EP0000820B1 - Procédé pour production d'amidon à gros grains, comme matière protectrice dans une couche de microcapsules sensibles à la pression - Google Patents

Procédé pour production d'amidon à gros grains, comme matière protectrice dans une couche de microcapsules sensibles à la pression Download PDF

Info

Publication number
EP0000820B1
EP0000820B1 EP78300210A EP78300210A EP0000820B1 EP 0000820 B1 EP0000820 B1 EP 0000820B1 EP 78300210 A EP78300210 A EP 78300210A EP 78300210 A EP78300210 A EP 78300210A EP 0000820 B1 EP0000820 B1 EP 0000820B1
Authority
EP
European Patent Office
Prior art keywords
starch
particle size
stream
microns
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP78300210A
Other languages
German (de)
English (en)
Other versions
EP0000820A1 (fr
Inventor
Roland William Best
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Primary Products Ingredients Americas LLC
Original Assignee
Tate and Lyle Ingredients Americas LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tate and Lyle Ingredients Americas LLC filed Critical Tate and Lyle Ingredients Americas LLC
Publication of EP0000820A1 publication Critical patent/EP0000820A1/fr
Application granted granted Critical
Publication of EP0000820B1 publication Critical patent/EP0000820B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/124Duplicating or marking methods; Sheet materials for use therein using pressure to make a masked colour visible, e.g. to make a coloured support visible, to create an opaque or transparent pattern, or to form colour by uniting colour-forming components
    • B41M5/1243Inert particulate additives, e.g. protective stilt materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B30/00Preparation of starch, degraded or non-chemically modified starch, amylose, or amylopectin
    • C08B30/04Extraction or purification

Definitions

  • This invention relates to the production of a large granule cereal starch protective material for pressure sensitive microencapsulated coatings.
  • Carbonless copy paper is coated with ink containing microcapsules which respond to a sharp impact from a typewriter or other writing instrument to produce a duplicate image on a copy sheet disposed under the top sheet.
  • the ink microcapsules of the coating are protected from premature smudging or rupture by means of starch particles included in the paper coating interspersed with the ink microcapsules.
  • the starch particles do not crush under the normal paper handling procedures to prevent premature rupture of the microcapsules, but do not prevent imaging due to typewriter impact pressure or from a writing instrument.
  • British Patent Specification 1,252,858 published November 10, 1971, and British Patent Specification 1,232,347 published May 19, 1971 describe ink microcapsule/protective starch material coatings of this general type. These references rate arrowroot starch particles as the most functional of the various starch particles tested.
  • U.S. Patents 3,876,629, 3,901,725 and 3,951,948 are directed to special large granule starch particles which are obtained from a bimodal cereal starch such as wheat, barley or rye by the processes described. These special large granule starches replace the more expensive and starch arrowroot starch.
  • U.S. Patents 3,996,060 and 3,996,061 are directed to a protective material which comprises refined, large granule starch derived from legume starches from which non-starch materials have been removed.
  • the second series of the U.S. Patents mentioned above, describe legume starch particles which are presently obtained in an unrefined form from Canada, and then treated to remove non-starch material including protein and fibre.
  • the legume starches include faba bean starch and yellow field pea starch, which may have a particle size distribution in the range of 25-50 microns and 2C­4 ⁇ microns, respectively.
  • the refined legume starch particles have proved to be very satisfactory protective particles in carbonless copy paper coatings, and they are more readily available than arrowroot.
  • a large granule starch product having a weight average particle size in the range of 20 microns or larger is obtained from an initial aqueous feed starch slurry of a granular native starch by subjecting the initial aqueous feed starch slurry to separation in a first hydrocyclone separator to separate the granules into a first aqueous slurry containing larger in average particle size than the initial average starch particle size in the initial aqueous feed starch slurry and a second aqueous slurry also containing starch granules and feeding the said first aqueous slurry into a second hydrocyclone separator to separate the first aqueous slurry into a large granule starch in which the starch has a weight average particle size of 20 microns or larger, which large granule starch stream is collected as product, and a third aqueous starch slurry.
  • the invention is characterised in that the third aqueous starch slurry is a first recirculation stream having a starch particle size distribution substantially the same as the initial aqueous feed slurry and is added to the initial aqueous feed slurry being fed to the first hydrocyclone separator, the second aqueous slurry from the first hydrocyclone separator is supplied to a third hydrocyclone separator to further separate the second aqueous slurry into a by-product stream and a second recirculation stream, the latter having a starch particle size distribution substantially the same as the initial aqueous feed slurry and being added to the initial aqueous feed slurry being fed to the first hydrocyclone separator, whereby the large granule starch stream which is collected from the second hydrocyclone separator includes large granules obtained from the first and second recirculation streams.
  • a predetermined amount of a larger granule starch is added to the large granule starch that is collected as product, the said larger granule starch having a larger weight average particle size than the said granular native starch.
  • the invention also provides a method of obtaining from a parent starch, a granular starch which has a more uniform and limited particle size distribution than the parent starch, by subjecting an aqueous suspension of the parent starch to separation in a first hydrocyclone separator to separate the particles by size into at least two first pass output streams, one of which has a narrower particle size distribution than the other and subjecting one of the said first pass out put streams from the first hydrocyclone separator to separation in a second hydrocyclone separator to further separate the said first pass output stream into at least two second pass output streams, one of which has a narrower particle size distribution than the said first pass output stream, which has a narrower particle size distribution than the parent starch.
  • This process is characterised in that the other second pass output stream has a particle size distribution closely approximating the particle size distribution of the parent starch, the said other first pass output stream is fed to a third hydrocyclone separator to further separate it into at least two third pass output streams, one of which also has a particle size distribution closely approximating the particle size distribution of the parent starch, and the said first pass output stream and the third pass output stream which have particle size distributions closely approximating the particle size distribution of the parent starch and recirculated back through the said first hydrocyclone separator to augment recovery of a granular starch having a more uniform and limited particle size distribution than the parent starch, whereby the yield thereof from a given amount of parent starch is improved.
  • the parent starch preferably includes a granular portion having a weight average particle size in the range of 20-35 microns and at least one output from the second hydrocyclone separator has a weight average particle size of at least 20 microns, preferably 20-35 microns.
  • the invention is directed to an improved method of obtaining a large granule starch material having a weight average particle size in the range of 20 microns, or larger.
  • the granular native starch is wheat, rye or barley starch.
  • the bulk of the large granule starch material is most preferably obtained from a prime grade wheat starch which normally has a typical granule size distribution with 20-22% by weight of the starch granules, dry solids basis, ranging in size from 20-32 microns, and 50-55% by weight of the starch granules, dry solids basis, ranging in size from 16-32 microns, and 45-50% by weight of the starch granules dry solids basis, ranging in size from 2-16 microns.
  • the process employs a wet separation system in which the slurried starch is passed through a plurality of hydrocyclones which are connected to recirculate certain by-product streams back into the system as a part of the feed stream to increase the yield of large granule starch product by about 15-25%.
  • the yield of useful product which can be obtained by the process of the invention is 40 parts, or better.
  • An important feature of the process is the careful balancing of the recirculation feed streams so that the proportion of large granules and small granules substantially matches the proportion of such granules found in the feed stream.
  • the system is most effective when the feed stream is kept in careful balance by careful control of the recirculation feed streams.
  • the present invention provides an improved method to obtain the best possible yield of a particular average granule size from a starch feed stream having a plurality of possible particle size fractions.
  • a primary hydrocyclone supplies a second and third hydrocyclone.
  • One stream is recirculated from each of the second and third hydrocyclones and they are added to the feed starch slurry which is supplied to the first hydrocyclone.
  • the particle size distribution of the recirculated streams should substantially match, or nearly match, the input starch feed stream particle size distribution. If the recirculated streams fall below the particle size distribution of the feed stream, the product particle size distribution gradually drops below specification.
  • the system requires adjustment to remove more large granules on the first and , second pass underflows. Otherwise, the particle size distribution of the product will vary considerably, with some collected product exceeding product specification, which represents an economic loss, since less product is produced for a given amount of feed stream starch.
  • the above process can improve the yield of product fraction by as much as 15 to 25%.
  • the resulting product may be further improved by adding and blending a predetermined amount of another starch with it, which starch has a different particle size distribution to change the particle size distribution of the final product in the direction of the particle size distribution of the added starch.
  • the average particle size of a large granule wheat starch fraction when the average particle size of a large granule wheat starch fraction is slightly lower than desired, it may be increased by blending a predetermined amount of refined, large granule legume starch, sago starch, arrowroot starch or specially fractionated potato starch having a higher particle size distribution than the fractionated wheat starch to obtain the desired increase in overall particle size of the blended, large granule product.
  • the legume starch is refined pea or horse bean starch and most preferably refined faba bean starch or refined yellow field pea starch, for example faba bean starch or yellow field pea starch having a weight average particle size of 20-35 microns.
  • the system in its more rudimentary form includes hydrocyclones 1, 2 and 3 and the related equipment described below, first following the main process streams through the system, and then following the recirculating systems.
  • Prime grade wheat starch (BWS) is first slurried in water and thoroughly agitated in tank 4 by stirring means 5.
  • the aqueous slurry of BWS is then supplied through feed stream line 6 to the first hydrocyclone 1 where it is separated by hydrocyclonic, vortical flow into an overflow stream 16, and an underflow stream.
  • the latter stream is rich in larger granules, and leaves hydrocyclone 1 through first pass underflow line 7, and enters hydrocyclone 2 as a feed stream to undergo a second separation into an overflow stream 13 and an underflow stream 8.
  • the underflow stream 8 leaves the hydrocyclone 2 through product line 8 as large granule wheat starch (LWS), and is carried to a collecting tank 9.
  • a supply line 10 also empties a large granule pea starch (LPS) into tank 9 as desired, where LPS . starch is blended by stirring means 11 to produce a further upgraded large granule product (LGP).
  • LPS large granule pea starch
  • the LGP starch product is then removed through product line 12 for dewatering and drying by well-known methods to prepare the LGP starch product for shipment.
  • the overflow stream 13 of the hydrocyclone 2 still contains some recoverable large granules. This overflow stream 13 also contains smaller granules, and it matches the feed stream 6 in particle size distribution.
  • Overflow stream 13 is recirculated back to feed stream 6 along with a second recirculation stream 14, which is the underflow from hydrocyclone 3.
  • Hydrocyclone 3 is fed by the overflow stream 16 from the hydrocyclone 1. This is the small particle stream but still contains some large particles.
  • the first and second recirculation lines 13 and 14 are shown joined to form a main recirculation line 15, which supplies the blended first and second recirculation streams to the feed stream line 6 to augment the feed stream to hydrocyclone 1.
  • recirculation lines 13 and 14 can each empty directly into the tank 4 if the recirculation streams are substantially the same in particle size distribution as the feed stream 6, thereby omitting main recirculation line 15.
  • the underflow recirculation stream through line 14 from the hydrocyclone 3 and the overflow recirculation stream through line 13 from hydrocyclone 2, are balanced so that two recirculation streams are provided which have substantially the same bimodal particle size distribution as the BWS feed stream supplied from tank 4 through feed stream line 6.
  • the lines 13 and 14 are preferably arranged to supply two recirculation streams directly into the tank 4 when the particle size distribution of the recirculating streams is nearly the same as the particle size distribution of the feed starch slurry in tank 4.
  • Recirculation feed streams 13 and 14 are monitored during operation to ensure that they have the same particle size distribution as the feed stream.
  • the system can be adjusted by controlling the flow rate through hydrocyclones 2 and 3. If necessary, the various streams can be collected for recirculation through the system at a later time after the particle size distribution of the recirculation feed streams 13 and 14 again matches the particle size distribution of the original feed stream. If the recirculated feed streams 13 and 14 have an average particle size which is lower than the main feed stream, the resulting product has a tendency to shift to a lower average particle size, thereby decreasing the quality of the product obtained.
  • the underflow stream is recirculated as described above, and the overflow stream from hydrocyclone 3 is removed through overflow line 17.
  • This overflow stream is a small granule wheat starch (SGWS) by-product, and may be further modified, treated or used in any of the ways that wheat starch is used. Dewatering and drying of the SGWS by-product can be accomplished by any of the means well-known in the art.
  • the 50 parts by weight underflow is then further evenly split in hydrocyclone 2 into 25 parts by weight overflow and 25 parts by weight underflow.
  • the 25 parts overflow has the same particle size distribution as the feed stream, and is recirculated to augment the feed stream fed to hydrocyclone 1.
  • the 25 parts by weight underflow becomes the LWS starch product.
  • the yield in this particular example is 25/58, or about 43% of the input feed stream. This is believed to represent a substantial improvement in the theoretically possible total recovery of usable large granule starch from the BWS starch feed stream.
  • the particular BWS feed stream may vary in large starch particle content, depending on its previous milling history. Some dewatering and centrifuging procedures, and the overall starch milling process may result in a larger overall percentage of small granule wheat starch (SGWS).
  • the hydrocyclones 1, 2 and 3 of the system should accordingly be balanced so that the recirculation feed streams have substantially the same particle size distribution as the primary feed stream 6. In such a procedure, it may be desirable to include a main recirculation line 15 of a configuration to accomplish blending of the recirculation streams 13 and 14.
  • the solids levels through the system vary generally in the ranges set forth below.
  • the feed stream 6 should generally have a Baumé in the range of 7­-1 5°Bé, and when it moves outside this range to higher solids, additional water can be added at tank 4, or other internal adjustment in the system can be made so that the solids level of the feed stream 6 decreases. If the solids level of the feed stream 6 drops below the desired range, flow through hydrocyclone 3 can be adjusted by restricting underflow 7 of hydrocyclone 1, and increasing flow through hydrocyclone 3 so recirculation stream 14 increases and raises the Baume of feed stream 6 to bring the system back in balance.
  • the continuing adjustment of the solids level and flow rate of the starch slurry streams which are processed is important to the success of the method of the invention.
  • the initial feed stream slurry of prime grade, unmodified wheat starch (BWS) is stirred in the tank 4 until well dispersed.
  • the solids is adjusted to about 7-7.5° Be.
  • the solids level of recirculation stream 13 is normally in the range of 3-5°Be, which is below that of the feed stream 6.
  • the solids level of the overflow stream 16 from hydrocyclone 1 is normally in the range 5-8°Be.
  • LWS starch product stream 8 normally has a Baume of 18 ⁇ 22°.Be, which is comparable to the range of 16-22°Be of the first hydrocyclone underflow stream 7 and the same as the third hydrocyclone (underflow) recirculation stream 14, which is also 18-22°Be.
  • Hydrocyclones 1, 2 and 3 are Doxie "P" Type Eliminators, manufactured by Dorr-Oliever, Inc., Stamford, Connecticut, U.S.A. Hydrocyclone size selection depends on the particle size characteristics of the respective feed streams.
  • the separated large granule wheat starch is then measured for weight average particle size, and if it is below 20 microns, a refined yellow field pea starch (LPS) is blended with it in a sufficient amount to bring the weight average particle size up to 20 microns minimum, as measured by a MODEL TA II Coulter Counter, available from Coulter Electronics Inc, Hialeah, Florida, U.S.A. "Coulter” is a registered trade mark.
  • the particle size distribution is set forth below for this blended product: The weight average particle size should be 20 microns minimum.
  • the LPS starch is obtained from New Field Seeds, Ltd., Saskatoon, Saskatchewan, Canada, and is subjected to further processing as described in U.S. Patents 3,996,060 and 3,996,061 mentioned above.
  • Other large granule starches can be used instead of the LPS starch to increase the average particle size to an acceptable level.
  • arrowroot, faba bean and sago all have an average particle size large enough to be useful to increase the average particle size of the subject LWS starch to produce a LGP large granule starch product which has a large enough average particle size to be useful as a protective material on carbonless copy paper coatings.
  • the hydrocyclones 1, 2 and 3 are balanced by carefully adjusting the flow rates of the respective feed streams, and output streams of the hydrocyclones. It has been found through experience that a recirculation feed stream (13 or 14) which does in fact not match the main feed stream 6 tends to cause the efficiency of the separation to change to the extent that the product gradually changes in its particle size distribution.
  • the LGP starch product slurry After the LGP starch product slurry has been thoroughly blended in the tank 9, it may be dewatered and dried, or it may be subjected to further treatment, for example, the crosslinking treatment described in U.S. Patent 3,876,629.
  • the crosslinking of the LGP starch product raises the pasting temperature of the LGP starch so that the granules remain intact as a protective material even when subjected to the elevated temperature of a high temperature coating process.
  • the separated starch fraction from the product underflow (LWS) should preferably have at least:
  • the above product can be dewatered and dried and used as a protective material in carbonless copy paper.
  • the product can also be subjected to a crosslinking reaction using a polyfunctional crosslinking agent such as phosphorus oxychloride, epichlorohydrin, urea formaldehyde, sodium trimetaphosphate and others.
  • the presently preferred crosslinking agent is phosphorus oxychloride, and the crosslinking reaction is carried out generally according to the method described in U.S. Patent 3,876,629.
  • aqueous slurries of the refined pea starch and the LWS wheat starch are first blended together, and the alkaline crosslinking reaction using phosphorus oxychloride is performed on the blended LGP starch.
  • a large granule starch such as arrowroot starch
  • the crosslinking reaction is performed on LWS wheat starch prior to blending with the higher pasting temperature, large granule starch.
  • both the LPS starch portion and the LWS starch portion of the product may be crosslinked separately and then blended, either while in aqueous slurry, or after drying.
  • the aqueous slurry blending of the two starches prior to crosslinking is presently preferred.
  • the blended, crosslinked product is thereafter dewatered and dried to produce a high temperature resistant product having a particle size distribution as set forth above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Color Printing (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Claims (20)

1. Procédé d'obtention d'amidon à gros grains, présentant une dimension moyenne en poids de particules de l'ordre de 20 microns ou plus, à partir d'une charge aqueuse initiale constituée d'une bouillie d'amidon granulaire naturel, selon lequel on soumet la charge aqueuse initiale de bouillie d'amidon à une séparation dans un premier séparateur à hydrocyclone pour séparer les grains en une première bouillie aqueuse contenant des grains d'amidon d'une dimension moyenne de particules supérieure à la dimension moyenne de particules de l'amidon dans la bouillie de la charge aqueuse initiale, et en une deuxième bouillie aqueuse contenant aussi des grains d'amidon, et on charge ladite première bouillie aqueuse dans un deuxième séparateur à hydrocyclone pour séparer la première bouillie aqueuse en un courant d'amidon à gros grains dans lequel l'amidon présente une dimension moyenne en poids de particules de 20 microns ou plus, que l'on recueille comme produit, et en une troisième bouillie aqueuse d'amidon, procédé caractérisé en ce que la troisième bouillie aqueuse d'amidon constitue un premier courant de recyclage, dont la distribution de dimensions de particules d'amidon est sensiblement la même que celle de la bouillie aqueuse de charge initiale, et qu'on ajoute à ladite bouillie aqueuse de charge initiale, chargée dans le premier séparateur à hydrocyclone, que la deuxième bouillie aqueuse provenant du premier séparateur à hydrocyclone est envoyée à un troisième séparateur à hydrocyclone pour séparer à nouveau ladite deuxième bouillie aqueuse en un courant de sousproduit et en un second courant de recyclage, dont la distribution de dimensions de particules d'amidon est sensiblement la même que celle de la bouillie aqueuse de charge initiale, et qu'on ajoute à ladite bouillie de charge initiale, chargée dans le premier séparateur à hydrocyclone, de façon que le courant d'amidon à gros grains que l'on recueille à partir du deuxième séparateur à hydrocycfone contient des gros grains provenant du premier et du second courants de recirculation.
2. Procédé selon la revendication 1, caractérisé en ce qu'on ajoute une quantité prédéterminée d'un amidon à plus gros grains à l'amidon à gros grains qui est recueilli comme produit d'obtention, ledit amidon à plus gros grains ayant une dimension moyenne en poids de particule supérieure à celle dudit amidon granulaire naturel.
3. Procédé selon la revendication 2, caractérisé en ce que l'amidon à plus gros grains est un amidon de marante, de sagou, de pomme de terre fractionnée, de fève de Calabar ou de pois des champs jaune.
4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que l'amidon granulaire naturel est l'amidon de blé, de seigle ou d'orge.
5. Procédé selon la revendication 2, caractérisé en ce que l'amidon granulaire naturel est l'amidon de blé, et l'amidon à plus gros grains qu'on lui ajoute est l'amidon de pois.
6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que la bouillie aqueuse de charge initiale a une distribution de dimensions de particules dans laquelle 20 à 22% en poids de l'amidon, par rapport au solide sec, ont une dimension de 20 à 32 microns, 50 à 55% en poids de l'amidon, par rapport au solide sec, ont une dimension de 16 à 32 microns, et 45 à 50% en poids de l'amidon, par rapport au solide sec, ont une dimension de 2 à 16 microns.
7. Procédé selon l'une des revendications 1 à 6, caractérisé en ce que le courant d'amidon à gros grains recueilli à partir du deuxième séparateur à hydrocyclone a une distribution de dimensions de particules dans laquelle 38% en poids des particules sont dans l'intervalle de dimensions de 20 à 32 microns, et 70% en poids des particules sont dans l'intervalle de dimensions de 16 à 32 microns.
8. Procédé selon l'une des revendications 1 à 6, caractérisé en ce qu'on ajuste la bouillie aqueuse initiale de façon que sa teneur en solides soit de 7 à 15°Be, que la première bouillie aqueuse à la sortie du premier séparateur à hydrocyclone a une teneur en solides de 16 à 22°Be, que la deuxième bouillie aqueuse provenant du premier séparateur à hydrocyclone a une teneur en solides de 5 à 8°Be; que le courant d'amidon à gros grains provenant du deuxième séparateur à hydrocyclone a une teneur en solides de 18 à 22°Be, que le premier courant de recyclage provenant du deuxième séparateur à hydrocyclone a une teneur en solides de 3 à 5°Be, et que le second courant de recyclage provenant du troisième séparateur à hydrocyclone a une teneur en solides de 18 à 22°Be.
9. Procédé d'obtention, à partir d'un amidon de base, d'un amidon granulaire d'une distribution de dimensions de particules plus uniforme et étroite que celle de l'amidon de base, selon lequel on soumet une suspension aqueuse de l'amidon de base à une séparation dans un premier séparateur à hydrocyclone pour séparer les particules selon leurs dimensions en au moins deux effluents de première passe, dont l'un a une distribution plus étroite de dimensions de particules que l'autre, et on soumet l'un desdits effluents de première passe provenant du premier séparateur à hydrocyclone à un fractionnement dans un deuxième séparateur à hydrocyclone, pour séparer à nouveau le premier effluent de première passe en au moins deux effluents de deuxième passe, dont l'un a une distribution plus étroite de dimensions de particules que ledit effluent dé première passe, qui a lui-même und distribution plus étroite de dimensions de particules que celle de l'amidon de base, procédé caractérisé en ce que l'autre effluent de deuxième passe a une distribution de dimensions de particules approchant étroitement celle de l'amidon de base, on envoie l'autre effluent de première passe à un troisième séparateur à hydrocyclone pour le séparer à nouveau en au moins deux effluents de troisième passe, dont l'un a aussi une distribution de dimensions de particules semblable à celle de l'amidon de base et on recycle dans le premier séparateur à hydrocyclone l'effluent de deuxième passe et l'effluent de troisième passe, dont les distributions de dimensions de particules approchent étroitement celle de l'amidon de base, pour augmenter la récupération d'un amidon granulaire d'une distribution plus uniforme et étroite de dimensions de particules que celle de l'amidon de base, et améliorer ainsi le rendement à partir d'une quantité donnée d'amidon de base.
10. Procédé selon la revendication 9, caractérisé en ce que l'amidon de base comprend une portion granulaire ayant une dimension moyenne en poids de particules comprise dans l'intervalle de 20 à 35 microns, et en ce qu'au moins un effluent du deuxième séparateur à hydrocyclone a une dimension moyenne en poids de particules d'au moins 20 microns.
11. Procédé selon la revendication 10, caractérisé en ce que l'amidon de base est l'amidon de blé, d'orge ou de seigle.
12. Procédé selon la revendication 11, caractérisé en ce qu'au moins un effluent provenant du deuxième séparateur à hydrocyclone a une dimension moyenne en poids de particules comprise dans l'intervalle de 20 à 35 microns.
13. Procédé selon la revendication 12, caractérisé en ce que l'effluent provenant du deuxième séparateur à hydrocyclone comprend environ 45% en poids de particules de dimensions de 20 à 32 microns, et environ 75% en poids de particules de dimensions de 16 à 32 microns, après que l'effluent a été mélangé avec une quantité plus faible d'un amidon granulaire
EP78300210A 1977-08-04 1978-07-28 Procédé pour production d'amidon à gros grains, comme matière protectrice dans une couche de microcapsules sensibles à la pression Expired EP0000820B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US05/822,013 US4141747A (en) 1977-08-04 1977-08-04 Large granule starch protective material for pressure sensitive microencapsulated coatings
US822013 1977-08-04

Publications (2)

Publication Number Publication Date
EP0000820A1 EP0000820A1 (fr) 1979-02-21
EP0000820B1 true EP0000820B1 (fr) 1982-03-31

Family

ID=25234879

Family Applications (1)

Application Number Title Priority Date Filing Date
EP78300210A Expired EP0000820B1 (fr) 1977-08-04 1978-07-28 Procédé pour production d'amidon à gros grains, comme matière protectrice dans une couche de microcapsules sensibles à la pression

Country Status (9)

Country Link
US (1) US4141747A (fr)
EP (1) EP0000820B1 (fr)
JP (1) JPS5429206A (fr)
AU (1) AU519106B2 (fr)
CA (1) CA1129816A (fr)
DE (1) DE2861708D1 (fr)
IT (1) IT1106617B (fr)
MX (2) MX155990A (fr)
NZ (1) NZ187976A (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4280718A (en) * 1975-03-24 1981-07-28 Henkel Corporation Pressure sensitive recording sheet containing size classified cereal starch granules
DE2963468D1 (en) * 1978-05-24 1982-09-30 Wessanen Ltd Process and apparatus for upgrading starch and other materials using hydrocyclones
JPS60145881A (ja) * 1984-01-09 1985-08-01 Hohnen Oil Co Ltd 感圧複写紙用耐熱性スチルト材
US11060155B2 (en) * 2016-04-01 2021-07-13 Pramet Tools, S.R.O. Surface hardening of cemented carbide body

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2642185A (en) * 1949-01-15 1953-06-16 Stamicarbon Process for the refining of starch
US2702630A (en) * 1949-06-18 1955-02-22 Sharples Corp Classification of particles
US2756878A (en) * 1952-06-10 1956-07-31 Erie Mining Co Three product wet cyclone
US3951948A (en) * 1971-09-15 1976-04-20 A. E. Staley Manufacturing Company Size classified cereal starch granules
US3901725A (en) * 1971-09-15 1975-08-26 Staley Mfg Co A E Size classified cereal starch granules
US3876629A (en) * 1973-03-01 1975-04-08 Staley Mfg Co A E Temperature stable granular starch product
JPS5048147A (fr) * 1973-08-22 1975-04-30
US3996061A (en) * 1974-06-10 1976-12-07 A. E. Staley Manufacturing Company Stilt material for pressure sensitive microencapsulated coatings

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DIE STAERKE, 10, 371-382 (1963) Page 371, right-hand column, lines 1-5 and figure 1k,n *

Also Published As

Publication number Publication date
DE2861708D1 (en) 1982-05-06
AU3862278A (en) 1980-02-07
JPS6346081B2 (fr) 1988-09-13
AU519106B2 (en) 1981-11-05
MX155990A (es) 1988-06-13
EP0000820A1 (fr) 1979-02-21
US4141747A (en) 1979-02-27
NZ187976A (en) 1980-12-19
IT1106617B (it) 1985-11-11
IT7850574A0 (it) 1978-08-02
JPS5429206A (en) 1979-03-05
CA1129816A (fr) 1982-08-17
MX165061B (es) 1992-10-20

Similar Documents

Publication Publication Date Title
CA1117354A (fr) Mouture par voie humide pour le raffinage du ble entier
CA1117806A (fr) Methode de mouture combinee par voies seche et humide pour le raffinage du ble
US3901725A (en) Size classified cereal starch granules
CA1075204A (fr) Appareillage pour la separation de l'amidon d'amidonerie en une fraction riche en proteines et en une fraction riche en amidon
EP0000820B1 (fr) Procédé pour production d'amidon à gros grains, comme matière protectrice dans une couche de microcapsules sensibles à la pression
SE451331B (sv) Forfarande for kontinuerlig forsockring av cellulosa i vextramaterial
EP0506233A2 (fr) Procédé de broyage humide du mais pour la préparation d'amidon
CA1209955A (fr) Decharge a orifice balaye, et son fonctionnement
US2642185A (en) Process for the refining of starch
CA2072641A1 (fr) Couchage de papier
US4207118A (en) Corn wet milling system and process for manufacturing starch
FI72734C (fi) Avskiljning av gluten och staerkelse ur vetemjoel.
AU596592B2 (en) Hydraulic classifying procedure and means
US3948677A (en) Process for the recovery of starch from the cellular tissue of root crops
US4606789A (en) Method for manufacturing cellulose pulp using plural refining and fiber separation steps with reject recycling
SU700045A3 (ru) Способ получени клейковины из пшеницы ржи или чмен
EP0037278A3 (fr) Section d'évacuation pour hydrocyclones avec sorties concentriques pour la fraction traitée
US3951948A (en) Size classified cereal starch granules
CA1081642A (fr) Procede de recuperation des residus d'hydrocarbures dilues
EP0381872A1 (fr) Procédé de fractionnement d'avoine
WO1987005954A1 (fr) Procede de traitement de cellulose de bois
US4280718A (en) Pressure sensitive recording sheet containing size classified cereal starch granules
CA2746484A1 (fr) Procede faisant intervenir des hydrocyclones
Schubert Food particle technology. Part II: Some specific cases
US2788267A (en) Cyclone separator feeder and method for feeding carbon black

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE FR GB LU NL

17P Request for examination filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE DE FR GB LU NL

REF Corresponds to:

Ref document number: 2861708

Country of ref document: DE

Date of ref document: 19820506

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940711

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940719

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940721

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19940731

Year of fee payment: 17

Ref country code: LU

Payment date: 19940731

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19940912

Year of fee payment: 17

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19950728

Ref country code: GB

Effective date: 19950728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19950731

BERE Be: lapsed

Owner name: AMYLUM N.V.

Effective date: 19950731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19960201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950728

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19960201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960430

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT