EA200900122A1 - METHOD FOR INCREASING THE STRENGTH OF A TUBE-CONCRETE STRUCTURE - Google Patents

METHOD FOR INCREASING THE STRENGTH OF A TUBE-CONCRETE STRUCTURE

Info

Publication number
EA200900122A1
EA200900122A1 EA200900122A EA200900122A EA200900122A1 EA 200900122 A1 EA200900122 A1 EA 200900122A1 EA 200900122 A EA200900122 A EA 200900122A EA 200900122 A EA200900122 A EA 200900122A EA 200900122 A1 EA200900122 A1 EA 200900122A1
Authority
EA
Eurasian Patent Office
Prior art keywords
concrete
pipe
longitudinal
steel pipe
concrete structure
Prior art date
Application number
EA200900122A
Other languages
Russian (ru)
Other versions
EA017610B1 (en
Inventor
Сергей Николаевич Осипов
Original Assignee
Сергей Николаевич Осипов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сергей Николаевич Осипов filed Critical Сергей Николаевич Осипов
Publication of EA200900122A1 publication Critical patent/EA200900122A1/en
Publication of EA017610B1 publication Critical patent/EA017610B1/en

Links

Landscapes

  • Rod-Shaped Construction Members (AREA)

Abstract

Изобретение относится к области строительства, в частности высотных зданий и грузонапряженных мостов, а именно к способам повышения прочности трубобетонной конструкции на основе достижения известного «эффекта обоймы», возникающего в результате стеснения (ограничения) поперечного расширения бетона при сжатии. Суть способа в том, что при заполнении трубы бетоном и образовании бетонного сердечника между ним и внутренней поверхностью стальной трубы создается продольный деформационный промежуток, достаточный для свободной боковой деформации бетонного сердечника при его первоначальном нагружении до предела прочности при одноосном сжатии. С целью обеспечения раздельного учета возможных продольных деформаций бетонного сердечника и стальной трубы продольную сжимающую нагрузку на трубобетонную конструкцию начинают с нагружения бетонного столба и после достижения его усадки на величину продольного деформационного промежутка продольную сжимающую нагрузку распространяют и на стальную трубу.The invention relates to the field of construction, in particular high-rise buildings and cargo-stressed bridges, and in particular to methods of increasing the strength of the pipe-concrete structure based on the achievement of the well-known "cage effect" resulting from the constraint (limitation) of the lateral expansion of concrete under compression. The essence of the method is that when the pipe is filled with concrete and a concrete core is formed between it and the inner surface of the steel pipe, a longitudinal deformation gap is created that is sufficient for free lateral deformation of the concrete core during its initial loading to the ultimate strength under uniaxial compression. In order to ensure separate accounting of possible longitudinal deformations of the concrete core and steel pipe, the longitudinal compressive load on the pipe-concrete structure begins with loading the concrete column and after reaching its shrinkage by the magnitude of the longitudinal deformation gap, the longitudinal compressive load is distributed to the steel pipe.

EA200900122A 2008-07-18 2008-12-16 A method of tube confined concrete structure strength enhancement EA017610B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
BY20080955 2008-07-18

Publications (2)

Publication Number Publication Date
EA200900122A1 true EA200900122A1 (en) 2010-04-30
EA017610B1 EA017610B1 (en) 2013-01-30

Family

ID=42307737

Family Applications (1)

Application Number Title Priority Date Filing Date
EA200900122A EA017610B1 (en) 2008-07-18 2008-12-16 A method of tube confined concrete structure strength enhancement

Country Status (1)

Country Link
EA (1) EA017610B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112699454A (en) * 2021-03-23 2021-04-23 上海建工集团股份有限公司 Method for monitoring vertical deformation construction of super high-rise building

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1259808A (en) * 1985-03-05 1989-09-26 Takanori Sato Concrete filled steel tube column and method of constructing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112699454A (en) * 2021-03-23 2021-04-23 上海建工集团股份有限公司 Method for monitoring vertical deformation construction of super high-rise building

Also Published As

Publication number Publication date
EA017610B1 (en) 2013-01-30

Similar Documents

Publication Publication Date Title
Peng et al. An experimental study on reinforced concrete beams strengthened with prestressed near surface mounted CFRP strips
Jayasinghe et al. Flexural strength of compressed stabilized earth masonry materials
Charron et al. Permeability of ultra high performance fiber reinforced concretes (UHPFRC) under high stresses
Costa et al. Influence of lightweight aggregates concrete on the bond strength of concrete-to-concrete interfaces
Kim et al. Monotonic loading tests of RC beam-column subassemblage strengthened to prevent progressive collapse
Ren et al. Experimental behaviour of tapered CFST columns under combined compression and bending
WO2011005009A3 (en) Upper part structure for a continuous bridge, which efficiently supports negative moment and has improved constructability, and method for constructing same
Gu et al. Shear transfer mechanism in reinforced engineered cementitious composite (ECC) beams: Quantification of Vs and Vc
Castel et al. Modeling of steel and concrete strains between primary cracks for the prediction of cover-controlled cracking in RC-beams
EA201170185A1 (en) LIGHTWARE STRUCTURES REINFORCED BY CORDILE ELEMENTS COMPLETED FROM SEGMENTS, AND METHOD OF CONCRETING SUCH CONSTRUCTIONS
Huang et al. Punching shear behavior and strength prediction of UHTCC-enhanced RC slab-column joints
EA200900122A1 (en) METHOD FOR INCREASING THE STRENGTH OF A TUBE-CONCRETE STRUCTURE
Trono Earthquake resilient bridge columns utilizing damage resistant hybrid fiber reinforced concrete
Baniahmadi et al. Cyclic response of reinforced concrete frames partially infilled with relatively weak masonry wall
Yang et al. Behavior of a novel circular HSC column with double high strength spirals
KR101528972B1 (en) Wall for seismic retrofit and construction methods of the wall
Niu et al. Experimental study on a self-centering earthquake-resistant masonry pier with a structural concrete column
Jeon et al. Deflection evaluation of the constructing-load carrying capacity for deep decking floor system reinforced with both ends cap plates
Job et al. Shear strength of prestressed concrete T-beams with steel fibers over partial/full depth
Achillopoulou et al. Interface Capacity of Repaired Concrete Columns Strengthened with RC Jackets.
Kim et al. Analytical Study on the Determination of Shape for Connector of Seismic Reinforced Strip
Hong Structural Performance of Steel fiber reinforced concrete continuous slab without reinforcement
Frangi et al. Composite slab with integrated installation floor using cellular beams
Mohamed et al. Strength Reduction Factor of GFRP-Reinforced Shear Walls
Al-Goody et al. Comparison of ultimate strength results from ACI and Eurocode 4 for steel tubular columns filled with SCC

Legal Events

Date Code Title Description
MM4A Lapse of a eurasian patent due to non-payment of renewal fees within the time limit in the following designated state(s)

Designated state(s): AM AZ BY KZ KG MD TJ TM RU