EP0000970A2 - Method for making diperoxyacids - Google Patents
Method for making diperoxyacids Download PDFInfo
- Publication number
- EP0000970A2 EP0000970A2 EP78200149A EP78200149A EP0000970A2 EP 0000970 A2 EP0000970 A2 EP 0000970A2 EP 78200149 A EP78200149 A EP 78200149A EP 78200149 A EP78200149 A EP 78200149A EP 0000970 A2 EP0000970 A2 EP 0000970A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- reactor
- acid
- water
- process according
- hydrogen peroxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 30
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims abstract description 42
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims abstract description 39
- 239000002253 acid Substances 0.000 claims abstract description 32
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 24
- 125000001931 aliphatic group Chemical group 0.000 claims abstract description 13
- 238000010924 continuous production Methods 0.000 claims abstract description 6
- 239000000463 material Substances 0.000 claims description 31
- TVIDDXQYHWJXFK-UHFFFAOYSA-N dodecanedioic acid Chemical compound OC(=O)CCCCCCCCCCC(O)=O TVIDDXQYHWJXFK-UHFFFAOYSA-N 0.000 claims description 10
- 239000007788 liquid Substances 0.000 claims description 6
- 238000001914 filtration Methods 0.000 claims description 5
- 238000001035 drying Methods 0.000 claims description 2
- 238000005406 washing Methods 0.000 claims description 2
- 230000003647 oxidation Effects 0.000 claims 1
- 238000007254 oxidation reaction Methods 0.000 claims 1
- 125000004432 carbon atom Chemical group C* 0.000 abstract description 29
- 239000000203 mixture Substances 0.000 description 55
- -1 peroxyacid compounds Chemical class 0.000 description 31
- 239000011734 sodium Substances 0.000 description 19
- 229910052708 sodium Inorganic materials 0.000 description 19
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 18
- 150000004965 peroxy acids Chemical class 0.000 description 17
- 150000003839 salts Chemical class 0.000 description 17
- 125000000217 alkyl group Chemical group 0.000 description 16
- 239000003795 chemical substances by application Substances 0.000 description 16
- 238000004061 bleaching Methods 0.000 description 15
- 239000007844 bleaching agent Substances 0.000 description 12
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 12
- 239000013078 crystal Substances 0.000 description 11
- 239000008187 granular material Substances 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 10
- 239000000047 product Substances 0.000 description 10
- 239000002245 particle Substances 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- 229910052783 alkali metal Inorganic materials 0.000 description 8
- 239000003945 anionic surfactant Substances 0.000 description 8
- 239000004094 surface-active agent Substances 0.000 description 8
- 150000001340 alkali metals Chemical class 0.000 description 7
- 239000007795 chemical reaction product Substances 0.000 description 7
- 238000002156 mixing Methods 0.000 description 7
- 238000010979 pH adjustment Methods 0.000 description 7
- 229910052700 potassium Inorganic materials 0.000 description 7
- 239000011591 potassium Substances 0.000 description 7
- 239000003760 tallow Substances 0.000 description 7
- 150000007513 acids Chemical class 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 239000003599 detergent Substances 0.000 description 6
- 235000014113 dietary fatty acids Nutrition 0.000 description 6
- 239000000194 fatty acid Substances 0.000 description 6
- 229930195729 fatty acid Natural products 0.000 description 6
- 239000004615 ingredient Substances 0.000 description 6
- 239000000376 reactant Substances 0.000 description 6
- 150000004760 silicates Chemical class 0.000 description 6
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 5
- 125000000129 anionic group Chemical group 0.000 description 5
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 5
- 239000004744 fabric Substances 0.000 description 5
- 150000004665 fatty acids Chemical class 0.000 description 5
- 159000000001 potassium salts Chemical class 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 4
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical class OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 4
- 229920000388 Polyphosphate Polymers 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 235000019864 coconut oil Nutrition 0.000 description 4
- 239000003240 coconut oil Substances 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- 150000002170 ethers Chemical class 0.000 description 4
- 239000001205 polyphosphate Substances 0.000 description 4
- 235000011176 polyphosphates Nutrition 0.000 description 4
- 239000000344 soap Substances 0.000 description 4
- 239000010457 zeolite Substances 0.000 description 4
- 239000005725 8-Hydroxyquinoline Substances 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical class C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 235000013162 Cocos nucifera Nutrition 0.000 description 3
- 244000060011 Cocos nucifera Species 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 3
- 239000012190 activator Substances 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 235000011180 diphosphates Nutrition 0.000 description 3
- JHUXOSATQXGREM-UHFFFAOYSA-N dodecanediperoxoic acid Chemical compound OOC(=O)CCCCCCCCCCC(=O)OO JHUXOSATQXGREM-UHFFFAOYSA-N 0.000 description 3
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 3
- 238000004900 laundering Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000002736 nonionic surfactant Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229960003540 oxyquinoline Drugs 0.000 description 3
- 235000021317 phosphate Nutrition 0.000 description 3
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 229920005646 polycarboxylate Polymers 0.000 description 3
- GRLPQNLYRHEGIJ-UHFFFAOYSA-J potassium aluminium sulfate Chemical compound [Al+3].[K+].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O GRLPQNLYRHEGIJ-UHFFFAOYSA-J 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- MCJGNVYPOGVAJF-UHFFFAOYSA-N quinolin-8-ol Chemical compound C1=CN=C2C(O)=CC=CC2=C1 MCJGNVYPOGVAJF-UHFFFAOYSA-N 0.000 description 3
- FQENQNTWSFEDLI-UHFFFAOYSA-J sodium diphosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])([O-])=O FQENQNTWSFEDLI-UHFFFAOYSA-J 0.000 description 3
- 235000019818 tetrasodium diphosphate Nutrition 0.000 description 3
- RGHNJXZEOKUKBD-SQOUGZDYSA-N D-gluconic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical class OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- 229910021536 Zeolite Inorganic materials 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 125000002252 acyl group Chemical group 0.000 description 2
- 239000002671 adjuvant Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 150000001335 aliphatic alkanes Chemical group 0.000 description 2
- 150000008051 alkyl sulfates Chemical class 0.000 description 2
- 150000003863 ammonium salts Chemical class 0.000 description 2
- 229910052925 anhydrite Inorganic materials 0.000 description 2
- 238000010923 batch production Methods 0.000 description 2
- 229940077388 benzenesulfonate Drugs 0.000 description 2
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 2
- 239000004327 boric acid Substances 0.000 description 2
- 150000001642 boronic acid derivatives Chemical class 0.000 description 2
- 239000006172 buffering agent Substances 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- WJJMNDUMQPNECX-UHFFFAOYSA-N dipicolinic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=N1 WJJMNDUMQPNECX-UHFFFAOYSA-N 0.000 description 2
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005755 formation reaction Methods 0.000 description 2
- 229910001385 heavy metal Inorganic materials 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 239000002563 ionic surfactant Substances 0.000 description 2
- YDSWCNNOKPMOTP-UHFFFAOYSA-N mellitic acid Chemical class OC(=O)C1=C(C(O)=O)C(C(O)=O)=C(C(O)=O)C(C(O)=O)=C1C(O)=O YDSWCNNOKPMOTP-UHFFFAOYSA-N 0.000 description 2
- 235000012149 noodles Nutrition 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 235000019198 oils Nutrition 0.000 description 2
- 150000002978 peroxides Chemical class 0.000 description 2
- SIOXPEMLGUPBBT-UHFFFAOYSA-N picolinic acid Chemical compound OC(=O)C1=CC=CC=N1 SIOXPEMLGUPBBT-UHFFFAOYSA-N 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 229940048086 sodium pyrophosphate Drugs 0.000 description 2
- 235000019832 sodium triphosphate Nutrition 0.000 description 2
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 2
- 239000002888 zwitterionic surfactant Substances 0.000 description 2
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- CFPOJWPDQWJEMO-UHFFFAOYSA-N 2-(1,2-dicarboxyethoxy)butanedioic acid Chemical class OC(=O)CC(C(O)=O)OC(C(O)=O)CC(O)=O CFPOJWPDQWJEMO-UHFFFAOYSA-N 0.000 description 1
- JTNCEQNHURODLX-UHFFFAOYSA-N 2-phenylethanimidamide Chemical compound NC(=N)CC1=CC=CC=C1 JTNCEQNHURODLX-UHFFFAOYSA-N 0.000 description 1
- XYJLPCAKKYOLGU-UHFFFAOYSA-N 2-phosphonoethylphosphonic acid Chemical class OP(O)(=O)CCP(O)(O)=O XYJLPCAKKYOLGU-UHFFFAOYSA-N 0.000 description 1
- GPPRMDWJKBFBMZ-UHFFFAOYSA-N 4-morpholin-4-ylphenol Chemical compound C1=CC(O)=CC=C1N1CCOCC1 GPPRMDWJKBFBMZ-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- DBVJJBKOTRCVKF-UHFFFAOYSA-N Etidronic acid Chemical class OP(=O)(O)C(O)(C)P(O)(O)=O DBVJJBKOTRCVKF-UHFFFAOYSA-N 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- 239000005639 Lauric acid Substances 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- SCKXCAADGDQQCS-UHFFFAOYSA-N Performic acid Chemical compound OOC=O SCKXCAADGDQQCS-UHFFFAOYSA-N 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical class OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- IFTMCARQCOKBFG-UHFFFAOYSA-H [Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[O-]C(=O)c1c(C([O-])=O)c(C([O-])=O)c(C([O-])=O)c(C([O-])=O)c1C([O-])=O Chemical compound [Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[O-]C(=O)c1c(C([O-])=O)c(C([O-])=O)c(C([O-])=O)c(C([O-])=O)c1C([O-])=O IFTMCARQCOKBFG-UHFFFAOYSA-H 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 150000004996 alkyl benzenes Chemical class 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 150000004645 aluminates Chemical class 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- LCQXXBOSCBRNNT-UHFFFAOYSA-K ammonium aluminium sulfate Chemical compound [NH4+].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O LCQXXBOSCBRNNT-UHFFFAOYSA-K 0.000 description 1
- BIGPRXCJEDHCLP-UHFFFAOYSA-N ammonium bisulfate Chemical compound [NH4+].OS([O-])(=O)=O BIGPRXCJEDHCLP-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- MDAVASCOAJMZHZ-UHFFFAOYSA-L calcium;2-hydroxypropanoate;hydrate Chemical compound O.[Ca+2].CC(O)C([O-])=O.CC(O)C([O-])=O MDAVASCOAJMZHZ-UHFFFAOYSA-L 0.000 description 1
- AZTGOPSQAGBNFT-UHFFFAOYSA-L calcium;sodium;sulfate Chemical compound [Na+].[Ca+2].[O-]S([O-])(=O)=O AZTGOPSQAGBNFT-UHFFFAOYSA-L 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- HFNQLYDPNAZRCH-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O.OC(O)=O HFNQLYDPNAZRCH-UHFFFAOYSA-N 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 238000002144 chemical decomposition reaction Methods 0.000 description 1
- 238000003889 chemical engineering Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000007859 condensation product Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000012297 crystallization seed Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical compound [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 229960001484 edetic acid Drugs 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 238000007046 ethoxylation reaction Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 235000019197 fats Nutrition 0.000 description 1
- 150000002191 fatty alcohols Chemical class 0.000 description 1
- 235000021588 free fatty acids Nutrition 0.000 description 1
- 229940083124 ganglion-blocking antiadrenergic secondary and tertiary amines Drugs 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000000174 gluconic acid Substances 0.000 description 1
- 235000012208 gluconic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 125000005456 glyceride group Chemical group 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 229910052806 inorganic carbonate Inorganic materials 0.000 description 1
- 229910052816 inorganic phosphate Inorganic materials 0.000 description 1
- 239000002198 insoluble material Substances 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- LNOPIUAQISRISI-UHFFFAOYSA-N n'-hydroxy-2-propan-2-ylsulfonylethanimidamide Chemical compound CC(C)S(=O)(=O)CC(N)=NO LNOPIUAQISRISI-UHFFFAOYSA-N 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical class OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 150000003891 oxalate salts Chemical class 0.000 description 1
- MPQXHAGKBWFSNV-UHFFFAOYSA-N oxidophosphanium Chemical class [PH3]=O MPQXHAGKBWFSNV-UHFFFAOYSA-N 0.000 description 1
- VSXGXPNADZQTGQ-UHFFFAOYSA-N oxirane;phenol Chemical compound C1CO1.OC1=CC=CC=C1 VSXGXPNADZQTGQ-UHFFFAOYSA-N 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- 238000005502 peroxidation Methods 0.000 description 1
- XYFCBTPGUUZFHI-UHFFFAOYSA-O phosphonium Chemical compound [PH4+] XYFCBTPGUUZFHI-UHFFFAOYSA-O 0.000 description 1
- 229940081066 picolinic acid Drugs 0.000 description 1
- 229940068917 polyethylene glycols Drugs 0.000 description 1
- 229910052573 porcelain Inorganic materials 0.000 description 1
- 229910000343 potassium bisulfate Inorganic materials 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 229940048084 pyrophosphate Drugs 0.000 description 1
- LOAUVZALPPNFOQ-UHFFFAOYSA-N quinaldic acid Chemical compound C1=CC=CC2=NC(C(=O)O)=CC=C21 LOAUVZALPPNFOQ-UHFFFAOYSA-N 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 238000007127 saponification reaction Methods 0.000 description 1
- 239000003352 sequestering agent Substances 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- WBHQBSYUUJJSRZ-UHFFFAOYSA-M sodium bisulfate Chemical compound [Na+].OS([O-])(=O)=O WBHQBSYUUJJSRZ-UHFFFAOYSA-M 0.000 description 1
- 229910000342 sodium bisulfate Inorganic materials 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- DZCAZXAJPZCSCU-UHFFFAOYSA-K sodium nitrilotriacetate Chemical compound [Na+].[Na+].[Na+].[O-]C(=O)CN(CC([O-])=O)CC([O-])=O DZCAZXAJPZCSCU-UHFFFAOYSA-K 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 239000004328 sodium tetraborate Substances 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002195 soluble material Substances 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000003890 succinate salts Chemical class 0.000 description 1
- 230000001180 sulfating effect Effects 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- XGMYMWYPSYIPQB-UHFFFAOYSA-J tetrasodium;2-(1,2-dicarboxylatoethoxy)butanedioate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]C(=O)CC(C([O-])=O)OC(C([O-])=O)CC([O-])=O XGMYMWYPSYIPQB-UHFFFAOYSA-J 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/39—Organic or inorganic per-compounds
- C11D3/3945—Organic per-compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/18—Stationary reactors having moving elements inside
- B01J19/1868—Stationary reactors having moving elements inside resulting in a loop-type movement
- B01J19/1875—Stationary reactors having moving elements inside resulting in a loop-type movement internally, i.e. the mixture circulating inside the vessel such that the upwards stream is separated physically from the downwards stream(s)
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C407/00—Preparation of peroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C407/00—Preparation of peroxy compounds
- C07C407/003—Separation; Purification; Stabilisation; Use of additives
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C409/00—Peroxy compounds
- C07C409/24—Peroxy compounds the —O—O— group being bound between a >C=O group and hydrogen, i.e. peroxy acids
Definitions
- the present invention is related to an improved method for making aliphatic diperoxyacids having from about 8 to about 16 carbon atoms.
- Peroxygen bleaching agents in general and peroxyacid compounds in particular have long been recognized as effective bleaching agents for use when the adverse color and fabric damage effects of harsh halogen active bleaching agents cannot be tolerated. See, for example, Canadian Patent 632,620, January 30,1962,to McCune. This attractive nature of peroxyacid compounds makes it desirable to be able to make them in the most economical manner.
- diperoxyacids have also been disclosed. See, for example, U.S. Patent 3,235,584, February 15,1966, to Blumbergs wherein it is disclosed to react an organic acid halide with an alkali metal or alkaline earth metal peroxide to form a salt of a peroxycarboxylic acid. Also U.S. Patent 3,284,491, November 8,1966, to Korach et al. wherein a peroxyacid is formed in a single liquid phase.
- the present invention relates to a process for making aliphatic diperoxyacids comprising continuously adding a dibasic acid having from about 8 to about 16 carbon atoms, sulfuric acid, hydrogen peroxide and water to a stirred reactor.
- the diperoxyacid formed is continuously withdrawn from the reactor to maintain a constant residence time for the reactants in the reactor.
- the process of the present invention involves continuously adding an aliphatic, dibasic acid having from about 8 to about 16 carbon atoms, sulfuric acid, hydrogen peroxide and water to a stirred reactor.
- the dibasic acid is peroxidized to the diperoxyacid in the reactor which peroxyacid then precipitates in crystalline form.
- the crystalline product is continuously withdrawn from the reactor to maintain a constant average residence time for the reactants.
- the actual average residence time can be established by controlling the reactant feed rates and product withdrawal rate. It is therefore possible to vary the average residence time from several minutes to several hours depending on the actual design of the reactor. For reasons of efficiency the residence time preferably should be sufficient to allow for at least 80% conversion of the dibasic acid to the diperoxyacid.
- the composition of the liquid, excluding diacids and diperoxyacids, in the reactor is important in the formation of the diperoxyacid.
- the maintained liquid composition in the reactor preferably comprises from about 60% to about 80% sulfuric acid, from about 0.5% to about 15% hydrogen peroxide and from about 5% to about 39.5% water.
- this liquid composition maintained in the reactor is from about 60% to about 80% sulfuric acid, from about 2% to about 15% hydrogen peroxide and from about 5% to about 38% water.
- Hydrogen peroxide can be of any concentration, but is preferably from about 35% to about 70%, while sulfuric acid is preferably used in a concentration of from about 92% to about 98%.
- the percentages of these materials in the reaction mixture described above are based on pure materials.
- the acids suitable for use herein are those aliphatic dibasic carboxylic acids having from about 8 to about 16 carbon atoms.
- the unsubstituted acids have the following general formula: - wherein R is an alkylene group containing from about 6 to about 14 carbon atoms.
- R groups are of the formula -(CH 2 ) n - wherein n is a number of from about 6 to about 14.
- dodecanedioic acid (n 10).
- the diperoxyacid formation reaction is as follows: It is seen that for each mole of dibasic acid used two moles of hydrogen peroxide are required to form the diperoxyacid. It is preferred, however, that an excess of hydrogen peroxide be used in amounts ranging up to 5 times the stoichiometric required amount.
- the addition of the dibasic acid to the reactor can be done in either of two distinct ways. In the first way the dibasic acid is added separately from the other reactants. In the second, preferred way, the dibasic acid is dissolved in the sulfuric acid with the solution being added via one inlet stream while aqueous hydrogen peroxide is added as a second inlet stream.
- the size of the equipment required for the present process is easily determined by the skilled artisan when it has been determined that a particular production rate is desired.
- the material of construction is not critical but is preferably selected from the group consisting of glass, Teflon stainless steel, tantalum, aluminium and porcelain.
- the present process can take the form of any continuous stirred reactor.
- Two common forms of such reactors involve the use of a stirred tank or a high speed recycle reactor wherein the mixing is the result of the action of a pump.
- the reactant streams are fed into a pump rather than into a mixing tank, the diperoxyacid product is withdrawn from the pump and run into a heat exchanger and part of the cooled product is recycled to the pump.
- Each system has certain advantages and may in fact be used together to obtain the benefits of both.
- the temperature maintained in the reactor is a critical elemen in determining the rate and characteristics of the peroxi- dation reaction. In the present invention it is preferred to operate the reactor in the range of about 15 to about 45°C.
- Another element which plays an important role in the reaction process is the mixing which takes place in the reactor. It is desirable in a stirred tank reactor, for maximum crystal size, to use low-shear mixing such as that provided by a slowly moving paddle type agitator. High shear, such as that supplied by a high speed radial turbine, results in the crystals being reduced in size. The selection of a pumping system in the high speed recycle process should also be made so that crystal break up is minimized.
- the cooling necessary to achieve the desired temperature in either the stirred tank reactor or the recycle process can be obtained in any convenient way.
- the stirred tank cooling coils or a jacket in contact with the tank surface may be employed.
- the reactor system may have included in it a portion of a plug flow reactor.
- Such a combination allows for improved mixing within the reactor,as well as helps to control particle size. See, for example, Becker, G.W. and Larson, M.A., "Mixing Effects in Continuous Crystallization,” Chemical Engineering Progress Symposium Series - Crystallization from Solutions and Melts, Vol. 65. The entire volume being incorporated herein by reference.
- diperoxyacid product Once the diperoxyacid product is removed from the reactor system it must be filtered and washed.
- the choice of an appropriate filter is dependent on the production rate desired, as well as the crystal characteristics. As with the parts of the reactor system, the skilled artisan, knowing these facts, can easily select an appropriate filter.
- the peroxyacids made using the process of the present invention can be dried using conventional drying techniques with usual safeguards for handling peroxyacids being observed.
- the continuous stirred tank reactor as described above, when it is started up, is charged with some of the diperoxyacid reaction product. After the reactor is operational a recycle stream may be used to supply part of the reactant liquids.
- the continuous process herein can utilize faster reaction conditions with fewer safety problems than is possible with a batch reactor.
- the peroxyacid compounds made using the-process of the present invention can be used in a wide variety of compositions.
- a preferred use is as a fabric bleaching agent.
- certain additives are desirably present.
- peroxyacids are susceptible to a number of different stability problems, as well as being likely to cause some problems. Looking at the latter first, peroxyacids decompose exothermally and when the material is in dry granular form the heat generated must be controlled to make the product safe.
- the best exotherm control agents are those which are capable of liberating moisture of the peroxyacid employed.
- U.S. Patent 3,770,816, November 6, 1973, to Nielsen, incorporated herein by reference discloses a wide variety of hydrated materials which can serve as suitable exotherm control agents.
- Preferred hydrates are the alkali metal aluminum sulfates, particularly preferred is potassium aluminum sulfate.
- Other preferred exotherm control agents are those materials which lose water as the result of chemical decomposition such as boric acid, malic acid and maleic acid. The exotherm control agent is preferably used in an amount of from about 100% to about 200 % based on the weight of the peroxyacid compound.
- Patent 2,838,459, June 10,1958, to Sprout, Jr. discloses a variety of polyphosphates as stabilizing agents for peroxide baths. These materials are useful herein as stabilizing aids.
- U.S. Patent 3,192,255, June 29,1965, to Cann discloses the use of quinaldic acid to stabilize percarboxylic acids. This material; as well as picolinic acid and dipicolinic acid, would also be useful in the compositions of the present invention.
- a preferred chelating system for the present invention is a mixture of 8-hydroxyquinoline and an acid polyphosphate, preferably acid sodium pyrophosphate.
- the latter can be a mixture of phosphoric acid and sodium pyrophosphate wherein the ratio of the former to the latter is from about 0.5:1 to about 2:1 and the ratio of the mixture to 8-hydroxyquinoline is from about 1:1 to about 5:1.
- coating materials may also be used to extend the shelf life of dry granular compositions.
- Such coating materials may be, in general, acids, esters, ethers and hydrocarbons and include such things as wide varieties of fatty acids, derivatives of fatty alcohols, such as esters and ethers, derivatives of polyethyleneglycols such as esters and ethers and hydrocarbon oils and waxes. These materials aid in preventing moisture from reaching the peracid compound.
- the coating material may be used to segregate the peracid compound from other agents which may be present in the composition and adversely affect the peracid's stability. When used in this manner the coating may be used on both the peracid compound and the other agent or either individually.
- the amount of the coating material used is generally from about 2.5% to about 15% based on the weight of the peroxyacid compound.
- Additional agents which may be used to aid in giving good bleaching performance include such things as pH adjustment agents, bleach activators and minors such as coloring agents, dyes and perfumes.
- Typical pH adjustment agents are used to alter or maintain aqueous solutions of the instant compositions within the 5 to 10 pH range in which peroxyacid bleaching agents are generally most useful.
- pH adjustment agents can be either of the acid or base type.
- acidic pH adjustment agents designed to compensate for the presence of other highly alkaline materials include normally solid organic and inorganic acids, acid mixtures and acid salts.
- Such acidic pH adjustment agents include citric acid, glycolic acid, tartaric acid, gluconic acid, glutamic acid, sulfamic acid, sodium bisulfate, potassium bisulfate, ammonium bisulfate and mixtures of citric acid and lauric acid.
- Citric acid is preferred by virtue of its low toxicity and hardness sequestering capability.
- Optional alkaline pH adjustment agents include the conventional alkaline buffering agents.
- buffering agents include such salts as carbonates, bicarbonates, silicates, pyrophosphates and mixtures thereof.
- Sodium bicarbonate and tetrasodium pyrophosphate are highly preferred.
- Optional peroxyacid bleach activators as suggested by the prior art include such materials as aldehydes and ketones. Use of these materials as bleaching activators is described more fully in U.S. Patent 3,822,114, July 2, 1974, to Montgomery, incorporated herein by reference.
- a preferred dry, granular bleaching product employing the peroxyacid bleach of the present invention involves combining the active peroxy compound with potassium aluminum sulfate or boric acid and the acid pyrophosphate/8-hydroxyquinoline subsequently coating this mixture with mineral oil and agglomerating the coated particles with a polyethylene glycol derivative. An alkaline pH adjustment agent is then added to the agglomerated stabilized active as a dry mix.
- Optional ingredients if utilized in combination with the active peroxyacid of the instant invention to form a complete bleaching product, comprise from about 20% to about 99% weight of the total composition.
- the peroxyacid compound made using the process of the present invention comprises from about 1% to about 80% of the composition.
- the bleaching compositions of the instant invention can also be added to and made a part of conventional fabric laundering detergent compositions.
- optional materials for the instant bleaching compositions can include such standard detergent adjuvants as surfactants and builders.
- Optional surfactants are selected from the group consisting of organic anionic, nonionic, ampholytic, and zwitterionic surfactants and mixtures thereof.
- Optional builder materials include any of the conventional organic and inorganic builder salts including carbonates, silicates, acetates, polycarboxylates and phosphates.
- the instant bleaching agent generally comprises from about 1% to about 40% by weight of such conventional detergent compositions.
- the instant bleaching compositions can optionally contain from about 60% to about 99% by weight of conventional surfactant and builder materials. Further examples of suitable surfactants and builders are given below.
- Water-soluble salts of the higher fatty acids are useful as the anionic surfactant herein.
- This class of surfactants includes ordinary alkali metal soaps such as the sodium, potassium, ammonium and alkanolammonium salts of higher fatty acids containing from about 8 to about 24 carbon atoms and preferably from about 10 to about 20 carbon atoms. Soaps can be made by direct saponification of fats and oils or by the neutralization of free fatty acids. Particularly useful are the sodium and potassium salts of the mixtures of fatty acids derived from coconut oil and tallow, i.e. sodium or potassium tallow and coconut soaps.
- anionic surfactants includes water-soluble salts, particularly the alkali metal, ammonium and alkanolammonium salts, of organic sulfuric reaction products having in their molecular structure an alkyl group containing from about 8 to about 22 carbon atoms and a sulfonic acid or sulfuric acid ester group.
- alkyl is the alkyl portion of acyl groups.
- this group of synthetic surfactants which can be used in the present detergent compositions are the sodium and potassium alkyl sulfates, especially those obtained by sulfating the higher alcohols (C 8 -C 18 carbon atoms) produced by reducing the glycerides of tallow or coconut oil; and sodium and potassium alkyl benzene sulfonates, in which the alkyl group contains from about 9 to about 15 carbon atoms in straight chain or branched chain configuration,e.g., those of the type described in U.S. Patents 2,220,099, and 2,477,383, incorporated herein by reference.
- anionic surfactant compounds useful herein include the sodium alkyl glyceryl ether sulfonates, especially those ethers or higher alcohols derived from tallow and coconut oil; sodium coconut oil fatty acid monoglyceride sulfonates and sulfates; and sodium or potassium salts of alkyl phenol ethylene oxide ether sulfate containing about 1 to about 10 units of-ethylene oxide per molecule and wherein the alkyl groups contain about 8 to about 12 carbon atoms.
- Other useful anionic surfactants herein include the water-soluble salts of esters of o(-sulfonated fatty acids containing from about 6 to 20 carbon atoms in the ester group; water-soluble salts of 2-acyloxy-alkane-l-sulfonic acids containing from about 2 to 9 carbon atoms in the acyl group and from about 9 to about 23 carbon atoms in the alkane moiety; alkyl ether sulfates containing from about 10 to 20 carbon atoms in the alkyl group and from about 1 to 30 moles of ethylene oxide; water-soluble salts of olefin sulfonates containing from about 12 to 24 carbon atoms; and ⁇ -alkyloxy alkane sulfonates containing from about 1 to 3 carbon atoms in the alkyl group and from about 8 to 20 carbon atoms in the alkane moiety,
- Preferred water-soluble anionic organic surfactants herein include linear alkyl benzene sulfonates containing from about 11 to 14 carbon atoms in the alkyl group; the tallow range alkyl sulfates; the coconut range alkyl glyceryl sulfonates; and alkyl ether sulfates wherein the alkyl moiety contains from about 14 to 18 carbon atoms and wherein the average degree of ethoxylation varies between 1 and 6.
- Specific preferred anionic surfactants for use herein include: sodium linear C 10 -C 12 alkyl benzene sulfonate; triethanolamine C 10 -C 12 alkyl benzene sulfonate; sodium tallow alkyl sulfate; sodium coconut alkyl glyceryl ether sulfonate; and the sodium salt of a sulfated condensation product of tallow alcohol with from about 3 to about 10 moles of ethylene oxide.
- anionic surfactants can be used separately herein or as mixtures.
- Nonionic surfactants include the water-soluble ethoxylates of C 10 -C 20 aliphatic alcohols and C 6 -C 12 alkyl phenols. Many nonionic surfactants are especially suitable for use as suds controlling agents in combination with anionic surfactants of the type disclosed herein.
- Semi-polar surfactants useful herein include water-soluble amine oxides containing one alkyl moiety of from about 10 to 28 carbon atoms and 2 moieties selected from the group consisting of alkyl groups and hydroxyalkyl groups containing from 1 to about 3 carbon atoms; water-soluble phosphine oxides containing one alkyl moiety of about 10 to 28 carbon atoms and 2 moieties selected from the group consisting of alkyl groups and hydroxyalkyl groups containing from about 1 to 3 carbon atoms; and water-soluble sulfoxides containing one alkyl moiety of from about 10 to 28 carbon atoms and a moiety selected from the group consisting of alkyl and hydroxyalkyl moiet of from 1 to 3 carbon atoms.
- Ampholytic surfactants include derivatives of aliphatic or aliphatic derivatives of heterocyclic secondary and tertiary amines in which the aliphatic moiety can be straight chain or branched and wherein one of the aliphatic substituents contains from about 8 to 18 carbon atoms and at least one aliphatic substituent contains an anionic water-solubilizing group.
- Zwitterionic surfactants include derivatives of aliphatic quaternary ammonium, phosphonium and sulfonium compounds in which the aliphatic moieties can be straight or branched chain, and wherein one of the aliphatic substituents contains from about 8 to 18 carbon atoms and one contains an anionic water-solubilizing group.
- compositions can also comprise those detergency builders commonly taught for use in laundry compositions.
- Useful builders herein include any of the conventional inorganic and organic water-soluble builder salts, as well as various water-insoluble and so- called "seeded" builders.
- Inorganic detergency builders useful herein include, for example, water-soluble salts of phosphates, pyrophosphates, orthophosphates, polyphosphates, phosphonates, carbonates, bicarbonates, borates and silicates.
- Specific examples of inorganic phosphate builders include sodium and potassium tripolyphosphates, phosphates, and hexametaphosphates.
- the polyphosphonates specifically include, for example, the sodium and potassium salts of ethylene diphosphonic acid, the sodium and potassium salts of ethane 1-hydroxy-1, 1-diphosphonic acid, and the sodium and potassium salts of ethane-l, 1, 2-triphosphonic acid. Examples of these and other phosphorus builder compounds are disclosed in U.S.
- Sodium tripolyphosphate is an especially preferred, water-soluble inorganic builder herein.
- Non-phosphorus containing sequestrants can also be selected for use herein as detergency builders.
- Specific examples of non-phosphorus, inorganic builder ingredients include water-soluble inorganic carbonate bicarbonate, borate and silicate salts.
- the alkali metal, e.g., sodium and potassium, carbonates, bicarbonates, borates (Borax) and silicates are particularly useful herein.
- Water-soluble, organic builders are also useful herein.
- the alkali metal, ammonium and substituted ammonium polyacetates, carboxylates, polycarboxylates, succinates, and polyhydroxysulfonates are useful builders in the present compositions and processes.
- Specific examples of the polyacetate and polycarboxylate builder salts include sodium, potassium, lithium, ammonium and substituted ammonium salts of ethylene diamine tetraacetic acid, nitrilotriacetic acid, oxydisuccinic acid, mellitic acid, benzene polycarboxylic acids, and citric acid.
- Highly preferred non-phosphorous builder materials include sodium carbonate, sodium bicarbonate, sodium silicate, sodium citrate, sodium oxydisuccinate, sodium mellitate, sodium nitrilotriacetate, and sodium ethylenediaminetetraacetate, and mixtures thereof.
- materials capable of forming the water-insoluble reaction product include the water-soluble salts of carbonates, bicarbonates, sequicarbonates, silicates, aluminates and oxalates.
- the alkali metal, especially sodium, salts of the foregoing materials are preferred for convenience and economy.
- Another type of builder useful herein includes various substantially water-insoluble materials which are capable of reducing the hardness content of laundering liquors, e.g., by ion-exchange processes.
- Examples of such builder materials include the phosphorylated cloths disclosed in U.S. Patent 3,424,545, Bauman, issued January 28,1969, incorporated herein by reference.
- the complex aluminosilicates i.e., zeolite-type materials
- zeolite-type materials are useful presoaking/washing adjuvants herein in that these materials soften water, i.e., remove Ca ++ hardness.
- zeolite materials and a method of preparation appears in Milton, U.S. Patent 2,882,243, issued April 14,1959, incorporated herein by reference.
- the bleaching compositions of the instant invention are prepared in any conventional manner such as by admixing ingredients, by agglomeration, by compaction or by granulation in the case of the dry granule form.
- a peroxyacid-water mixture containing from about 50 % by weight to about 80 % by weight of water is combined in proper proportions with any optional components to be utilized within the bleaching granules themselves.
- Such a combination of ingredients is then thoroughly mixed and subsequently run through an extruder.
- Extrudate in the form of noodles is then fed into a spheronizer (also known by the trade name, Marumerizer) to form approximately spherical particles from the peroxyacid- containing noodles.
- the bleaching granules can then be dried to the appropriate water content. Upon leaving the spheronizer, such particles are screened to provide uniform particle size.
- Bleaching granules prepared in this manner can then be admixed with other granules of optional bleaching or detergent composition materials.
- Actual particle size of either the bleach-containing granules or optional granules of additional material is not critical. If, however, compositions are to be realized having commercially acceptable flow properties, certain granule size limitations are highly preferred. In general, all granules of the instant compositions preferably range in size from about 100 microns, more preferably from about 100 microns to 3000 microns, more preferably from about 100 microns to 1300 microns.
- the ratio of the average particle sizes of the bleach-containing granules and optional granules of other materials varies between 0.5:1 and 2.0:1.
- Bleaching compositions of the present invention are utilized by dissolving them in water in an amount sufficient to provide from about 1.0 ppm to 100 ppm available oxygen in solution. Generally, this amounts to about 0.01 % to 0.2 % by weight of composition in solution. Fabrics to be bleached are then contacted with such aqueous bleaching solutions.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Detergent Compositions (AREA)
Abstract
Description
- The present invention is related to an improved method for making aliphatic diperoxyacids having from about 8 to about 16 carbon atoms.
- Peroxygen bleaching agents in general and peroxyacid compounds in particular have long been recognized as effective bleaching agents for use when the adverse color and fabric damage effects of harsh halogen active bleaching agents cannot be tolerated. See, for example, Canadian Patent 632,620, January 30,1962,to McCune. This attractive nature of peroxyacid compounds makes it desirable to be able to make them in the most economical manner.
- The prior art teaches the making of peroxyacid compounds in several ways. Parker et al. in Journal American Chemical Society, 79, 1929 (1957), disclose making diperoxyacids by dissolving a dibasic acid in sulfuric acid and adding hydrogen peroxide dropwise. U.S. Patent 3,079,411, February 26,1963, to Silbert et al., discloses forming long chain aliphatic peroxyacids by combining an aliphatic acid with an alkanesulfonic acid and then treating the combination with an excess of hydrogen peroxide. U.S. Patent 2,813,896, November 19,1957 to Krimm, discloses forming peroxyacids by combining sulfuric acid and hydrogen peroxide and subsequently treating the combination with a carboxylic acid. The reaction is conducted so that there is at least one mole of sulfuric acid present at the end of the reaction for every six moles of water. All of the above disclosed methods utilize the batch manufacturing approach.
- The use of continuous processes for making diperoxyacids has also been disclosed. See, for example, U.S. Patent 3,235,584, February 15,1966, to Blumbergs wherein it is disclosed to react an organic acid halide with an alkali metal or alkaline earth metal peroxide to form a salt of a peroxycarboxylic acid. Also U.S. Patent 3,284,491, November 8,1966, to Korach et al. wherein a peroxyacid is formed in a single liquid phase.
- While the prior art teaches several methods for making peroxyacids, it does not suggest the advantages for using a continuous stirred reactor for making peroxyacids of the type disclosed herein utilizing the sulfuric acid, water, hydrogen peroxide reaction medium. The present inventors have discovered that a continuous reactor can produce aliphatic diperoxyacids having significantly larger crystals than those formed from a batch process. This allows for the crystals to be collected more easily and economically due to increased filtration rates.
- It is therefore an object of the present invention to provide a method for making diperoxyacids which have increased crystal size.
- This and other objects of the present invention will become apparent from the following description.
- All percentages and ratios used herein are by weight unless otherwise specified.
- The present invention relates to a process for making aliphatic diperoxyacids comprising continuously adding a dibasic acid having from about 8 to about 16 carbon atoms, sulfuric acid, hydrogen peroxide and water to a stirred reactor. The diperoxyacid formed is continuously withdrawn from the reactor to maintain a constant residence time for the reactants in the reactor.
- The process of the present invention involves continuously adding an aliphatic, dibasic acid having from about 8 to about 16 carbon atoms, sulfuric acid, hydrogen peroxide and water to a stirred reactor. The dibasic acid is peroxidized to the diperoxyacid in the reactor which peroxyacid then precipitates in crystalline form. The crystalline product is continuously withdrawn from the reactor to maintain a constant average residence time for the reactants. The actual average residence time can be established by controlling the reactant feed rates and product withdrawal rate. It is therefore possible to vary the average residence time from several minutes to several hours depending on the actual design of the reactor. For reasons of efficiency the residence time preferably should be sufficient to allow for at least 80% conversion of the dibasic acid to the diperoxyacid.
- The composition of the liquid, excluding diacids and diperoxyacids, in the reactor is important in the formation of the diperoxyacid. In the present invention i1 has been found that the maintained liquid composition in the reactor preferably comprises from about 60% to about 80% sulfuric acid, from about 0.5% to about 15% hydrogen peroxide and from about 5% to about 39.5% water. Most preferably, this liquid composition maintained in the reactor is from about 60% to about 80% sulfuric acid, from about 2% to about 15% hydrogen peroxide and from about 5% to about 38% water.
- The ingredients used in the process of the present invention are all readily available in commerce. Hydrogen peroxide can be of any concentration, but is preferably from about 35% to about 70%, while sulfuric acid is preferably used in a concentration of from about 92% to about 98%. The percentages of these materials in the reaction mixture described above are based on pure materials.
- The acids suitable for use herein are those aliphatic dibasic carboxylic acids having from about 8 to about 16 carbon atoms. The unsubstituted acids have the following general formula: -
- The diperoxyacid formation reaction is as follows:
- The addition of the dibasic acid to the reactor can be done in either of two distinct ways. In the first way the dibasic acid is added separately from the other reactants. In the second, preferred way, the dibasic acid is dissolved in the sulfuric acid with the solution being added via one inlet stream while aqueous hydrogen peroxide is added as a second inlet stream.
- The size of the equipment required for the present process is easily determined by the skilled artisan when it has been determined that a particular production rate is desired. The material of construction is not critical but is preferably selected from the group consisting of glass, Teflon stainless steel, tantalum, aluminium and porcelain.
- The present process can take the form of any continuous stirred reactor. Two common forms of such reactors involve the use of a stirred tank or a high speed recycle reactor wherein the mixing is the result of the action of a pump. In the latter system the reactant streams are fed into a pump rather than into a mixing tank, the diperoxyacid product is withdrawn from the pump and run into a heat exchanger and part of the cooled product is recycled to the pump. Each system has certain advantages and may in fact be used together to obtain the benefits of both.
- Regardless of the particular process selected the temperature maintained in the reactor is a critical elemen in determining the rate and characteristics of the peroxi- dation reaction. In the present invention it is preferred to operate the reactor in the range of about 15 to about 45°C.
- Another element which plays an important role in the reaction process is the mixing which takes place in the reactor. It is desirable in a stirred tank reactor, for maximum crystal size, to use low-shear mixing such as that provided by a slowly moving paddle type agitator. High shear, such as that supplied by a high speed radial turbine, results in the crystals being reduced in size. The selection of a pumping system in the high speed recycle process should also be made so that crystal break up is minimized.
- The cooling necessary to achieve the desired temperature in either the stirred tank reactor or the recycle process can be obtained in any convenient way. For examp] with the stirred tank cooling coils or a jacket in contact with the tank surface may be employed.
- As was indicated above, the different types of continuous stirred reactors may be combined. Similarly the reactor system may have included in it a portion of a plug flow reactor. Such a combination allows for improved mixing within the reactor,as well as helps to control particle size. See, for example, Becker, G.W. and Larson, M.A., "Mixing Effects in Continuous Crystallization," Chemical Engineering Progress Symposium Series - Crystallization from Solutions and Melts, Vol. 65. The entire volume being incorporated herein by reference.
- Once the diperoxyacid product is removed from the reactor system it must be filtered and washed. The choice of an appropriate filter is dependent on the production rate desired, as well as the crystal characteristics. As with the parts of the reactor system, the skilled artisan, knowing these facts, can easily select an appropriate filter.
- The peroxyacids made using the process of the present invention can be dried using conventional drying techniques with usual safeguards for handling peroxyacids being observed.
- The continuous stirred tank reactor as described above, when it is started up, is charged with some of the diperoxyacid reaction product. After the reactor is operational a recycle stream may be used to supply part of the reactant liquids.
- In addition to providing larger crystals, the continuous process herein can utilize faster reaction conditions with fewer safety problems than is possible with a batch reactor.
- The peroxyacid compounds made using the-process of the present invention can be used in a wide variety of compositions. A preferred use is as a fabric bleaching agent. To insure that compositions containing the peroxyacid compounds are safe and effective, certain additives are desirably present.
- It is well documented in the peroxyacid literature that peroxyacids are susceptible to a number of different stability problems, as well as being likely to cause some problems. Looking at the latter first, peroxyacids decompose exothermally and when the material is in dry granular form the heat generated must be controlled to make the product safe. The best exotherm control agents are those which are capable of liberating moisture of the peroxyacid employed. U.S. Patent 3,770,816, November 6, 1973, to Nielsen, incorporated herein by reference, discloses a wide variety of hydrated materials which can serve as suitable exotherm control agents. Included among such materials are magnesium sulfate .7H20, magnesium formate dihydrate, calcium sulfate (CaS04 .2H20), calcium lactate hydrate, calcium sodium sulfate (CaS04 . 2Na2S04 . 2H20), and hydrated forms of such things as sodium aluminu sulfate, potassium aluminum sulfate, ammonium aluminum sulfate and aluminum sulfate. Preferred hydrates are the alkali metal aluminum sulfates, particularly preferred is potassium aluminum sulfate. Other preferred exotherm control agents are those materials which lose water as the result of chemical decomposition such as boric acid, malic acid and maleic acid. The exotherm control agent is preferably used in an amount of from about 100% to about 200 % based on the weight of the peroxyacid compound.
- The other problems faced when peroxyacid compounds are used fall into the area of maintaining good bleach effectiveness. It has been recognized that metal ions are capable of serving as catalyzing agents in the degradation of the peroxyacid compounds. To overcome this problem chelating agents can be used in an amount ranging from 0.005% to about 1.00% based on the weight of the composition to tie up heavy metal ions. U.S. Patent 3,442,937, May 6,1969, to Sennewald et al., discloses a chelating system comprising quinoline or a salt thereof, an alkali metal polyphosphate and, optionally, a synergistic amount of urea. U.S. Patent 2,838,459, June 10,1958, to Sprout, Jr., discloses a variety of polyphosphates as stabilizing agents for peroxide baths. These materials are useful herein as stabilizing aids. U.S. Patent 3,192,255, June 29,1965, to Cann, discloses the use of quinaldic acid to stabilize percarboxylic acids. This material; as well as picolinic acid and dipicolinic acid, would also be useful in the compositions of the present invention. A preferred chelating system for the present invention is a mixture of 8-hydroxyquinoline and an acid polyphosphate, preferably acid sodium pyrophosphate. The latter can be a mixture of phosphoric acid and sodium pyrophosphate wherein the ratio of the former to the latter is from about 0.5:1 to about 2:1 and the ratio of the mixture to 8-hydroxyquinoline is from about 1:1 to about 5:1.
- In addition to the above-mentioned chelating systems to tie up heavy metals in the peroxyacid compositions, coating materials may also be used to extend the shelf life of dry granular compositions. Such coating materials may be, in general, acids, esters, ethers and hydrocarbons and include such things as wide varieties of fatty acids, derivatives of fatty alcohols, such as esters and ethers, derivatives of polyethyleneglycols such as esters and ethers and hydrocarbon oils and waxes. These materials aid in preventing moisture from reaching the peracid compound. Secondly, the coating material may be used to segregate the peracid compound from other agents which may be present in the composition and adversely affect the peracid's stability. When used in this manner the coating may be used on both the peracid compound and the other agent or either individually. The amount of the coating material used is generally from about 2.5% to about 15% based on the weight of the peroxyacid compound.
- Additional agents which may be used to aid in giving good bleaching performance include such things as pH adjustment agents, bleach activators and minors such as coloring agents, dyes and perfumes. Typical pH adjustment agents are used to alter or maintain aqueous solutions of the instant compositions within the 5 to 10 pH range in which peroxyacid bleaching agents are generally most useful. Depending upon the nature of other optional composition ingredients, pH adjustment agents can be either of the acid or base type. Examples of acidic pH adjustment agents designed to compensate for the presence of other highly alkaline materials include normally solid organic and inorganic acids, acid mixtures and acid salts. Examples of such acidic pH adjustment agents include citric acid, glycolic acid, tartaric acid, gluconic acid, glutamic acid, sulfamic acid, sodium bisulfate, potassium bisulfate, ammonium bisulfate and mixtures of citric acid and lauric acid. Citric acid is preferred by virtue of its low toxicity and hardness sequestering capability.
- Optional alkaline pH adjustment agents include the conventional alkaline buffering agents. Examples of such buffering agents include such salts as carbonates, bicarbonates, silicates, pyrophosphates and mixtures thereof. Sodium bicarbonate and tetrasodium pyrophosphate are highly preferred.
- Optional peroxyacid bleach activators as suggested by the prior art include such materials as aldehydes and ketones. Use of these materials as bleaching activators is described more fully in U.S. Patent 3,822,114, July 2, 1974, to Montgomery, incorporated herein by reference.
- A preferred dry, granular bleaching product employing the peroxyacid bleach of the present invention involves combining the active peroxy compound with potassium aluminum sulfate or boric acid and the acid pyrophosphate/8-hydroxyquinoline subsequently coating this mixture with mineral oil and agglomerating the coated particles with a polyethylene glycol derivative. An alkaline pH adjustment agent is then added to the agglomerated stabilized active as a dry mix.
- Optional ingredients, if utilized in combination with the active peroxyacid of the instant invention to form a complete bleaching product, comprise from about 20% to about 99% weight of the total composition. Conversely, the peroxyacid compound made using the process of the present invention comprises from about 1% to about 80% of the composition.
- The bleaching compositions of the instant invention, particularly the dry granular version, can also be added to and made a part of conventional fabric laundering detergent compositions. Accordingly, optional materials for the instant bleaching compositions can include such standard detergent adjuvants as surfactants and builders. Optional surfactants are selected from the group consisting of organic anionic, nonionic, ampholytic, and zwitterionic surfactants and mixtures thereof. Optional builder materials include any of the conventional organic and inorganic builder salts including carbonates, silicates, acetates, polycarboxylates and phosphates. If the instant stabilized bleaching compositions are employed as part of a conventional fabric laundering detergent composition, the instant bleaching agent generally comprises from about 1% to about 40% by weight of such conventional detergent compositions. Conversely, the instant bleaching compositions can optionally contain from about 60% to about 99% by weight of conventional surfactant and builder materials. Further examples of suitable surfactants and builders are given below.
- Water-soluble salts of the higher fatty acids, i.e., "soaps," are useful as the anionic surfactant herein. This class of surfactants includes ordinary alkali metal soaps such as the sodium, potassium, ammonium and alkanolammonium salts of higher fatty acids containing from about 8 to about 24 carbon atoms and preferably from about 10 to about 20 carbon atoms. Soaps can be made by direct saponification of fats and oils or by the neutralization of free fatty acids. Particularly useful are the sodium and potassium salts of the mixtures of fatty acids derived from coconut oil and tallow, i.e. sodium or potassium tallow and coconut soaps.
- Another class of anionic surfactants includes water-soluble salts, particularly the alkali metal, ammonium and alkanolammonium salts, of organic sulfuric reaction products having in their molecular structure an alkyl group containing from about 8 to about 22 carbon atoms and a sulfonic acid or sulfuric acid ester group. (Included in the term "alkyl" is the alkyl portion of acyl groups.) Examples of this group of synthetic surfactants which can be used in the present detergent compositions are the sodium and potassium alkyl sulfates, especially those obtained by sulfating the higher alcohols (C8-C18 carbon atoms) produced by reducing the glycerides of tallow or coconut oil; and sodium and potassium alkyl benzene sulfonates, in which the alkyl group contains from about 9 to about 15 carbon atoms in straight chain or branched chain configuration,e.g., those of the type described in U.S. Patents 2,220,099, and 2,477,383, incorporated herein by reference.
- Other anionic surfactant compounds useful herein include the sodium alkyl glyceryl ether sulfonates, especially those ethers or higher alcohols derived from tallow and coconut oil; sodium coconut oil fatty acid monoglyceride sulfonates and sulfates; and sodium or potassium salts of alkyl phenol ethylene oxide ether sulfate containing about 1 to about 10 units of-ethylene oxide per molecule and wherein the alkyl groups contain about 8 to about 12 carbon atoms.
- Other useful anionic surfactants herein include the water-soluble salts of esters of o(-sulfonated fatty acids containing from about 6 to 20 carbon atoms in the ester group; water-soluble salts of 2-acyloxy-alkane-l-sulfonic acids containing from about 2 to 9 carbon atoms in the acyl group and from about 9 to about 23 carbon atoms in the alkane moiety; alkyl ether sulfates containing from about 10 to 20 carbon atoms in the alkyl group and from about 1 to 30 moles of ethylene oxide; water-soluble salts of olefin sulfonates containing from about 12 to 24 carbon atoms; and β-alkyloxy alkane sulfonates containing from about 1 to 3 carbon atoms in the alkyl group and from about 8 to 20 carbon atoms in the alkane moiety,
- Preferred water-soluble anionic organic surfactants herein include linear alkyl benzene sulfonates containing from about 11 to 14 carbon atoms in the alkyl group; the tallow range alkyl sulfates; the coconut range alkyl glyceryl sulfonates; and alkyl ether sulfates wherein the alkyl moiety contains from about 14 to 18 carbon atoms and wherein the average degree of ethoxylation varies between 1 and 6.
- Specific preferred anionic surfactants for use herein include: sodium linear C10-C12 alkyl benzene sulfonate; triethanolamine C10-C12 alkyl benzene sulfonate; sodium tallow alkyl sulfate; sodium coconut alkyl glyceryl ether sulfonate; and the sodium salt of a sulfated condensation product of tallow alcohol with from about 3 to about 10 moles of ethylene oxide.
- It is to be recognized that any of the foregoing anionic surfactants can be used separately herein or as mixtures.
- Nonionic surfactants include the water-soluble ethoxylates of C10-C20 aliphatic alcohols and C6-C12 alkyl phenols. Many nonionic surfactants are especially suitable for use as suds controlling agents in combination with anionic surfactants of the type disclosed herein.
- Semi-polar surfactants useful herein include water-soluble amine oxides containing one alkyl moiety of from about 10 to 28 carbon atoms and 2 moieties selected from the group consisting of alkyl groups and hydroxyalkyl groups containing from 1 to about 3 carbon atoms; water-soluble phosphine oxides containing one alkyl moiety of about 10 to 28 carbon atoms and 2 moieties selected from the group consisting of alkyl groups and hydroxyalkyl groups containing from about 1 to 3 carbon atoms; and water-soluble sulfoxides containing one alkyl moiety of from about 10 to 28 carbon atoms and a moiety selected from the group consisting of alkyl and hydroxyalkyl moiet of from 1 to 3 carbon atoms.
- Ampholytic surfactants include derivatives of aliphatic or aliphatic derivatives of heterocyclic secondary and tertiary amines in which the aliphatic moiety can be straight chain or branched and wherein one of the aliphatic substituents contains from about 8 to 18 carbon atoms and at least one aliphatic substituent contains an anionic water-solubilizing group.
- Zwitterionic surfactants include derivatives of aliphatic quaternary ammonium, phosphonium and sulfonium compounds in which the aliphatic moieties can be straight or branched chain, and wherein one of the aliphatic substituents contains from about 8 to 18 carbon atoms and one contains an anionic water-solubilizing group.
- The instant granular compositions can also comprise those detergency builders commonly taught for use in laundry compositions. Useful builders herein include any of the conventional inorganic and organic water-soluble builder salts, as well as various water-insoluble and so- called "seeded" builders.
- Inorganic detergency builders useful herein include, for example, water-soluble salts of phosphates, pyrophosphates, orthophosphates, polyphosphates, phosphonates, carbonates, bicarbonates, borates and silicates. Specific examples of inorganic phosphate builders include sodium and potassium tripolyphosphates, phosphates, and hexametaphosphates. The polyphosphonates specifically include, for example, the sodium and potassium salts of ethylene diphosphonic acid, the sodium and potassium salts of ethane 1-hydroxy-1, 1-diphosphonic acid, and the sodium and potassium salts of ethane-l, 1, 2-triphosphonic acid. Examples of these and other phosphorus builder compounds are disclosed in U.S. Patents 3,159,581; 3,213,030; 3,422,021; 3,422,137; 3,400,176 and 3,400,148, incorporated herein by reference. Sodium tripolyphosphate is an especially preferred, water-soluble inorganic builder herein.
- Non-phosphorus containing sequestrants can also be selected for use herein as detergency builders. Specific examples of non-phosphorus, inorganic builder ingredients include water-soluble inorganic carbonate bicarbonate, borate and silicate salts. The alkali metal, e.g., sodium and potassium, carbonates, bicarbonates, borates (Borax) and silicates are particularly useful herein.
- Water-soluble, organic builders are also useful herein. For example, the alkali metal, ammonium and substituted ammonium polyacetates, carboxylates, polycarboxylates, succinates, and polyhydroxysulfonates are useful builders in the present compositions and processes. Specific examples of the polyacetate and polycarboxylate builder salts include sodium, potassium, lithium, ammonium and substituted ammonium salts of ethylene diamine tetraacetic acid, nitrilotriacetic acid, oxydisuccinic acid, mellitic acid, benzene polycarboxylic acids, and citric acid.
- Highly preferred non-phosphorous builder materials (both organic and inorganic) herein include sodium carbonate, sodium bicarbonate, sodium silicate, sodium citrate, sodium oxydisuccinate, sodium mellitate, sodium nitrilotriacetate, and sodium ethylenediaminetetraacetate, and mixtures thereof.
- Another type of detergency builder material useful in the present compositions and processes comprises a water-soluble material capable of forming a water-insoluble reaction product with water hardness cations in combination with a crystallization seed which is capable of providing growth sites for said reaction product.
- Specific example of materials capable of forming the water-insoluble reaction product include the water-soluble salts of carbonates, bicarbonates, sequicarbonates, silicates, aluminates and oxalates. The alkali metal, especially sodium, salts of the foregoing materials are preferred for convenience and economy.
- Another type of builder useful herein includes various substantially water-insoluble materials which are capable of reducing the hardness content of laundering liquors, e.g., by ion-exchange processes. Examples of such builder materials include the phosphorylated cloths disclosed in U.S. Patent 3,424,545, Bauman, issued January 28,1969, incorporated herein by reference.
- The complex aluminosilicates, i.e., zeolite-type materials, are useful presoaking/washing adjuvants herein in that these materials soften water, i.e., remove Ca++ hardness. Both the naturally occurring and synthetic "zeolites", especially zeolite A and hydrated zeolite A materials, are useful for this builder/softener purpose. A description of zeolite materials and a method of preparation appears in Milton, U.S. Patent 2,882,243, issued April 14,1959, incorporated herein by reference.
- The bleaching compositions of the instant invention are prepared in any conventional manner such as by admixing ingredients, by agglomeration, by compaction or by granulation in the case of the dry granule form. In one method for preparing such compositions, a peroxyacid-water mixture containing from about 50 % by weight to about 80 % by weight of water is combined in proper proportions with any optional components to be utilized within the bleaching granules themselves. Such a combination of ingredients is then thoroughly mixed and subsequently run through an extruder. Extrudate in the form of noodles is then fed into a spheronizer (also known by the trade name, Marumerizer) to form approximately spherical particles from the peroxyacid- containing noodles. The bleaching granules can then be dried to the appropriate water content. Upon leaving the spheronizer, such particles are screened to provide uniform particle size.
- Bleaching granules prepared in this manner can then be admixed with other granules of optional bleaching or detergent composition materials. Actual particle size of either the bleach-containing granules or optional granules of additional material is not critical. If, however, compositions are to be realized having commercially acceptable flow properties, certain granule size limitations are highly preferred. In general, all granules of the instant compositions preferably range in size from about 100 microns, more preferably from about 100 microns to 3000 microns, more preferably from about 100 microns to 1300 microns.
- Additionally, flowability is enhanced if particles of the present invention are of approximately the same size. Therefore, preferably the ratio of the average particle sizes of the bleach-containing granules and optional granules of other materials varies between 0.5:1 and 2.0:1.
- Bleaching compositions of the present invention are utilized by dissolving them in water in an amount sufficient to provide from about 1.0 ppm to 100 ppm available oxygen in solution. Generally, this amounts to about 0.01 % to 0.2 % by weight of composition in solution. Fabrics to be bleached are then contacted with such aqueous bleaching solutions.
- The process of the instant invention is illustrated by the following example:
- The advantage for the continuous process of the present invention over a batch process is demonstrated in the experiment described below.
- A..Diperoxydodecanedioic acid is made using a batch reactor equipped with a stirrer wherein (a) 50 grams of dodecanedioic acid is dissolved in 213.6 grams of 97 % sulfuric acid with the solution being cooled to 10°C; (b) a hydrogen peroxide mixture is prepared by mixing together, while keeping the temperature under 27°C, 116.7 grams of 67.8 % hydrogen peroxide, 57.5 grams of water and 213.3 grams of 97 % sulfuric acid; (c) the mixture of (b) is cooled to 6°C; and (d) the solution of (a) and the mixture of (b) are mixed together quickly and the mixture is maintained at a temperature of 35°C for a period of one hour. The diperoxydodecanedioic acid formed precipitates and the precipitate is washed with water and collected by means of filtration. The collected crystals are evaluated for particle size, filtration rate and available oxygen.
- B. A second batch of diperoxydodecanedioic acid which is seeded is made using a batch reactor equipped wit: a stirrer wherein (a) and (b) as described above are duplicated. To the peroxide mixture (b) are added 200 grams of the reaction product from A at a temperature of about 9°C with-the final mixture temperature going to about 30°C. To this mixture is added the dodecanedioic acid/sulfuric acid solution as described in (a) above and the temperature of the reaction mix is maintained at about 35°C for one hour. The diperoxyacid formed is filtered, washed with water and analyzed for particle size, filtration rate and available oxygen.
- C. A continuous stirred tank reaction is carried out by continuously feeding to a reactor similar to the batch reactors the following two streams: (a) 16.3 g/min. of a solution containing 10.4 % dodecanedioic acid and 89.6 % sulfuric acid (97 %); and (b) 5.94 g/min. of a mixture containing 45.2 % hydrogen peroxide and 54.8 % water. The reactor temperature is increased from 20°C to about 35°C during the first 90 minutes and is maintained at about 35°C for another 210 minutes. The diperoxyacid product is continuously withdrawn from the reactor vessel, filtered, washed and analyzed. The rate of product removal is such that the average residence time in the reactor is about 56 minutes. The reactor vessel at the start of the reaction is filled with reaction product which has been formed using a batch reactor as in A above.
- The increase in crystal size for the continuous reactor is shown in the following table.
-
- It is seen that the continuous process yields larger, more easily filtered, crystals than either a conventional batch reaction or a batch reaction which has been seeded with diperoxyacid.
-
Claims (9)
wherein the inlet flow rates to the reactor of sulfuric acid, hydrogen peroxide and water are sufficient to maintain a liquid concentration of about 60 % to about 80 % sulfuric acid, about 0.5 % to about 15 % hydrogen peroxide, and about 5 % to about 39.5 % water in the reactor.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US82931077A | 1977-08-31 | 1977-08-31 | |
US829310 | 1977-08-31 | ||
US89541178A | 1978-04-11 | 1978-04-11 | |
US895411 | 1978-04-11 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0000970A2 true EP0000970A2 (en) | 1979-03-07 |
EP0000970A3 EP0000970A3 (en) | 1979-04-04 |
EP0000970B1 EP0000970B1 (en) | 1982-03-24 |
Family
ID=27125261
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP78200149A Expired EP0000970B1 (en) | 1977-08-31 | 1978-08-21 | Method for making diperoxyacids |
Country Status (8)
Country | Link |
---|---|
EP (1) | EP0000970B1 (en) |
JP (1) | JPS5495510A (en) |
AU (1) | AU519053B2 (en) |
CA (1) | CA1106396A (en) |
DE (1) | DE2861690D1 (en) |
ES (1) | ES472945A1 (en) |
GR (1) | GR64813B (en) |
IT (1) | IT1195256B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0045290A2 (en) * | 1980-07-25 | 1982-02-03 | FMC Corporation | Continuous process for the production of peroxycarboxylic acid compositions |
US4337213A (en) * | 1981-01-19 | 1982-06-29 | The Clorox Company | Controlled crystallization diperoxyacid process |
EP0075419A2 (en) * | 1981-09-15 | 1983-03-30 | THE PROCTER & GAMBLE COMPANY | Laundry bleach product |
EP0375829A2 (en) * | 1988-07-06 | 1990-07-04 | Hüls Aktiengesellschaft | Process for the preparation of desensitised aliphatic diperoxy acids |
EP0441235A2 (en) * | 1990-02-05 | 1991-08-14 | Hoechst Aktiengesellschaft | Process for the continuous preparation of imidoperoxycarbonic acids |
EP0490409A1 (en) | 1990-12-13 | 1992-06-17 | AUSIMONT S.p.A. | Process for producing an aryl imido-peralkanoic acid |
WO1995030653A1 (en) * | 1994-05-05 | 1995-11-16 | Solvay Interox Limited | Process for peracid manufacture |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2813885A (en) * | 1954-09-02 | 1957-11-19 | Swern Daniel | Process for making fatty peracids |
FR1220689A (en) * | 1958-04-21 | 1960-05-27 | Procter & Gamble | Bleaching composition |
FR1352479A (en) * | 1962-04-04 | 1964-02-14 | Fmc Corp | Process for the production of lower aliphatic peracids |
-
1978
- 1978-08-21 EP EP78200149A patent/EP0000970B1/en not_active Expired
- 1978-08-21 DE DE7878200149T patent/DE2861690D1/en not_active Expired
- 1978-08-28 GR GR57108A patent/GR64813B/en unknown
- 1978-08-30 CA CA310,351A patent/CA1106396A/en not_active Expired
- 1978-08-30 ES ES472945A patent/ES472945A1/en not_active Expired
- 1978-08-30 IT IT27160/78A patent/IT1195256B/en active
- 1978-08-30 AU AU39395/78A patent/AU519053B2/en not_active Expired
- 1978-08-31 JP JP10695978A patent/JPS5495510A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2813885A (en) * | 1954-09-02 | 1957-11-19 | Swern Daniel | Process for making fatty peracids |
FR1220689A (en) * | 1958-04-21 | 1960-05-27 | Procter & Gamble | Bleaching composition |
FR1352479A (en) * | 1962-04-04 | 1964-02-14 | Fmc Corp | Process for the production of lower aliphatic peracids |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0045290A2 (en) * | 1980-07-25 | 1982-02-03 | FMC Corporation | Continuous process for the production of peroxycarboxylic acid compositions |
EP0045290A3 (en) * | 1980-07-25 | 1982-03-24 | Fmc Corporation | Continuous process for the production of peroxycarboxylic acid compositions |
US4370251A (en) * | 1980-07-25 | 1983-01-25 | Fmc Corporation | Continuous process for the production of peroxycarboxylic acid compositions |
US4337213A (en) * | 1981-01-19 | 1982-06-29 | The Clorox Company | Controlled crystallization diperoxyacid process |
EP0075419A2 (en) * | 1981-09-15 | 1983-03-30 | THE PROCTER & GAMBLE COMPANY | Laundry bleach product |
EP0075419A3 (en) * | 1981-09-15 | 1983-11-02 | THE PROCTER & GAMBLE COMPANY | Laundry bleach product |
EP0375829A2 (en) * | 1988-07-06 | 1990-07-04 | Hüls Aktiengesellschaft | Process for the preparation of desensitised aliphatic diperoxy acids |
EP0375829A3 (en) * | 1988-07-06 | 1990-10-24 | Hüls Aktiengesellschaft | Process for the preparation of desensitised aliphatic diperoxy acids |
US5030381A (en) * | 1988-07-06 | 1991-07-09 | Huels Aktiengesellschaft | Process for the preparation of stabilized aliphatic diperoxydicarboxylic acids |
EP0441235A2 (en) * | 1990-02-05 | 1991-08-14 | Hoechst Aktiengesellschaft | Process for the continuous preparation of imidoperoxycarbonic acids |
EP0441235A3 (en) * | 1990-02-05 | 1992-02-26 | Hoechst Aktiengesellschaft | Process for the continuous preparation of imidoperoxycarbonic acids |
EP0490409A1 (en) | 1990-12-13 | 1992-06-17 | AUSIMONT S.p.A. | Process for producing an aryl imido-peralkanoic acid |
US5208340A (en) * | 1990-12-13 | 1993-05-04 | Ausimont S.P.A. | Process for producing an aryl-imido-peralkanoic acid by oxidizing the corresponding aryl-imido-alkanoic acid with hydrogen peroxide |
WO1995030653A1 (en) * | 1994-05-05 | 1995-11-16 | Solvay Interox Limited | Process for peracid manufacture |
Also Published As
Publication number | Publication date |
---|---|
EP0000970A3 (en) | 1979-04-04 |
IT7827160A0 (en) | 1978-08-30 |
JPS5495510A (en) | 1979-07-28 |
IT1195256B (en) | 1988-10-12 |
ES472945A1 (en) | 1979-02-16 |
AU519053B2 (en) | 1981-11-05 |
AU3939578A (en) | 1980-03-06 |
JPS6136514B2 (en) | 1986-08-19 |
DE2861690D1 (en) | 1982-04-29 |
CA1106396A (en) | 1981-08-04 |
EP0000970B1 (en) | 1982-03-24 |
GR64813B (en) | 1980-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4233235A (en) | Method for making diperoxyacids | |
US4244884A (en) | Continuous process for making peroxycarboxylic acids | |
US4126573A (en) | Peroxyacid bleach compositions having increased solubility | |
US4119660A (en) | Method for making diperoxyacids | |
US4170453A (en) | Peroxyacid bleach composition | |
US4100095A (en) | Peroxyacid bleach composition having improved exotherm control | |
US4259201A (en) | Detergent composition containing organic peracids buffered for optimum performance | |
US4091544A (en) | Drying process | |
CA1257454A (en) | Bleach compositions | |
US4223163A (en) | Process for making ethoxylated fatty alcohols with narrow polyethoxy chain distribution | |
US5114611A (en) | Bleach activation | |
KR930007843B1 (en) | Quaternary ammonium-substituted peroxycarboxylic acid | |
EP0267175B1 (en) | Sulfone peroxycarboxylic acids | |
US5055218A (en) | Bleach granules containing an amidoperoxyacid | |
JPH0557318B2 (en) | ||
EP0000970B1 (en) | Method for making diperoxyacids | |
US4314949A (en) | Process for making peroxycarboxylic acids | |
EP0201222B1 (en) | Preparation of acyloxy benzene sulfonate | |
DK159208B (en) | STABILIZED BLEACHING CLEANER AND WASHING PROCEDURE | |
EP0105690B1 (en) | Bleaching compositions | |
JPS5930900A (en) | Detergent liquid and composition therein | |
CA1079295A (en) | Method for making diperoxyacids | |
JPH024765A (en) | Precursor of bleaching agent and use thereof in bleaching agent and/or detergent composition | |
EP0136280A2 (en) | Production of substituted-butanediperoxoic acids | |
KR930007850B1 (en) | Detergent compounds for use in bleaching systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Designated state(s): BE CH DE FR GB NL |
|
AK | Designated contracting states |
Designated state(s): BE CH DE FR GB NL |
|
17P | Request for examination filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): BE CH DE FR GB NL |
|
REF | Corresponds to: |
Ref document number: 2861690 Country of ref document: DE Date of ref document: 19820429 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19970811 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19970812 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19970826 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19970901 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19970911 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19971013 Year of fee payment: 20 |
|
BE20 | Be: patent expired |
Free format text: 980821 THE *PROCTER & GAMBLE CY |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 19980820 Ref country code: CH Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 19980820 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 19980821 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Effective date: 19980820 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
NLV7 | Nl: ceased due to reaching the maximum lifetime of a patent |
Effective date: 19980821 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |