EA201900433A1 - BOREHOLE FIBER FIBER CONTINUOUS TEMPERATURE CONTROL SENSOR - Google Patents

BOREHOLE FIBER FIBER CONTINUOUS TEMPERATURE CONTROL SENSOR

Info

Publication number
EA201900433A1
EA201900433A1 EA201900433A EA201900433A EA201900433A1 EA 201900433 A1 EA201900433 A1 EA 201900433A1 EA 201900433 A EA201900433 A EA 201900433A EA 201900433 A EA201900433 A EA 201900433A EA 201900433 A1 EA201900433 A1 EA 201900433A1
Authority
EA
Eurasian Patent Office
Prior art keywords
fiber
optic cable
optic
sensor
borehole
Prior art date
Application number
EA201900433A
Other languages
Russian (ru)
Other versions
EA038447B1 (en
Inventor
Иван Иванович Головатый
Дмитрий Владимирович Барбиков
Артем Вячеславович Зайцев
Лев Юрьевич Левин
Олег Сергеевич Паршаков
Алексей Витальевич Пугин
Михаил Александрович Семин
Алексей Сергеевич Дьяконов
Original Assignee
Открытое акционерное общество "Беларуськалий"
Федеральное государственное бюджетное учреждение науки "Пермский федеральный исследовательский центр Уральского отделения Российской академии наук"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Беларуськалий", Федеральное государственное бюджетное учреждение науки "Пермский федеральный исследовательский центр Уральского отделения Российской академии наук" filed Critical Открытое акционерное общество "Беларуськалий"
Priority to EA201900433A priority Critical patent/EA038447B1/en
Publication of EA201900433A1 publication Critical patent/EA201900433A1/en
Publication of EA038447B1 publication Critical patent/EA038447B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35338Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
    • G01D5/35354Sensor working in reflection
    • G01D5/35358Sensor working in reflection using backscattering to detect the measured quantity
    • G01D5/35364Sensor working in reflection using backscattering to detect the measured quantity using inelastic backscattering to detect the measured quantity, e.g. using Brillouin or Raman backscattering

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

Изобретение относится к оптоволоконным технологиям, а именно к термометрическому методу изучения массива горных пород, и может быть использовано для получения детальной информации о температурах горных пород с помощью оптоволоконного датчика непрерывно в режиме реального времени в скважинах или шпурах любой направленности (вертикальных, горизонтальных, наклонных). Конструкция скважинного оптоволоконного датчика непрерывного измерения температуры предусматривает корпус цилиндрической формы в виде трубы (1) с размещенным в нем оптоволоконным кабелем (2). Датчик снабжен несущим элементом в виде трубки (3) с навитым по винтовой линии на него без изоляции и армирования оптоволоконным кабелем (2). Корпус (1) плотно соприкасается с кабелем (2) и с одного торца имеет герметичную заглушку (4), с другого - герметичную крышку (5) с закрепленным с ее внутренней стороны несущим элементом (6), а с наружной стороны - элементами крепления (7) и извлечения (8) датчика с устья термометрической скважины или шпура (9). Корпус (1) и несущий элемент в виде трубки (3) оптоволоконного кабеля выполнены из нержавеющей стали. Полость (10) между внутренней стенкой корпуса и несущим элементом с оптоволоконным кабелем может быть заполнена теплопроводящей жидкостью или гелем. Выход (11) оптоволоконного кабеля (2) через отверстие (12) крышки (5) подключен к магистральному оптоволоконному кабелю (13), который связан с интеррогатором (14), а тот, в свою очередь, посредством TCP/IP соединения (15) связан с сервером (16) на рабочем месте оператора. Технический результат - непрерывное во времени в режиме онлайн измерение температуры с шагом 3-10 см вдоль ствола неглубокой скважины или шпура, в зависимости от его диаметра, с погрешностью, не превышающей величину, установленную нормативными документами.The invention relates to fiber-optic technologies, namely to a thermometric method for studying a rock mass, and can be used to obtain detailed information about the temperatures of rocks using a fiber-optic sensor continuously in real time in boreholes or boreholes of any direction (vertical, horizontal, inclined) ... The design of the downhole fiber-optic sensor for continuous temperature measurement provides for a cylindrical body in the form of a pipe (1) with a fiber-optic cable (2) placed in it. The sensor is equipped with a supporting element in the form of a tube (3) with a fiber-optic cable (2) wound along a helical line on it without insulation and reinforcement. The housing (1) is in close contact with the cable (2) and has a sealed plug (4) at one end, a sealed cover (5) with a supporting element (6) fixed on its inner side, and fastening elements ( 7) and retrieving (8) the sensor from the wellhead of the thermometric well or borehole (9). The housing (1) and the carrier in the form of a tube (3) of the fiber optic cable are made of stainless steel. The cavity (10) between the inner wall of the housing and the carrier with the fiber optic cable can be filled with a heat-conducting liquid or gel. The output (11) of the fiber-optic cable (2) through the hole (12) of the cover (5) is connected to the backbone fiber-optic cable (13), which is connected to the interrogator (14), and that, in turn, via a TCP / IP connection (15) connected to the server (16) at the operator's workplace. The technical result is a continuous in time online measurement of temperature with a step of 3-10 cm along a shallow well or borehole, depending on its diameter, with an error not exceeding the value established by regulatory documents.

EA201900433A 2019-09-06 2019-09-06 Downhole fiber optic sensor for continuous temperature monitoring EA038447B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EA201900433A EA038447B1 (en) 2019-09-06 2019-09-06 Downhole fiber optic sensor for continuous temperature monitoring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EA201900433A EA038447B1 (en) 2019-09-06 2019-09-06 Downhole fiber optic sensor for continuous temperature monitoring

Publications (2)

Publication Number Publication Date
EA201900433A1 true EA201900433A1 (en) 2021-03-31
EA038447B1 EA038447B1 (en) 2021-08-30

Family

ID=75262196

Family Applications (1)

Application Number Title Priority Date Filing Date
EA201900433A EA038447B1 (en) 2019-09-06 2019-09-06 Downhole fiber optic sensor for continuous temperature monitoring

Country Status (1)

Country Link
EA (1) EA038447B1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2368921B (en) * 1997-09-10 2002-07-17 Western Atlas Int Inc Optical fibre wellbore logging cable
US8417084B2 (en) * 2007-01-16 2013-04-09 Baker Hughes Incorporated Distributed optical pressure and temperature sensors
WO2009099332A1 (en) * 2008-02-07 2009-08-13 Tecwel As Data communication link
US9091785B2 (en) * 2013-01-08 2015-07-28 Halliburton Energy Services, Inc. Fiberoptic systems and methods for formation monitoring
WO2016003388A1 (en) * 2014-06-30 2016-01-07 Halliburton Energy Services, Inc. Downhole control line connector
US10494914B2 (en) * 2017-02-03 2019-12-03 Baker Hughes, A Ge Company, Llc Measurement of temperature using combination of rayleigh and raman backscatter interferometry

Also Published As

Publication number Publication date
EA038447B1 (en) 2021-08-30

Similar Documents

Publication Publication Date Title
US10844707B2 (en) Dual telemetric coiled tubing system
RU2564040C2 (en) Connection via protective shell of line
RU2661747C2 (en) Distributed acoustic measurement for passive range measurement
US10711599B2 (en) Electroacoustic pump-down sensor
US20030033866A1 (en) Receptacle for sampling downhole
BR112018074179B1 (en) APPARATUS FOR USE IN A WELL BORE AND WELL COMPRISING SUCH APPARATUS
BR112018074151B1 (en) APPARATUS FOR DETECTING WELLHOLE TEMPERATURE, WELL COMPRISING AN APPARATUS FOR DETECTING WELLHOLE TEMPERATURE AND METHOD FOR CALIBRATING AN APPARATUS
BR112018074168B1 (en) APPARATUS FOR USE IN TEMPERATURE DETECTION IN A WELL BORE, WELL COMPRISING A WELL APPARATUS AND METHOD FOR CALIBRATING AN APPARATUS
US20170342822A1 (en) Methods and systems employing fiber optic sensors for ranging
BR112016011163B1 (en) WELL HOLE PROFILING METHOD
RU2014122122A (en) DIRECTED DRILLING USING AN OPTICAL COMPUTING ELEMENT
CN1993533A (en) System and methods using fiber optics in coiled tubing
EP3337953B1 (en) Passive ranging to a target well using a fiber optic ranging assembly
US20190226335A1 (en) Electrochemical sensing using optical systems with electrochemical probes for wellbore applications
NO317705B1 (en) Process for painting flow rate in a well using permanently installed paint sensors
EA201900433A1 (en) BOREHOLE FIBER FIBER CONTINUOUS TEMPERATURE CONTROL SENSOR
US20200224527A1 (en) Methods and systems employing a rotating magnet and fiber optic sensors for ranging
WO2020046700A1 (en) Simultaneous seismic refraction and tomography
RU97524U1 (en) THERMOSOUND FOR MEASURING THE ENVIRONMENT TEMPERATURE PROFILE
RU2520110C1 (en) Device for remote control of mud parameters in mud ditch
RU2319834C1 (en) Method for fluid flow control in well production strings
WO2023126893A4 (en) System for calculating flow rate in injection wells using an optical fibre sensor
US11781424B2 (en) Registering fiber position to well depth in a wellbore
JP2001324369A (en) Piezo water head measurement method
BR112018074204B1 (en) APPARATUS FOR USE IN TEMPERATURE DETECTION ALONG A WELL BORE, AND WELL COMPRISING A WELL APPARATUS

Legal Events

Date Code Title Description
MM4A Lapse of a eurasian patent due to non-payment of renewal fees within the time limit in the following designated state(s)

Designated state(s): AM AZ KZ KG TJ TM