EP0003355B1 - Energiewandler mit gleichbleibender Drehrichtung - Google Patents

Energiewandler mit gleichbleibender Drehrichtung Download PDF

Info

Publication number
EP0003355B1
EP0003355B1 EP19790100216 EP79100216A EP0003355B1 EP 0003355 B1 EP0003355 B1 EP 0003355B1 EP 19790100216 EP19790100216 EP 19790100216 EP 79100216 A EP79100216 A EP 79100216A EP 0003355 B1 EP0003355 B1 EP 0003355B1
Authority
EP
European Patent Office
Prior art keywords
pistons
passageway
region
platform
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP19790100216
Other languages
English (en)
French (fr)
Other versions
EP0003355A1 (de
Inventor
Sherwood L. Fawcett
James N. Anno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Battelle Development Corp
Original Assignee
Battelle Development Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Battelle Development Corp filed Critical Battelle Development Corp
Publication of EP0003355A1 publication Critical patent/EP0003355A1/de
Application granted granted Critical
Publication of EP0003355B1 publication Critical patent/EP0003355B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/02Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F01C1/063Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents with coaxially-mounted members having continuously-changing circumferential spacing between them

Definitions

  • thermodynamic cycles such as the Otto, Rankine, and Brayton cycles.
  • Most of these systems employ reciprocating pistons; although some, such as those shown in Dutch Patent 65,164 and German Patent 842,845, employ one or more pistons which are forced to travel in one direction in a continuous closed-loop by the expansion of a gaseous medium in one region of the closed loop.
  • each piston is coupled to a mechanical element which moves with it, the kinetic energy of the moving piston being converted directly into mechanical energy.
  • These systems require complicated mechanisms for coupling the piston or pistons to an associated mechanical element.
  • the apparatus for converting a first form of energy into a second form of energy includes a platform carried by support means for rotation about a central axis. At least one continuous, closed-loop passageway is carried by the platform and contains a plurality of freely-movable pistons. Means are provided for applying a force to successive ones of the pistons in a first region of the passageway extending along the periphery of the rotating platform to thereby propel each body in one direction around the passageway and increase its kinetic energy.
  • a second region of the passageway which curves inwardly toward the center of the platform the pistons, after being propelled, are caused to work against centrifugal force to thereby convert the kinetic energy of the pistons into potential energy as they approach the center of rotation of the platform.
  • centrifugal force acts on the pistons causing them to move radially outwardly back to the first region.
  • the energy of the outwardly-moving pistons is converted into rotational energy which is then coupled to the platform to rotate the same.
  • each passageway includes two arcuate segments, each having a different radius, and a linear segment interconnecting the two arcuate segments.
  • a rotary union communicates with a duct extending coaxially along a support shaft for the platform; while conduits extend from the duct to the first region of each passageway to supply steam or the like as the expansible fluid from a stationary boiler.
  • a second duct can be connected by conduits to each second region of the passageways for exhausting steam therefrom.
  • the rotatable means for each passageway includes at least one but preferably two pocketed wheels disposed at opposite sides of the passageway for receiving the pistons as they are moved radially outwardly along the linear regions of the passageways under the influence of centrifugal force. These pocketed wheels also serve to feed the pistons into the first region where they are propelled by expansion of a fluid.
  • the pocketed wheels are secured to arbors which are in, turn, rotatably supported by the platform and coupled by gears in a stationary gear which is coaxial with the central axis of the platform. The rotational movement of the pocketed wheels is thereby converted into rotational movement of the platform.
  • the pocketed wheels at opposite sides of the linear region of the passageway include circumferentially-spaced peripheral pockets to pass the pistons between the wheels.
  • the wheels may have spaced-apart magnets on their peripheries, all of the magnets carried by one wheel having magnetic south poles and those carried by the other wheel having magnetic north poles at their respective peripheries.
  • liquid fuel is fed from a stationary tank through a coaxial pipeline to the rotating platform.
  • An inlet manifold and an exhaust manifold communicate with only part of opposite sides of the aforesaid second arcuate region of each passageway. The remaining part of the second region is used to compress between the bodies. The compressed air is then fed to a combustion chamber where it is heated and used to propel the pistons in the first region of each passageway.
  • a single passageway rather than two, is provided on the rotatable platform.
  • the passageway has straight portions on opposite sides of the central axis of rotation of the platform, the straight portions being interconnected at their ends by curved portions, also on opposite sides of the central axis of rotation of the platform.
  • Means are provided for applying a force to successive ones of the pistons in one region in each of said straight portions of the passageway to propel them inwardly on the rotating platform against centrifugal force, the pistons being moved radially outwardly in another region of each of the straight portions under centrifugal force.
  • the means for converting the energy of the pistons into rotational energy comprises pocketed wheels having their peripheries coinciding with the inner peripheries of the curved portions of the passageway to convert the energy of the pistons in the curved portions, which have been moved outwardly under centrifugal force, into rotational energy.
  • these pocketed wheels are coupled through a gear train mounted on the platform which meshes with a stationary gear carried beneath the platform to cause rotation of the platform about its rotational axis.
  • the rotating engine shown includes a platform 11 in the form of two disc-shaped plates 11 A and 11 B (Figs. 3 and 4) with mutually-engaging face surfaces maintained in contact by fastening members, not shown.
  • the platform is adapted to rotate about a central vertical axis 12 (Fig. 4) and is secured by fasteners to a centrally- arranged shaft 13 extending downwardly from the bottom of plate 11 B of the platform.
  • Bearings 14 support the shaft 13 for rotation within a support frame 15.
  • a stationary main gear 16 is keyed to a journal surface provided on frame 15. As is perhaps best shown in Figs.
  • gear 16 is selected so that it meshes with two separate gear trains, each being identical and including a first idler gear 17 and a second idler gear 18.
  • the gears 17, for example, are supported by bearings on arbor shafts 19 (Figs. 4 and 5) carried by plate 11 B.
  • each idler gear 18 is secured to the lower end of an arbor shaft 20 which extends through an opening in the platform 11.
  • the arbor shaft 20 carries a timing gear 21 located within a recess in plate 11 B. In this recess, the timing gear 21 meshes with a second timing gear 22 secured to an arbor shaft 23.
  • Both arbor shafts 20 and 23 rotate in suitable bearings supported by the platform as shown.
  • the upper ends of arbor shafts 20 and 23 carry pocketed wheels 24 and 25, respectively.
  • the pocketed wheels have circular recesses uniformly spaced about their outer periphery which are adapted to received in succession pistons 27 which are typically spheroids.
  • Each pair of pocketed wheel assemblies 24, 25 are arranged at generally, diametrically-opposite locations on the platform 11.
  • Each pair of pocketed wheels forms part of an independent, unidirectional energy converter loop that includes a continuous, closed-loop passageway 30.
  • the two loop passageways take the form of machined slots in each of the mutually-engaging face surfaces of the plates 11A and 11B of the platform 11.
  • the passageway 30 is defined by aligned slots having walls which are preferably smooth and formed from metal.
  • the passageways are located at mutually-exclusive sectors which lie at opposite sides of a vertical plane passing through the axis 12.
  • the pistons 27 are freely-movable bodies which pass in succession through each passageway.
  • the tolerances or clearances between the surfaces of the pistons 27 and the walls of the passageway 30 are such as to permit the pistons to move freely therealong. Fluid flow past the pistons within the passageways is substantially prevented since the pistons have a spherical shape which is substantially complementary to the cross-sectional shape of the passageways. If desired, a tube can be used as a liner in each passageway.
  • each passageway 30 is made up of three regions 32, 33 and 34.
  • Region 32 extends along the periphery of the platform 11 for a distance of approximately 90°. This region forms an expanding section wherein a fluid medium, such as steam, is used to freely accelerate the pistons in succession.
  • Region 33 is curved inwardly toward the center of rotation of the platform 11 and is provided with one or more ports 31 in the upper plate 11 A to bleed off fluid between successive pistons. It should be understood, however, that the ports 31 could be replaced by a plenum chamber which collects the steam, condenses and returns it to a boiler.
  • Figs. 1 to 5 steam is used for the operation of the rotary platform according to a Rankine cycle.
  • the steam is fed from a stationary boiler, not shown, to the rotating platform 11 by means of a duct 40 (Fig. 4) extending through the support shaft 13.
  • the steam is delivered by a stationary conduit 41 through a rotary union 42 and into the duct 40.
  • Duct 40 communicates with a chamber 43 located in the plate 11 B below the continuous, closed-loop passageways 30.
  • Radially-extending slots 44 machined into the mutually-engaging face surfaces of plates 11 A and 11 B, deliver the steam from chamber 43 to supply chambers 45 (see also Figs. 1 and 2).
  • bushings 46 Disposed within the chambers 45 are bushings 46 with portal openings to deliver steam from the slots 44 into the expander region 32.
  • the expansible steam is injected into the expander region at the point of juncture between the expander region 32 and the radially-extending region 34.
  • the force exerted by the expanding steam propels the pistons along the expander region to the point where they enter the combined coasting and steam exhaust section formed by region 33.
  • the steam is exhausted through ports 31 to the atmosphere as described above or, if desired, a system of ducts may be used to conduct the steam and/or condensate from region 33 through a pipe within duct 40 in shaft 13 for return to the boiler.
  • the steam injected into the expander region 32 will propel each of the pistons 27 along the periphery of the platform 11, thereby converting the thermal energy of the steam into kinetic energy of the pistons 27.
  • an equal and opposite reaction is induced tending to rotate the platform in the direction of arrow A.
  • the pistons 27 enter the region 33 their direction of movement changes, thereby producing a force on the platform 11 tending to rotate it in a direction opposite to the direction of arrow A.
  • the two forces thus produced essentially cancel each other so that, as the pistons are propelled around the passageway 30, the net torque on the platform 11 is essentially zero.
  • the gear system just described has two other functions.
  • the second function is to maintain the entire rotating system of the rotating energy converter at a desired velocity.
  • the third function of the gear system is to feed the pistons into the expander region 32 and provide thrust to overcome frictional drag of the pistons in the loop passageway.
  • the two unidirectional energy converter loops according to the invention are disposed at mutually-exclusive sectors which are spaced 180° from each other and supported by the platform 11. While it is possible to use a single closed-loop passageway, it is obviously preferable to use at least two diametrically-opposed passageways in order that the rotating platform 11 will be balanced rotationally. Furthermore, it will be appreciated that a series of platforms such as that shown herein may be stacked in spaced-apart relation for rotation about common axis 12.
  • a practical engine incorporating the principles of the invention may, for example, employ a 900 mm diameter platform having a thickness twice the diameter of the pistons 27.
  • the rotating engine may incorporate ten unidirectional energy conversion loops having pistons with diameters of 28,6 mm (1-1/8 inches).
  • Such an engine will develop approximately 27 Kilowatt (50 horsepower) while the overall size of the engine will be about 900 mm (three feet) in diameter and about 300 mm (one foot) long, not including ducting for the steam and exhaust.
  • the frequency of the pistons in the passageways would be about 100 per second while the platform rotates at a speed of about 650 revolutions per minute.
  • Such a concept for a rotating engine has a significant potential for practical low-temperature steam engines based on a 4.5 bar (absolute) (66 psia) at 149°C (300°F) steam inlet pressure and a 0.2 bar (absolute) (3 psia) at 60°C (140°F) steam outlet pressure.
  • Fig. 6 illustrates another embodiment of the invention incorporating the principles of the Brayton cycle. Because of the similarity between the parts forming the rotating engine for a Brayton cycle and the parts forming a rotating engine for operation according to the Rankine cycle as just described, elements of Fig. 6 which correspond to those of Fig. 5 are identified by like reference numerals.
  • the expander region 32 of each continuous, closed-loop passageway 30 curves along a 90° circumferential part of the platform 11.
  • a combined exhaust and intake section 60 receives the pistons from the expander region 32.
  • An exhaust manifold 51 delivers the exhaust gases carried between successive pistons. The exhaust gases are replaced by fresh air from an inlet manifold 52. From region 50, the pistons pass into a compression region 53.
  • the gases compressed between the pistons are delivered by a manifold 54 at an increased pressure through a check valve 55 and into a combustion chamber 56.
  • the compressed air is heated in the combustion chamber and introduced into the unidirectional energy conversion loop by an inlet conduit 57.
  • the heated air accelerates the pistons in succession along the expander region 32.
  • Liquid fuel is fed from a stationary tank on the rotating platform through a coaxial pipe in shaft 13 with a rotating shaft seal.
  • the fuel is then fed by a conduit 58 into the combustion chamber 56.
  • the velocity of the piston is at a maximum relative to the unidirectional energy conversion loop formed by its passageway 30.
  • the kinetic energy of the piston is thus converted into potential energy as the pistons approach the center of the rotating platform 11 in passing through arcuate regions 50 and 53.
  • the kinetic energy of the piston is also expended by compression of air to form the compressed air supply which is fed into the combustion chamber and then, when heated, fed into the expander inlet.
  • the pistons apply centrifugal force to the pocketed wheels.
  • the mechanical power formed by the unidirectional energy conversion loop is the net centrifugal force impart to the platform through the sprocket-gear train.
  • the second unidirectional energy conversion loop supported by the platform 11 in Fig. 6 is identical to the first and positioned diametrically opposite the first loop. It is again apparent that a series of platforms 11 may be stacked in superimposed spaced-apart relation along the same axis 12.
  • the unidirectional energy conversion engine operating according to the Brayton cycle may consist of multiple unidirectional energy conversion loops as was the case with the embodiment of Figs. 1 to 5.
  • Figs. 7 and 8 illustrate another embodiment of the invention wherein a single passageway is utilized on a rotating platform rather than two passageways as in the embodiment of Figs. 1 to 6. Since many of the parts forming the rotating engine of the embodiment of Figs. 7 and 8 are the same or similar to those of Figs. 1 to 6, certain elements of Figs. 7 and 8 which correspond to those of Figs. 1 to 6 are identified by like reference numerals.
  • a platform 100 is provided which rotates about a central axis 102.
  • the platform 100 is elongated but symmetrical about the axis of rotation 102 and is, therefore, balanced about planes perpendicular to the axis of rotation.
  • the platform 100 can be formed from upper and lower halves 1 OOA and 1 OOB as shown in Fig. 8.
  • Formed in the upper and lower halves 100A and 100B is a single continuous, closed-loop passageway 104 having two straight portions 106 and 108 on opposite sides of the axis of rotation 102.
  • the opposite ends of the straight portions 106 and 108 are interconnected by curved portions 110 and 112, respectively, the portions 110 and 112 also being on opposite sides of the axis of rotation 102 of the platform 100.
  • opposite sides of the passageway 104 are arranged symmetrically, and balanced, about planes perpendicular to the axis of rotation 102.
  • the platform 100 is generally elliptical in shape, meaning that it is long as compared to its width, having semicircular end portions connected by straight portions.
  • the loop passageway 104 is made up of four regions. These comprise a first expander region 114, a first thruster region 116, a second expander region 118 and a second thruster region 120.
  • Rotatable thruster wheels 122 and 124 are mounted for rotation on the platform at the respective axes of the two curved end portions 110 and 112 of passageway 104.
  • the thruster wheels 122 and 124 are provided with pockets 126, uniformly spaced about their outer peripheries, which are adapted to engage successive pistons 27 through the open inner faces of the curved end portions 110 and 112 of the passageway 104.
  • pocket thruster wheels 122 and 124 serve to move successive pistons through the curved end portions 110 and 112 and into the respective expander regions 114 and 118.
  • the rotating thruster wheels also serve to drive the rotating platform 100 and the shaft 13 connected thereto through central, stationary main gear 16 and appropriate idler gears 17 and 17' located beneath the platform 100.
  • Idler gears 17 and 17' mesh with gears 18 and 18' connected to the rotatable pocket wheels 122 and 124, respectively, as best shown in Fig. 8.
  • the shaft 13 may be conveniently journaled in bearings 130 and 132 as shown in Fig. 8.
  • an ideal diatomic gas e.g. air or steam
  • a pressure elevated above ambient i.e. from a compressor, boiler or the like
  • inlet port 45 located between the second thruster region 120 and the first expander region 114
  • inlet port 45' located between the first thruster region 116 and second expander region 118.
  • Gas is exhausted from the passageway via a venting port (or ports) 134 located between the first expander region 114 and the first thruster region 116, or via port (or ports) 136 located between the second expander region 118 and the second thruster region 120.
  • the pistons 27 act as porting valves at the inlet and venting ports as in the embodiment of Figs. 1 to 6.
  • Passageways or slots 44 and 44' can be provided to deliver steam or another expansible fluid from chamber 43, similar to chamber 43 shown in Fig. 4, to the inlet ports 45 and 45'.
  • the pressurized gas entering the first expander region 114 through inlet port 45 drives successive pistons 27 through the expander region 114 against the centrifugal force field generated by rotation of the platform 100. That is, the pistons must work against centrifugal force as they approach the center of rotation of platform 100.
  • the unit cell of gas between the pistons is closed off from the inlet port 45 and expands adiabatically as the lead piston moves through the expander region.
  • the piston ahead of the piston in the expander region 114 traverses venting port 134
  • the unit cell of gas ahead of the piston still in the expander region 114 is exhausted through the venting port.
  • the piston in the expander region then arrives at the beginning of the thruster region 116 and closes off the venting port 134; while the ensuing piston is driven through the expander region in accordance with the cycle just described.
  • the piston Upon leaving the expander region 114, the piston enters the thruster region 116 which is filled with pistons.
  • the pistons When the pistons are in the thruster region, in closely-abutting relationship, they are urged toward the curved end portion 112 of the passageway 104 under the influence of centrifugal force. That is, they are urged outwardly in relation to the axis of rotation 102 of the platform 100 by centrifugal force. In this process, they engage the pocketed thruster wheel 124 and impart torque thereto, causing it to rotate with the rotation being transmitted through gears 18' and 17' to central gear 16, thereby causing the entire platform 100 and the drive shaft 13 to rotate in the direction indicated by arrow 128 in bearings 130 and 132 (Fig. 8).
  • the thruster wheels 122 and 124 rotate, they feed successive ones of the pistons to the expander regions 114 and 118 where the cycle described above is repeated.
  • the gear system described above has two other functions. The second function is to maintain the entire rotating system of the rotating energy converter at a desired velocity.
  • the third function of the gear system is to feed the pistons into the expander regions 114 and 118 and to provide thrust to overcome frictional drag of the pistons in the loop passageway.
  • the rotating passageway 104 of the embodiment of Figs. 7 and 8 comprises, in series, a first expander region 114, a first thruster region 116, a second expander region 118 and a second thruster region 120.
  • each passageway comprises only one expander region and one thruster region.
  • this embodiment functions in a manner generally similar to the embodiments previously discussed.
  • a starter motor or some other device to initially rotate the platform 100 may be required to initiate centrifugal force on the pistons in regions 116 and 120.
  • steam may be used for the operation of the rotating platform 100 in accordance with the Rankine cycle as in the previously-described embodiments.
  • the force exerted by the expanding steam which enters the passageway 104 through ports 45 and 45', propels the pistons 27 through the expander regions 114 and 118.
  • the steam is exhausted through venting ports 134 and 136 as the pistons enter the thruster regions 116 and 120. Venting ports 134 and 136 may be open to the atmosphere or, if desired, a system of ducts, not shown, may be used to return the steam and/or condensate to the boiler in a manner similar to that of Fig. 4.
  • compressed gas typically air
  • the heated,- compressed gas is then introduced into the expander regions from appropriate conduits via the inlet ports.
  • the gas is exhausted at ambient pressure via the venting ports 134 and 136 either direct to the atmosphere or through a coaxial duct.
  • the compressed gas may be obtained via conventional compressor means, either stationary or rotating in the platform; however, it is preferred to obtain the compressed gas from a separate unidirectional energy converter loop which is rotating about the same axis of rotation (i.e. stacked above or below the platform), and which is adapted to function as a compressor in the manner described in connection with Figs. 7 and 8 hereinafter or as described in U.S. Patent No. 3,859,789, Fawcett et al.
  • an expanding gas is provided in the expander regions by way of internal combustion within these regions.
  • Compressed air typically from one of the sources described above in reference to the Brayton cycle
  • Liquid or gaseous fuel is fed into the expander regions 114 and 118 when the inlet ports are closed off by the pistons leaving the thruster regions.
  • Combustion takes place in the expander regions and is cycled to effect expanding gas behind each piston as it enters the expander regions 116 and 120. That is, combustion takes place periodically to propel successive ones of the pistons through the expander regions.
  • the combustion gases may be exhausted at ambient pressure via the venting port directly to the atmosphere or through a coaxial duct.
  • the operation of the embodiment of Figs. 7 and 8 according to the Otto cycle is similar to that described above regarding the Diesel cycle.
  • the fuel and air may be separately introduced into the expander regions, as in the Diesel cycle, or the fuel may be mixed with the incoming air before or after it is compressed. Ignition of the fuel-air mixture is effected in the expander regions 114 and 118 by means of a conventional spark system located in an appropriate recessed area in these regions.
  • combustion is cycled to effect expanding gas successively behind each piston as it passes so as to propel successive ones of the pistons through the expander regions.
  • the system can function as a compressor. If the platform 100 is rotated by a motor, the system of gears interconnecting the thruster wheels 122 and 124 to the central shaft 13 will act to rotate the thruster wheels. The rotating thruster wheels will then move the stacked pistons 25 in the thruster regions toward the axis of rotation of the platform, so that upon passing ports 134 and 136, the pistons will travel through the expander regions 114 and 118 under the influence of centrifugal force. The gas between the pistons will be adiabatically compressed by the moving pistons in the expander regions 116 and 120 which would more properly be termed "compressor regions" in this mode.
  • a series of unidirectional energy converters may be stacked in superimposed, spaced-apart relation for rotation upon shaft 13 about the common axis 102.
  • the change in enthalpy of the gas in the expander regions produces net work, which is performed on the thruster wheels 122 and 124 via the pistons 27, and then transmitted to the rotating platform 100 and the shaft 13;
  • the change in enthalpy of the gas in the expander regions transfers energy via the centrifugal field (potential) energy stored in the mass of the pistons as they move through the expander regions from a larger radius of rotation (i.e.
  • the gas pressure in the expander region during part of the operating cycle may be below ambient.
  • the piston 27A comprises a body having a central annular slot 140 and large diameter end portions 142 and 144 provided with spherically-beveled edges 146 which can engage the periphery of the passageway 104 as the pistons 27A pass around the curved portions 110 and 112.
  • the large diameter portions 142 and 144 are hollow as shown.
  • the configuration shown in Fig. 9A comprises, in effect, two interconnected pistons separated by the reduced diameter portion 140 which receives the radially, outwardly-projecting prongs on the pocketed wheels 122 and 124 as the pistons move around the curved portions 110 and 112.
  • Lightly-loaded piston rings may optionally be located in recesses formed within the outer surface of the pistons, so as to reduce losses due to leakage of the fluid medium around the pistons.
  • Fig. 9B is similar to that of Fig. 9A except that the piston 27B in this case comprises two spherical end portions 148 and 150 interconnected by reduced diameter portion 152 which again received the radially, outwardly-projecting prongs on the thruster wheels 122 and 124.
  • a piston such as that shown in Fig. 9A, or some other configuration having a cylindrical outer periphery (as contrasted to a sphere) may be preferable in order that the cylindrical surface can more positively close off the ports 134 and 136 as they pass thereby.
  • the ports 134 and 136 should be as small in cross section as possible while affording the required flow volume therethrough.
  • the embodiments of the invention described above utilize an arrangement wherein the pocketed thruster wheels are mechanically linked (i.e. coupled) to both the rotating platform and the engine drive shaft via a system of gears or drive chains, etc.
  • the speed of rotation of the platform is related to the torque produced by the rotating engine of the present invention, whereas the speed of rotation of the thruster wheels is proportional to the rate of torque applied to the engine drive shaft (i.e. shaft power).
  • the rotating engine of the present invention can be utilized to produce torque independently from engine drive shaft speed (i.e. high torque can be produced at low or variable speed).

Claims (32)

1. Vorrichtung zur Umwandlung einer ersten in eine zweite Energieform, gekennzeichnet durch eine Plattform (11, 100), mit einer um eine Zentralachse (12) drehbaren Lagerung für die Plattform (11, 100), wenigstens einen kontinuierlichen, in sich geschlossenen Bahndurchgang (30, 104), der an der Plattform (11, 100) in einer sich senkrecht zur Zentralachse (12) erstreckenden Ebene angeordnet ist, einer Anzahl im Bahndurchgang (30, 104) angeordneter, frei beweglicher Kolben (27), wenigstens einem Bereich (33) im Bahndurchgang (30), in dem sich die Kolben (27) bei Umlauf der Plattform (11, 100) gegen die Zentrifugalkraft nach innen bewegen müssen, wenigstens einem weiteren Bereich (34) im Bahndurchgang (30), in dem die Kolben (27) unter dem Einfluß der Zentrifugalkraft nach außen bewegt werden, einer Einrichtung zum Aufbringen einer Kraft auf die aufeinanderfolgenden Kolben, um sie gegen die Zentrifugalkraft im dem Bereich (33) anzutreiben, einer Einrichtung zur Umwandlung der sich unter dem Einfluß der Zentrifugalkraft im weiteren Bereich nach außen bewegenden Kolben (27) in Rotationsenergie und einer Einrichtung zur Aufbringung der Rotationsenergie auf die Plattform (11, 100), um diese in Drehung zu versetzen.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Einrichtung zur Aufbringung einer Kraft auf die aufeinanderfolgenden Kolben (27) eine Leitung (44) aufweist, mit der ein Fluid zur Expansion zwischen den Kolben (27) auf den Bereich (33) des Bahndurchgangs (30, 104), richtbar ist.
3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß jeder der frei beweglichen Kolben (27) einen Querschnitt aufweist, der im wesentlichen komplementär zum Querschnitt des Bahndurchgangs (30, 104) ist, um auf diese Weise gegen Fluiddurchtritt zwischen den Kolben (27) und dem Bahndurchgang abzudichten und das Fluid in Segmente zu unterteilen.
4. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Einrichtung zur Aufbringung einer Kraft eine Leitung (44) aufweist, die sich im wesentlichen radial von der Zentralachse (12) zum Bereich (33) des Bahndurchgangs (30, 104) erstreckt, sowie Verbindungen (43) im Bereich der Zentralachse (12) zur Leitung (44), um ein expansionsfähiges Fluid in den Bereich (33) des Bahndurchgangs zu leiten.
5. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Bahndurchgang (30, 104), mit einer oder mehreren Öffnungen (31, 134) versehen ist, die zum Ablassen von Fluid aus dem Bahndurchgang (30, 104) angeordnet sind, um den Druck vor den Kolben (27) zu verringern und deren Beschleunigung unter dem Einfluß der Zentrifugalkraft zu steigern.
6. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Einrichtung zur Umwandlung der Energie der Kolben (27) in Rotationsenergie ein Rad (24, 25, 122, 124) mit am Umfang mit Abstand zueinander angeordneten Taschen (126) aufweist zur Aufnahme von aufeinander folgenden Kolben (27) auf einer Seite des Bahndurchgangs (30, 104) in dem weiteren Bereich (34).
7. Vorrichtung nach Anspruch 6, gekennzeichnet durch ein Zwischenzahnrad (17, 17', 18), das an das Rad (24, 25, 122, 124) angekuppelt ist und mit einem stationären Zahnrad (16) kämmt, welches koaxial zur Zentralachse (12) angeordnet ist.
8. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß sie einen Rankine-Zyklus ausführt.
9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß die Einrichtung zur Aufbringung einer Kraft auf aufeinander folgende Kolben (27) die Expansion von Dampf unter Druck beinhaltet.
10. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß sie einen Brayton-Zyklus ausführt und daß die Einrichtung zur Aufbringung einer Kraft auf aufeinander folgende Kolben (27) ein expandierendes Gas aufweist, das durch Verbrennung eines Brennstoffes gewonnen wird.
11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, daß zum Ausstoß von Verbrennungsprodukten am Bahndurchgang (30, 104) eine Auspuffleitung (51) sowie zur Zufuhr von Luft zum Bahndurchgang eine Ansaugleitung (52) vorgesehen sind, wobei die angesaugte Luft zwischen aufeinander folgenden Kolben (27) komprimierbar ist.
12. Vorrichtung nach Anspruch 11, gekennzeichnet durch eine Verbrennungskammer (56), eine Einrichtung zur Zufuhr komprimierter Luft vom Bahndurchgang (30) zur Verbrennungskammer (56), einer Einrichtung zur Zufuhr von Brennstoff zur Verbrennungskammer (56) und zur dortigen Verbrennung des Brennstoffs und einer Einrichtung zur Zufuhr komprimierten Gases unter Einschluß der Verbrennungsprodukte von der Verbrennungskammer (56) zum Bereich (33) des Bahndurchgangs, um aufeinander folgende Kolben (27) dort anzutreiben.
13. Vorrichtung zur Umwandlung einer ersten in eine zweite Energieform, gekennzeichnet durch eine Plattform (11), eine Einrichtung zur Lagerung der Plattform (11) zwecks Umlaufs um eine Zentralachse (12), wenigstens einen kontinuierlichen, in sich geschlossenen Bahndurchgang (30), der an der Plattform (11) an einer Stelle angeordnet ist, die sich senkrecht zur Zentralachse (12) erstreckt, eine Anzahl im Bahndurchgang (30) angeordneter, frei beweglicher Kolben (27), einer Einrichtung zur Aufbringung einer Kraft auf aufeinander folgende Kolben (27) in einem ersten Bereich (32) des Bahndurchgangs (30), welcher Bereich sich längs des Umfangs der rotierenden Plattform (11) erstreckt, um hierdurch jeden Kolben (27) in einer Richtung längs des Bahndurchgangs (30) anzutreiben und seine kinetische Energie zu erhöhen, einen zweiten Bereich (33) des Bahndurchgangs, welcher Bereich ausgebildet ist, daß die Kolben nach ihrem Antrieb gegen die Zentrifugalkraft arbeiten, um hierdurch ihre kinetische Energie in Potentialenergie umzuwandeln, wenn sie sich dem Rotationszentrum der Plattform (11) nähern, einen dritten, sich radial erstreckenden Bereich (34) des Bahndurchgangs (11) in dem die Kolben (27) radial nach außen, unter dem Einfluß der Zentrifugalkraft zurück zum ersten Bereich (32) bewegt werden, um die Energie der sich in diesem dritten Bereich (34) radial nach außen bewegenden Kolben (27) in Rotationsenergie umzuwandeln und durch eine Einrichtung (16, 17, 18) um die Rotationsenergie auf die Plattform (11) zu übertragen und diese in Umlauf zu versetzen.
14. Vorrichtung nach Anspruch 13, dadurch gekennzeichnet, daß zwei kontinuierliche, in sich geschlossene Bahndurchgänge (30) mit einer Anzahl von frei beweglichen Kolben (27) vorgesehen sind und daß die Bahndurchgänge (30) diametral einander gegenüber liegend an der rotierenden Plattform (11) angeordnet sind.
15. Vorrichtung nach Anspruch 13, dadurch gekennzeichnet, daß der Bahndurchgang (30) wenigstens zwei bogenförmige Bereiche mit unterschiedlichem Radius aufweist.
16. Vorrichtung nach Anspruch 14 und 15, dadurch gekennzeichnet, daß jeder der Bahndurchgänge (30) einen sich radial nach innen erstreckenden, linearen Bereich aufweist, der die beiden bogenförmigen Bereiche verbindet.
17. Vorrichtung nach Anspruch 13, dadurch gekennzeichnet, daß die Einrichtung zur Aufbringung einer Kraft auf aufeinander folgende Kolben (27) eine Leitung (40) zur Aufbringung von Fluid zwecks Expansion zwischen den Kolben (27) in den ersten Bereich (32) des Bahndurchgangs (30) aufweist.
18. Vorrichtung nach Anspruch 13, dadurch gekennzeichnet, daß jeder der frei beweglichen Kolben (27) einen im wesentlichen zum Querschnitt des in sich geschlossenen Bereichs (30) komplementären Querschnitt aufweist, um so im wesentlichen gegen Fluidströmung zwischen Bahndurchgang und Kolben abzudichten und das Fluid in Segmente zu unterteilen.
19. Vorrichtung nach Anspruch 13, dadurch gekennzeichnet, daß die Plattform (11) eine Scheibe aufweist sowie eine Lagerwelle (13), die koaxial zue Zentralachse vorgesehen ist un die Scheibe lagert.
20. Vorrichtung nach Anspruch 19, dadurch gekennzeichnet, daß die Lagerwelle (13) fest mit der Scheibe verbunden ist.
21. Vorrichtung nach Anspruch 19, dadurch gekennzeichnet, daß die Einrichtung zur Aufbringung einer Kraft eine Leitung (44) aufweist, die sich im wesentlichen in radialer Richtung von der Zentralachse (12) zum ersten Bereich des Bahndurchgangs (30) erstreckt sowie eine Verbindungsleitung (43) zur Leitung, (44), um eine expandierendes Fluid in den ersten Bereich des Bahndurchgangs (30) zu leiten.
22. Vorrichtung nach Anspruch 13, dadurch gekennzeichnet, daß der Bahndurchgang mindestens eine Öffnung (31) aufweist zum Ablassen von Fluid und Reduzierung des Drucks vor den Kolben (27) sowie zu deren Beschleunigung im zweiten Bereich.
23. Vorrichtung nach Anspruch 13, dadurch gekennzeichnet, daß die Einrichtung zur Umwandlung der Potentialenergie in Rotationsenergie ein Rad (24, 25) mit am Umfang mit Abstand zueinander angeordneten Taschen aufweist, um auf einer Seite des Bahndurchgangs (30) in dessen drittem Bereich aufeinander folgende Kolben (27) aufzunehmen.
24. Vorrichtung nach Anspruch 23, dadurch gekennzeichnet, daß ein Zwischenzahnrad (17, 17', 18) an das Rad (24, 25) angekoppelt ist und mit einem stationären Zahnrad (16) kämmt, das koaxial zue Zentralachse (12) vorgesehen ist.
25. Vorrichtung nach Anspruch 14, dadurch gekennzeichnet, daß für jeden Bahndurchgang (30) die Einrichtung zur Umwandlung der potentiellen in Rotationsenergie mit Abstand zueinander angeordnete Räder (24, 25) aufweist, die sich in gegenüber liegende Seiten des Weges der Kolben (27) im dritten Bereich des Bahndurchgangs (30) erstrecken, wobei jedes Rad am Umfang mit Abstand zueinander angeordnete Tasche aufweist, um die dazwischen aufgenommenen Kolben längs des Bahndurchganges (30) zu beschleunigen.
26. Vorrichtung nach Anspruch 25, gekennzeichnet durch Zwischenzahnräder (17, 17', 18), die mit jedem mit Taschen versehenen Rad (24, 25) verbunden sind und des weiteren das stationäre Zahnrad (16) antreiben, das koaxial zur Zentralachse (12) vorgesehen ist.
27. Vorrichtung zur Umwandlung einer ersten Energieform in eine zweite Energieform, gekennzeichnet durch eine Plattform (100), eine Einrichtung zur Lagerung der Plattform zwecks Umlaufs um eine Zentralachse, einen kontinuierlichen, in sich geschlossenen Bahndurchgang, der an der Plattform in einer sich senkrecht zur Zentralachse erstreckenden Ebene angeordnet ist, ein Anzahl frei beweglicher, im Bahndurch gang angeordneter Kolben, wobei der Bahndurchgang im wesentlichen gerade Strecken (106, 108) an gegenüber liegenden Seiten der Zentralachse aufweist, die an ihren gegenüber liegenden Enden durch bogenförmige Strecken (110, 112) ebenfalls an gegenüber liegenden Seiten der Zentralachse, miteinander verbunden sind, eine Einrichtung zur Aufbringung einer Kraft auf aufeinander folgende Kolben in einem Bereich der geraden Strecken (106, 108), um die Kolben nach innen auf der rotierenden Plattform gegen die Zentrifugalkraft anzutreiben, wobei die Kolben in einem anderen Bereich jeder der geraden Strecken (106, 108) aufgrund der Zentrifugalkraft radial nach außen bewegbar sind, eine Einrichtung in den bogenförmigen Bereichen (110, 112) zur Umwandlung der Energie der nach außen unter Einfluß der Zentrifugalkraft bewegten Kolben in Rotationsenergie und eine Einrichtung zur Aufbringung der Rotationsenergie auf die Plattform (100), um diese in Drehung zu versetzen.
28. Vorrichtung nach Anspruch 27, wobei die Einrichtung zur Umwandlung der Potential- in Rotationsenergie ein Rad (122, 124) mit am Umfang mit Abstand zueinander angeordneten Taschen (126) aufweist, um aufeinander folgende Kolben in einer bogenförmigen Strecke (110, 112) des Bahndurchgangs (104) aufzunehmen.
29. Vorrichtungs nach Anspruch 28, dadurch gekennzeichnet, daß der Außenumfang des Rades (122, 124) im wesentlichen mit dem Innenumfang einer bogenförmigen Strecke (110, 112) des Bahndurchgangs (104) zusammenfällt.
30. Vorrichtung nach Anspruch 28, gekennzeichnet durch ein mit dem Rad (122, 124) gekuppelten Zwischenzahnrad, das mit einem stationären Rad kämmt, welches koaxial zur Zentralachse angeordnet ist.
31. Vorrichtung nach Anspruch 30, dadurch gekennzeichnet, daß Räder (122, 124) zur Aufnahme aufeinander folgender Kolben in jeder bogenförmigen Strecke (110, 112) des Durchgangs (104) vorgesehen sind, wobei eine Zwischenzahnrad beide Räder mit dem stationären Zahnrad verbindet.
32. Vorrichtung nach Anspruch 27, dadurch gekennzeichnet, daß in jeder der geraden Strecken (106, 108) des Bahndurchgangs (104) ein Bereich vorgesehen ist, in dem die Kolben durch Expansion eines Gases antreibbar sind, und ein weiterer Bereich in dem die Kolben durch Zentrifugalkraft antreibbar sind.
EP19790100216 1978-01-27 1979-01-25 Energiewandler mit gleichbleibender Drehrichtung Expired EP0003355B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US87284878A 1978-01-27 1978-01-27
US872848 1978-01-27
US241179A 1979-01-11 1979-01-11
US2411 1979-01-11

Publications (2)

Publication Number Publication Date
EP0003355A1 EP0003355A1 (de) 1979-08-08
EP0003355B1 true EP0003355B1 (de) 1982-05-26

Family

ID=26670342

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19790100216 Expired EP0003355B1 (de) 1978-01-27 1979-01-25 Energiewandler mit gleichbleibender Drehrichtung

Country Status (4)

Country Link
EP (1) EP0003355B1 (de)
JP (1) JPS54112432A (de)
CA (1) CA1099526A (de)
DE (1) DE2962937D1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2931164A1 (de) * 1979-08-01 1981-02-19 Dynamit Nobel Ag Rotationskraftelement
WO2014075177A1 (en) * 2012-11-19 2014-05-22 Richard Arel Power transmission assembly and method for transmitting power

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL65164C (de) *
DE842645C (de) * 1944-11-12 1952-06-30 Hans Alwin Gantikow Kraftmaschine mit umlaufendem Kolben und Widerlagerschieber
US3859789A (en) * 1972-01-31 1975-01-14 Battelle Development Corp Method and apparatus for converting one form of energy into another form of energy

Also Published As

Publication number Publication date
EP0003355A1 (de) 1979-08-08
DE2962937D1 (en) 1982-07-15
CA1099526A (en) 1981-04-21
JPS54112432A (en) 1979-09-03

Similar Documents

Publication Publication Date Title
US3859789A (en) Method and apparatus for converting one form of energy into another form of energy
US4100743A (en) Gravity engine
US3774397A (en) Heat engine
JPH076398B2 (ja) 内燃機関
JP2017520708A (ja) 偏心羽根ポンプ
JP2013527355A (ja) バランス型回転可変吸気カットオフバルブ及び第1の膨張に背圧のない第2の膨張を具えた回転ピストン蒸気エンジン
US3807368A (en) Rotary piston machine
JPH04507274A (ja) 液体リング装置の改良
US4028885A (en) Rotary engine
US3744940A (en) Rotary expansion engine of the wankel type
US3739754A (en) Rotating-piston toroidal machine with rotating-disc abutment
EP0003355B1 (de) Energiewandler mit gleichbleibender Drehrichtung
US4646694A (en) Rotary engine
US2544480A (en) Rotary displacement device
US4280325A (en) Unidirectional energy converter
US5154149A (en) Rotary motor/pump
US3139871A (en) Fluid motor and pump having expansible chambers
CN101652546A (zh) 与脉冲燃气涡轮机系统相结合的旋转式机械往复滑动金属叶片空气泵和边界层燃气轮机
WO1986006437A1 (en) Rotary engine
US4403581A (en) Rotary vane internal combustion engine
EP0811752A1 (de) Gasturbine mit von innen nach aussen durchströmtem radialrad
US3680308A (en) Internal combustion turbine engine
US20030062020A1 (en) Balanced rotary internal combustion engine or cycling volume machine
US3865522A (en) Rotary steam engine
US3872840A (en) Rotary machine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB

17P Request for examination filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 2962937

Country of ref document: DE

Date of ref document: 19820715

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19841217

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19850305

Year of fee payment: 7

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19860930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19861001

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881117

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT