EP0000565B1 - Aqueous solutions of copolymers, process for their preparation and their use as shell forming materials for the production of microcapsules by complex coacervation - Google Patents

Aqueous solutions of copolymers, process for their preparation and their use as shell forming materials for the production of microcapsules by complex coacervation Download PDF

Info

Publication number
EP0000565B1
EP0000565B1 EP78100470A EP78100470A EP0000565B1 EP 0000565 B1 EP0000565 B1 EP 0000565B1 EP 78100470 A EP78100470 A EP 78100470A EP 78100470 A EP78100470 A EP 78100470A EP 0000565 B1 EP0000565 B1 EP 0000565B1
Authority
EP
European Patent Office
Prior art keywords
copolymer
solution
copolymers
maleic acid
aqueous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP78100470A
Other languages
German (de)
French (fr)
Other versions
EP0000565A1 (en
Inventor
Bruno Dr. Bömer
Hildegard Dr. Schnöring
Rolf Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Publication of EP0000565A1 publication Critical patent/EP0000565A1/en
Application granted granted Critical
Publication of EP0000565B1 publication Critical patent/EP0000565B1/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/10Complex coacervation, i.e. interaction of oppositely charged particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/24Homopolymers or copolymers of amides or imides
    • C08L33/26Homopolymers or copolymers of acrylamide or methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group

Definitions

  • the invention relates to aqueous copolymer solutions, processes for their preparation and their use as shell formers for the production of microcapsules by complex coacervation.
  • the aqueous polymer solutions according to the invention are those whose polymer content is 5 to 30% by weight and consists of a mixture of (A) a copolymer with an intrinsic viscosity [ 'I] of 0.05 to 1 (dl / g) to its statistically distributed structural units 65 to 90 mol% consist of residues of acrylamide and 10 to 35 mol% of residues of maleic acid or maleic anhydride and (B) a corresponding hydrolyzed copolymer with an intrinsic viscosity [q] of 0.05 to 1.5 (dl / g) whose statistically distributed structural units accordingly consist of residues of acrylamide, acrylic acid and maleic acid, the maleic acid residues being at least partially in salt form, and which is characterized in that the weight ratio of the copolymers (A) and (B) is 1
  • the copolymers (A) can be obtained by radical copolymerization of 65-90 mol% acrylamide and 10-35 mol% maleic anhydride or maleic acid.
  • the copolymerization of acrylamide and maleic anhydride is advantageously carried out as a precipitation polymerization in organic solvents which are inert to anhydride groups.
  • organic solvents which are inert to anhydride groups.
  • Particularly cheap solvents are acetone and acetic acid esters of alcohols with 1-3 carbon atoms because of their good solvent power for the monomers and not least because of their low volatility.
  • the polymerization can be initiated with the usual free-radical initiators such as aliphatic azo compounds or organic per-compounds such as peroxides or peresters.
  • the polymerization temperature is determined by the decomposition properties of the initiator and, when using azoisobutyronitrile in batches, is 50 ° -80 ° C. In this process, the copolymers are obtained as finely divided powders and can easily be filtered off and freed of residual monomers by washing.
  • copolymerization of acrylamide and maleic acid to give copolymers (A) can be carried out both as precipitation polymerization in organic solvents and also as solution polymerization in water.
  • the precipitation copolymers can be dissolved in solvent or, after drying, in water to 5-30% by weight solutions.
  • the anhydride groups of the acrylamide-maleic anhydride copolymers pass into maleic acid groups.
  • the organic solvent is then separated off by decanting and / or distillation.
  • aqueous solutions of the copolymers (A) is the solution copolymerization of acrylamide and maleic acid in water.
  • the maleic acid can either be prepared by dissolving the appropriate amount of the andydride in water before the polymerization or used as such.
  • Suitable initiators are water-soluble per compounds such as persulfates or hydrogen peroxide, optionally in combination with a reducing agent and / or heavy metal salt. Azo compounds with sufficient water solubility are also suitable initiators. Azoisobutyronitrile is sufficiently soluble in water, especially at elevated temperatures, and is particularly preferred because it does not affect the salt content of the solutions.
  • the solution polymerization can be carried out batchwise with presentation of the entire batch or according to a semi-batch feed process with metering in of the monomers.
  • the preferred method of solution polymerization is that the aqueous solution of the monomers, which contains the initiator in dissolved or finely suspended form, is added at about 80 ° -120 ° C. with the exclusion of oxygen to a stirred charge of oxygen-free water in about 1-10 hours.
  • the azoisobutyronitrile can also be added dropwise as a solution in an organic solvent in synchronism with the monomer solution, it being possible for the solvent to be distilled off continuously. After the monomer addition has ended, the mixture is stirred for 15-120 minutes and the solution is then cooled to room temperature.
  • copolymers (A) obtained by solution polymerization still contain small amounts of residual monomers, but these generally have no adverse effect on the application properties of the solutions.
  • copolymers (A) prepared in aqueous solution already contain small amounts of acrylic acid and maleic acid salt units formed by hydrolysis during the polymerization.
  • Copolymers (A) according to the invention are obtained by copolymerization of 65-90 mol% of acrylamide and 10-35 mol% of maleic acid or maleic anhydride. Copolymers (A) of 70-85 mol% of acrylamide and 15-30 mol% of maleic acid or maleic anhydride are preferably used.
  • the copolymers (A) contain the structural units made of acrylamide and Maleic anhydride in statistical distribution and in proportions that correspond to the compositions of the monomer mixtures.
  • the free radical initiators are added in amounts of 0.1-10% by weight, preferably 0.3-3.0% by weight, based on monomers. In precipitation polymerizations, the polymer yields are generally 75-95%.
  • the copolymers (A) have intrinsic viscosity [ 1 /] of 0.05-l ', 0 [dl / g], preferably 0.08 to 0.4 [dl / g] (determined in 0.9% aqueous sodium chloride solution) .
  • the solutions of the copolymers (B)) can be obtained by heating the aqueous solutions of the copolymers (A) at temperatures of 60 ° -150 ° C., preferably 80-130 ° C. for a long time, optionally under pressure in an autoclave. Hydrolysis under reflux conditions at normal pressure is particularly preferred. Partial hydrolysis of acrylamide units occurs during heating. The resulting ammonia neutralizes some of the maleic acid building blocks and thereby causes an increase in the pH of the solution. As a result of the hydrolysis, the acrylamide-maleic acid copolymer converts into a copolymer which consists of acrylamide-acrylic acid and maleic acid units and in which the maleic acid units are at least partially in salt form.
  • Solutions of copolymers (B) according to the invention are obtained by heating solutions of the copolymers (A) according to the invention to 60 ° -150 ° C., preferably 80 ° -130 ° C. and particularly preferably to about 100 ° C. (reflux under normal pressure) until the pH of the solutions has risen to 3.8 to 4.9, preferably 4.0 to 4.6.
  • the intrinsic viscosity of the copolymers (B) determined in 0.9% aqueous sodium chloride solution, is 0.05 to 1.5 [dl / g], preferably 0.08 to 1.0 [dl / g ].
  • the solutions of the copolymers (A) and the solutions of the copolymers (B) also form coacervates on their own with gelatin, if necessary after adjusting the pH with ammonia or alkali metal hydroxide solution or with acetic acid.
  • these coacervates do not form a shell or a closed shell and / or are very sticky.
  • aqueous solutions of the copolymers (A) and (B) according to the weight ratio of the dissolved copolymers (A): (B) as 1: 2 to 20: 1, surprisingly polymer solutions are obtained which, together with gelatin, provide coacervates which form uniform, closed shells and are therefore particularly suitable for the production of microcapsules.
  • the optimal mixing ratio is mainly influenced by the composition of the copolymer (A) and by the pH of the solution of the copolymer (B), which is a measure of the degree of hydrolysis, and must be determined experimentally for each pair of copolymers.
  • solutions of copolymers (A) can also be mixed with solutions of copolymers (B) which have been obtained from copolymers (A ') with a different composition by hydrolysis (for example copolymer (A) with 70 mol% acrylamide and 30 mol% % Of maleic acid units, and copolymer solution (B) from copolymer (A ') with 80 mol% of acrylamide and 20 mol% of maleic acid units).
  • changing the pH of the polymer solution by adding ammonia or alkali hydroxide or acetic acid can have a favorable effect on the coacervation behavior.
  • microencapsulation by complex coacervation is known in principle. It is based on dispersing the encapsulating substance in finely divided form in an aqueous solution suitable for coacervate formation, and then triggering the coacervation. This is done by diluting, changing the pH or cooling or by a combination of these measures, depending on the system used.
  • the aqueous polymer solutions of the invention form complex coacervates with gelatin by dilution and / or cooling. They can be mixed, for example, in 10-15% by weight aqueous solution with a 10-15% by weight gelatin solution and coacervated by dilution and cooling. It is astonishing that such highly concentrated solutions can be used. It is also surprising that the coacervates obtained, which are a separate soft gel phase, already contain 20-30 % by weight of solids. This high solids content makes it very easy to dry the coacervates into powders. Since the coacervates form extremely coherent shells or coatings, they are particularly suitable for the production of microcapsules. During coacervation, the separate gel phase forms as a coherent layer on small, liquid or solid separate particles dispersed in the solution and envelops these particles.
  • the combination of polymer solutions according to the invention and gelatin can be used to microencapsulate a large number of liquid or solid dispersible or water-insoluble or sparingly water-insoluble or water-resistant substances.
  • Examples include: organic solvents, paraffin oils, perfume oils, silicone defoamers, Phosphoric acid esters, liquid crystals and color pigments, as well as pharmaceuticals and pesticides.
  • Example 1 a) and 1 b) are mixed in the ratios given in the table.
  • the mixtures are puffed according to the method given in Example 1 c).
  • the encapsulation behavior is said to be "good” if the oil droplets are surrounded by a closed, regularly shaped and uniformly thick shell.
  • a “medium” is a closed, irregularly shaped and unevenly thick shell.
  • a “bad” encapsulation behavior occurs if the casing is not closed and coherent, the capsules stick very strongly or no casing is formed at all.
  • Example 2 The mixed solutions are tested according to the method described in Example 1 c). The encapsulation behavior is assessed according to Example 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paper (AREA)

Description

Gegenstand der Erfindung sind wäßrige Copolymerisatlösungen, Verfahren zu deren Herstellung und deren Verwendung als Hüllenbildner für die Herstellung von Mikrokapseln durch Komplexcoazervation. Die erfindungsgemäßen wäßrigen Polymerlösungen sind solche deren Polymeranteil 5 bis 30 Gew.-% beträgt und besteht aus einem Gemisch aus (A) einem Copolymerisat mit einer Grenzviskositätszahl ['I] von 0,05 bis 1 (dl/g) dessen statistisch verteilte Struktureinheiten zu 65 bis 90 Mol-% aus Resten des Acrylamids und zu 10 bis 35 Mol-% aus Resten von Maleinsäure oder Maleinsäureanhydrid bestehen und (B) einem entsprechenden hydrolysierten Copolymerisat mit einer Grenzviskositätszahl [q] von 0,05 bis 1,5 (dl/g) dessen statistisch verteilte Struktureinheiten dementsprechend aus Resten des Acrylamids der Acrylsäure und der Maleinsäure bestehen, wobei die Maleinsäurereste zumindest teilweise in Salzform vorliegen, und das dadurch gekennzeichnet ist, daß Gewichtsverhältnis der Copolymerisate (A) und (B) 1:2 bis 20:1 ist.The invention relates to aqueous copolymer solutions, processes for their preparation and their use as shell formers for the production of microcapsules by complex coacervation. The aqueous polymer solutions according to the invention are those whose polymer content is 5 to 30% by weight and consists of a mixture of (A) a copolymer with an intrinsic viscosity [ 'I] of 0.05 to 1 (dl / g) to its statistically distributed structural units 65 to 90 mol% consist of residues of acrylamide and 10 to 35 mol% of residues of maleic acid or maleic anhydride and (B) a corresponding hydrolyzed copolymer with an intrinsic viscosity [q] of 0.05 to 1.5 (dl / g) whose statistically distributed structural units accordingly consist of residues of acrylamide, acrylic acid and maleic acid, the maleic acid residues being at least partially in salt form, and which is characterized in that the weight ratio of the copolymers (A) and (B) is 1: 2 to 20: 1 is.

Die Copolymerisate (A) können durch radikalische Copolymerisation von 65-90 Moi--% Acrylamid und 10-35 Mol-% Maleinsäureanhydrid oder Maleinsäure erhalten werden.The copolymers (A) can be obtained by radical copolymerization of 65-90 mol% acrylamide and 10-35 mol% maleic anhydride or maleic acid.

Die Copolymerisation von Acrylamid und Maleinsäureanhydrid wird zweckmäßigerweise als Fällungspolymerisation in organischen, gegen Anhydridgruppen inerten Lösungsmitteln durchgeführt. Besonders günstige Lösungsmittel sind wegen ihres guten Lösevermögens für die Monomeren und nicht zuletzt wegen ihrer leichten Flüchtigkeit Aceton und Essigsäureester von Alkoholen mit 1-3 Kohlenstoffatomen. Die Polymerisation kann mit den üblichen radikalischen Initiatoren wie aliphatischen Azoverbindungen oder organischen Perverbindungen wie Peroxiden oder Perestern ausgelöst werden. Die Polymerisationstemperatur wird durch die Zerfallseigenschaften des Initiators bestimmt und liegt bei Verwendung von Azoisobuttersäuredinitril in Batch-Ansätzen bei 50°-80°C. Die Copolymeren fallen bei diesem Verfahren als feinteilige Pulver an und können leicht abfiltriert und durch Waschen von Restmonomeren befreit werden.The copolymerization of acrylamide and maleic anhydride is advantageously carried out as a precipitation polymerization in organic solvents which are inert to anhydride groups. Particularly cheap solvents are acetone and acetic acid esters of alcohols with 1-3 carbon atoms because of their good solvent power for the monomers and not least because of their low volatility. The polymerization can be initiated with the usual free-radical initiators such as aliphatic azo compounds or organic per-compounds such as peroxides or peresters. The polymerization temperature is determined by the decomposition properties of the initiator and, when using azoisobutyronitrile in batches, is 50 ° -80 ° C. In this process, the copolymers are obtained as finely divided powders and can easily be filtered off and freed of residual monomers by washing.

Die Copolymerisation von Acrylamid und Maleinsäure zu Copolymerisaten (A) kann sowohl als Fällungspolymerisation in organischen Lösungsmitteln als auch also Lösungspolymerisation in Wasser durchgeführt werden.The copolymerization of acrylamide and maleic acid to give copolymers (A) can be carried out both as precipitation polymerization in organic solvents and also as solution polymerization in water.

Bei der Fallungscopolymerisation von Acrylamid und Maleinsäure können außer Aceton und Essigsäureestern von Alkoholen mit 1-3 Kohlenstoffatomen auch niedere aliphatische Alkohole mit 1--4 Kohlenstoffatomen mit Erfolg verwendet werden. Die Polymerisation sowie die Isolierung der Polymerisatpulver erfolgt analog wie bei Acrylamid-Maleinsäureanhydrid-Copolymeren.In the precipitation copolymerization of acrylamide and maleic acid, in addition to acetone and acetic acid esters of alcohols with 1-3 carbon atoms, lower aliphatic alcohols with 1--4 carbon atoms can also be used successfully. The polymerization and isolation of the polymer powders is carried out analogously to that of acrylamide-maleic anhydride copolymers.

Die Fällungscopolymerisate können lösungsmittelfeucht oder nach dem Trocknen in Wasser zu 5-30 Gew.-%igen Lösungen aufgelöst werden. Die Anhydridgruppen der Acrylamid-Maleinsäureanhydrid-Copolymeren gehen dabei in Maleinsäuregruppen über. Bei Verwendung der lösungsmittelfeuchten Polymerisate wird anschließend das organische Lösungsmittel durch Dekantieren und/oder Destillation abgetrennt.The precipitation copolymers can be dissolved in solvent or, after drying, in water to 5-30% by weight solutions. The anhydride groups of the acrylamide-maleic anhydride copolymers pass into maleic acid groups. When using the solvent-moist polymers, the organic solvent is then separated off by decanting and / or distillation.

Eine weitere bevorzugte Verfahrensweise zur Herstellung wäßriger Lösungen der Copolymerisate (A) stellt die Lösungscopolymerisation von Acrylamid und Maleinsäure in Wasser dar. Die Maleinsäure kann entweder durch Auflösen der entsprechenden Menge des Andydrids in Wasser vor der Polymerisation hergestellt oder als solche eingesetzt werden. Als Initiatoren eignen sich wasserlösliche Perverbindungen wie Persulfate oder Wasserstoffperoxid, gegebenenfalls in Kombination mit einem Reduktionsmittel und/oder Schwermetallsalz. Azoverbindungen mit hinreichender Wasserlöslichkeit sind ebenfalls geeignete Initiatoren. Azoisobuttersäuredinitril besitzt besonders bei erhöhter Temperatur eine hinreichende Wasserlöslichkeit und wird besonders bevorzugt, da es den Salzgehalt der Lösungen nicht beeinflußt.Another preferred procedure for the preparation of aqueous solutions of the copolymers (A) is the solution copolymerization of acrylamide and maleic acid in water. The maleic acid can either be prepared by dissolving the appropriate amount of the andydride in water before the polymerization or used as such. Suitable initiators are water-soluble per compounds such as persulfates or hydrogen peroxide, optionally in combination with a reducing agent and / or heavy metal salt. Azo compounds with sufficient water solubility are also suitable initiators. Azoisobutyronitrile is sufficiently soluble in water, especially at elevated temperatures, and is particularly preferred because it does not affect the salt content of the solutions.

Die Lösungspolymerisation kann wie die Fällungspolymerisation batchweise mit Vorlage des gesamten Ansatzes oder nach einem Semi-Batch-Zulaufverfahren mit Zudosierung der Monomeren durchgeführt werden. Das bevorzugte Verfahren der Lösungspolymerisation besteht darin, daß die wäßrige Lösung der Monomeren, die den Initiator gelöst oder feinteilig suspendiert enthält, bei etwa 80°-120°C unter Sauerstoffausschluß zu einer gerührten Vorlage sauerstoffreien Wassers in etwa 1-10 Std. zugegeben wird. Das Azoisobuttersäuredinitril kann auch als Lösung in einem organischen Lösungsmittel synchron zur Monomerlösung zugetropft werden, wobei das Lösungsmittel gegebenenfalls kontinuierlich abdestilliert werden kann. Nach beendeter Monomerzugabe wird 15-120 Min. nachgerührt, und die Lösung anschließend auf Raumtemperatur abgekühlt.Like the precipitation polymerization, the solution polymerization can be carried out batchwise with presentation of the entire batch or according to a semi-batch feed process with metering in of the monomers. The preferred method of solution polymerization is that the aqueous solution of the monomers, which contains the initiator in dissolved or finely suspended form, is added at about 80 ° -120 ° C. with the exclusion of oxygen to a stirred charge of oxygen-free water in about 1-10 hours. The azoisobutyronitrile can also be added dropwise as a solution in an organic solvent in synchronism with the monomer solution, it being possible for the solvent to be distilled off continuously. After the monomer addition has ended, the mixture is stirred for 15-120 minutes and the solution is then cooled to room temperature.

Die durch Lösungspolymerisation erhaltenen Lösungen der Copolymeren (A) enthalten noch geringe Mengen an Restmonomeren, die sich jedoch im allgemeinen nicht nachteilig auf die Anwendungseigenschaften der Lösungen auswirken. Außerdem enthalten in wäßriger Lösung hergestellte Copolymere (A) bereits geringe Mengen durch Hydrolyse während der Polymerisation entstandene Acrylsäure- und Maleinsäuresalzbausteine.The solutions of the copolymers (A) obtained by solution polymerization still contain small amounts of residual monomers, but these generally have no adverse effect on the application properties of the solutions. In addition, copolymers (A) prepared in aqueous solution already contain small amounts of acrylic acid and maleic acid salt units formed by hydrolysis during the polymerization.

Erfindungsgemäße Copolymerisate (A) werden erhalten durch Copolymerisation von 65-90 Mol-% Acrylamid und 10-35 Mol-% Maleinsäure bzw. Maleinsäureanhydrid. Vorzugsweise werden Copolymerisate (A) aus 70-85 Mol-% Acrylamid und 15-30 Mol-% Maleinsäure bzw. Maleinsäureanhydrid verwendet. Die Copolymerisate (A) enthalten die Struktureinheiten aus Acrylamid und Maleinsäureanhydrid in statistischer Verteilung und in Mengenverhältnissen, die den Zusammensetzungen der Monomermischungen entsprechen.Copolymers (A) according to the invention are obtained by copolymerization of 65-90 mol% of acrylamide and 10-35 mol% of maleic acid or maleic anhydride. Copolymers (A) of 70-85 mol% of acrylamide and 15-30 mol% of maleic acid or maleic anhydride are preferably used. The copolymers (A) contain the structural units made of acrylamide and Maleic anhydride in statistical distribution and in proportions that correspond to the compositions of the monomer mixtures.

Die radikalischen Initiatoren werden in Mengen von 0,1-10 Gew.-%, bevorzugt 0,3-3,0 Gew.- %, bezogen auf Monomere zugesetzt. Bei Fällungspolymerisationen liegen die Polymerisatausbeuten im allgemeinen bei 75-95 %. Die Copolymeren (A) besitzen Grenzviskositätszahlen [1/] von 0,05-l',0 [dl/g], vorzugsweise 0,08 bis 0,4 [dl/g] (bestimmt in 0,9%iger wäßriger Kochsalzlösung).The free radical initiators are added in amounts of 0.1-10% by weight, preferably 0.3-3.0% by weight, based on monomers. In precipitation polymerizations, the polymer yields are generally 75-95%. The copolymers (A) have intrinsic viscosity [ 1 /] of 0.05-l ', 0 [dl / g], preferably 0.08 to 0.4 [dl / g] (determined in 0.9% aqueous sodium chloride solution) .

Die Lösungen der Copolymerisate (B)) können erhalten werden, indem man die wäßrigen Lösungen der Copolymerisate (A) längere Zeit auf Temperaturen von 60°-150°C, vorzugsweise 80―130°C ― gegebenenfalls unter Druck in einem Autoklaven - erhitzt. Besonders bevorzugt ist eine Hydrolyse unter Rückflußbedingungen bei Normaldruck. Während des Erhitzens tritt eine teilweise Hydrolyse von Acrylamidbausteinen ein. Das dabei entstehende Ammoniak neutralisiert einen Teil der Maleinsäurebausteine und bewirkt dadurch einen Anstieg des pH-Wertes der Lösung. Infolge der Hydrolyse geht das Acrylamid-Maleinsäure-Copolymerisat in ein Copolymerisat über, welches aus Acrylamid-Acrylsäure- und Maleinsäurebausteinen besteht, und in dem die Maleinsäurebausteine zumindest teilweise in Salzform vorliegen.The solutions of the copolymers (B)) can be obtained by heating the aqueous solutions of the copolymers (A) at temperatures of 60 ° -150 ° C., preferably 80-130 ° C. for a long time, optionally under pressure in an autoclave. Hydrolysis under reflux conditions at normal pressure is particularly preferred. Partial hydrolysis of acrylamide units occurs during heating. The resulting ammonia neutralizes some of the maleic acid building blocks and thereby causes an increase in the pH of the solution. As a result of the hydrolysis, the acrylamide-maleic acid copolymer converts into a copolymer which consists of acrylamide-acrylic acid and maleic acid units and in which the maleic acid units are at least partially in salt form.

Hydrolysiert man wäßrige Copolymerisatlösungen (A), die aus gründlich gewaschenen Fällungspolymerisaten hergestellt wurden, so ändert sich die Viskosität der Lösung im Verlauf der Hydrolyse nicht merklich, es tritt also weder ein Abbau des Polymeren noch eine Nachpolymerisation ein.If aqueous copolymer solutions (A) which have been prepared from thoroughly washed precipitation polymers are hydrolyzed, the viscosity of the solution does not change appreciably in the course of the hydrolysis, so there is neither degradation of the polymer nor postpolymerization.

Beim Erhitzen von durch Lösungspolymerisation in Wasser hergestellten Copolymerisatlösungen (A) kann die Lösungsviskosität durch Nachpolymerisation der Restmonomeren mehr oder weniger stark ansteigen. Dieser Anstieg führt jedoch zu keiner signifikanten Änderung des Koazervierungsverhaltens der Polymeren.When copolymer solutions (A) prepared by solution polymerization in water are heated, the solution viscosity can increase to a greater or lesser extent by post-polymerization of the residual monomers. However, this increase does not lead to a significant change in the coacervation behavior of the polymers.

Erfindungsgemäße Lösungen von Copolymerisaten (B) werden erhalten, indem erfindungsgemäße Lösungen der Copolymerisate (A) auf 60°-150°C, vorzugsweise 80°-130°C und besonders bevorzugt auf etwa 100°C (Rückfluß unter Normaldruck) erhitzt werden, bis der pH der Lösungen auf 3,8 bis 4,9, vorszugsweise 4,0 bis 4,6, gestiegen ist. Infolge einer eventuellen Nachpolymerisation von Restmonomeren liegen die in 0,9%iger wäßriger Kochsalzlösung bestimmten Grenzviskositätszahlen der Copolymerisate (B) bei 0,05 bis 1,5 [dl/g], vorzugsweise bei 0,08 bis 1,0 [dl/g].Solutions of copolymers (B) according to the invention are obtained by heating solutions of the copolymers (A) according to the invention to 60 ° -150 ° C., preferably 80 ° -130 ° C. and particularly preferably to about 100 ° C. (reflux under normal pressure) until the pH of the solutions has risen to 3.8 to 4.9, preferably 4.0 to 4.6. As a result of any subsequent polymerization of residual monomers, the intrinsic viscosity of the copolymers (B), determined in 0.9% aqueous sodium chloride solution, is 0.05 to 1.5 [dl / g], preferably 0.08 to 1.0 [dl / g ].

Die Lösungen der Copolymerisate (A) und die Lösungen der Copolymerisate (B) bilden - gegebenenfalls nach einer pH-Einstellung mit Ammoniak oder Alkalilauge bzw. mit Essigsäure - auch für sich alleine mit Gelatine Koazervate. Dies Koazervate bilden jedoch keine Hülle oder keine geschlossene Hülle und/oder sind sehr klebrig.The solutions of the copolymers (A) and the solutions of the copolymers (B) also form coacervates on their own with gelatin, if necessary after adjusting the pH with ammonia or alkali metal hydroxide solution or with acetic acid. However, these coacervates do not form a shell or a closed shell and / or are very sticky.

Mischt man die wäßrigen Lösungen der erfindungsgemäßen Copolymerisate (A) und (B) im Gewichtsverhältnis der gelösten Copolymerisate (A) : (B) wie 1 : 2 bis 20 : 1, so erhält man überraschenderweise Polymerlösungen, die zusammen mit Gelatine Koazervate liefern, die gleichmäßige, geschlossene Hüllen bilden und daher zur Herstellung von Mikrokapseln vorzüglich geeignet sind. Das optimale Mischungsverhältnis wird hauptsächlich durch die Zusammensetzung des Copolymeren (A) sowie durch den pH-Wert der Lösung des Copolymeren (B), der ein Maß für den HYdrolysegrad darstellt, beeinflußt und muß für jedes Copolymerenpaar experimentell bestimmt werden. Selbstverständlich können auch Lösungen von Copolymeren (A) mit Lösung von Copolymeren (B) abgemischt werden, die aus Copolymeren (A') mit anderer Zusammensetzung durch Hydrolyse erhalten wurden (z.B. Copolymer (A) mit 70 Mol-% Acrylamid- und 30 Mol-% Maleinsäurebausteinen, und Copolymerlösung (B) aus Copolymer (A') mit 80 Mol-% Acrylamid- und 20 Mol-% Maleinsäurebausteinen). In manchen Fällen kann eine Veränderung des pH-Wertes der Polymerlösung durch Zugabe von Ammoniak oder Alkalihydroxid bzw. Essigsäure das Koazervierungsverhalten günstig beeinflussen.If you mix the aqueous solutions of the copolymers (A) and (B) according to the weight ratio of the dissolved copolymers (A): (B) as 1: 2 to 20: 1, surprisingly polymer solutions are obtained which, together with gelatin, provide coacervates which form uniform, closed shells and are therefore particularly suitable for the production of microcapsules. The optimal mixing ratio is mainly influenced by the composition of the copolymer (A) and by the pH of the solution of the copolymer (B), which is a measure of the degree of hydrolysis, and must be determined experimentally for each pair of copolymers. Of course, solutions of copolymers (A) can also be mixed with solutions of copolymers (B) which have been obtained from copolymers (A ') with a different composition by hydrolysis (for example copolymer (A) with 70 mol% acrylamide and 30 mol% % Of maleic acid units, and copolymer solution (B) from copolymer (A ') with 80 mol% of acrylamide and 20 mol% of maleic acid units). In some cases, changing the pH of the polymer solution by adding ammonia or alkali hydroxide or acetic acid can have a favorable effect on the coacervation behavior.

Das Verfahren der Mikroverkapselung durch Komplexkoazervierung ist grundsätzlich bekannt. Es beruht darauf, daß man den ein zukapselnden Stoff in feinverteilter Form in einer wäßrigen, zur Koazervatbildung geeigneten Lösung dispergiert, und dann die Koazervierung auslöst. Dies geschieht durch Verdünnen, Änderung des pH-Wertes oder Abkühlen oder durch eine Kombination dieser Maßnahmen, je nach dem benutzten System.The process of microencapsulation by complex coacervation is known in principle. It is based on dispersing the encapsulating substance in finely divided form in an aqueous solution suitable for coacervate formation, and then triggering the coacervation. This is done by diluting, changing the pH or cooling or by a combination of these measures, depending on the system used.

Die wäßrigen Polymerlösungen der Erfindung bilden mit Gelatine Komplexkoazervate durch Verdünnen und/oder Abkühlen. Sie lassen sich z.B. in 10-15 gew.-%iger wäßriger Lösung mit einer 10-15 gew.-%igen Gelatinelösung mischen und durch Verdünnen und Abkühlen koazervieren. Es ist erstaunlich, daß derartig hochkonzentrierte Lösungen benutzt werden können. Ebenfalls überraschend ist, daß die erhaltenen Koazervate, die ja eine separate weiche Gelphase darstellen, bereits 20-30 Gew.-% Feststoff enthalten. Dieser hohe Feststoffgehalt erleichtert es sehr, die Koazervate zu Pulvern zu trocknen. Da die Koazervate außerordentlich leicht zusammenhängende Hüllen oder Überzüge bilden, eignen sie sich vorzüglich zur Herstellung von Mikrokapseln. Bei der Koazervierung bildet sich die separate Gelphase als zusammenhängende Schicht auf kleinen, in der Lösung dispergierten flüssigen oder festen separaten Teilchen aus und hüllt diese Teilchen ein.The aqueous polymer solutions of the invention form complex coacervates with gelatin by dilution and / or cooling. They can be mixed, for example, in 10-15% by weight aqueous solution with a 10-15% by weight gelatin solution and coacervated by dilution and cooling. It is astonishing that such highly concentrated solutions can be used. It is also surprising that the coacervates obtained, which are a separate soft gel phase, already contain 20-30 % by weight of solids. This high solids content makes it very easy to dry the coacervates into powders. Since the coacervates form extremely coherent shells or coatings, they are particularly suitable for the production of microcapsules. During coacervation, the separate gel phase forms as a coherent layer on small, liquid or solid separate particles dispersed in the solution and envelops these particles.

Mit der Kombination aus erfindungsgemäßen Polymerlösungen und Gelatine können eine Vielzahl von in Wasser schwer- oder unlöslichen flüssigen oder festen dispergierbaren und gegen Wasser hinreichend beständigen Stoffen mikroverkapselt werden.The combination of polymer solutions according to the invention and gelatin can be used to microencapsulate a large number of liquid or solid dispersible or water-insoluble or sparingly water-insoluble or water-resistant substances.

Beispielhaft seien gennant: Organische Lösungsmittel, Paraffinöle, Parfumöle, Silikonentschäumer, Phosphorsäureester, flüssige Kristalle und Farbpigmente, sowie Pharmazeutika und Pflanzenschutzmittel.Examples include: organic solvents, paraffin oils, perfume oils, silicone defoamers, Phosphoric acid esters, liquid crystals and color pigments, as well as pharmaceuticals and pesticides.

Beispiel 1example 1

  • a) Polymerisation: (Copolymerisat (A)) 240 g Acrylamid, 60 g Maleinsäureanhydrid und 3 g Azoisobuttersäuredinitril werden in 2,7 I Essigsäureäthylester gelöst. Die Lösung wird durch mehrmaliges Evakuieren der Apparatur und Füllen mit Stickstoff von Sauerstoff befreit und unter Sauerstoffausschluß 20 Std. bei 60°C gerührt. Das ausgefallene Polymerisat wird abfiltriert, gründlich mit Essigsäureäthylester gewaschen und im Vakuum bei 60°C getrocknet. Man erhält 273 g eines feinpulverigen Polymeren mit einer in 0,9 %iger wäßriger NaCI-Lösung bestimmten Viskositätszahl (intrinsic viscosity) [q] = 0,14 [dl/g].a) Polymerization: (copolymer (A)) 240 g of acrylamide, 60 g of maleic anhydride and 3 g of azoisobutyronitrile are dissolved in 2.7 l of ethyl acetate. The solution is freed from oxygen by repeatedly evacuating the apparatus and filling with nitrogen and stirred at 60 ° C. for 20 hours with the exclusion of oxygen. The precipitated polymer is filtered off, washed thoroughly with ethyl acetate and dried in vacuo at 60 ° C. This gives 273 g of a finely powdered polymer with a viscosity number (intrinsic viscosity) determined in 0.9% strength aqueous NaCl solution [q] = 0.14 [dl / g].
  • b) Hydrolyse: (Copolymerisat (B)) 100 g des trockenen Polymeren gem. 1 a) werden in 900 ml entmineralisiertem Wasser gelöst, und die Lösung bis zum pH-Wert 4,6 bei Normaldruck unter Rückfluß erhitzt (ca. 12-18 Std.). Sofort nach dem Auflösen sowie bei Erreichen der pH-Werte 3,0; 3,5; 4,1 und 4,6 wird die Lösungsviskosität mit einem Kugelfallviskosimeter bestimmt. Alle Lösungen zeigen innerhalb der Fehlergrenze die gleiche Viskosität.b) hydrolysis: (copolymer (B)) 100 g of the dry polymer acc. 1 a) are dissolved in 900 ml of demineralized water, and the solution is heated to reflux up to pH 4.6 at normal pressure (approx. 12-18 hours). Immediately after dissolving and when pH 3.0 is reached; 3.5; 4.1 and 4.6, the solution viscosity is determined using a falling ball viscometer. All solutions show the same viscosity within the error limit.
  • c) Herstellung der Polymerlösung und Verkapselung 150 g trockenes Polymerisat gemäß 1 a) werden in 1.350 ml entmineralisiertem Wasser gelöst. Die Lösung zeigt einen pH-Wert von ~2,2. 150 ml dieser Lösung werden mit 50 ml der hydrolysierten Lösung gemäß 1 b) gemischt. Die Mischung besitzt einen pH-Wert von 3,5. Zu 50 g der so erhaltenen 10 gew.-%igen Lösung des Copolymerisatgemisches werden bei 50°C 50 g einer 10 gew.-%igen wäßrigen Lösung einer sauer geäscherten Schweinehautgelatine mit einem pH von 5,6 gegeben. 40 g Wärmeübertragungsöl ("Marlotherm(R)"; Chem. Werke Hüls) werden zugegeben und bei 50°C mit einem schnellaufenden Rührer zu Tröpfchen mit ca. 25,um: Durchmesser verteilt. Nach Zugabe von 125 g entmineralisiertem Wasser wird die Dispersion unter Rühren auf +10 bis +5°C abgekühlt. Dabei überziehen sich die Öltröpfchen mit einer geschlossenen, gleichmäßig dicken Koazervathülle.c) Preparation of the polymer solution and encapsulation 150 g of dry polymer according to 1 a) are dissolved in 1,350 ml of demineralized water. The solution shows a pH of ~ 2.2. 150 ml of this solution are mixed with 50 ml of the hydrolyzed solution according to 1 b). The mixture has a pH of 3.5. To 50 g of the 10% strength by weight solution of the copolymer mixture thus obtained, 50 g of a 10% strength by weight aqueous solution of an acid-washed pig skin gelatin having a pH of 5.6 are added at 50.degree. 40 g of heat transfer oil ("Marlotherm (R)" ; Chem. Werke Hüls) are added and distributed at 50 ° C. with a high-speed stirrer to form droplets with a diameter of about 25 μm. After adding 125 g of demineralized water, the dispersion is cooled to +10 to + 5 ° C. with stirring. The oil droplets cover themselves with a closed, uniformly thick coacervate.
Beispiele 2-9Examples 2-9

Polymerlösungen gemäß Beispiel 1 a) und 1 b) werden in den in der Tabelle angegebenen Verhältnissen abgemischt. Die Mischungen werden nach der in Beispiel 1 c) angegebenen Methode gepufft. Das Einkapselungsverhalten wird als "gut" bezeichnet, wenn die Öltröpfchen von einer geschlossenen, regelmäßig geformtern und gleichmäßig dicken Hülle umgeben sind. Als "mittel" wird eine geschlossene, unregelmäßig geformte und ungleichmäßig dicke Hülle bezeichnet. Ein "schlechtes" Einkapselungsverhalten liegt dann vor, wenn die Hülle nicht geschlossen und zusammenhängend ist, die Kapseln sehr stark kleben order gar keine Hülle gebildet wird.

Figure imgb0001
Polymer solutions according to Example 1 a) and 1 b) are mixed in the ratios given in the table. The mixtures are puffed according to the method given in Example 1 c). The encapsulation behavior is said to be "good" if the oil droplets are surrounded by a closed, regularly shaped and uniformly thick shell. A "medium" is a closed, irregularly shaped and unevenly thick shell. A "bad" encapsulation behavior occurs if the casing is not closed and coherent, the capsules stick very strongly or no casing is formed at all.
Figure imgb0001

Beispiele 10-39Examples 10-39

330 g Acrylamid und 170 g Maleinsäure werden in 3,500 ml entmineralisiertem Wasser bei Raumptemperatur gelöst. Nach Zugabe von 4 g feinpulverigem Azoisobuttersäuredinitril wird 90 Min. intensiv bei 20-25°C gerührt und dann vom ungelösten Initiator abfiltriert. Die so erhaltene Lösung wird in 2 Stunden gleichmäßig zu einer Vorlage von 1 I sauerstoffreiem, siedenden Wasser getropft. Nach einstündigem Nachrühren unter Rückfluß wird die Polymerlösung abgekühlt. Sie besitzt einen pH-Wert von 3,0 und eine Viskositätszahl (intrinsic viscosity) [η] von 0,22 [dl/g] in 0,9%iger wäßriger Kochsalzlösung.330 g of acrylamide and 170 g of maleic acid are dissolved in 3,500 ml of demineralized water at room temperature. After adding 4 g of finely powdered azoisobutyronitrile, 90 minutes. stirred vigorously at 20-25 ° C and then filtered off from the undissolved initiator. The solution obtained in this way is added dropwise in 2 hours to an initial charge of 1 l of oxygen-free boiling water. After stirring for one hour under reflux, the polymer solution is cooled. It has a pH of 3.0 and a viscosity number (intrinsic viscosity) [η] of 0.22 [dl / g] in 0.9% aqueous saline solution.

2 kg Polymerlösung werden erneut zum Sieden erhitzt. Sobald der pH-Wert auf 3,8; 4,0; 4,2; 4,4; 4,6 und 4,9 gestiegen ist, werden jeweils 250 ml Lösung entnommen und mit nicht erhitzter Lösung gemischt.

Figure imgb0002
2 kg of polymer solution are heated to boiling again. As soon as the pH value reaches 3.8; 4.0; 4.2; 4.4; 4.6 and 4.9 increased, 250 ml of solution are removed and mixed with unheated solution.
Figure imgb0002

Beispiele 40--49Examples 40--49

In einem 2 I fassenden Mehrhalskolben mit Rührer, Rückflußkühler, Tropftrichter und Stickstoffleitung werden 300 ml entmineralisiertes Wasser vorgelegt. Die Apparatur wird 3mal auf -30 mbar evakuiert und mit Stickstoff gefüllt. Dann erhitzt man das Wasser unter langsamem Überleiten von Stickstoff zum Sieden.300 ml of demineralized water are placed in a 2 l multi-necked flask with stirrer, reflux condenser, dropping funnel and nitrogen line. The apparatus is evacuated 3 times to -30 mbar and filled with nitrogen. The water is then heated to boiling with a slow passage of nitrogen.

150 g Monomere in den in der Tabelle angegebenen Gewichts- bzw. Molverhältnissen werden in 1.050 g entmineralisiertem Wasser gelöst. Bei Verwendung von Maleinsäure erfolgt das Lösen bei Raumtemperatur. Verwendet man Maleinsäureanhydrid, so löst man dieses zweckmäßig zuerst unter Hydrolyse in 40―50° C warmem Wasser und fügt das Acrylamid nach dem Abkühlen auf Raumtemperatur zu. Dann wird 1,0 g feinpulveriges Azoisobuttersäuredinitril zugefügt, die Mischung 1 Std. bei Raumtemperatur gerührt und von ungelösten Anteilen abfiltriert. Die so erhaltene Monomerlösung wird in 3 Stunden gleichmäßig zu der siedenden Vorlage getropft. Nach einstündigem Nachrühren bei 100°C wird die Polymerlösung abgekühlt. 1.000 g Lösung werden bei Raumtemperatur aufbewahrt, und die restlichen Lösung so lange zum Sieden erhitzt, bis sie den in der Tabelle angegebenen pH besitzt. Zu Beginn wird der pH alle 2 Stunden ab pH≈4,0 stündlich kontrolliert.150 g of monomers in the weight or molar ratios given in the table are dissolved in 1,050 g of demineralized water. When maleic acid is used, it is dissolved at room temperature. If maleic anhydride is used, it is expedient first to dissolve it under hydrolysis in water at 40 ° -50 ° C. and to add the acrylamide after cooling to room temperature. Then 1.0 g of finely powdered azoisobutyronitrile is added, the mixture is stirred at room temperature for 1 hour and undissolved fractions are filtered off. The monomer solution thus obtained is added dropwise uniformly to the boiling charge in 3 hours. After stirring at 100 ° C. for one hour, the polymer solution is cooled. 1,000 g of solution are stored at room temperature, and the remaining solution is heated to boiling until it has the pH given in the table. At the beginning, the pH is checked every 2 hours from pH≈4.0 per hour.

Die abgemischten Lösungen werden nach der im Beispiel 1 c) beschriebenen Methode geprüft. Die Bewertung des Einkapselungsverhaltens erfolgt nach Beispiel 2.

Figure imgb0003
The mixed solutions are tested according to the method described in Example 1 c). The encapsulation behavior is assessed according to Example 2.
Figure imgb0003

Beispiele 50-53Examples 50-53

In einem 1 Liter fassenden Mehrhalskolben mit Rührer, Rückflüßkühler, Tropftrichter und Stickstoffleitung werden je 200 ml siedendes sauerstoffreies Wasser vorgelegt. 50 g Acrylamid und 20 g Maleinsäure werden in 430 ml entmineralisiertem Wasser gelöst. Nach Zugabe der in der Tabelle angegebenen Menge Azoisobuttersäuredinitril wird die Monomer/Initiatormischung als Lösung (L) oder gut gerührte Suspension (S) innerhalb 2,5 Stunden gleichmäßig bei 100°C zugetropft. Nach einstündigem Nachrühren werden ~400 ml Lösung entnommen und bei Raumtemperatur aufbewahrt. Die restliche Lösung wird in 12-18 Stunden bei 100°C bis zum angegebenen pH-Wert hydrolysiert. Die Abmischungen werden nach dem in den Beispielen 1 und 2 angegebenen Verfahren geprüft.

Figure imgb0004
200 ml of boiling oxygen-free water are placed in a 1 liter multi-necked flask with stirrer, reflux condenser, dropping funnel and nitrogen line. 50 g of acrylamide and 20 g of maleic acid are dissolved in 430 ml of demineralized water. After adding the amount of azoisobutyronitrile shown in the table, the monomer / initiator mixture as a solution (L) or well-stirred suspension (S) is added dropwise uniformly at 100 ° C. over 2.5 hours. After stirring for one hour, ~ 400 ml of solution are removed and stored at room temperature. The remaining solution is hydrolyzed in 12-18 hours at 100 ° C to the specified pH. The blends are tested according to the procedure given in Examples 1 and 2.
Figure imgb0004

Claims (3)

1. An aqueous copolymer solution, the polymeric content of which amounts to 5 to 30% by weight and consists of a mixture of
A) a copolymer with an intrinsic viscosity [η] of 0.05 to 1 [dl/g], 65 to 90 mole percent of whose statistically distributed structural units consist of residues of acrylamide and 10 to 35 mole percent of residues of maleic acid or maleic acid anhydride, and
B) a corresponding hydrolysed copolymer having an intrinsic viscosity [1]] of 0.05 to 1.5 [dl/g] whose statistically distributed structural units accordingly consist of residues of acrylamide, arylic acid and maleic acid, at least some of the maleic acid residues being present in salt form,

characterised in that the ratio by weight of copolymer A to copolymer B is from 1:2 to 20:1.
2. A process for producing the aqueous copolymer solution according to claim 1, characterised in that
a) for producing copolymer (A) ther monomers are dissolved in an organic solvent or in water, polymerised with radical initiators at 50 to 120°C and the polymer is optionally isolated and dissolved in water and
b) for producing the copolymer (B) a part of copolymer (A) is hydrolysed by heating its aqueous solution to 60 to 150°C until a pH value of from 3.8 to 4.9 is obtained and then
c) both copolymer solutions are combined in a ratio of copolymer (A) to copolymer (B) of from 1:2 to 20:1.
3. The use of the aqueous copolymer solution according to claim 1 as shell-forming component in the production of microcapsules by complex coacervation.
EP78100470A 1977-07-30 1978-07-21 Aqueous solutions of copolymers, process for their preparation and their use as shell forming materials for the production of microcapsules by complex coacervation Expired EP0000565B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19772734577 DE2734577A1 (en) 1977-07-30 1977-07-30 POLYMER SOLUTIONS
DE2734577 1977-07-30

Publications (2)

Publication Number Publication Date
EP0000565A1 EP0000565A1 (en) 1979-02-07
EP0000565B1 true EP0000565B1 (en) 1981-04-29

Family

ID=6015335

Family Applications (1)

Application Number Title Priority Date Filing Date
EP78100470A Expired EP0000565B1 (en) 1977-07-30 1978-07-21 Aqueous solutions of copolymers, process for their preparation and their use as shell forming materials for the production of microcapsules by complex coacervation

Country Status (6)

Country Link
US (1) US4181639A (en)
EP (1) EP0000565B1 (en)
JP (1) JPS5426843A (en)
DE (2) DE2734577A1 (en)
DK (1) DK335578A (en)
IT (1) IT1106614B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3016170A1 (en) 1980-04-26 1981-10-29 Bayer Ag, 5090 Leverkusen MICROCAPSULES WITH A DEFINED OPENING TEMPERATURE, METHOD FOR THE PRODUCTION AND USE THEREOF
US4784879A (en) * 1987-07-20 1988-11-15 Dow Corning Corporation Method for preparing a microencapsulated compound of a platinum group metal
USRE33749E (en) * 1987-07-20 1991-11-19 Dow Corning Corporation Storage stable heat curable organosiloxane compositions containing microencapsulated platinum-containing catalysts
US5268419A (en) * 1988-01-28 1993-12-07 Rohm And Haas Company Fast curing binder for cellulose
US5314943A (en) * 1990-11-30 1994-05-24 Rohm And Haax Company Low viscosity high strength acid binder
DE69321765T3 (en) * 1992-06-04 2006-08-24 Arjo Wiggins Ltd., Basingstoke Pressure-sensitive recording material
GB9522233D0 (en) * 1995-10-31 1996-01-03 Wiggins Teape Group The Limite Pressure-sensitive copying paper
DE19634393A1 (en) * 1996-08-26 1998-03-05 Bayer Ag Process for the preparation of crosslinked polymers
DE19840583A1 (en) 1998-09-05 2000-03-09 Bayer Ag Microcapsule formulations
US6653256B1 (en) 1999-08-24 2003-11-25 Bayer Aktiengesellschaft Microcapsule formulations
US7919331B2 (en) * 2006-12-21 2011-04-05 Silver Lake Research Corporation Chromatographic test strips for one or more analytes

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1900865A1 (en) * 1969-01-09 1970-08-27 Bayer Ag Process for the production of microcapsules
US3635915A (en) * 1969-11-28 1972-01-18 Deering Milliken Res Corp Copolymers of maleic acid and acrylic acid
DE2010117C3 (en) * 1970-03-04 1979-06-07 Bayer Ag, 5090 Leverkusen Process for the production of thermoreversible coacervates
DE2060571A1 (en) * 1970-12-09 1972-06-15 Bayer Ag Process for the production of thermoreversible coacervates
DE2217696C3 (en) * 1972-04-13 1979-06-28 Basf Ag, 6700 Ludwigshafen Distribution-stable dispersions of microcapsules

Also Published As

Publication number Publication date
IT1106614B (en) 1985-11-11
IT7850520A0 (en) 1978-07-28
DK335578A (en) 1979-01-31
JPS5426843A (en) 1979-02-28
US4181639A (en) 1980-01-01
EP0000565A1 (en) 1979-02-07
DE2734577A1 (en) 1979-02-08
DE2860645D1 (en) 1981-08-06
JPS627948B2 (en) 1987-02-19

Similar Documents

Publication Publication Date Title
DE3017576C2 (en)
DE2840010C3 (en) Graft copolymers
DE2437629C3 (en) Process for the preparation of insoluble polymers of N-vinyllactams which are only slightly swellable in water
DE1795126C3 (en) Process for the production of water-soluble acrylamide polymers
EP0000565B1 (en) Aqueous solutions of copolymers, process for their preparation and their use as shell forming materials for the production of microcapsules by complex coacervation
DE1795078B2 (en) Aqueous polytetrafluoroethylene dispersions, process for their preparation and their use
DE69017846T2 (en) METHOD FOR PRODUCING RESIN WITH HIGH WATER ABSORPTION.
EP0011190B1 (en) Crosslinked polymer beads containing filler
DE2602917C2 (en) Process for the preparation of a solid polymer from vinyl pyrrolidone and its use
DE2461083A1 (en) METHOD FOR MICROSUSPENSION POLYMERIZATION OF VINYL HALOGENIDES
DE3823729A1 (en) METHOD FOR PRODUCING A RESIN WITH A HIGH WATER ABSORPTION CAPACITY
DD141029B1 (en) NEEDLE SELECTION MECHANISM FOR AUTOMATIC KNITTING MACHINES
DE2531780B2 (en) Process for the production of pasteable polymers of vinyl chloride
DE2236456B2 (en) PROCESS FOR PREPARING A MIXED POLYMERIZE
DE1123110B (en) Process for the polymerization of water-soluble monomers
CH635849A5 (en) METHOD FOR HOMO- OR COPOLYMERIZING A VINYL CHLORIDE MONOMER OR A MIXTURE OF A VINYL CHLORIDE MONOMER AND COMONOMERS.
DE4033219A1 (en) METHOD FOR AGGLOMING A POLYMER POWDER
EP0002285B1 (en) Process for the preparation of cross-linked copolymers and application of the so obtained products to textile printing
DE2260957A1 (en) METHOD FOR HOMOPOLYMERIZATION OR COPOLYMERIZATION OF VINYL CHLORIDE
DE3877385T2 (en) WATER-SWELLABLE CROSS-LINKED POLYMERS AND METHOD FOR THE PRODUCTION THEREOF.
DE1092200B (en) Process for the production of copolymers from vinyl alcohol and acrylic acid esters
DE2060571A1 (en) Process for the production of thermoreversible coacervates
DE2010117B2 (en) Process for the production of thermoreversible coacervates
DE2017451C3 (en) Process for the production of crosslinked polycarboxylic acids
DE2023971C3 (en) Process for the polymerization of vinyl chloride and its mixtures with compounds of the vinyl type in bulk and homopolymers or copolymers obtained in this way

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed
AK Designated contracting states

Designated state(s): BE CH DE FR GB NL SE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE CH DE FR GB NL SE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19810731

Year of fee payment: 4

REF Corresponds to:

Ref document number: 2860645

Country of ref document: DE

Date of ref document: 19810806

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19810930

Year of fee payment: 4

Ref country code: BE

Payment date: 19810930

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19820722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19820731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19830121

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19910619

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19910627

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910709

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19910731

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19920721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19930201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19920721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930401

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 78100470.0

Effective date: 19850611

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT