7630736B2 (en) * 2005-10-11 2009-12-08 Mobitrum Corporation Method and system for spatial data input, manipulation and distribution via an adaptive wireless transceiver
US8411590B2 (en) 2006-07-27 2013-04-02 Mobitrum Corporation Mesh network remote control device
US8305935B2 (en) * 2006-07-27 2012-11-06 Mobitrum Corporation Method and system for dynamic information exchange on location aware mesh network devices
USRE47894E1 (en) 2006-07-27 2020-03-03 Iii Holdings 2, Llc Method and system for dynamic information exchange on location aware mesh network devices
US8305936B2 (en) 2006-07-27 2012-11-06 Mobitrum Corporation Method and system for dynamic information exchange on a mesh network in a vehicle
US7801058B2 (en) * 2006-07-27 2010-09-21 Mobitrum Corporation Method and system for dynamic information exchange on mesh network devices
US8427979B1 (en) 2006-07-27 2013-04-23 Mobitrum Corporation Method and system for dynamic information exchange on location aware mesh network devices
US20090189739A1 (en) * 2008-01-25 2009-07-30 Mobitrum Corporation Passive voice enabled rfid devices
JP5065171B2 (en) * 2008-06-13 2012-10-31 浜松ホトニクス株式会社 Photomultiplier tube

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE500857A (en) *
FR1022364A (en) * 1950-06-14 1953-03-04 Radar cell
US3418474A (en) * 1965-11-09 1968-12-24 Baird Atomic Inc Panoramic radiation detector having a multiplicity of isolated gas chambers
US3383538A (en) * 1965-12-30 1968-05-14 Navy Usa Proportional counter tube including a plurality of anode-cathode units
US3676682A (en) * 1968-10-30 1972-07-11 Fred W Falk Absorbed ionizing radiation measuring device
FR2250120B1 (en) * 1973-11-07 1977-03-11 Commissariat Energie Atomique

Also Published As

Publication number Publication date
US4280075A (en) 1981-07-21
JPS6238646B2 (en) 1987-08-19
FR2431185B1 (en) 1981-01-16
JPS5515096A (en) 1980-02-01
FR2431185A1 (en) 1980-02-08
EP0007842A1 (en) 1980-02-06
DE2967161D1 (en) 1984-09-13

Similar Documents

Publication Publication Date Title
EP0007842B1 (en) Device for the detection and localization of radiation
EP0742954B1 (en) Ionising radiation detector having proportional microcounters
EP0855086B1 (en) High-resolution position detector for high-flux ionising particle streams
EP0678896B1 (en) Low dose ionizing X- or gamma-ray medical imaging device
EP0810631B1 (en) High resolution radiographic imaging device
EP2583298B1 (en) Electron multiplying detector having a highly doped nanodiamond layer
FR2925218A1 (en) IMAGE INTENSIFIER TUBE WITH REDUCED SIZE AND NIGHT VISION SYSTEM EQUIPPED WITH SUCH A TUBE
FR2748158A1 (en) FAST RADIATION DETECTOR
EP0515261B1 (en) Ceramic electron multiplying structure especially for photomultiplier and its manufacturing procedure
EP0851512A1 (en) High resistivity semiconductor ionizing radiation detector
FR2906082A1 (en) PHOTODIODE AT AVALANCHE
EP0064913B1 (en) X-rays multidetector
EP0010474B1 (en) Radiation detector
FR2849273A1 (en) Structure of matrix of multispectral detectors, comprises layers of semiconductor material separated by thin dielectric layers and feedthroughs for collecting electric charges
Peskov et al. Development of novel designs of spark-protected micropattern gaseous detectors with resistive electrodes
EP1343194A1 (en) Radiation detectors and autoradiographic imaging devices comprising such detectors
FR2468999A1 (en) Radiation detector consists of low capacitance photodiode - with several small diodes on semiconductor substrate near to scintillator
FR2786024A1 (en) GAS FILLING PHOTON LOCATION DETECTOR
EP0418965B1 (en) Cathode ray tube having a photodeflector
FR2697660A1 (en) Matrix addressing screen with contact of rows and columns through the support.
CH556605A (en) VIDEO-CATHODIC TUBE.
FR2532438A1 (en) Detection and location of high energy electromagnetic radiation
FR2638567A1 (en) Method and device for two-dimensional locating of neutral particles
FR2875332A1 (en) Multi section photoelectric electron multiplier tube for processing radiations, has transparent window with slots delimiting photo-cathode zones corresponding to sections, and filled with material having photon absorbing/reflecting ability

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE GB IT NL

17P Request for examination filed
ITF It: translation for a ep patent filed

Owner name: SOCIETA' ITALIANA BREVETTI S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE GB IT NL

REF Corresponds to:

Ref document number: 2967161

Country of ref document: DE

Date of ref document: 19840913

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19870731

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19890709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19900201

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19900403