EP0003927B1 - Procédé pour fournir ou enlever de la chaleur à un fluide de travail condensable et dispositif fonctionnant selon ce procédé - Google Patents

Procédé pour fournir ou enlever de la chaleur à un fluide de travail condensable et dispositif fonctionnant selon ce procédé Download PDF

Info

Publication number
EP0003927B1
EP0003927B1 EP79400086A EP79400086A EP0003927B1 EP 0003927 B1 EP0003927 B1 EP 0003927B1 EP 79400086 A EP79400086 A EP 79400086A EP 79400086 A EP79400086 A EP 79400086A EP 0003927 B1 EP0003927 B1 EP 0003927B1
Authority
EP
European Patent Office
Prior art keywords
exchanger
liquid
working fluid
heat
enclosure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP79400086A
Other languages
German (de)
English (en)
Other versions
EP0003927A1 (fr
Inventor
Jacques Sterlini
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Compagnie Electro Mecanique SA
Original Assignee
Compagnie Electro Mecanique SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compagnie Electro Mecanique SA filed Critical Compagnie Electro Mecanique SA
Publication of EP0003927A1 publication Critical patent/EP0003927A1/fr
Application granted granted Critical
Publication of EP0003927B1 publication Critical patent/EP0003927B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24VCOLLECTION, PRODUCTION OR USE OF HEAT NOT OTHERWISE PROVIDED FOR
    • F24V99/00Subject matter not provided for in other main groups of this subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0015Ejectors not being used as compression device using two or more ejectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Definitions

  • the present invention relates to a method and a device for exchanging heat between fluids, one of these, which will hereinafter be called condensable working fluid, being maintained under conditions such that the heat exchanges cause vaporization or condensation of part of its mass.
  • the present invention relates to a device usable in a clalage pumping installation.
  • Heat pumps have been known for a long time, but it seems difficult to say that their energetic yields and their prices reach the optimal level.
  • a step in this direction is represented by patent CH-A-305,668, in which the vaporization of the working fluid is carried out in stages, at decreasing pressure and temperature, the vapor phase of the working fluid being extracted at each stage and sent to a corresponding stage of a compressor, where it joins the vapor coming from a lower pressure stage and which has already been compressed in another stage of the compressor.
  • this concept did not spread, perhaps because it used freon or water as the working fluid.
  • the improvement in thermodynamic efficiency is limited because the vapor which finally leaves the compressor is far from the saturation conditions.
  • the exchangers are not the subject of a particular study and it appears from the description that there has been above all for the purpose of the exchangers constituted by receptacles partially filled with the liquid phase of the working, at free level, of the tubes through which the fluids with which heat exchange takes place, being arranged either in the liquid phase or in the overhanging vapor phase.
  • the ratio between the vapor flow rate and the total fluid flow rate, measured by weight is between a value of the order of approximately 0.03 and a value of the order of About 0.97, that is to say as soon as the fluid is clearly two-phase, with a significant pressure drop, for example of the order of 0.3 bar per meter for tubes with a diameter of 20 mm (cf. 5th Int. Heat Transfer Conf. 1974 TOKYO, Handbook of heat transfer, ROSENOW).
  • the mass titer values which allow the above regimes can be obtained quite easily; in fact, in an exchanger which receives liquid which leaves a module and is substantially at equilibrium conditions with steam, it suffices to supply the liquid with little heat so that it begins to boil, ie so that the mass titer becomes greater than zero, and exceeds the minimum value. It suffices to calculate the flow rate as a function of the heat flow so that at the outlet of the exchanger, it has not been entirely transformed into the vapor phase, that is to say that the mass titer is less than 0, 97, and that it enters the lower pressure module a liquid-vapor mixture.
  • the aim of the present invention is a method for supplying or removing heat from a condensable working fluid, passing from a first enclosure where it is in saturation conditions to a second enclosure where it is also in saturation conditions but at a lower pressure and temperature, the heat being supplied or removed to the working fluid, as it passes through the tubes of an exchanger around which circulates a heat transfer fluid, heat supply or extractor, this process having, according to the invention, the particularity that at least part of said condensable working fluid is passed through the tubes of said exchanger under conditions such that it is in the two-phase state with a mass titer of approximately 0.03 to 0, 97 approximately over a significant part of its path, in the exchanger, and that it undergoes, during the passage of the tubes, a continuous pressure drop which corresponds to the major part of the pressure difference between the first and second speakers.
  • the condensable working fluid can be either two-phase with a mass titer between 0.03 and 0.97, or in an essentially gaseous state, the mass titer being greater than 0.97 or equal to 1, which is essentially liquid, the mass titer being less than 0.03 or zero.
  • the pressure drop is significant, although less than that observed when the fluid is two-phase, and the heat exchange coefficient is very low. This situation should therefore be avoided or minimized as much as possible.
  • the invention therefore also provides a heat exchange method in which heat supplied or removed by a heat transfer fluid is used to pass a condensable working fluid from the liquid state to the vapor state or vice versa, method in which the two fluids are made to circulate in a series of modules each comprising an enclosure forming a liquid-gas separator where the liquid and vapor phases of the condensable working fluid are substantially in equilibrium, said enclosures being at stepped pressures and temperatures, the vapor being extracted from each enclosure, compressed and sent to the neighboring module in the direction of increasing pressures, while the liquid phase of the condensable working fluid passes from one module to another in the direction of decreasing pressures, at least one part of this passage being done according to the method described above, this method having the particularity that, to maintain the desired conditions inside the exchange eur, only a fraction of the condensable working fluid which passes from one enclosure to the other is passed through it, this fraction being sent to the exchanger in the liquid phase when heat is supplied by the heat transfer fluid, and in the two-phase state when heat
  • the vapor flow rate of the condensable working fluid coming from the neighboring stage at lower pressure and temperature and having passed through the stage of the compressor of this last module which can be operated by bringing into full contact as in the process of the document above, or in another way, to operate this desuperheating, at least part of the flow is sent into this steam flow condensable working fluid in the liquid phase which has not passed through the exchanger.
  • At least part of the flow rate of the condensable working fluid in the liquid phase which has not passed through the exchanger is sent to an ejector where it is made to suck at least part of the flow rate of the condensable working fluid in the vapor phase coming from the neighboring module at lower pressure and temperature and having passed through the corresponding compressor stage in order to overpress and desuperheat said vapor.
  • the energy due to the expansion of the liquid phase between two modules is not lost, but is used to relieve the compressor.
  • the device to which the figures relate is a heat pump operating with ammonia as the condensable working fluid, the heat transfer fluid being either lukewarm water of geothermal origin. or from industrial installations providing heat, either water intended for heating or drying in industrial installations extracting heat.
  • the heat pump includes a number of "modules", which are traversed by ammonia.
  • the higher pressure terminal module does not include an exchanger, compressor stage or ejector, while, in the lower pressure terminal module, the separator is replaced by a simple container.
  • the installation includes two types of modules; some called “reheats” are the subject of FIG. 1, others, called “cooled”, that of FIG. 2.
  • n a heated module
  • n + 1 the neighboring modules, in the order of increasing pressures
  • p - 1, p, p + 1 of the cooled modules in the same order.
  • the ammonia compartment of the exchanger 1 is connected, for its supply, to the module n + 1 by a pipe 5 arranged to supply it essentially in the liquid phase with the condensable working fluid from the separator 2a of this module, that is to say opening into the lower part thereof.
  • the water compartment is supplied with hot water by a pipe 6, coming either from the source, or from a stage n + 1 at higher pressure and temperature.
  • stage n - 1 The water is then sent to stage n - 1, where to the evacuation by a pipe 7.
  • the ammonia receives heat and vaporizes at least in part, so that it leaves a two-phase fluid, or only in the vapor phase, which is sent to the separator 2 via a pipe 8.
  • This pipe can be omitted, the exchanger tubes then opening directly into the separator.
  • a fraction of the condensable working fluid in the liquid phase leaving the separator 2a of stage n + 1 is sent by another pipe 9 into the ejector 4, without passing through the exchanger, and acquires a high speed there by passing through an ejection nozzle, then it is in contact with the vapor coming from the compressor stage 3b of the module n - 1 via line 10.
  • the ejection occurs with partial vaporization and it leaves the ejector a high-speed two-phase fluid, the vapor of which comes both from line 10 and from the vaporization of the condensable working fluid in the liquid phase supplied by line 9.
  • This mixture is brought by line 11 into the separator 2 in which it joins the two-phase fluid coming from line 8.
  • the gas phase of the condensable working fluid is extracted and sent to the compressor stage 3, via line 12, while, from the bottom of the separator 2, the liquid phase of the condensable working fluid is sent to module n - 1 as indicated above.
  • Valves not shown, distribute the flow of liquid leaving separator 2a of stage n + 1 between conduits 5 and 9 so as to maintain the end of the vaporization zone in exchanger 1 in the vicinity of exit.
  • the exchanger 1 must be supplied with condensable working fluid in the two-phase state from the separator 2a of the stage p + 1 and, for this, an additional pipe 13 starts from the top of the separator and joins the pipe 5 to 1. entry of the exchanger 1.
  • This pipe 13 is equipped a valve 14; in fact, the quantity of vapor condensed in the exchanger is proportional to the heat flux which is removed by the water.
  • valves controlling the distribution of the flow rate between lines 5 and 9 are controlled by a parameter linked to a speed inside the exchanger.
  • a simple regulation mode is linked to the quantity of liquid present in the separator.
  • the terminal modules present particular problems: at the level of the "first" module, that is to say that at the lowest pressure and temperature, the separator is in fact replaced by a simple reservoir, the condensable working fluid of which does not only comes out as vapor. A liquid phase shipment that has not passed through the exchanger may cause it to become blocked. In this case, for the regulation intended to obtain the suitable speed in the exchanger, it is preferable to provide that an adjustable quantity of the working fluid condensable in liquid phase is withdrawn from the reservoir to be re-injected upstream (in the liquid flow direction), from the nearest exchanger, using a pump to overcome the pressure difference between modules.
  • the desuperheating of the vapor of the condensable working fluid from the last stage of the compressor cannot be effected using the liquid phase of the condensable work from an upper module, so that the last exchanger risks going out of optimal regime. It is preferable to provide, to avoid this drawback, that the liquid phase, withdrawn downstream of the last exchanger, is re-injected upstream of the latter, in quantity adjustable using a pump to compensate for the difference in pressure.
  • the present invention does not preclude the presence, in the series of modules, of "adiabatic" modules, that is to say without exchanger.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Description

  • La présente invention est relative à un procédé et un dispositif pour échanger de la chaleur entre des fluides, l'un de ceux-ci, qui sera appelé dans la suite fluide de travail condensable, étant maintenu dans des conditions telles que les échanges thermiques entraînent la vaporisation ou la condensation d'une partie de sa masse.
  • Plus particulièrement, la présente invention est relative à un dispositif utilisable dans une installation de pompage de claleur.
  • Les pompes à chaleur sont connues depuis longtemps, mais il paraît difficile de dire que leurs rendements énergiques et leurs prix atteignent le niveau optimal.
  • Une des raisons en est qu'il n'existe pas de fluide de travail idéal pour les conditions où il est plus spécialement envisagé de les utiliser, c'est-à-dire à des températures du même ordre que la température ambiante. Les fréons conviennent bien du fait notamment de leurs températures de condensation sous des pressions modérées, mais ils sont coûteux, ne doivent pas être mis en contact avec des graisses ni se répandre dans l'atmosphère. L'eau, aux températures ordinaires, exige des installations de volume prohibitif du fait des basses pressions correspondantes. L'ammoniac présente des pressions convenables dans le domaine d'utilisation considéré, ainsi que de bonnes propriétés d'échange thermique et est peu coûteux, mais il est corrosif et toxique.
  • D'un autre côté, les installations existantes sont relativement importantes du fait des médiocres coefficients d'échange usuels qui conduisent à des échangeurs volumineux, d'où des masses de fluide de travail importantes, ce qui est d'autant plus gênant que ce fluide est soit coûteux comme le fréon soit dangereux comme l'ammoniac.
  • Une voie pour améliorer les pompes à chaleur existantes consiste, évidemment, à améliorer leur rendement thermodynamique, de façon à obtenir de meilleurs transferts de chaleur pour une masse égale de fluide de travail.
  • Un pas dans cette voie est représenté par le brevet CH-A-305.668, dans lequel la vaporisation du fluide de travail est faite par étapes, à pression et température décroissantes, la phase vapeur du fluide de travail étant extraite à chaque étape et envoyée dans un étage correspondant d'un compresseur, où elle rejoint la vapeur provenant d'une étape à pression inférieure et qui a déjà été comprimée dans un autre étage du compresseur. Cette conception ne s'est cependant pas répandue, peut-être parce qu'elle faisait appel au fréon ou à l'eau comme fluide de travail. De plus, l'amélioration de rendement thermodynamique est limitée du fait que la vapeur qui sort finalement du compresseur est loin des conditions de saturation.
  • Le document FR-A-2.352.247, présente une solution plus perfectionnée du problème de l'amélioration du rendement thermodynamique. En effet, dans chacun des modules où à chaque étape s'opère la vaporisation par étapes du fluide de travail, la vapeur recom- primée provenant du module voisin à pression inférieure à travers un étage de compresseur est remise en contact avec la phase liquide, et est donc ramenée aux conditions de saturation, si bien que sur un diagramme entropique, par exemple, le trajet en zig-zag représentant les états successifs de la phase vapeur reste toujours à proximité de la courbe de vaporisation. On obtient ainsi un gain énergétique variable selon la nature du fluide de travail et les conditions opératoires, mais particulièrement intéressant dans le cas de l'ammoniac. Cet avantage est encore considérablement augmenté par le fait que, dans ce document, la condensation du fluide de travail, dans la partie haute température de la pompe à chaleur, est également opérée par étapes, dans les modules analogues à ceux où s'opère la vaporisation.
  • Cependant, dans ce document, les échangeurs ne font pas l'objet d'une étude particulière et il ressort de la description qu'on y a surtout eu en vue des échangeurs constitués par des récipients en partie remplis par la phase liquide du fluide de travail, à niveau libre, des tubes traversés par les fluides avec lesquels se fait l'échange de chaleur étant disposés soit dans la phase liquide soit dans la phase vapeur surplombante.
  • Une telle disposition entraîne l'obligation de disposer de masses relativement importantes de fluide de travail, ce qui, comme on l'a dit plus haut, est à éviter, surtout lorsque celui-ci est l'ammoniac. De plus, elle ne garantit pas que les coefficients d'échange soient optimaux.
  • En outre, si on examine les pertes de charge subies par le fluide lorsqu'il parcourt les modules dans le sens des pressions décroissantes, on constate que l'essentiel de la différence de pression entre deux modules consécutifs correspond à la perte de charge due au "flashage" du liquide lorsqu'il pénètre dans le compartiment d'échange. Ce flashage s'accompagne de pertes d'énergies non récupérables.
  • Dans les travaux qui ont abouti à la présente invention, on s'est plus particulièrement attaché aux échanges thermiques dans des échangeurs et aux pertes de charges correspondantes.
  • On sait d'une façon générale que lorsqu'on veut réaliser des échanges de chaleur dans des tubes, il faut nécessairement mettre en jeu la perte de charge du fluide qui les traverse et que, plus grande est cette perte de charge, plus grand est le flux thermique. Cette corrélation (analogie de REYNOLDS) prend un caractère particulier dans les cas où il se produit dans des tubes une ébullition ou une condensation; les phénomènes physiques qui se produisent alors donnent lieu selon les ordres de grandeur des divers paramètres (débit spécifique, titre) mis en jeu, à une grande variété de régimes de fonctionnement tant du point de vue hydrodynamique (écoulements stratifiés, transitoires, annulaires) que du point de vue thermo- cinétique (régimes d'évaporation, d'ébullition nuclée, etc....).
  • Parmi ces régimes, certains présentent un intérêt particulier, car ils permettent d'atteindre des flux thermiques très élevés, par exemple supérieurs à 50 kW/m2, avec une faible différence de température entre fluide et paroi du tube, par exemple 1°C.
  • Ces régimes sont obtenus lorsque le "titre massique", rapport entre le débit de vapeur et le débit total de fluide, mesurés en poids, est compris entre une valeur de l'ordre de 0,03 environ et une valeur de l'ordre de 0,97 environ, c'est-à-dire dès que le fluide est franchement diphasique, avec une perte de charge importante, par exemple de l'ordre de 0,3 bar par mètre pour des tubes de diamètre 20 mm (cf. 5th Int. Heat Transfert Conf. 1974 TOKYO, Handbook of heat transfert, ROSENOW).
  • De telles conditions sont compatibles avec le procédé des brevets précités; en effet, une différence de température de 5° entre deux modules successifs donne lieu, si on utilise de l'ammoniac, à une différence de pression qui peut être de l'ordre de grandeur de 3 bars, ce qui correspond à un tube de 10 mètres de long comportant une perte de charge de 0,3 bar/mètre.
  • Les valeurs du titre massique qui permettent les régimes ci-dessus peuvent être obtenues assez facilement; en effet, dans un échangeur qui reçoit du liquide qui sort d'un module et est sensiblement aux conditions d'équilibre avec de la vapeur, il suffit de fournir au liquide peu de chaleur pour qu'il commence à bouillir, c'est-à-dire pour que le titre massique devienne supérieur à zéro, et dépasse la valeur minimale. Il suffit de calculer le débit en fonction du flux thermique pour qu'à la sortie de l'échangeur, il n'ait pas été entièrement transformé en phase vapeur, c'est-à-dire que le titre massique soit inférieur à 0,97, et qu'il pénètre dans le module à pression inférieure un mélange liquide-vapeur. De même, en ce qui concerne un module où le fluide condensable cède de la chaleur, il suffit de prévoir qu'avant l'entrée de l'échangeur, on ajoute au liquide une quantité de vapeur suffisante pour qu'elle ne soit totalement condensée qu'au voisinage de la sortie de l'échangeur.
  • Ainsi, la quasi totalité, ou la totalité, de la surface de l'échangeur travaillera dans les conditions de flux thermique optimal, du côté du fluide condensable.
  • En général, il n'est pas possible de se placer dans des conditions analogues de l'autre côté de la paroi de l'échangeur, car le fluide qui apporte ou retire de la chaleur n'est pas normalement dans les conditions où il est condensable, mais le problème est beaucoup moins gênant dans la mesure où il ne s'agit pas d'un fluide coûteux, dangereux ou corrosif, ou en quantité très limitée, mais par exemple de l'eau géothermale ou de refroidissement industriel, ou de chauffage.
  • On peut se demander pourquoi des échangeurs fonctionnant selon les principes ci-dessus, et qui sont déjà connus, ne sont pas plus répandus. Il y a à cela plusieurs raions: l'étude des systèmes diphasiques en cours de transformation est d'une extrême complexité, et les données nécessaires pour le calcul ne sont pas disponibles dans tous les cas; l'intérêt d'un fort coefficient d'échange est beaucoup moins grand dans une chaudière, par exemple, où la différence de température d'un côté à l'autre d'une paroi est de plusieurs centaines de degrés centigrades, que dans une pompe à chaleur, où elle est de quelques degrés seulement; alors que, dans la plupart des cas, une augmentation des pertes de charge est coûteuse en énergie, au contraire des dispositifs auxquels s'applique la présente invention, où la différence de pression de part et d'autre d'un échangeur est imposée, donc gratuite.
  • La présente invention a pour but un procédé pour fournir ou enlever de la chaleur à un fluide de travail condensable, passant d'une première enceinte où il est dans des conditions de saturation à une seconde enceinte où il est également dans des conditions de saturation mais à une pression et une température plus basses, la chaleur étant fournie ou enlevée au fluide de travail, alors qu'il traverse les tubes d'un échangeur autour desquels circule un fluide caloporteur, apporteur ou extracteur de chaleur, ce procédé présentant, selon l'invention, la particularité qu'on fait passer au moins une partie dudit fluide de travail condensable à travers les tubes dudit échangeur dans des conditions telles qu'il est à l'état diphasique avec un titre massique de 0,03 environ à 0,97 environ sur une partie importante de son trajet, dans l'échangeur, et qu'il subit, au cours de la traversée des tubes, une perte de charge continue qui correspond à la majeure partie de la différence de pression entre la première et la second enceintes.
  • Quoiqu'on ait parlé ci-dessus des tubes d'un échangeur, il est clair que l'invention s'applique aussi au cas d'un échangeur à tube unique.
  • Le long de son trajet dans l'échangeur, le fluide de travail condensable peut être soit diphasique avec un titre massique compris entre 0,03 et 0,97, soit à l'état essentiellement gazeux, le titre massique étant supérieur à 0,97 ou égal à 1, soit essentiellement liquide, le titre massique étant inférieur à 0,03 ou nul. Là ou le fluide est essentiellement gazeux, la perte de charge est importante, quoique inférieure à celle observée quand le fluide est diphasique, et le coefficient d'échange thermique est très faible. Cette situation est donc à éviter ou à limiter au maximum.
  • Là où le fluide est essentiellement liquide, la perte de charge est faible, mais le coefficient d'échange thermique est aussi très faible. Cette situation est moins défavorable que lorsque le fluide est essentiellement gazeux, mais elle correspond à des longueurs de tube quasi inutiles, d'où excès d'investissement et augmentation de l'encombrement.
  • Etant donné l'importance de la perte de charge dans l'échangeur sous régime diphasique, il est clair que, sauf dispositions spéciales, c'est là que se produit la perte de charge la plus importante entre les deux enceintes, à moins qu'on n'ait prévu des dispositions spéciales contraires, telles qu'un étranglement de la conduite en amont ou en aval de l'échangeur.
  • Une telle mesure est, évidement, à éviter pour la perte d'énergie qu'elle entraîne, et du fait qu'elle limite d'autant la différence de pression exploitable dans l'échangeur. Toutefois, pour un réglage fin du régime, il est possible de prévoir, en amont ou en aval, une perte de charge peu importante et réglable.
  • Des régimes diphasiques dans un échangeur existent sans nul doûte en certains points d'échangeurs ou de chaudières, mais jusqu'ici ils n'ont pas été exploités de façon systématique dans des pompes de chaleur à étages, où le fluide passe, sous l'effet de sa pression, d'un module à un autre, et où le liquide est en équilibre avec sa vapeur dans chaque module.
  • Dans un tel dispositif, pour obtenir le mode de fonctionnement désiré, on doit avoir une corrélation judicieuse entre les divers paramètres, à savoir le flux thermique reçu ou cédé par le fluide de travail condensable, la géométrie de l'échangeur, la perte de charge dans l'échangeur et le débit. Or, il est clair que l'on n'est pas entièrement maître de ces paramètres, les premiers représentant des contraintes extérieures, et les derniers affectant le fonctionnement de toute l'installation, si bien que toute modification de ceux-ci se répercute, en chaîne, sur tous les étages. Ainsi est-il difficile de remédier à des perturbations ou de procéder à la mise en marche.
  • Il est apparu que le moyen le plus efficace de réguler la marche d'une telle installation était d'agir sur le débit du fluide de travail condensable qui passe à travers les tubes de l'échangeur. Cela implique que, contrairement à l'art antérieur, tout le débit entre deux étages, qui est fixé par d'autres considérations, ne passe pas constamment à travers les tubes du même échangeur, ou les mêmes tubes de l'échangeur; autrement dit, qu'une partie du débit qui est transférée d'une enceinte à l'autre ne passe pas dans l'échangeur et est déviée soit dans un autre échangeur soit dans un conduit où elle subit simplement une perte de charge, correspondant à la différence de pression entre les deux enceintes.
  • L'invention fournit donc aussi un procédé d'échange de chaleur dans lequel de la chaleur amenée ou enlevée par un fluide caloporteur est utilisée à faire passer un fluide de travail condensable de l'état liquide à l'état vapeur ou inversement, procédé dans lequel on fait circuler les deux fluides dans une série de modules comprenant chacun une enceinte formant un séparateur liquide-gaz où les phases liquide et vapeur du fluide de travail condensable sont sensiblement en équilibre, lesdites enceintes étant à des pressions et températures étagées, la vapeur étant extraite de chaque enceinte, comprimée et envoyée vers le module voisin dans le le sens des pressions croissantes, alors que la phase liquide du fluide de travail condensable passe d'un module à l'autre dans le sens des pressions décroissantes, au moins une partie de ce passage se faisant selon le procédé décrit plus haut, ce procédé présentant la particularité que, pour maintenir les conditions voulues à l'intérieur de l'échangeur, on ne fait passer à travers celui-ci qu'une fraction du fluide de travail condensable qui va d'une enceinte à l'autre, cette fraction étant envoyée à l'échangeur en phase liquide quand de la chaleur est amenée par le fluide caloporteur, et à l'état diphasique quand de la chaleur est enlevée par le fluide caloporteur, une autre fraction du fluide de travail condensable en phase liquide allant d'une enceinte à l'autre dans le sens des pressions décroissante, sans passer par ledit échangeur, et on fait varier la répartition du fluide de travail condensable entre ces deux fractions.
  • Bien entendu, un tel procédé s'applique au cas du document FR-A-2 352 247 précité, dans lequel la vapeur sortant d'un étage de compression est envoyée dans le module voisin à pression et température plus élevées pour y être remise en contact avec la phase liquide du fluide de travail condensable.
  • Suivant une modalité avantageuse de l'invention, lorsqu'on désurchauffe, au niveau d'un module, le débit de vapeur du fluide de travail condensable provenant de l'étage voisin à pression et température moins élevées et ayant traversé l'étage du compresseur de ce dernier module, ce qui peut être opéré par mise en contact totale comme dans le procédé du document ci-dessus, soit d'une autre façon, pour opérer cette désurchauffe, on envoie dans ce débit de vapeur au moins une partie du débit du fluide de travail condensable en phase liquide qui n'est pas passé par l'échangeur.
  • Par ailleurs, suivant une autre modalité avantageuse qui peut se combiner avec la précédente, au moins une partie du débit du fluide de travail condensable en phase liquide qui n'est pas passé par l'échangeur est envoyée dans un éjecteur où on lui fait aspirer au moins une partie de débit du fluide de travail condensable en phase de vapeur venant du module voisin à pression et température moins élevées et ayant traversé l'étage de compresseur correspondant, de façon à surcomprimer et désurchauffer ladite vapeur. Ainsi, l'énergie due à la détente de la phase liquide entre deux modules n'est pas perdue, mais est employée à soulager le compresseur.
  • Un dispositif pour la mise en oeuvre du procédé selon l'invention va maintenant être décrit en s'aidant des figures parmi lesquelles:
    • Fig. 1 représente le schéma d'un module "réchauffé" et
    • Fig. 2 représente le schéma d'un module "refroidi".
  • Le dispositif auquel se rapportent les figures, et qui est décrit à titre d'exemple non limitatif, est une pompe à chaleur fonctionnant à l'ammoniac comme fluide de travail condensable, le fluide caloporteur étant soit de l'eau tiède d'origine géothermale ou provenant d'installations industrielles apportant de la chaleur, soit de l'eau destinée au chauffage ou au séchage dans des installations industrielles extrayant de la chaleur.
  • La pompe à chaleur comprend un certain nombre de "modules", qui sont parcourus par l'ammoniac.
  • Chaque module comprend, normalement:
    • - un échangeur 1 dans les tubes duquel circule l'ammoniac, utilisé comme fluide de travail condensable, le fluide caloporteur étant de l'eau apporteuse ou extractrice de chaleur circulant autour des tubes,
    • - une enceinte 2 formant un séparateur liquide-gaz de type cyclone, susceptible de réaliser une mise en contact des phases liquide et vapeur du fluide de travail condensable et un brassage énergique de ces phases de façon à obtenir une mise rapide en équilibre.
    • - un étage de compresseur 3, opérant sur la phase vapeur,
    • - un éjecteur 4, où la phase liquide à pression élevée voit son énergie potentielle transformée en partie en énergie cinétique qui lui sert à entraîner la phase gazeuse.
  • Certains modules ne sont pas complets; ainsi, le module terminal à plus haute pression ne comporte pas d'échangeur, d'étage de compresseur ni d'éjecteur, alors que, dans le module terminal à pression la plus basse, le séparateur est remplacé par un simple récipient.
  • L'installation comprend deux types de modules; les uns dits "réchauffes" font l'objet de la figure 1, les autres, dits "refroidis", celui de la figure 2.
  • Sur les figures, les modules à pression et température plus élevées sont situés à droite, et les modules à pression et température plus basses à gauche. On a désigné par n un module réchauffé, par n - 1 et n + 1 les modules voisins, dans l'ordre de pressions croissantes, et par p - 1, p, p + 1 des modules refroidis, dans le même ordre.
  • Dans un module n, le compartiment ammoniac de l'échangeur 1 est relié, pour son alimentation, au module n + 1 par une conduite 5 disposée pour l'alimenter essentiellement en phase liquide du fluide de travail condensable à partir du séparateur 2a de ce module, c'est-à-dire débouchant en partie basse de celui-ci. Le compartiment eau est alimenté en eau chaude par une conduite 6, provenant soit de la source, soit d'un étage n + 1 à pression et température plus élevées.
  • L'eau est ensuite envoyée à l'étage n - 1, où à l'évacuation par une conduite 7.
  • Dans l'échangeur 1, l'ammoniac reçoit de la chaleur et se vaporise au moins en partie, si bien qu'il en sort un fluide diphasique, ou seulement en phase vapeur, qui est envoyé au séparateur 2 par une conduite 8. Cette conduite peut être supprimée, les tubes de l'échangeur débouchant alors directement dans le séparateur. Comme il a été dit plus haut, il n'est pas avantageux que la vaporisation totale ait lieu dans l'échangeur à une distance importante de la sortie, alors qu'on peut tolérer que le fluide sortant soit diphasique.
  • Une fraction du fluide de travail condensable en phase liquide sortant du séparateur 2a de l'étage n + 1 est envoyée par une autre conduite 9 dans l'éjecteur 4, sans passer par l'échangeur, et y acquiert une grande vitesse en passant dans une buse d'éjection, puis elle est mi se en contact avec la vapeur provenant de l'étage de compresseur 3b du module n - 1 par la conduite 10. L'éjection se produit avec vaporisation partielle et il sort de l'éjecteur un fluide diphasique à vitesse élevée, dont la vapeur provient à la fois de la conduite 10 et de la vaporisation du fluide de travail condensable en phase liquide amené par la conduite 9. Ce mélange est amené par la conduite 11 dans le séparateur 2 dans lequel il rejoint le fluide diphasique provenant de la conduite 8.
  • Par le haut du séparateur, la phase gazeuse du fluide de travail condensable est extraite et envoyée à l'étage de compresseur 3, par la conduite 12, alors que, par le bas du séparateur 2, la phase liquide du fluide de travail condensable est envoyée au module n - 1 de la façon indiquée plus haut.
  • Des vannes, non représentées, permettent de répartir le flux du liquide sortant du séparateur 2a de l'étage n + 1 entre les conduits 5 et 9 de façon à maintenir la fin de la zone de vaporisation dans l'échangeur 1 au voisinage de la sortie.
  • Un module refroidi 1, tel que représenté à la figure 2, ne diffère d'un module réchauffé que par les points suivants:
    • le fluide extracteur de chaleur circule dans l'échangeur en sens inverse d'un module réchauffé, c'est-à-dire qu'il arrive par le conduit 7 à partir du module p - 1, et s'en va par le conduit 6 vers le module p + 1.
  • L'échangeur 1 doit être alimenté en fluide de travail condensable à l'état diphasique à partir du séparateur 2a de l'étage p + 1 et, pour cela, une conduite supplémentaire 13 part du haut du séparateur et rejoint la conduite 5 à l'entrée de l'échangeur 1. Cette conduite 13 est équipée d'une vanne 14; en effet, la quantité de vapeur condensée dans l'échangeur est proportionnelle au flux thermique qui est enlevé par l'eau.
  • Les autres parties du module sont les mêmes que celles d'un module réchauffé; on doit toutefois observer que la conduite 8, qui relie l'échangeur 1 au séparateur 2, ne doit plus, normalement, être traversée que par du liquide.
  • Dans les modules d'un type ou d'un autre, les vannes commandant la répartition du débit entre les conduites 5 et 9 sont asservies à un paramètre lié à un régime à l'intérieur de l'échangeur. Un mode de régulation simple est lié à la quantité de liquide présente dans le séparateur.
  • D'autre part, il n'est pas nécessaire que la totalité de la phase vapeur du fluide de travail condensable venue de l'étage du compresseur 3b soit mise en contact avec la tolalité de la phase liquide du fluide de travail condensable, une partie ou même la totalité de cette phase vapeur peut aller à l'étage de compresseur 3 sans passer par l'éjecteur ou par le séparateur, à condition d'être mise en contact avec une quantité suffisante de phase liquide pour être ramenée aux conditions de saturation, c'est-à-dire désurchauffée. Cette désurchauffe peut être opérée dans le compresseur.
  • Les modules terminaux présentent des problèmes particuliers: au niveau du "premier" module, c'est-à-dire celui à pression et température les plus basses, le séparateur est en fait remplacé par un simple réservoir, dont le fluide de travail condensable ne sort que sous forme de vapeur. Un envoi de phase liquide n'ayant pas traversé l'échangeur risque de provoquer son engorgement. Dans ce cas, pour la régulation destinée à obtenir le régime convenable dans l'échangeur, il est préférable de prévoir qu'une quantité réglable du fluide de travail condensable en phase liquide est soutirée du réservoir pour être ré-injectée en amont (dans le sens de la circulation du liquide), de l'échangeur le plus proche, à l'aide d'une pompe pour surmonter la différence de pression entre modules.
  • De même, dans le "dernier" module, à pression et température les plus élevées, la désurchauffe de la vapeur du fluide de travail condensable en provenance du dernier étage de compresseur ne peut être opérée à l'aide de la phase liquide du fluide de travail condensable provenant d'un module supérieur, si bien que le dernier échangeur risque de sortir du régime optimal. Il est préférable de prévoir, pour éviter cet inconvénient, que de la phase liquide, soutirée en aval du dernier échangeur, soit ré-injectée en amont de ce dernier, en quantité réglable à l'aide d'une pompe pour compenser la différence de pression.
  • Par ailleurs, la présente invention ne fait pas obstacle à la présence, dans la série des modules, de modules "adiabatiques", c'est-à-dire sans échangeur.

Claims (10)

1. Procédé pour fournir ou enlever de la chaleur à un fluide de travail condensable, passant d'une première enceinte (2a) où il est dans des conditions de saturation à une seconde enceinte (2) où il est également dans des conditions de saturation mais à une pression et une température plus basses, la chaleur étant fournie ou enlevée audit fluide de travail condensable alors qu'il traverse les tubes d'un échangeur (1) autour desquels circule un fluid caloporteur, apporteur ou extracteur de la chaleur, caractérisé en ce qu'on fait passer au moins une partie dudit fluide de travail condensable à travers les tubes dudit échangeur (1) dans des conditions telles qu'il est à l'état diphasique avec un titre massique de 0,03 environ à 0,97 environ sur une partie importante de son trajet dans l'échangeur, et qu'il subit, au cours de la traversée des tubes, une perte de charge continue qui correspond à la majeure partie de la différence de pression entre la première et la seconde enceinte.
2. Procédé d'échange de chaleur dans lequel de la chaleur amenée ou enlevée par un fluide caloporteur est utilisée à faire passer un fluide de travail condensable de l'état liquide à l'état vapeur ou inversement, procédé dans lequel on fait circuler les deux fluides dans une série de modules (n, p) comprenant chacun une enceinte (2, 2a) formant un séparateur liquide-gaz où les phases liquide et vapeur du fluide de travail condensable sont sensiblement en équilibre, lesdites enceintes étant à des pressions et températures étagées, la vapeur étant extraite de chaque enceinte, comprimée et envoyée vers le module voisin (n + 1, p + 1) dans le sens des pressions croissantes, alors que la phase liquide du fluide de travail condensable passe d'un module (n, p) à l'autre (n - 1, p - 1) dans le sens des pressions décroissantes, au moins une partie de ce passage se faisant selon le procédé de la revendication 1, caractérisé en ce que, pour maintenir les conditions voulues à l'intérieur de l'échangeur (1), on ne fait passer à travers celui-ci qu'une fraction du débit du fluide de travail condensable qui va d'une enceinte (2a) à l'autre enceinte (2) cette fraction étant envoyée à l'échangeur (1) en phase liquide quand de la chaleur est amenée par le fluide caloporteur, et à l'état diphasique quand de la chaleur est enlevée par le fluide caloporteur, une autre fraction du fluide de travail condensable en phase liquide allant d'une enceinte (2a) à l'autre (2) dans le sens des pressions décroissantes sans passer par ledit échangeur (1), et en ce qu'on fait varier la répartition du fluide de travail condensable entre ces deux fractions.
3. Procédé selon la revendication 2, et dans lequel on désurchauffe, au niveau d'un module, le débit de vapeur provenant du module voisin à pression et température moins élevées et ayant traversé l'étage de compresseur (3b) de ce dernier module, caractérisé en ce que, pour opérer cette désurchauffe, on envoie dans ce débit de vapeur au moins une partie du liquide qui n'est pas passé par l'échangeur (1).
4. Procédé selon l'une des revendications 2 ou 3 caractérisé en ce qu'au moins une partie du débit liquide qui n'est pas passé par l'échangeur (1) est envoyée dans un éjecteur (4) où on lui fait aspirer au moins une partie du débit fluide de travail condensable en phase vapeur venant du module voisin à pression et température moins élevées et ayant traversé l'étage de compresseur (3b) correspondant, de façon à surcomprimer et désurchauffer ladite vapeur.
5. Dispositif d'échange de chaleur mettant en oeuvre le procédé selon la revendication 2 et comportant une série de modules centraux comprenant chacun un échangeur (1), un étage de compresseur (3) et une enceinte (2) de mise en contact des phases liquides et vapeur du fluide de travail condensable; des modules terminaux qui peuvent être de structure différente; ainsi que des conduites (10-12, 5-8) permettant de faire passer de la phase vapeur d'un module à un autre dans le sens des pressions croissantes à travers les étages (3) compresseur, et de la phase liquide dans le sens inverse à travers les échangeurs (1), caractérisé en ce qu'il comprend en outre une conduite (9) permettant de faire passer de la phase liquide d'une enceinte (2a) de mise en contact des phases à une autre enceinte (2) de mise en contact dans le sens des pressions décroissantes sans passer par l'échangeur (1) et des moyens pour commander le rapport entre la fraction du débit de liquide qui passe dans l'échangeur et la fraction du débit de liquide qui passe dans ladite conduite.
6. Dispositif selon la revendication 5 caractérisé en ce que ladite conduite (9) est alimentée essentiellement en phase liquide, alors que le fluide de travail condensable qui entre dans l'échangeur (1) est en phase liquide quand de la chaleur est amenée par le fluide caloporteur et à l'état diphasique quand de la chaleur est enlevée par le fluide caloporteur.
7. Dispositif selon la revendication 5 ou 6, caractérisé en ce que ladite conduite (9) amène ladite fraction du liquide dans un éjecteur (4) disposé pour qu'il y entraîne de la phase gazeuse sortant de l'étage (3b) de compresseur du module voisin, à température et pression moins élevées et en ce que le mélange du liquide et de vapeur est envoyé dans l'enceinte (2) formant un séparateur liquide-gaz.
8. Dispositif selon l'une des revendications 5 à 7, caractérisé en ce qu'il comprend des moyens pour soutirer de la phase liquide à partir de la première enceinte (2) de mise en contact des phases liquides et vapeur dans le sens des pressions et températures croissantes, et pour ré-injecter le liquide ainsi soutiré en amont de l'échangeur (1) le plus proche.
9. Dispositif selon l'une des revendications 5 à 8, caractérisé en ce qu'il comprend des moyens pour soutirer de la phase liquide en aval de l'échangeur (1) de l'avant-dernier module dans le sens des températures et pressions croissantes, et pour ré-injecter le liquide ainsi soutiré en amont dudit échangeur.
10. Dispositif selon l'une des revendications 5 à 9, caractérisé en ce qu'il comprend des moyens pour faire passer de la phase vapeur directement d'un étage (3b) du compresseur au suivant (3) dans l'ordre des pressions croissantes, et des moyens pour injecter de la phase liquide directement dans le compresseur afin de désurchauffer cette phase vapeur.
EP79400086A 1978-02-20 1979-02-08 Procédé pour fournir ou enlever de la chaleur à un fluide de travail condensable et dispositif fonctionnant selon ce procédé Expired EP0003927B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR7804798 1978-02-20
FR7804798A FR2417732A1 (fr) 1978-02-20 1978-02-20 Procede pour fournir ou enlever de la chaleur a un fluide condensable

Publications (2)

Publication Number Publication Date
EP0003927A1 EP0003927A1 (fr) 1979-09-05
EP0003927B1 true EP0003927B1 (fr) 1982-01-27

Family

ID=9204795

Family Applications (1)

Application Number Title Priority Date Filing Date
EP79400086A Expired EP0003927B1 (fr) 1978-02-20 1979-02-08 Procédé pour fournir ou enlever de la chaleur à un fluide de travail condensable et dispositif fonctionnant selon ce procédé

Country Status (12)

Country Link
US (1) US4261177A (fr)
EP (1) EP0003927B1 (fr)
JP (1) JPS54122452A (fr)
AT (1) AT370508B (fr)
CH (1) CH629294A5 (fr)
DE (1) DE2961929D1 (fr)
DK (1) DK71979A (fr)
FI (1) FI790552A (fr)
FR (1) FR2417732A1 (fr)
NO (1) NO790550L (fr)
PL (1) PL213544A1 (fr)
WO (1) WO1979000641A1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4603732A (en) * 1984-02-09 1986-08-05 Sundstrand Corporation Heat management system for spacecraft
US7377126B2 (en) 2004-07-14 2008-05-27 Carrier Corporation Refrigeration system
US7398819B2 (en) 2004-11-12 2008-07-15 Carrier Corporation Minichannel heat exchanger with restrictive inserts
US20060101849A1 (en) * 2004-11-12 2006-05-18 Carrier Corporation Parallel flow evaporator with variable channel insertion depth
US7806171B2 (en) * 2004-11-12 2010-10-05 Carrier Corporation Parallel flow evaporator with spiral inlet manifold
US20060101850A1 (en) * 2004-11-12 2006-05-18 Carrier Corporation Parallel flow evaporator with shaped manifolds
US20060137368A1 (en) * 2004-12-27 2006-06-29 Carrier Corporation Visual display of temperature differences for refrigerant charge indication
WO2006083426A1 (fr) * 2005-02-02 2006-08-10 Carrier Corporation Insert tubulaire et dispositif a ecoulement double destine a un collecteur d'une pompe a chaleur
MX2007009257A (es) * 2005-02-02 2007-09-04 Carrier Corp Separador liquido-vapor para un termointercambiador de minicanal.
US9618037B2 (en) 2008-08-01 2017-04-11 Honeywell International Inc. Apparatus and method for identifying health indicators for rolling element bearings

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH189348A (de) * 1936-02-07 1937-02-28 Sulzer Ag Nach dem Kompressionsprinzip arbeitende Wärmepumpe, insbesondere für die Wärmeversorgung von Zentralheizungsanlagen.
CH239500A (de) * 1944-02-10 1945-10-31 Bbc Brown Boveri & Cie Wärmepumpe mit mehrstufiger Kondensation.
CH305668A (de) * 1950-12-12 1955-03-15 Sueddeutsche Zucker Ag Verfahren zum Betreiben einer Wärmepumpe.
US2966047A (en) * 1957-02-13 1960-12-27 Normalair Ltd Cooling of cabins and other compartments
US4023946A (en) * 1973-11-09 1977-05-17 Schwartzman Everett H Rectification system for the separation of fluids
FR2352247A1 (fr) * 1976-05-18 1977-12-16 Cem Comp Electro Mec Procede et dispositif pour echanger de la chaleur entre des fluides

Also Published As

Publication number Publication date
FR2417732A1 (fr) 1979-09-14
FR2417732B1 (fr) 1980-10-17
US4261177A (en) 1981-04-14
DK71979A (da) 1979-08-21
PL213544A1 (fr) 1979-11-05
FI790552A (fi) 1979-08-21
DE2961929D1 (en) 1982-03-11
EP0003927A1 (fr) 1979-09-05
AT370508B (de) 1983-04-11
JPS54122452A (en) 1979-09-22
ATA118679A (de) 1982-08-15
CH629294A5 (fr) 1982-04-15
WO1979000641A1 (fr) 1979-09-06
NO790550L (no) 1979-08-21

Similar Documents

Publication Publication Date Title
EP0003927B1 (fr) Procédé pour fournir ou enlever de la chaleur à un fluide de travail condensable et dispositif fonctionnant selon ce procédé
CA2859748C (fr) Procede et installation de cogeneration.
EP3027288B1 (fr) Installations de distillation thermique a compression mecanique de vapeur
EP1269025A1 (fr) Compresseur thermocinetique
EP3096851A1 (fr) Installation et procede de traitement par evaporation/condensation d'eau pompee en milieu naturel
FR2827997A1 (fr) Procede et dispositif d'alimentation d'au moins un generateur de vapeur d'un reacteur nucleaire a eau sous pression pendant les periodes d'arret du reacteur
EP2873916A1 (fr) Procédé et dispositif pour prévenir l'assèchement dans une chaudière de centrale solaire à concentration de type tour
FR2468867A1 (fr) Procede et installation pour chauffer et refroidir alternativement un echangeur de chaleur
WO2011124806A1 (fr) Installation de dessalement d'eau de mer par distillation a effets multiples
EP0007835B1 (fr) Procédé pour séparer un gaz et une vapeur condensable et ses applications
EP3339729A1 (fr) Dispositif de generation de vapeur utilisant une source de chaleur a basse temperature
BE1010594A3 (fr) Procede de conduite d'une chaudiere a circulation forcee et chaudiere pour sa mise en oeuvre.
WO2014096736A1 (fr) Dispositif et procede d'evaporation d'un liquide et leurs applications
BE875118A (fr) Procede et appareil en vue de vaporiser du gaz naturel liquefie
WO2015104330A1 (fr) Pompe à chaleur produisant du froid
FR3068442A1 (fr) Dispositif de refroidissement combine a une production de vapeur
FR2983901A1 (fr) Installation thermique de production d' electricite
CA1228798A (fr) Procede et installation de concentration d'hydrogene
FR2982118A1 (fr) Procede de cogeneration d'energie electrique et d'energie thermique
BE880441A (fr) Procede et dispositif pour echauffer un fluide en circulation dans une installation destinee a vaporiser et secher un produit
CH239086A (fr) Procédé pour l'utilisation de la chaleur contenue dans des eaux chaudes dans le but de produire de l'énergie mécanique.
BE455178A (fr)
BE344867A (fr)
BE480560A (fr)
FR3138168A1 (fr) Centrale Hydro-solaire-vapeur-électrique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE GB IT NL SE

ITCL It: translation for ep claims filed

Representative=s name: STUDIO TORTA SOCIETA' SEMPLICE

17P Request for examination filed
DET De: translation of patent claims
ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE DE GB IT NL SE

REF Corresponds to:

Ref document number: 2961929

Country of ref document: DE

Date of ref document: 19820311

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19831222

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19831231

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19840229

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19840331

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19850209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19850228

BERE Be: lapsed

Owner name: CEM CIE ELECTRO MECANIQUE S.A.

Effective date: 19850208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19850901

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19851101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881117

EUG Se: european patent has lapsed

Ref document number: 79400086.9

Effective date: 19860129

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT