EA044665B1 - Фармацевтическая композиция, содержащая анти-lag-3 антитело и анти-pd-1 антитело - Google Patents

Фармацевтическая композиция, содержащая анти-lag-3 антитело и анти-pd-1 антитело Download PDF

Info

Publication number
EA044665B1
EA044665B1 EA202090227 EA044665B1 EA 044665 B1 EA044665 B1 EA 044665B1 EA 202090227 EA202090227 EA 202090227 EA 044665 B1 EA044665 B1 EA 044665B1
Authority
EA
Eurasian Patent Office
Prior art keywords
antibody
lag
antigen
antibodies
pharmaceutical composition
Prior art date
Application number
EA202090227
Other languages
English (en)
Inventor
Нилс Лонберг
Мохан Сринивасан
Original Assignee
Бристол-Майерс Сквибб Компани
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Бристол-Майерс Сквибб Компани filed Critical Бристол-Майерс Сквибб Компани
Publication of EA044665B1 publication Critical patent/EA044665B1/ru

Links

Description

Уровень техники
Терапевтические антитела представляют особой один из наиболее быстрорастущих сегментов фармацевтической индустрии. Для поддержки эффективности (то есть активности) и минимизации иммуногенности антитела и другие белковые лекарства должны быть защищены от физического и химического распада при производстве и хранении. Действительно, одна из основных трудностей при разработке лекарственных средств на основе антител представляет собой потенциальный иммуногенный ответ при введении субъекту, что может приводить к быстрому клиренсу или даже вызывать угрожающие жизни побочные эффекты, включая анафилактический шок. На иммуногенность антитела оказывают влияние различные факторы, такие как его физиохимические свойства (например, чистота, стабильность или растворимость), клинические факторы (например, доза, способ введения, гетерогенность заболевания или характеристики пациента) и сопутствующее лечение другими средствами (Swann et al. (2008) Curr Opinion Immunol 20:493-499).
Иммуногенность антител и/или потеря активности антителами часто связана с деамидированием. Деамидирование представляет собой процесс химического распада, который спонтанно возникает в белках (например, антителах). Деамидирование удаляет амидную функциональную группу из аминокислотного остатка, такого как аспарагин и глутамин, таким образом повреждая его амидсодержащие боковые цепи. Это, в свою очередь, вызывает структурные и биологические изменения по всему белку, таким образом создавая гетерогенные формы антитела. Деамидирование представляет собой одну из наиболее распространенных посттрансляционных модификаций, которые возникают в полученных рекомбинантными способами терапевтических антителах. Например, гетерогенность в тяжелой цепи моноклонального антитела h1B4 (гуманизированное анти-CD18 антитело) вследствие деамидирования при культивировании клеток была отмечена Tsai et al. (Pharm Res 10(11): 1580 (1993)). Кроме того, снижение/потеря биологической активности вследствие деамидирования являлась известной проблемой и ранее. Например, Kroon et al. характеризовали различные сайты деамидирования в терапевтическом антителе OKT3 и сообщали, что образцы из партии OKT3 (возрастом от 14 месяцев до 3 лет) имели активность менее 75% (Pharm Res 9(11): 1386 (1992), стр.1389, вторая колонка). Кроме того, образцы OKT3 с большими количествами окисленных пептидов в их картах имели значительно сниженную активность при проведении анализа эффективности связывания антигена (стр.1390, первая колонка).
Авторы сделали вывод о том, что определенные сайты химической модификации, которая происходит при хранении OKT3, были идентифицированы с помощью пептидного картирования и коррелировали с наблюдаемыми изменениями при химических анализах и биологических анализах антитела (стр.1392, первая колонка). Потеря биологической активности также была отмечена в отношении ряда других деамидированных терапевтических белков, включая рекомбинантную ДНазу человека (Cacia et al. (1993) J. Chromatogr. 634:229-239) и рекомбинантный растворимый CD4 (Teshima et al. (1991) Biochemistry 30:3916-3922).
В целом, деамидирование представляет значительную и непредсказуемую проблему для фармацевтической индустрии. Усилия, связанные с мониторингом вариабельности, вызываемой деамидированием в лекарственных средствах на основе антител, в частности, как и связанные с FDA опасения, связанные с данной вариабельностью, увеличивают затраты и задерживают проведение клинических испытаний. Более того, связанные с данной проблемой модификации, включая изменяющиеся условия (например, температуру, рН и тип клеток), связанные с рекомбинантным получением и/или изменением аминокислот, которые подвержены деамидированию (например, сайт-направленному мутагенезу), могут негативно влиять на стабильность и активность, особенно при внесении изменений в определяющие комплементарность участки (CDR) антитела. Соответственно, существует потребность в более стабильных версиях терапевтических антител.
Сущность изобретения
Настоящее изобретение относится к выделенным моноклональным антителам (например, моноклональным антителам человека), которые связывают LAG-3 (например, LAG-3 человека) и обладают оптимизированной физической стабильностью по сравнению с описанными ранее анти-LAG-3 антителами. В частности, изобретение относится к модифицированной форме антитела 25F7 (US 2011/0150892 Al), которое обладает значительно увеличенной термической и химической стабильностью по сравнению с немодифицированным антителом. В частности, с помощью изменения критического связывающего участка домена CDR2 тяжелой цепи антитела 25F7 было показано, что модифицированное антитело демонстрировало значительно более высокую физическую и термическую стабильность, сниженный уровень деамидирования, более высокую термическую обратимость и более низкую агрегацию. В то же время неожиданно было обнаружено, что модифицированное антитело сохраняет ту же высокую аффинность связывания с LAG-3 человека и функциональную активность немодифицированного антитела, включая способность ингибировать связывание LAG-3 с молекулами главног окомплекса гистосовместимости II класса и стимулировать антигенспецифичные Т-клеточные ответы. Совместное существенное повышение стабильности и сохранение эффективности связывания / биологической активности модифицированного антитела являлось неожиданным, особенно в свете критичности CDR участков для функционирования антител.
- 1 044665
Антитела по изобретению могут применяться для различных целей, включая детектирование LAG-3 белка и стимулирования антигенспецифичных Т-клеточных ответов у субъектов с опухолями или вирусами.
Соответственно, в одном аспекте изобретение относится к выделенному моноклональному антителу (например, антителу человека) или его антигенсвязывающей части с вариабельным участком тяжелой цепи, включающим аминокислотную последовательность SEQ ID NO: 12. В другом варианте осуществления антитело также включает вариабельный участок легкой цепи, включающий аминокислотную последовательность SEQ ID NO:14. В другом варианте осуществления антитело или его антигенсвязывающая часть включает CDR1, CDR2 и CDR3 участки вариабельного участка тяжелой цепи, включающего аминокислотную последовательность SEQ ID NO:12 (например, SEQ ID NO: 15, 16 и 17, соответственно). В другом варианте осуществления антитело также включает CDR1, CDR2 и CDR3 участки вариабельного участка легкой цепи, включающего аминокислотную последовательность SEQ ID NO:12 (например, SEQ ID NO: 18, 19 и 20, соответственно). В предпочтительном варианте осуществления антитело обладает повышенными физическими свойствами (т.е. термической и химической стабильностью) по сравнению с антителом 25F7, в то же время сохраняя, по меньшей мере, ту же аффинность связывания LAG-3 человека, что и 25F7. Например, антитело обладает сниженной вариабельностью последовательности в участке CDR2 тяжелой цепи вследствие деамидирования по сравнению с антителом 25F7, например приблизительно 2,5% или менее модификацией аминокислотной последовательности спустя 12 недель при 4°С (то есть при анализах стабильности в реальном времени, как описано здесь) и/или приблизительно 12,0% или менее модификацией аминокислотной последовательности спустя 12 недель при 40°С (то есть при ускоренных стрессовых условиях, как описано здесь), в то же время сохраняя аффинность связывания LAG-3 человека на уровне, по меньшей мере, KD около 1 х 10-7 М или менее (более предпочтительно KD 1 х 10-8 М или менее, KD 5 х 10-9 М или менее или KD 1 х 10-9 М или менее). В другом варианте осуществления антитело обладает термической обратимостью около 40% в PBS при рН 8,0.
В другом варианте осуществления антитело обладает более высокой температурой плавления (что свидетельствует о более высокой общей стабильности in vivo) по сравнению с немодифицированным антителом (Krishnamurthy R and Manning MC (2002) Curr Pharm Biotechnol 2:361-71). В одном варианте осуществления антитело обладает значением ТМ1 (температура первоначального анфолдинга) более 60°С, например более 65°С или более 70°С. Точка плавления антитела может быть определена с помощью дифференциальной сканирующей калориметрии (Chen et al (2003) Pharm Res 20:1952-60; Ghirlando et al (1999) Immunol Lett 68:47-52) или методом кругового дихроизма (Murray et al. (2002) J. Chromatogr Sci 40:343-9).
В другом варианте осуществления антитело характеризуется его сопротивляемостью быстрому распаду. Распад антител можно определить способом капиллярного электрофореза (СЕ) и MALDI-MS (Alexander AJ and Hughes DE (1995) Anal Chem 67:3626-32).
В другом варианте осуществления антитело обладает минимальными агрегационными свойствами, например агрегацией 25% или мене, например 20% или менее, 15% или менее, 10% или менее, 5% или менее или 4% или менее. Агрегация может приводить к запуску нежелательного иммунного ответа и/или измененным или нежелательным фармакокинетическим свойствам. Агрегация может быть измерена с помощью различных способов, включая эксклюзионную колонку (SEC), высокоэффективную жидкостную хроматографию (ВЭЖХ) и рассеяние света.
В другом варианте осуществления антитело также обладает, по меньшей мере, одним из следующих свойств:
(a) связывание с LAG-3 обезьяны;
(b) отсутствие связывания с LAG-3 мыши;
(c) ингибирование связывания LAG-3 с молекулами главного комплекса гистосовместимости II класса и (d) стимулирование иммунных ответов, в частности антигенспецифичных Т-клеточных ответов.
Предпочтительно антитело обладает по меньшей мере двумя свойствами из (а), (b), (с) и (d). Более предпочтительно антитело обладает по меньшей мере тремя из свойств (а), (b), (с) и (d). Еще более предпочтительно антитело обладает всеми четырьмя из свойств (а), (b),(c) и (d).
В другом варианте осуществления антитело стимулирует антигенспецифичный Т-клеточный ответ, такой как продуцирование интерлейкина-2 (IL-2) при антигенспецифичном Т-клеточном ответе. В других вариантах осуществления антитело стимулирует иммунный ответ, такой как противоопухолевый ответ (например, ингибирование роста опухоли в in vivo модели опухоли с ксенотрансплантатом) или аутоиммунный ответ (например, развитие диабета у NOD мышей).
В другом варианте осуществления антитело связывает эпитоп LAG-3 человека, включающий аминокислотную последовательность PGHPLAPG (SEQ ID NO: 21). В другом варианте осуществления антитело связывает эпитоп LAG-3 человека, включающий аминокислотную последовательность HPAAPSSW (SEQ ID NO: 22) или PAAPSSWG (SEQ ID NO: 23).
В других вариантах осуществления антитело окрашивает гипофизную ткань с помощью иммуноги
- 2 044665 стохимии или не окрашивает гипофизную ткань с помощью иммуногистохимии. Антитела по изобретению могут представлять собой полноразмерные антитела, например изотипа IgG1, IgG2 или IgG4, необязательно с мутацией с заменой серина на пролин в шарнирном участке константного участка тяжелой цепи (в положении, соответствующем положению 241, как описано у Angal et al. (1993) Mol. Immunol. 30:105-108), так что гетерогенность дисульфидного мостика между тяжелыми цепями снижена или устранена. В одном аспекте изотипом константного участка является IgG4 с мутацией в аминокислотных остатках 228, например S228P. Альтернативно, антитела могут представлять собой фрагменты антител, такие как Fab, Fab' или Fab'2 фрагменты или одноцепочечные антитела.
В другом аспекте изобретения антитело (или его антигенсвязывающая часть) представляет собой часть иммуноконъюгата, который включает терапевтический агент, например цитотоксин или радиоактивный изотоп, связанный с антителом. В другом аспекте антитело представляет собой часть биспецифичной молекулы, которая включает вторую функциональную группу (например, второе антитело), обладающую иной специфичностью связывания, чем указанное антитело или его антигенсвязывающая часть. Также в объем изобретения включены композиции, включающие антитела или их антигенсвязывающие части, иммуноконъюгаты или биспецифичные молекулы по изобретению, необязательно соединенные с фармацевтически приемлемым носителем. Также в объем изобретения включены молекулы нуклеиновой кислоты по изобретению, кодирующие антитела или их антигенсвязывающие части (например, вариабельные участки и/или CDR), а также векторы экспрессии, включающие данные нуклеиновые кислоты и клетки-хозяева, включающие данные векторы экспрессии. Также в объем изобретения включены способы получения анти-LAG-3 антител с помощью клеток-хозяев, включающих данные векторы экспрессии, которые могут включать следующие этапы: (i) экспрессию антитела в клетке-хозяине и (ii) выделение антитела из клетки-хозяина.
В другом аспекте изобретение относится к способам стимулирования иммунных ответов с помощью анти-LAG-3 антител по изобретению. В одном варианте осуществления способ включает стимулирование антигенспецифичного Т-клеточного ответа путем контактирования Т-клеток с антителом по изобретению, таким образом, что осуществляется стимулирование антигенспецифичного Т-клеточного ответа. В предпочтительно варианте осуществления стимулируется продуцирование интерлейкина-2 с помощью антигенспецифичной Т-клетки. В другом варианте осуществления субъект представляет собой субъект с опухолью, при этом стимулируется иммунный ответ против опухоли. В другом варианте осуществления субъект представляет собой субъект с вирусом, при этом стимулируется иммунный ответ против вируса.
В другом варианте осуществления изобретение относится к способу ингибирования роста опухолевых клетках у субъекта, включающему введение субъекту антитела или его антигенсвязывающей части по изобретению, так что ингибируется рост опухоли у субъекта. В другом варианте осуществления изобретение относится к способу лечения вирусной инфекции у субъекта, включающему введение субъекту антитела или его антигенсвязывающей части по изобретению, так что вирусная инфекция подвергается лечению у субъекта. В другом варианте осуществления данные способы включают введение композиции, биспецифичного антитела или иммуноконъюгата по изобретению. В другом варианте осуществления изобретение относится к способу стимулирования иммунного ответа у субъекта, включающему введению субъекту антитела или его антигенсвязывающей части по изобретению и, по меньшей мере, одного дополнительного иммуностимулирующего антитела, такого как анти-PD-1 антитело, анти-PD-L1 антитело и/или анти-CTLA-4 антитело, так что у субъекта стимулируется иммунный ответ, например для ингибирования роста опухоли или стимулирования противовирусного ответа. В одном варианте осуществления дополнительное иммуностимулирующее антитело представляет собой анти-PD-1 антитело. В другом варианте осуществления дополнительный иммуностимулирующий агент представляет собой анти-PD-LI антитело. В другом варианте осуществления дополнительный иммуностимулирующий агент представляет собой анти-CTLA-4 антитело. В другом варианте осуществления антитело или его антигенсвязывающая часть по изобретению вводится с цитокином (например, IL-2 и/или IL-21) или костимулирующим антителом (например, анти-CD137 и/или анти-GITR антителом). Антитела могут представлять собой, например, антитела человека, химерные или гуманизированные антитела.
В другом аспекте изобретение относится к анти-LAG-3 антителам и композициям по изобретению для применения в рамках вышеуказанных способов или для производства лекарственного средства для применения в рамках вышеуказанных способов (например, для лечения).
Другие особенности и преимущества настоящего описания будут понятны из следующего подробного описания и примеров, которые не должны рассматриваться в качестве ограничивающих. Содержание всех ссылок, баз данных Genbank, патентов и опубликованных патентных заявок, цитируемых в настоящей заявке, полностью приведено здесь для ссылки.
Краткое описание фигур
На фиг. 1А показана нуклеотидная последовательность (SEQ ID NO:1) и аминокислотная последовательность (SEQ ID NO:2) вариабельного участка тяжелой цепи моноклонального антитела 25F7 человека. CDR1 (SEQ ID NO:5), CDR2 (SEQ ID NO:6) и CDR3 (SEQ ID NO:7) участки показаны прерывистой линией и указаны деривации зародышевой линии V, D и J. CDR участки показаны прерывистой линией с
- 3 044665 использованием системы Kabat (Kabat et al. (1991) Sequences of Proteins of Immunological Interest, 5-е изд., U.S. Department of Health and Human Services, NIH Publication No. 91-3242).
На фиг. 1B показана нуклеотидная последовательность (SEQ ID NO: 3) и аминокислотная последовательность (SEQ ID NO: 4) вариабельного участка каппа лёгкой цепи моноклонального антитела 25F7 человека. CDR1 (SEQ ID NO:8), CDR2 (SEQ ID NO:9) и CDR3 (SEQ ID NO:10) участки показаны прерывистой линией и указаны деривации зародышевой линии V и J. Полноразмерные аминокислотные последовательности тяжелой и легкой цепи антитела 25F7 показаны в SEQ ID NO: 32 и 34, соответственно. На фиг. 2А показана нуклеотидная последовательность (SEQ ID NO: 12) вариабельного участка тяжёлой цепи моноклонального антитела LAG-3.5. CDR1 (SEQ ID NO: 15), CDR2 (SEQ ID NO: 16) и CDR3 (SEQ ID NO: 17) участки выделены контуром. Полноразмерные аминокислотные последовательности тяжелой и легкой цепи антитела LAG3.5 показаны в SEQ ID NO: 35 и 37 соответственно.
На фиг. 2В показана нуклеотидная последовательность (SEQ ID NO: 13) и аминокислотная последовательность (SEQ ID NO: 14) вариабельного участка каппа лёгкой цепи моноклонального антитела LAG3.5. CDR1 (SEQ ID NO: 18), CDR2 (SEQ ID NO: 19) и CDR3 (SEQ ID NO: 20) участки выделены контуром.
На фиг. 3 показаны аминокислотные последовательности CDR2 вариабельного участка тяжелой цепи вариантов LAG-3 LAG3.5 (SEQ ID NO: 42), LAG3.6 (SEQ ID NO: 43), LAG3.7 (SEQ ID NO: 44) и LAG3.8 (SEQ ID NO: 45) по сравнению с аминокислотной последовательностью CDR2 вариабельного участка тяжелой цепи антитела 25F7 (LAG3.1) (SEQ ID NO: 41) и соответствующей после довательностью зародышевой линии человека (SEQ ID NO: 27). CDR2 вариабельный участок тяжелой цепи LAG3.5 отличается от CDR2 вариабельного участка тяжелой цепи 25F7 аргинином (R) в положении 54 (против аспарагина (N)) и серина (S) в положении 56 (против аспарагина (N)). Остальные CDR LAG3.5 25F7 являются идентичными. На фиг. 3 также показана SEQ ID NO: 40.
Фиг. 4А и 4В представляют собой графики, показывающие активность связывания (ЕС50 и аффинность, соответственно) антител LAG3.1 (25F7), LAG3.2, LAG3.5, LAG3.6, LAG3.7 и LAG3.8 с активированными CD4+ Т-клетками человека. На фиг. 4В показаны SEQ ID NOS 41, 42, 45, 44 и 43, соответственно, в порядке следования.
Фиг. 5А, В, С, D и Е представляют собой графики, показывающие кривые термического плавления (то есть термической стабильности) антител LAG3.1 (25F7), LAG3.5, LAG3.6, LAG3.7 и LAG3.8, соответственно.
Фиг. 6А, В, С, D и Е представляют собой графики, показывающие кривые термической обратимости (то есть термической стабильности) антител LAG3.1 (25F7), LAG3.5, LAG3.6, LAG3.7 и LAG3.8, соответственно.
Фиг. 7 представляет собой график, показывающий активность связывания антител LAG3.1 (25F7) и LAG3.5 с активированными CD4+ Т-клетками человека и связывание антигена (Biacore).
На фиг. 8 показаны результаты пептидного картирования с применением масс-спектрометрии (химические модификации / молекулярная стабильность) для антител LAG3.1 (25F7) и LAG3.5, отражающие деамидирование и изомеризацию после культивирования в течение 5 дней при ускоренных стрессовых условиях, как описано здесь.
На фиг. 8 показаны SEQ ID NO: 46-52, соответственно, в порядке следования.
Фиг. 9 представляет собой график сравнения профилей гидрофобности антител LAG3.1 (25F7) и LAG3.5.
Фиг. 1OA-D представляют собой графики сравнения аффинности и физической стабильности (то есть термической и химической стабильности) антител LAG3.1 и LAG3.5 при 4°С и 40°С, то есть обоих ускоренных стрессовых условиях и анализы стабильности в реальном времени, как описано здесь.
Фиг. 11А и В представляют собой графики сравнения доли модифицирования аминокислотных последовательностей антител LAG3.1 и LAG3.5 при 4°С и 40°С.
Подробное описание изобретения
Один из аспектов изобретения включает выделенное моноклональное антитело или его антигенсвязывающая часть, которое связывает LAG-3 человека, включающее вариабельные участки тяжелой и легкой цепи, при этом вариабельный участок тяжелой цепи включает CDR1, CDR2 и CDR3 участки из вариабельного участка тяжелой цепи SEQ ID NO: 12.
В одном из аспектов, антитело или его антигенсвязывающая часть отличаются тем, что CDR1, CDR2 и CDR3 участки тяжелой цепи включают аминокислотные последовательности SEQ ID NO: 15, 16 и 17, соответственно.
В одном из аспектов антитело или его антигенсвязывающая часть отличаются тем, что вариабельный участок легкой цепи включает CDR1, CDR2 и CDR3 участки вариабельного участка легкой цепи SEQ ID NO: 14.
В одном из аспектов, антитело или его антигенсвязывающая часть отличаются тем, что CDR1, CDR2 и CDR3 участки легкой цепи включают аминокислотные последовательности SEQ ID NO: 18, 19 и 20, соответственно.
- 4 044665
В одном из аспектов, антитело или его антигенсвязывающая часть отличаются тем, что вариабельный участок тяжелой цепи включает аминокислотную последовательность SEQ ID NO: 12.
В одном из аспектов, антитело или его антигенсвязывающая часть отличаются тем, что вариабельный участок легкой цепи включает аминокислотную последовательность SEQ ID NO: 14.
Один из аспектов изобретения включает выделенное моноклональное антитело или его антигенсвязывающая часть, которое связывает LAG-3 человека, включающее CDR1, CDR2 и CDR3 участки тяжелой и легкой цепи, включающие аминокислотные последовательности SEQ ID NO: 15, 16, 17 и SEQ ID NO: 18, 19 и 20 соответственно.
Один из аспектов изобретения включает выделенное моноклональное антитело или его антигенсвязывающая часть, которое связывает LAG-3 человека, включающее вариабельные участки тяжелой и легкой цепи, включающие аминокислотные последовательности SEQ ID NO: 12 и 14 соответственно.
Один из аспектов изобретения включает антитело или его антигенсвязывающая часть по любому из предыдущих пунктов, обладающее одним или комбинацией следующих свойств:
(a) связывание LAG-3 обезьяны;
(b) отсутствие связывания LAG-3 мыши;
(c) связывание LAG-3 с молекулами главного комплекса гистосовместимости II класса;
(d) ингибирование связывания LAG-3 с молекулами главного комплекса гистосовместимости II класса или (e) стимулирование иммунной реакции.
В одном из аспектов антитело или его антигенсвязывающая часть стимулирует продуцирование интерлейкина-2 ((IL-2) при антигенспецифичной Т-клеточной реакции.
В одном из аспектов антитело или его антигенсвязывающая часть стимулирует противоопухолевую иммунную реакцию.
В одном из аспектов антитело или его антигенсвязывающая часть связывает эпитоп LAG-3 человека, включающий аминокислотную последовательность PGHPLAPG (SEQ ID NO: 21).
В одном из аспектов антитело или его антигенсвязывающая часть связывает эпитоп LAG-3 человека, включающий аминокислотную последовательность HPAAPSSW (SEQ ID NO: 22) или PAAPSSWG (SEQ ID NO: 23).
В одном из аспектов антитело или его антигенсвязывающая часть связывает LAG-3 человека при значении KD 0,27 χ 10-9 М или менее.
В одном из аспектов антитело или его антигенсвязывающая часть представляет собой относящееся к человеку, гуманизированное или химерное антитело.
В одном из аспектов антитело или его антигенсвязывающая часть относится к изотипу IgG1, IgG2 или IgG4.
В одном из аспектов антитело или его антигенсвязывающая часть представляет собой фрагмент антитела или одноцепочечное антитело.
Один из аспектов изобретения включает биспецифическую молекулу, включающаую антитело или его антигенсвязывающую часть и второе антитело или его антигенсвязывающую часть.
Один из аспектов изобретения включает иммуноконъюгат, включающий антитело или его антигенсвязывающую часть, связанное с терапевтическим агентом.
Один из аспектов изобретения включает иммуноконъюгат, отличающийся тем, что терапевтический агент представляет собой цитотоксин или радиоактивный изотоп.
Один из аспектов изобретения включает композицию, содержащую антитело или его антигенсвязывающую часть, биспецифическую молекулу или иммуноконъюгат, и фармацевтически приемлемый носитель.
В одном из аспектов композиция дополнительно содержит противораковый агент. В одном из аспектов композиция отличается тем, что агент представляет собой антитело или химиотерапевтический агент.
Один из аспектов изобретения включает выделенную нуклеиновую кислоту, кодирующую вариабельный участок тяжелой и/или легкой цепи антитела или его антигенсвязывающей части, как определено выше.
Один из аспектов изобретения включает вектор экспрессии, включающий нуклеиновую кислоту, как определено выше.
Один из аспектов изобретения включает клетку-хозяин, включающая вектор экспрессии, как определено выше.
Один из аспектов изобретения включает способ получения анти-LAG-3 антитела, включающий экспрессию антитела в клетке-хозяине, как определено выше, и выделение антитела из клетки-хозяина.
Один из аспектов изобретения включает способ стимулирования иммунной реакции у субъекта, включающий введение антитела или его антигенсвязывающей части, как определено выше, биспецифической молекулы, как определено выше, или иммуноконъюгата, как определено выше, субъекту таким образом, что осуществляется стимулирование иммунной реакции у субъекта.
В одном из аспектов способ отличается тем, что субъект представляет собой субъект с опухолью,
- 5 044665 при этом стимулируется иммунный ответ против опухоли.
В одном из аспектов способ отличается тем, что что субъект представляет собой субъект с вирусом, при этом стимулируется иммунный ответ против вируса.
В одном из аспектов способ отличается тем, что иммунная реакция представляет собой антигенспецифичную Т-клеточную реакцию таким образом, что осуществляется стимулирование антигенспецифичной Т-клеточной реакции.
В одном из аспектов способ отличается тем, что что осуществляется стимулирование продуцирования интерлейкина-2 антигенспецифичной Т-клеткой.
Один из аспектов изобретения включает способ ингибирования роста опухолевых клеток у субъекта, включающий введение субъекту антитела или его антигенсвязывающей части, как определено выше, биспецифической, как определено выше, или иммуноконъюгата, как определено выше таким образом, что ингибируется рост опухоли у субъекта.
Один из аспектов изобретения включает способ лечения вирусной инфекции у субъекта, включающий введение субъекту антитела или его антигенсвязывающей части, как определено выше, биспецифической, как определено выше или иммуноконъюгата, как определено выше, таким образом, что осуществляется лечение вирусной инфекции у субъекта.
В одном из аспектов способ также включает введение по меньшей мере одного дополнительного иммуностимулирующего антитела.
В одном из аспектов способ отличается тем, что по меньшей мере одно иммуностимулирующее дополнительное антитело представляет собой анти-PD-1 антитело.
В одном из аспектов способ отличается тем, что по меньшей мере одно дополнительное иммуностимулирующее антитело представляет собой анти-PD-L1 антитело.
В одном из аспектов способ отличается тем, что по меньшей мере одно дополнительное иммуностимулирующее антитело представляет собой анти-CTLA-4 антитело.
Один из аспектов изобретения включает применение антитела или его антигенсвязывающей части, как определено выше, биспецифической, как определено выше или иммуноконъюгата как определено выше для стимулирования иммунной реакции, необязательно антигенспецифичной Т-клеточной реакции, или ингибирования роста опухолевых клеток или лечения вирусной инфекции у субъекта.
Один из аспектов изобретения включает применение антитела или его антигенсвязывающей части как определено выше, биспецифической как определено выше или иммуноконъюгата как определено выше при производстве лекарственного средства для стимулирования иммунной реакции, необязательно антигенспецифичной Т-клеточной реакции, или ингибирования роста опухолевых клеток или лечения вирусной инфекции у субъекта.
Для лучшего понимания настоящего описания ниже приводится определение некоторых терминов. Дополнительные определения приведены по тексту подробного описания. Термины 25F7, антитело 25F7, антитело LAG3.1 и LAG3.1 означают специфичное к LAG-3 человека антитело, описанное в US2011/0150892 А1. Нуклеотидная последовательность (SEQ ID NO: 1), кодирующая вариабельный участок тяжелой цепи 25F7 (LAG3.1) и соответствующую аминокислотную последовательность (SEQ ID NO: 2), показана на Фиг. 1А (с CDR последовательностями, обозначенными как SEQ ID NO: 4, 5 и 7, соответственно). Нуклеотидная последовательность (SEQ ID NO: 3), кодирующая вариабельный участок легкой цепи 25F7 (LAG3.1) и соответствующая аминокислотная последовательность (SEQ ID NO: 4) показаны на фиг. 1В (с CDR последовательностями, обозначенными как SEQ ID NO: 8, 9 и 10, соответственно).
Термин LAG-3 означает ген активации лимфоцитов 3. Термин LAG-3 включает варианты, изоформы, гомологи, ортологи и паралоги. Например, антитела, специфичные к белку LAG-3 человека, могут, в некоторых случаях вступать в перекрестную реакцию с белком LAG-3 видов, отличных от человека. В других вариантах осуществления антитела, специфичные к белку LAG-3 человека, могут быть полностью специфичными к белку LAG-3 человека и могут не обладать видовой или иными типами перекрестной реактивности или могут вступать в перекрестную реакцию с LAG-3 некоторых других видов, но не всех других видов (например, вступать в перекрестную реакцию с LAG-3 обезьяны, но не LAG-3 мыши). Термин LAG-3 человека означает последовательность LAG-3 человека, такую как полная аминокислотная последовательность LAG-3 человека, имеющая номер NP_002277 в базе данных Genbank (SEQ ID NO: 29). Термин LAG-3 мыши означает последовательность LAG-3 мыши, такую как полная аминокислотная последовательность LAG-3 мыши, имеющая номер NP_032505 в базе данных Genbank. LAG-3 также известен из уровня техники как, например, CD223. Последовательность LAG-3 человека может отличаться от LAG-3 человека, имеющего номер NP_002277 в базе данных Genbank, за счет наличия, например, сохраненных мутаций или мутаций в несохраненных участках, при этом LAG-3 обладает в значительной степени той же биологической функцией, что и LAG-3, имеющий номер NP_002277 в базе данных Genbank. Например, биологическая функция LAG-3 человека заключается в наличии эпитопа во внеклеточном домене LAG-3, который специфично связана антителом по настоящему описанию или биологическая функция LAG-3 человека заключается в связывании с МНС молекулами II класса.
Термин LAG-3 обезьяны предназначен для описания LAG-3 белков, экспрессируемых обезьянами
- 6 044665
Старого и Нового Света, включая, без ограничения, LAG-3 обезьяны циномолгус и LAG-3 макаки резус. Соответствующая аминокислотная последовательность LAG-3 обезьяны представляет собой аминокислотную последовательность LAG-3 макаки резус, которая также депонирована в Genbank под номером ХМ_001108923. Другая соответствующая аминокислотная последовательность LAG-3 обезьяны представляет собой альтернативную последовательность макаки резус клона ра23-5, как описано в US 2011/0150892 А1. Альтернативная последовательность резус обладает одним отличием в аминокислоте в положении 419 по сравнению с депонированной в Genbank последовательностью.
Конкретная последовательность LAG-3 человека в целом будет, по меньшей мере, на 90% идентична аминокислотной последовательности LAG-3 человека Genbank NP_002277 и содержит аминокислотные остатки, которые позволяют идентифицировать аминокислотную последовательность как относящуюся к человеку при сравнении с аминокислотными последовательностями LAG-3 других видов (например, мыши). В определенных случаях LAG-3 человека может быть, по меньшей мере, на 95% или даже по меньшей мере на 96%, 97%, 98% или 99% идентичен по аминокислотной последовательности LAG-3 Genbank NP_002277. В определенных вариантах осуществления последовательность LAG-3 человека будет демонстрировать разницу не более чем 10 аминокислот от последовательности LAG-3 Genbank NP_002277. В определенных вариантах осуществления LAG-3 человека может демонстрировать не более 5 или даже не более 4, 3, 2 и 1 отличий по аминокислотам от последовательности LAG-3 Genbank NP_002277. Доля идентичности может быть определена как описано здесь. Термин иммунный ответ означает действие, например, лимфоцитов, антиген-презентирующих клеток, фагоцитарных клеток, гранулоцитов и растворимых макромолекул, продуцируемых вышеуказанными клетками или печенью (включая антитела, цитокины и комплемент), что приводит к селективному поражению, деструкции или удалению из организма человека инвазивных патогенов, клеток или тканей, инфицированных патогенами, раковых клеток или, в случае аутоиммунного или патологического воспаления, нормальных клеток или тканей человека. Антигенспецифичный Т-клеточный ответ означает ответы, опосредуемые Т-клетками, которые возникают вследствие стимулирования Т-клетки антигеном, по отношению к которому Т-клетка обладает специфичностью. Неограничивающие примеры ответов Т-клетки при антигенспецифичном стимулировании включают пролиферацию и продуцирование цитокинов (например, продуцирование IL-2).
В соответствии с используемым здесь значением термин антитело означает цельные антитела и их любой антигенсвязывающий фрагмент (то есть антигенсвязывающую часть) или их отдельные цепи. Цельные антитела представляют собой гликопротеины, включающие, по меньшей мере, две тяжелые (Н) цепи и две легкие (L) цепи, связанные между собой дисульфидными связями. Каждая тяжелая цепь состоит из вариабельного участка тяжелой цепи (обозначаемого здесь как VH) и константного участка тяжелой цепи. Константный участок тяжелой цепи состоит из трех доменов, CH1, CH2 и CH3. Каждая легкая цепь состоит из вариабельного участка легкой цепи (обозначаемого здесь как VL) и константного участка легкой цепи. Константный участок легкой цепи состоит из одного домена, CL. VH и VL участки могут быть дополнительно подразделены на участки гипервариабельности, называемые определяющими комплементарность участками (CDR), разбросанные между участками, которые являются более консервативными, называемыми каркасными участками (FR). Каждый VH и VL состоит из трех CDR и четырех FR, расположенных от аминоконца до карбоксильного конца в следующем порядке: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4. Вариабельные участки легкой и тяжелой цепей содержат связывающий домен, который взаимодействует с антигеном. Константные участки антител могут опосредовать связывание иммуноглобулина с тканями хозяина или факторами, включая различные клетки иммунной системы (например, эффекторные клетки), и первым компонентом (Clq) классической системы комплемента.
Термин антигенсвязывающая часть антитела (или просто часть антитела) в соответствии с используемым здесь значением означает один или несколько фрагментов антитела, которые сохраняют способность специфически связываться с антигеном (например, белком LAG-3). Было показано, что антигенсвязывающая функция антитела может осуществляться фрагментами полноразмерного антитела. Примеры связывающих фрагментов, охватываемых термином антигенсвязывающая часть антитела, включают (i) Fab-фрагмент, моновалентный фрагмент, состоящий из VL, VH, CL и СН1 доменов; (ii) F(ab')2-фрагмент, бивалентный фрагмент, включающий два Fab-фрагмента, связанных дисульфидным мостиком в шарнирном участке; (iii) Fd-фрагмент, состоящий из VH и CH1 доменов; (iv) Fv-фрагмент, состоящий из VH и CH1 доменов; (v) Fv-фрагмент, состоящий из доменов VL и VH одного плеча антитела; (vi) dAb-фрагмент (Ward et al, (1989) Nature 341:544-546), который состоит из VH домена; (vii) выделенный определяющий комплементарность участок (CDR); и (viii) нанотело, вариабельный участок тяжелой цепи, содержащий один вариабельный домен и два константных домена. Более того, несмотря на то, что два домена Fv-фрагмента, VL и VH, кодируются разными генами, они могут быть соединены с применением рекомбинантных способов с использованием синтетического линкера, который дает возможность получать их в виде единой белковой цепи, в которой VL и VH участки спариваются с образованием моновалентных молекул (известных как одноцепочечный Fv (scFv); см, например, Bird et al. (1988) Science 242:423-426; и Huston et al. (1988) Proc. Natl. Acad. Sci. USA 85:5879-5883). Данные одноцепочечные антитела также охватываются термином антигенсвязывающая часть антитела. Данные фрагменты анти
- 7 044665 тел получают с применением общепринятых способов, известных специалистам в данной области, при этом данные фрагменты подвергают скринингу для оценки применимости таким же образом, что и интактные антитела.
В соответствии с используемым здесь значением выделенное антитело означает антитело, являющееся практически свободным от других антител, обладающих другими антигенными специфичностями (например, выделенное антитело, которое специфически связывает белок LAG-3, является практически свободным от антител, которые специфически связывают антигены, отличные от белков LAG-3). Однако выделенное антитело, которое специфически связывает белок LAG-3 человека, может обладать перекрестной реактивностью по отношению к другим антигенам, таким как белки LAG-3 других видов. Более того, выделенное антитело может являться практически свободным от иного клеточного материала и/или химических соединений.
В соответствии с используемым здесь значением термины моноклональное антитело или композиция моноклональных антител означают препарат молекул антитела, имеющих один и тот же молекулярный состав. Композиция моноклонального антитела проявляет единственную специфичность связывания и аффинность в отношении конкретного эпитопа.
В соответствии с используемым здесь значением термин антитело человека включает антитела, имеющие вариабельные участки, в которых каркасные и CDR участки образованы из иммуноглобулиновых последовательностей зародышевой линии человека. Более того, если антитело содержит константный участок, то константный участок также происходит из иммуноглобулиновых последовательностей зародышевой линии человека. Антитела человека по изобретению могут включать аминокислотные остатки, не кодируемые иммуноглобулиновыми последовательностями зародышевой линии человека (например, мутации, введенные случайным или сайт-специфическим мутагенезом in vitro, или соматическая мутация in vivo). Однако термин антитело человека, в соответствии с используемым здесь значением, не включает антитела, в которых последовательности CDR, полученные из зародышевой линии других видов млекопитающих, таких как мышь, были пересажены в каркасные последовательности человека.
Термин моноклональное антитело человека означает антитела, проявляющие единственную специфичность связывания, которые имеют вариабельные участки, в которых каркасные участки и участки CDR получены из иммуноглобулиновых последовательностей зародышевой линии человека. В одном варианте осуществления моноклональные антитела человека получают с применением гибридомы, которая включает В-клетку, полученную из трансгенного не являющегося человеком животного, например трансгенной мыши, имеющей геном, включающий трансген тяжелой цепи и трансген легкой цепи человека, слитые с иммортализованной клеткой. Термин рекомбинантное антитело человека, в соответствии с используемым здесь значением, включает все антитела человека, которые получают, экспрессируют, создают или выделяют рекомбинантными способами, такие как (а) антитела, выделенные из животного (например, мыши), которое является трансгенным или трансхромосомным в отношении генов иммуноглобулинов человека, или из гибридомы, полученной на основе этого (описано ниже), (b) антитела, выделенные из клетки-хозяина, трансформированной для экспрессии антитела человека, например из трансфектомы, (с) антитела, выделенные из рекомбинантной комбинаторной библиотеки антител человека, и (d) антитела, полученные, экспрессированные, созданные или выделенные любыми другими способами, которые включают сплайсинг генных последовательностей иммуноглобулина человека с другими последовательностями ДНК. Данные рекомбинантные антитела человека включают вариабельные участки, в которых каркасные и CDR участки получены из последовательностей зародышевой линии иммуноглобулина человека. Однако в определенных вариантах осуществления данные рекомбинантные антитела человека могут быть подвергнуты in vitro мутагенезу (или, когда применяют животное, трансгенное в отношении последовательностей Ig человека, in vivo соматическому мутагенезу), и, таким образом, аминокислотные последовательности VH и VL участков рекомбинантных антител представляют собой последовательности, которые, хотя и получены из последовательностей VH и VL зародышевой линии человека или являются родственными им, могут не существовать в природе в репертуаре зародышевой линии антител человека in vivo.
Термин изотип означает класс антител (например, IgM или IgG1), который кодируется генами константного участка тяжелой цепи.
Выражения антитело, распознающее антиген и антитело, специфическое к антигену применяются здесь взаимозаменяемо с выражением антитело, которое специфически связывается с антигеном.
Термин производные антител человека означает любую модифицированную форму антитела человека, например конъюгат антитела и другого агента или антитела.
Термин гуманизированное антитело предназначен для обозначения антител, в которых в CDR последовательности, полученные из зародышевой линии другого вида млекопитающих, такого как мышь, были трансплантированы в каркасные последовательности человека. В каркасных последовательностях человека могут быть произведены дополнительные модификации каркасного участка.
Термин химерное антитело предназначен для обозначения антител, в которых последовательности вариабельного участка получены от одного вида, а последовательности константного участка получены от другого вида, такие как антитело, у которого последовательности вариабельного участка полу
- 8 044665 чены из антитела мыши, а последовательности константного участка получены от антитела человека.
В соответствии с используемым здесь значением антитело, которое специфически связывает LAG3 человека, означает антитело, которое связывает белок LAG-3 человека (и, возможно, белок LAG-3 одного или нескольких не являющихся человеком видов), но по существу не связывается с не являющимися LAG-3 белками. Предпочтительно антитело связывается с белком LAG-3 человека с высокой аффинностью, более конкретно со значением KD 1 х 10-7 М или менее, более предпочтительно 1 х 10-8 М или менее, более предпочтительно5 х 10-9 М или менее, более предпочтительно 1 х 10-9 М или менее.
Термин по существу не связывается с белком или клетками, в соответствии с используемым здесь значением означает не связывается или не связывается с высокой аффинностью с белком или клетками, то есть связывается с белком или клетками с KD 1х10-6 М или выше, более предпочтительно 1 х 10-5 М или выше, более предпочтительно 1х10-4 М или выше, более предпочтительно 1 х 10-3 М или выше и еще более предпочтительно 1 х 10-2 М или выше.
Термин Kассоц или Ka, в соответствии с используемым здесь значением, предназначен для обозначения скорости ассоциации конкретного взаимодействия антитело-антиген, тогда как термин Kguс или Kд, в соответствии с используемым здесь значением, предназначен для обозначения скорости диссоциации конкретного взаимодействия антитело-антиген. Термин KD, в соответствии с используемым здесь значением, предназначен для обозначения константы диссоциации, которую вычисляют исходя из отношения Kd к Ka (то есть Kd/Ka) и выражают в виде молярной концентрации (М). Значения KD для антител могут быть определены с применением способов, хорошо известных из уровня техники. Предпочтительный способ определения KD антитела представляет собой поверхностный плазменный резонанс, предпочтительно с применением биосенсорной системы, такой как система Biacore®.
Термин высокая аффинность в отношении антитела IgG означает антитело, обладающее KD в отношении антигена-мишени 1 х 10-7 М или менее, более предпочтительно 5 х 10-8 М или менее, еще более предпочтительно 1х10-8 М или менее, еще более предпочтительно 5 х 10-9 М или менее и еще более предпочтительно 1 х 10-9 М или менее. Однако высокая аффинность связывания может отличаться для антител других изотипов. Например, высокая аффинность связывания изотипа IgM означает антитело с KD 10-6 М или менее, более предпочтительно 10-7 М или менее, более предпочтительно 10-8 М или менее. Термин деамидирование означает процесс химического распада, который спонтанно возникает в белках (например, антителах). Деамидирование удаляет амидную функциональную группу из аминокислотного остатка, такого как аспарагин и глутамин, таким образом повреждая его амидсодержащие боковые цепи. В частности, боковая цепь аспарагина атакует близлежащую пептидную группу, образуя симметричное сукцинимидное производное. Симметрия производного приводит к получению двух продуктов гидролиза, аспартата или изоаспартата. Аналогичная реакция может возникать в боковых цепях аспартата, приводя к частичному переходу в изоаспартат. В случае глутамина скорость деамидирования в целом составляет в десять раз менее, чем в случае аспарагина, однако механизм по существу является аналогичным и требующим только молекул воды.
Термин субъект включает любое животное, являющееся или не являющееся человеком. Термин не являющееся человеком животное включает всех позвоночных, например, млекопитающих и немлекопитающих, таких как не являющиеся человеком приматы, овцы, собаки, кошки, коровы, лошади, куры, земноводные и пресмыкающиеся, хотя млекопитающие являются предпочтительными, например не являющиеся человеком приматы, овцы, собаки, кошки, коровы и лошади. Различные аспекты изобретения описаны более подробно в нижеследующих подразделах.
Ahtu-LAG-З антитела с повышенной стабильностью и полезными функциональными свойствами
Антитела по изобретению специфически связываются с LAG-3 человека и обладают оптимизированной стабильностью по сравнению с описанными ранее анти-LAG-3 антителами, в частности по сравнению с антителом 25F7 (LAG3.1). Данная оптимизация включает пониженное деамидирование (например, повышенную химическую стабильность) и повышенный термический рефолдинг (например, повышенную физическую стабильность), при сохранении в то же время высокой аффинности связывания LAG-3 человека.
Способы идентификации сайтов деамидирования известны из уровня техники (см., например хроматографию на основе ионного обмена, обратной фазы и гидрофобного взаимодействия и пептидное картирование протеолитического расщепления (ВЭЖХ-МС)). Подходящие анализы для измерения физической стабильности включают, например, анализ точек плавления и/или рефолдинга структуры антитела после денатурации (например, долевая обратимость, как описано, например, в примере 3, Раздел 3). Связывание с LAG-3 человека может быть проанализировано с применением одного или нескольких способов, хорошо известных из уровня техники. Например, антитело может быть протестировано с применением анализа на основе проточной цитометрии, при котором антитело реагирует с клеточной линией, которая экспрессирует LAG-3 человека, такой как СНО клетки, которые были трансфицированы для экспрессии LAG-3 (например, LAG-3 человека или LAG-3 обезьяны (например, резус или циномолгус) или LAG-3 мыши) на их клеточной поверхности. Другие подходящие клетки для применения в рамках
- 9 044665 анализа на основе проточной цитометрии включают анти-CD3-стимулируемые CD4+ активированные Тклетки, которые экспрессируют нативный LAG-3. Дополнительно или альтернативно, связывание антитела, включая кинетические показатели связывания (например, значение KD), могут быть протестированы с помощью анализов BIAcore. Другие подходящие анализы связывания включают анализы ELISA, например с применением рекомбинантного белка LAG-3.
Антитела по изобретению предпочтительно связываются с белком LAG-3 человека со значением KD 1 х 10-7 М или менее, более предпочтительно 1 х 10-8 М или менее, 5 х 10-9 М или менее или 1 х 10-9 М или менее.
Как правило, антитело связывается с LAG-3 в лимфоидных тканях, таких как миндалина, селезенка или тимус, что может быть детектировано с помощью иммуногистохимического анализа. В одном варианте осуществления антитело окрашивает гипофизную ткань (например, накапливается в гипофизе), что выявляется с помощью иммуногистохимического анализа. В другом варианте осуществления антитело не окрашивает гипофизную ткань (то есть не накапливается в гипофизе), что выявляется с помощью иммуногистохимического анализа.
Дополнительные функциональные свойства включают перекрестную реактивность с LAG-3 других видов. Например, антитело может связываться с LAG-3 обезьяны (например, обезьяны циномолгус, макаки резус), но практически не связывается с LAG-3 мыши. Предпочтительно антитело по изобретению связывается с LAG-3 человека с высокой аффинностью.
Другие функциональные свойства включают способность антитела стимулировать иммунный ответ, такой как антигенспецифичный Т-клеточный ответ. Это может быть определено, например, с помощью анализа способности антитела стимулировать продуцирование интерлейкина-2 (IL-2) при антигенспецифичном Т-клеточном ответе. В некоторых вариантах осуществления антитело связывается с LAG-3 человека и стимулирует антигенспецифичный Т-клеточный ответ. В других вариантах осуществления антитело связывается с LAG-3 человека, но не стимулирует антигенспецифичный Т-клеточный ответ. Другие средства для оценки способности антитела стимулировать иммунный ответ включают тестирование его способности ингибировать рост опухоли, такой как in vivo модель опухоли с ксенотрансплантатом (см., например, Пример 6) или способности стимулировать аутоиммунный ответ, такой как способность промотировать развитие аутоиммунного заболевания в аутоиммунной модели, например способность промотировать развитие диабета в модели с NOD мышами.
Предпочтительные антитела по изобретению представляют собой моноклональные антитела человека. Дополнительно или альтернативно, антитела могут представлять собой, например, химерные или гуманизированные моноклональные антитела.
Моноклональное антитело LAG3.5
Предпочтительное антитело по изобретению представляет собой моноклональное антитело человека, LAG3.5, структурно и химически характеризуемое как описано ниже в нижеприведенных примерах. Аминокислотная последовательность VH LAG3.5 показана в SEQ ID NO:12 (фиг. 2А). Аминокислотная последовательность VL LAG3.5 показана в SEQ ID NO:14(фиг. 2В).
VH и VL последовательности (или CDR последовательности) других анти-LAG- антител, которые связывают LAG-3 человека, могут быть смешаны и спарены с VH и VL последовательностями (или CDR последовательностями) антитела LAG3.5. Предпочтительно, при смешивании и спаривании VH и VL цепей (или CDR в данных цепях) VH последовательность из конкретного VH /VL-спаривания замещается структурно сходной VH последовательностью. Аналогичным образом, VL последовательность из конкретного VH/VL-спаривания замещается структурно сходной VL последовательностью. Соответственно, в одном варианте осуществления антитела по изобретению или их антигенсвязывающие части включают:
(a) вариабельный участок тяжелой цепи, включающий аминокислотную последовательность SEQ ID NO: 12 (то есть VH LAG3.5); и (b) вариабельный участок легкой цепи, включающий аминокислотную последовательность SEQ ID NO: 14 (то есть VL LAG3.5) или VL другого анти-LAG3 антитела (то есть отличного от LAG3.5);
при этом антитело специфично связывает LAG-3 человека.
В другом варианте осуществления антитела по изобретению или их антигенсвязывающие части включают:
(a) CDR1, CDR2 и CDR3 участки вариабельного участка тяжелой цепи, включающего аминокислотную последовательность SEQ ID NO: 12 (то есть CDR последовательности LAG3.5, SEQ ID NO:15, 16 и 17, соответственно); и (b) CDR1, CDR2 и CDR3 участки вариабельного участка легкой цепи, включающего аминокислотные последовательности SEQ ID NO: 14 (то есть CDR последовательности LAG3.5, SEQ ID NO:18, 19 и 20, соответственно) или CDR другого анти-LAG3 антитела (то есть отличного от LAG3.5);
при этом антитело специфично связывает LAG-3 человека.
В другом варианте осуществления антитело или его антигенсвязывающая часть включает вариабельный CDR2 участок тяжелой цепи LAG3.5, объединенный с CDR других антител, которые связывают LAG-3 человека, например CDR1 и/или CDR3 из вариабельного участка тяжелой цепи и/или CDR1, CDR2 и/или CDR3 из вариабельного участка легкой цепи другого анти-LAG-3 антитела.
- 10 044665
Кроме того, из уровня техники хорошо известно, что CDR3 домен независимо от CDR1 и/или CDR2 домена(нов) самостоятельно может определять специфичность связывания антитела в отношении его антигена и что множество антител с одной и той же специфичностью связывания могут быть прогнозируемо получены на основе общей CDR3 последовательности. См., например, Klimka et al, British J. of Cancer 83(2):252-260 (2000); Beiboer et al, J. Mol Biol. 296:833-849 (2000); Rader et al, Proc. Natl. Acad. Sci. U.S.A. 95:8910-8915 (1998); Barbas et al., J. Am. Chem. Soc. 116:2161-2162 (1994); Barbas et al., Proc. Natl. Acad. Sci. U.S.A. 92:2529-2533 (1995); Ditzel et al, J. Immunol. 157:739-749 (1996); Berezov et al, BIAjournal 8: Scientific Review 8 (2001); Igarashi et al, J. Biochem (Tokyo) 117:452-7 (1995); Bourgeois et al, J. Virol 72:807-10 (1998); Levi et al, Proc. Natl. Acad. Sci. U.S.A. 90:4374-8 (1993); Polymenis and Stoller, J. Immunol. 152:5218-5329 (1994) и Xu and Davis, Immunity 13:37-45 (2000). См. также патенты США 6951646; 6914128; 6090382; 6818216; 6156313; 6827925; 5833943; 5762905 и 5760185. Каждая из этих публикаций полностью приведена здесь для ссылки.
Соответственно, в другом варианте осуществления антитела по изобретению включают CDR2 вариабельного участка тяжелой цепи LAG3.5 и, по меньшей мере, CDR3 вариабельного участка тяжелой и/или легкой цепи LAG3.5 (SEQ ID NO: 17 и/или 20) или CDR3 вариабельного участка тяжелой и/или легкой цепи другого LAG-3 антитела, при этом антитело способно специфично связываться с LAG-3 человека. Данные антитела предпочтительно (а) конкурируют за связывание; (b) сохраняют функциональные характеристики; (с) связываются с одним эпитопом; и/или (d) обладают той же аффинностью связывания, что и LAG3.5. В другом варианте осуществления антитела также могут включать CDR2 вариабельного участка легкой цепи LAG3.5 (SEQ ID NO: 17 и/или 20) или CDR2 вариабельного участка легкой цепи другого LAG-3 антитела, при этом антитело способно специфично связываться с LAG-3 человека. В другом варианте осуществления антитела по изобретению также могут включать CDR1 вариабельного участка тяжелой и/или легкой цепи LAG3.5 (SEQ ID NO: 17 и/или 20) или CDR1 вариабельного участка тяжелой/или легкой цепи другого LAG-3 антитела, при этом антитело способно специфично связываться с LAG-3 человека.
Консервативные модификации
В другом варианте осуществления антитела по изобретению включают последовательности вариабельного участка тяжелой и/или легкой цепи CDR1, CDR2 и CDR3 последовательностей, которые отличаются от данных последовательностей LAG3.5 одной или несколькими консервативными модификациями. Однако в предпочтительном варианте осуществления остатки 54 и 56 CDR2 VH сохраняются в виде аргинина и серина, соответственно (то есть не подвергаются мутации). Очевидно, что могут быть осуществлены такие консервативные модификации последовательностей, которые не приводят к потере способности связывать антиген. См., например, Brummell et al. (1993) Biochem 32:1180-8; de Wildt et al. (1997) Prot. Eng. 10:835-41; Komissarov et al.. (1997)J. Biol. Chem. 272:26864-26870; Hall et al. (1992) J. Immunol. 149:1605-12; Kelley and O'Connell (1993) Biochem. 32:6862-35; Adib-Conquy et al. (1998) Int. Immunol. 10:341-6 and Beers et al. (2000) Clin. Can. Res. 6:2835-43. Соответственно, в одном варианте осуществления антитело включает вариабельный участок тяжелой цепи, включающий CDR1, CDR2 и CDR3 последовательности и/или вариабельный участок легкой цепи, включающий CDR1, CDR2 и CDR3 последовательности, при этом:
(a) CDR1 последовательность вариабельного участка тяжелой цепи включает SEQ ID NO: 15 и/или ее консервативные модификации, за исключением положений 54 и 56; и/или (b) CDR3 последовательность вариабельного участка тяжелой цепи включает SEQ ID NO: 17 и ее консервативные модификации; и/или (c) CDR1 и/или CDR2 и/или CDR3 последовательности вариабельного участка легкой цепи включают SEQ ID NO: 18 и/или SEQ ID NO: 19 и/или SEQ ID NO: 20 и/или их консервативные модификации и (d) антитело специфически связывает LAG-3 человека.
Дополнительно или альтернативно, антитело может обладать одной или несколькими из следующих функциональных свойств, описанных выше, таких как связывание LAG-3 человека с высокой аффинностью, связывание LAG-3 обезьяны, отсутствие связывания LAG-3 мыши, способность ингибировать связывание LAG-3 с МНС молекулами II класса и/или способности стимулировать антигенспецифичные Т-клеточные ответы. В различных вариантах осуществления антитело может представлять собой, например, антитело человека, гуманизированное антитело или химерное антитело. В соответствии с используемым здесь значением термин консервативные модификации последовательности означает аминокислотные модификации, которые незначительно влияют или изменяют характеристики связывания антитела, содержащего аминокислотную последовательность. Данные консервативные модификации включают аминокислотные замещения, добавления или делеции. Модификации могут быть введены в антитело по изобретению стандартными способами, известными из уровня техники, такими как сайтнаправленный мутагенез и ПЦР-опосредованный мутагенез. Консервативные аминокислотные замещения представляют собой замещения, при которых аминокислотный остаток замещается другим аминокислотным остатком с аналогичной боковой цепью. В уровне техники определены семейства аминокислотных остатков, имеющие аналогичные боковые цепи. Такие семейства включают аминокислоты с ос
- 11 044665 новными боковыми цепями (например, лизин, аргинин, гистидин), кислотными боковыми цепями (например, аспарагиновая кислота, глутаминовая кислота), незаряженными полярными боковыми цепями (например, глицин, аспарагин, глутамин, серин, треонин, тирозин, цистеин, триптофан), неполярными боковыми цепями (например, аланин, валин, лейцин, изолейцин, пролин, фенилаланин, метионин), бетаразветвленными боковыми цепями (например, треонин, валин, изолейцин) и ароматическими боковыми цепями (например, тирозин, фенилаланин, триптофан, гистидин). Таким образом, один или несколько аминокислотных остатков в CDR участках антитела по изобретению могут быть заменены на другие аминокислотные остатки семейства с теми же боковыми цепями, при этом изменённое антитело может быть проверено на предмет сохранения функции (а именно функций, указанных выше) с применением описанных здесь функциональных анализов.
Сконструированные и модифицированные антитела
Антитела по изобретению могут быть получены с применением антитела, имеющего одну или несколько VH и/или VL последовательностей LAG3.5 в качестве исходного материала для конструирования модифицированного антитела. Антитело может быть сконструировано с помощью модификации одного или нескольких остатков в одном или обоих вариабельных участках (то есть VH и/или VL), например в одном или нескольких CDR участках и/или в одном или нескольких каркасных участках. Дополнительно или альтернативно, антитело может быть сконструировано путем модификации остатков в константном участке(ах), например для изменения эффекторной функции(й) антитела. В определенных вариантах осуществления может применяться трансплантирование CDR для конструирования вариабельных участков антител. Антитела взаимодействуют с антигенами-мишенями преимущественно через аминокислотные остатки, которые расположены в шести определяющих комплементарность участках (CDR) тяжелой и легкой цепи. По этой причине аминокислотные последовательности в CDR являются более разнообразными между отдельными антителами, чем последовательности вне CDR. Поскольку CDR последовательности отвечают за большинство взаимодействий антитело-антиген, является возможным экспрессировать рекомбинантные антитела, которые имитируют свойства специфических встречающихся в природе антител, конструированием экспрессирующих векторов, которые включают CDR последовательности из специфического встречающегося в природе антитела, трансплантированные в каркасные последовательности из другого антитела с иными свойствами (см., например, Riechmann et al. (1998)Nature 332:323-327; Jones et al. (1986) Nature 321:522-525; Queen et al. (1989) Proc. Natl. Acad. See. U.S.A. 86:10029-10033; патенты США 5225539; 5530101; 5585089; 5693762 и 6180370).
Соответственно, другой вариант осуществления изобретения относится к выделенному моноклональному антителу, его антигенсвязывающей части, включающей вариабельный участок тяжелой цепи, включающий CDR1, CDR2 и CDR3 последовательности, включающие SEQ ID NO: 15, 16, 17, соответственно, и/или вариабельный участок легкой цепи, включающий CDR1, CDR2 и CDR3 последовательности, включающие SEQ ID NO: 18, 19, 20, соответственно (то есть CDR LAG3.5). В то время как данные антитела содержат CDR последовательности VH и VL моноклонального антитела LAG3.5, они могут содержать иные каркасные последовательности.
Данные каркасные последовательности могут быть получены из общедоступных баз данных ДНК или опубликованных источников, которые включают последовательности генов антител зародышевой линии. Например, последовательности ДНК зародышевой линии для генов вариабельного участка тяжёлой и лёгкой цепей человека можно найти в базе данных последовательностей зародышевой линии человека VBase (на сайте в www.mrc-cpe.cam.ac.uk/vbase), а также в публикациях Kabat et al. (1991), цитированных выше; Tomlinson et al. (1992) The Repertoire of Human Germline VH Sequences Reveals about Fifty Groups of VH Segments with Different Hypervariable Loops J. Mol. Biol. 227:776-798; and Cox et al. (1994) A Directory of Human Germ-line VH Segments Reveals a Strong Bias in their Usage Eur. J. Immunol. 24:827-836; содержание каждой из которых полностью приведено здесь для ссылки. В качестве другого примера, ДНК последовательности зародышевой линии генов вариабельных участков тяжелой и легкой цепей человека могут быть найдены в базе данных Genbank. Например, следующие последовательности тяжелой цепи зародышевой линии, входящие в состав НСо7 HuMAb мыши, доступны в базе Genbank под номерами: 1-69 (NG_0010109, NT_024637 & ВС070333), 3-33 (NG_0010109 & NT_024637) и 3-7 (NG_0010109 & NT_024637). В качестве другого примера, следующие последовательности зародышевой линии тяжелой цепи, входящие в состав НСо12 HuMAb мыши, доступны в GenBank под номерами: 1-69 (NG_0010109, NT_024637 & ВС070333), 5-51 (NG_0010109 & NT_024637), 4-34 (NG_0010109 & NT_024637), 3-30.3 (CAJ556644) & 3-23 (AJ406678).
Белковые последовательности антитела сравниваются с последовательностями белков, имеющихся в компилированной базе данных, с применением одного из способов поиска сходства последовательностей, называемых Gapped BLAST (Altschul et al. (1997), выше), которые хорошо известны из уровня техники.
Предпочтительные каркасные последовательности для применения в антителах по изобретению представляет собой антитела, которые структурно сходны с каркасными последовательностями, применяемыми в выбранных антителах по изобретению, например, сходные с VH 4-34 каркасными последовательностями и/или VK L6 каркасными последовательностями, применяемыми в предпочтительных моно
- 12 044665 клональных антителах по изобретению. CDR1, CDR2 и CDR3 VH последовательности и CDR1, CDR2 и CDR3 VK последовательности могут быть трансплантированы в каркасные участки, которые имеют последовательность, идентичную последовательности, обнаруженной в гене иммуноглобулина зародышевой линии, из которой получена указанная каркасная последовательность, или такие CDR последовательности могут быть трансплантированы в каркасные участки, которые содержат одну или несколько мутаций в сравнении с последовательностями зародышевой линии. Например, было обнаружено, что в некоторых случаях предпочтительно осуществить мутацию остатков в каркасных участках для сохранения или повышения антигенсвязывающей способности антитела (см., например, патенты США 5530101; 5585089; 5693762 и 6180370).
Другой тип модификации вариабельного участка представляет собой мутирование аминокислотных остатков в CDR1, CDR2 и/или CDR3 VH и/или VL участках для обеспечения, таким образом, улучшения одного или нескольких свойств связывания (например, аффинности) представляющего интерес антитела. Для введения мутации(й) может быть осуществлен сайт-специфический мутагенез или ПЦРопосредованный мутагенез, при этом влияние на связывание антитела или другое интересующее функциональное свойство может быть оценено в in vitro или in vivo анализах, описанных здесь и указанных в разделе Примеры. Предпочтительно вводятся консервативные модификации (обсуждаемые выше). Мутации могут представлять собой аминокислотные замещения, добавления или делеции, но предпочтительно они представляют собой замещения. Более того, обычно не более чем один, два, три, четыре или пять остатков в CDR участке являются модифицированными.
Соответственно, в другом варианте осуществления изобретение относится к выделенным антиLAG-3 моноклональным антителам или их антигенсвязывающим частям, включающим вариабельный участок тяжелой цепи, включающий: (a) VH CDR1 участок, включающий SEQ ID NO: 15 или аминокислотную последовательность, имеющую одно, два, три, четыре или пять аминокислотных замещений, делеций или добавлений по сравнению с SEQ ID NO: 15; (b) VH CDR2 участок, включающий SEQ ID NO: 16 или аминокислотную последовательность, имеющую одно, два, три, четыре или пять аминокислотных замещений, делеций или добавлений по сравнению с SEQ ID NO: 16 (предпочтительно, где положения 54 и 56 такие же, что и в SEQ ID NO: 16); (с) VH CDR3 участок, включающий SEQ ID NO: 17 или аминокислотную последовательность, имеющую одно, два, три, четыре или пять аминокислотных замещений, делеций или добавлений по сравнению с SEQ ID NO: 17; (d) VL CDR1 участок, включающий SEQ ID NO: 18 или аминокислотную последовательность, имеющую одно, два, три, четыре или пять аминокислотных замещений, делеций или добавлений по сравнению с SEQ ID NO: 18; (е) VL CDR2 участок, включающий SEQ ID NO: 19 или аминокислотную последовательность, имеющую одно, два, три, четыре или пять аминокислотных замещений, делеций или добавлений по сравнению с SEQ ID NO: 19; и (f) VL CDR3 участок, включающий SEQ ID NO: 20 или аминокислотную последовательность, имеющую одно, два, три, четыре или пять аминокислотных замещений, делеций или добавлений по сравнению с SEQ ID NO: 20. Сконструированные антитела по изобретению включают антитела, в которых были сделаны модификации в каркасных остатках в VH и/или VL, например для улучшения свойств антитела. Как правило, такие модификации в каркасном участке осуществляют для снижения иммуногенности антитела. Например, один подход заключается в том, чтобы мутировать обратно один или несколько каркасных остатков в соответствующие остатки последовательности зародышевой линии. Более конкретно, антитело, которое было подвергнуто соматической мутации, может содержать каркасные остатки, которые отличаются от последовательности зародышевой линии, из которой получено данное антитело. Такие остатки могут быть идентифицированы сравнением каркасных последовательностей антитела с последовательностями зародышевой линии, из которой получено данное антитело.
Другой тип каркасной модификации включает мутацию одного или нескольких остатков в каркасном участке или даже в одном или нескольких CDR участках для удаления Т-клеточных эпитопов, чтобы тем самым понизить потенциальную иммуногенность антитела. Данный подход также обозначают как деиммунизация, и он более подробно описан в патентной публикации США 20030153043.
В качестве дополнения или альтернативы модификациям, производимым в каркасных или CDR участках, антитела по изобретению могут быть сконструированы таким образом, что они включают модификации в Fc участке, обычно для изменения одного или нескольких функциональных свойств антитела, таких как период полужизни в сыворотке, фиксация комплемента, связывание Fc рецептора и/или антиген-зависимая клеточная цитотоксичность. Более того, антитело по изобретению может быть также химически модифицировано (например, к антителу могут быть присоединены одна или несколько химических групп) или может быть модифицировано для изменения его гликозилирования, опять для изменения одного или нескольких функциональных свойств данного антитела. Каждый из данных вариантов описан более подробно ниже. Нумерация остатков в Fc участке соответствует нумерации по EU-индексу Kabat.
В предпочтительном варианте осуществления антитело представляет собой антитело изотипа IgG4, включающее мутацию с замещением серина на пролин в положении, соответствующем положению 228 (S228P; EU индекс) в шарнирном участке константного участка тяжелой цепи. Было отмечено, что данная мутации устраняет гетерогенность дисульфидных мостиков между тяжелыми цепями в шарнирном
- 13 044665 участке (Angal et al. выше; положение 241 на основе системы нумерации Kabat).
В одном варианте осуществления шарнирный участок СН1 модифицирован таким образом, что количество остатков цистеина в шарнирном участке изменено, например увеличено или уменьшено. Данный подход также описан в патенте США 5677425. Количество остатков цистеина в шарнирном участке СН1 изменяют, например, для облегчения сборки легких и тяжелых цепей или для увеличения или уменьшения стабильности антитела. В другом варианте осуществления мутация в Fc шарнирном участке антитела понижает биологический период полужизни антитела. Более конкретно, одну или несколько мутаций аминокислот вводят в участок контакта СН2-СН3 домена Fc-шарнирного фрагмента таким образом, чтобы ослаблялось связывание антитела с Staphylococcyl белком A (SpA) по сравнению со связыванием нативного Fc-шарнирного домена SpA. Данный подход также описан в патенте США 6165745.
В другом варианте осуществления антитело модифицируют для повышения его биологического периода полужизни. Возможны различные подходы. Например, могут быть введены одна или несколько следующих мутаций: T252L, T254S, T256F, как описано в патенте США 6277375. Альтернативно, для увеличения биологического периода полужизни антитело может быть изменено в СН1 или СН2 участке таким образом, что оно содержит эпитоп связывания рецептора реутилизации, образованного из двух петель СН2 домена Fc участка IgG, как описано в патентах США 5869046 и 6121022. В других вариантах осуществления Fc участок изменяют, заменяя, по меньшей мере, один аминокислотный остаток на другой аминокислотный остаток для изменения эффекторной функции(й) антитела. Например, одна или несколько аминокислот, выбранных из аминокислотных остатков 234, 235, 236, 237, 297, 318, 320 и 322, могут быть заменены другим аминокислотным остатком таким образом, что антитело имеет измененную аффинность в отношении эффекторного лиганда, но сохраняет антигенсвязывающую способность исходного антитела. Эффекторным лигандом, в отношении которого аффинность изменяется, может представлять собой, например, Fc рецептор или С1-компонент комплемента. Данный подход также описан в патентах США 5624821 и 5648260.
В другом примере одна или несколько аминокислот, выбранных из аминокислотных остатков 329, 331 и 322, могут быть заменены другим аминокислотным остатком таким образом, что антитело имеет измененное связывание C1q и/или уменьшенную или устраненную комплементзависимую цитотоксичность (CDC). Данный подход также описан в патенте США 6194551.
В другом примере изменяют один или несколько аминокислотных остатков в положениях аминокислот 231 и 239, таким образом изменяя способность антитела фиксировать комплемент. Данный подход также описан в публикации РСТ WO 94/29351. В другом примере Fc участок модифицируют для повышения способности антитела опосредовать антитело-зависимую клеточную цитотоксичность (ADCC) и/или для повышения аффинности антитела по отношению к Fcy рецептору путем модификации одной или нескольких аминокислот в следующих положениях: 238, 239, 248, 249, 252, 254, 255, 256, 258, 265, 267, 268, 269, 270, 272, 276, 278, 280, 283, 285, 286, 289, 290, 292, 293, 294, 295, 296, 298, 301, 303, 305, 307, 309, 312, 315, 320, 322, 324, 326, 327, 329, 330, 331, 333, 334, 335, 337, 338, 340, 360, 373, 376, 378, 382, 388, 389, 398, 414, 416, 419, 430, 434, 435, 437, 438 или 439. Данный подход также описан в публикации РСТ WO 00/42072. Более того, сайты связывания на IgG1 человека для FcyR1, FcyRII, FcyRIII и FcRn были картированы, при этом были описаны варианты с улучшенным связыванием (см. Shields et al. (2001) J. Biol. Chem. 276:6591-6604). Было показано, что определенные мутации в положениях 256, 290, 298, 333, 334 и 339 улучшают связывание с FcyRIII. Кроме того, было показано, что следующие сочетанные мутации улучшают связывание FcyRIII: T256A/S298A, S298A/E333A, S298A/K224A и S298A/E333A/K334A.
В другом варианте осуществления гликозилирование антитела является модифицированным. Например, может быть получено агликозилированное антитело (то есть антитело без гликозилирования). Гликозилирование может быть изменено с целью, например, увеличения аффинности антитела к антигену. Такие модификации углеводов могут быть осуществлены, например, путем изменения одного или нескольких сайтов гликозилирования в последовательности антитела. Например, могут быть осуществлены одно или несколько аминокислотных замещений, которые приводят к устранению одного или нескольких сайтов гликозилирования каркасного участка вариабельного участка, благодаря чему устраняется гликозилирование в данном сайте. Данное агликозилироание может увеличивать аффинность антитела в отношении антигена. См., например, патенты США 5714350 и 6350861.
Дополнительно или альтернативно, антитело может быть получено таким образом, чтобы оно имело измененный тип гликозилирования, например гипофукозилированное антитело, содержащее сниженное количество остатков фукозы, или антитело, содержащее повышенное количество двухантенных GlcNac структур. Было показано, что такие измененные паттерны гликозилирования повышают ADCCспособность антител. Данные модификации углеводов могут быть выполнены, например, путем экспрессии антитела в клетке- хозяине с измененным механизмом гликозилирования. Клетки с измененным механизмом гликозилирования были описаны в уровне техники и могут применяться в качестве клетокхозяев для экспрессии в них рекомбинантных антител по изобретению, чтобы таким образом получить антитело с измененным гликозилированием. Например, в линиях клеток Ms704, Ms705 и Ms709 отсутст
- 14 044665 вует ген фукозилтрансферазы, FUT8 (α (1,6)-фукозилтрансфераза), так что в антителах, экспрессируемых в Ms704, Ms705 и Ms709 клеточных линиях, отсутствует фукоза в углеводах. FUT8-/- клеточные линии Ms704, Ms705 и Ms709 были созданы таргетированным разрушением гена FUT8 в CHO/DG44 клетках с применением двух замещающих векторов (см. публикацию патента США 20040110704 и Yamane-Ohnuki et al. (2004) Biotechnol Bioeng 87:614-22). В качестве другого примера, в ЕР 1176195 описана клеточная линия с функционально разрушенным геном FUT8, который кодирует фукозилтрансферразу, так что у антител, экспрессируемых в такой клеточной линии, наблюдается гипофукозилирование за счет снижения или устранения фермента, имеющего отношение к а-1,6-связи. В ЕР 1176195 также описаны клеточные линии, которые имеют низкую ферментативную активность в отношении присоединения фукозы к N-ацетилглюкозамину, который связывается с Fc участком антитела или не имеет ферментативной активности, например клеточная линия миеломы крысы YB2/0 (АТСС CRL 1662). В публикации РСТ WO 03/035835 описан вариант клеточной линии СНО, Lec13 клетки, с уменьшенной способностью присоединять фукозу к Asn(297)-связанным углеводам, что также приводит к гипофукозилированию антител, экспрессируемых в данной клетке-хозяине (см. также Shields et al. (2002) J. Biol. Chem. 277:26733-26740). Антитела с модифицированным профилем гликозилирования могут быть получены в яйцах кур, как описано в РСТ публикации WO 06/089231. Альтернативно, антитела с модифицированным профилем гликозилирования могут быть получены в клетках растений, таких как Lemna. Способы получения антител в растительной системе описаны в заявке США, соответствующей номеру дела в книге записей поверенного Alston & Bird LLP 040989/314911, поданной 11 августа 2006. В публикации РСТ WO 99/54342 описаны клеточные линии, сконструированные для экспрессии гликопротеин-модифицирующих гликозилтрансфераз (например, β (1,4)-N-ацетилглюкозаминилтрансферазы III (GnTIII)) таким образом, что антитела, экспрессируемые в таких сконструированных клеточных линиях, проявляют увеличенное разделение на две половины GlcNac структур, что приводит к увеличенной ADCC активности антител (см. также Umana et al. (1999) Nat. Biotech. 17:176-180). Альтернативно, остатки фукозы антитела могут быть отщеплены с помощью фермента фукозидазы, например фукозидаза a-L-фукозидаза удаляет фукозильные остатки из антител (Tarentino et al. (1975) Biochem. 14:5516-23). Другая модификация антител по изобретению представляет собой пэгилирование. Антитело может быть пэгилировано, например, для повышения биологического периода полужизни антитела (например, в сыворотке). Для пэгилирования антитела антитело или его фрагмент, как правило, подвергают реакции с полиэтиленгликолем (ПЭГ), таким как реакционноспособный сложный эфир или альдегидное производное ПЭГ, в условиях, при которых одна или несколько ПЭГ групп присоединяются к антителу или фрагменту антитела. Предпочтительно пэгилирование осуществляют посредством реакции ацилирования или реакции алкилирования с реакционноспособной молекулой ПЭГ (или с аналогичным реакционноспособным водорастворимым полимером). В соответствии с используемым здесь значением термин полиэтиленгликоль охватывает любую из форм ПЭГ, которые применялись для дериватизации других белков, такую как моно(С1-С10)алкокси- или арилоксиполиэтиленгликоль или малеимид полиэтиленгликоля. В некоторых вариантах осуществления пэгилируемое антитело представляет собой агликозилированное антитело. Способы пэгилирования белков известны из уровня техники и могут применяться к антителам по изобретению. См., например, ЕР 0154316 и ЕР 0401384.
Физические свойства антител
Антитела по изобретению могут быть охарактеризованы их различными физическими свойствами для детектирования и/или различения их классов.
Например, антитела могут содержать один или несколько сайтов гликозилирования в вариабельном участке тяжелой или легкой цепи. Данные сайты гликозилирования могут обеспечивать повышенную иммуногенность антитела или изменение рК антитела вследствие изменения связывания антигена (Marshall et al (1972) Annu Rev Biochem 41:673-702: Gala and Morrison (2004) J Immunol 172:5489-94: Wallick et al (1988) J ExpMed 168:1099-109; Spiro (2002) Glycobiology 12:43R-56R; Parekh et al (1985) Nature 316:452-7; Mimura et al. (2000) Mol Immunol 37:697-706). Было показано, что гликозилирование происходит в мотивах, содержащих N-X-S/T последовательность. В некоторых случаях предпочтительно иметь анти-LAG-3 антитело без гликозилирования вариабельного участка. Это может быть достигнуто либо путем отбора антител, которые не содержат мотив гликозилирования в вариабельном участке, либо путем осуществления мутаций остатков в участке гликозилирования.
В предпочтительном варианте осуществлении антитела не содержат сайтов изомерии аспарагина. Деамидирование аспарагина может возникать в N-G или D-G последовательностях и приводить к образованию остатка изоаспарагиновой кислоты, который вызывает образование петли полипептидной цепи или снижение ее стабильности (эффект изаспарагиновой кислоты).
Каждое антитело обладает уникальной изоэлектрической точкой (pI), которая обычно лежит в диапазоне рН от 6 до 9,5. pI антитела IgG1 обычно лежит в диапазоне рН 7-9,5, a pI антитела IgG4 обычно лежит в диапазоне рН 6-8. Существует предположение, что антитела, pI которых находится за пределами нормального диапазона, могут обладать некоторым нарушением фолдинга и нестабильностью при in vivo условиях. Таким образом, предпочтительно получать анти-LAG-3 антитела, значение pI которых лежит в
- 15 044665 нормальном диапазоне. Это может быть достигнуто либо путем отбора антитела с pI в нормальном диапазоне, либо путем осуществления мутаций заряженных поверхностных остатков.
Молекулы нуклеиновых кислот, кодирующие антитела изобретения
В другом аспекте изобретение относится к молекулам нуклеиновых кислот, которые кодируют вариабельные участки тяжелой и/или легкой цепи, или CDR, антител по изобретению. Нуклеиновые кислоты могут присутствовать в цельных клетках, в клеточном лизате или в частично очищенной или практически чистой форме. Нуклеиновая кислота является выделенной или по существу чистой, если она очищена от других клеточных компонентов или других примесей, например от других клеточных нуклеиновых кислот или белков, стандартными способами, включая обработку щелочью/ДСН, центрифугирование в градиенте плотности CsC1, колоночную хроматографию, электрофорез на агарозном геле и другие способы, хорошо известные из уровня техники. См., Ausubel, et al., ed. (1987) Current Protocols in Molecular Biology, Greene Publishing and Wiley Interscience, New York. Нуклеиновая кислота по изобретению может представлять собой, например, ДНК или РНК, и может содержать или не содержать интронные последовательности. В предпочтительном варианте осуществления нуклеиновая кислота представляет собой молекулу кДНК.
Нуклеиновые кислоты по изобретению могут быть получены с применением стандартных способов молекулярной биологии. В случае антител, экспрессированных в гибридомах (например, гибридомах, полученных от трансгенных мышей, имеющих гены иммуноглобулина человека, как более подробно описано ниже), кДНК, кодирующие лёгкую и тяжёлую цепи антитела, полученного с применением гибридомы, могут быть получены обычными способами ПЦР-амплификации или кДНК клонирования. В случае антител, полученных из библиотеки генов иммуноглобулинов (например, с применением способов фагового дисплея), кодирующая такие антитела нуклеиновая кислота может быть получена из библиотеки генов.
Предпочтительные нуклеиновые кислоты по изобретению включают нуклеиновые кислоты, которые кодируют VH и VL последовательности моноклонального антитела LAG3.5 (SEQ ID NO: 12 и 14, соответственно) или CDR. После получения фрагментов ДНК, кодирующих VH и VL сегменты, данные фрагменты ДНК могут быть далее обработаны стандартными способами рекомбинантных ДНК, например для превращения генов вариабельного участка в полноразмерные гены цепи антитела, в гены Fab фрагмента или в ген scFv. При данных манипуляциях фрагмент ДНК, кодирующий VL или VH, функционально связывают с другим фрагментом ДНК, кодирующим другой белок, такой как константный участок антитела или гибкий линкер. Термин оперативно связан, используемый в данном контексте, предназначен для обозначения того, что два фрагмента ДНК связаны так, что аминокислотные последовательности, кодируемые двумя фрагментами ДНК, остаются в рамке считывания.
Выделенная ДНК, кодирующая VH-участок, может быть превращена в полноразмерный ген тяжелой цепи функциональным связыванием VH-кодирующей ДНК с другой молекулой ДНК, кодирующей константные участки тяжелой цепи (CH1, CH2 и СН3). Последовательности генов константных участков тяжелой цепи человека известны из уровня техники (см., Kabat et al. (1991), выше), а фрагменты ДНК, включающие такие участки, могут быть получены с помощью стандартной ПЦР-амплификации. Константный участок тяжелой цепи может представлять собой константный участок IgG1, IgG2, IgG3, IgG4, IgA, IgE, IgM или IgD, но наиболее предпочтительно представляет собой константный участок IgG1 или IgG4. Для гена Fab фрагмента тяжелой цепи VH-кодирующая ДНК может быть оперативно связана с другой молекулой ДНК, кодирующей только константный участок СН1 тяжелой цепи.
Выделенная ДНК, кодирующая VL участок, может быть превращена в полноразмерный ген легкой цепи (а также ген легкой цепи Fab) путем функционального связывания VL-кодирующей ДНК с другой молекулой ДНК, кодирующей константный участок легкой цепи CL. Последовательности генов константных участков легкой цепи человека известны из уровня техники (см., например, Kabat et al., выше), а фрагменты ДНК, включающие такие участки, могут быть получены путем стандартной ПЦРамплификации. В предпочтительных вариантах осуществления константный участок легкой цепи может представлять собой константный участок каппа или лямбда.
Для создания гена scFv VH- и VL-кодирующие фрагменты ДНК функционально связывают с другим фрагментом, кодирующим гибкий линкер, например, кодирующим аминокислотную последовательность (Gly4-Ser)3 (SEQ ID NO: 28), так что VH и VL последовательности могут быть экспрессированы в виде непрерывного одноцепочечного белка с VH и VL участками, соединенными гибким линкером (см., например, Bird et al. (1988) Science 242:423-426; Huston et al. (1988) Proc. Natl. Acad. Sci. USA 85:5879-5883; McCafferty et al., (1990) Nature 348:552-554).
Получение моноклональных антител по изобретению
Моноклональные антитела (mAb) по настоящему изобретению могут быть получены с применением хорошо известного способа на основе гибридизации соматических клеток (гибридом) по Kohler and Milstein (1975) Nature 256: 495. Другие варианты получения моноклональных антител включают способы на основе вирусной или онкогенной трансформации В-лимфоцитов и фаговый дисплей. Химерные или гуманизированные антитела также хорошо известны из уровня техники. См., например, патенты США 4816567; 5225539; 5530101; 5585089; 5693762 и 6180370, содержание которых полностью приведено
- 16 044665 здесь для ссылки.
В предпочтительном варианте осуществления антитела по изобретению представляют собой моноклональные антитела человека. Такие моноклональные антитела человека, направленные против LAG-3 человека, могут быть получены с применением трансгенных или трансхромосомных мышей, имеющих части иммунной системы человека вместо системы мыши. Данные трансгенные или трансхромосомные мыши включают мышей, обозначаемых здесь как HuMAb Mouse® и KM Mouse®, соответственно, и совместно обозначаются здесь как мыши с Ig человека.
HuMAb Mouse® (Medarex®, Inc.) содержит минилокусы гена иммуноглобулина человека, которые кодируют переаранжированные последовательности тяжёлой (μ и γ) и лёгкой к цепей иммуноглобулина человека, вместе с таргетированными мутациями, которые инактивируют эндогенные локусы μ и к цепей (см., например, Lonberg, (1994) Nature 368(6474): 856-859).
Таким образом, данные мыши обнаруживают сниженную экспрессию IgM мыши или к, при этом в ответ на иммунизацию введенные трансгены тяжелой и легкой цепей человека подвергаются переключению класса и соматической мутации с продуцированием моноклонального IgGK человека с высокой аффинностью (Lonberg et al. (1994), выше; описано у Lonberg (1994) Handbook of Experimental Pharmacology 113:49-101; Lonberg, N. and Huszar, D. (1995) Intern. Rev. Immunol. 13: 65-93, и Harding and Lonberg (1995) Ann. NY. Acad. Sci. 764:536-546). Получение и применение HuMAb Mouse®, а также геномные модификации, имеющиеся у таких мышей, также описаны у Taylor et al. (1992) Nucleic Acids Research 20:62876295; Chen et al. (1993) International Immunology 5: 647-656; Tuaillon et al. (1993) Proc. Natl. Acad. Sci. USA 90:3720-3724; Choi et al. (1993) Nature Genetics 4:117-123; Chen et al. (1993) EMBO J. 12: 821-830; Tuaillon et al. (1994) J. Immunol. 152:2912-2920; Taylor et al. (1994) International Immunology 6: 579-591; и Fishwild et al. (1996) Nature Biotechnology 14: 845-851, содержание которых полностью приведено здесь для ссылки. См. также патенты США 5545806; 5569825; 5625126; 5633425; 5789650; 5877397; 5661016; 5814318; 5874299; 5770429; и 5545807; РСТ публикации WO 92/03918; WO 93/12227; WO 94/25585; WO 97/13852; WO 98/24884; WO 99/45962 и WO 01/14424, содержание которых полностью приведено здесь для ссылки.
В другом варианте осуществления антитела человека по изобретению могут быть продуцированы с применением мышей, имеющих последовательности иммуноглобулина человека в трансгенах и трансхромосомах, например мышей, имеющих трансген тяжелой цепи человека и трансхромосому легкой цепи человека. Данные мыши обозначаются здесь как KM mouse® и подробно описаны в РСТ публикации WO 02/43478. Модифицированная форма такой мыши, которая также характеризуется гомозиготным нарушением эндогенного FcyRIIB рецепторного гена, также описана в РСТ публикации WO 02/43478 и обозначается здесь как KM/FCGR2D mouse®. Кроме того, могут применяться мыши с НСо7 или НСо12 трансгенами тяжелой цепи или ими обоими. Дополнительные варианты трансгенных животных включают Xenomouse (Abgenix, Inc., патенты США 5939598; 6075181; 6114598; 6150584 и 6162963). Другие варианты включают ТС мышей (Tomizuka et al. (2000) Proc. Natl. Acad. Sci. USA 97:722-727) и коров, имеющих трансхромосомы тяжелой и легкой цепи человека (Kuroiwa et al. (2002) Nature Biotechnology 20:889-894; РСТ публикация WO 02/092812). Содержание данных патентов и публикаций полностью приведено здесь для ссылки.
В одном варианте осуществления моноклональные антитела человека по изобретению получают с применением способов фагового дисплея для скрининга библиотек генов иммуноглобулинов человека. См., например, патенты США 5223409; 5403484; 5571698; 5427908; 5580717; 5969108; 6172197; 5885793; 6521404; 6544731; 6555313; 6582915 и 6593081, содержание которых полностью приведено здесь для ссылки. Моноклональные антитела человека по изобретению могут быть также получены с применением SCID мышей, в которых иммунные клетки человека были реконструированы таким образом, что после иммунизации могла быть получена реакция антител человека. См., например, патенты США 5476996 и 5698767, содержание которых полностью приведено здесь для ссылки.
В другом варианте осуществления анти-LAG-3 антитела человека получают с применением фагового дисплея, при котором фаги включают нуклеиновые кислоты, кодирующие антитела, продуцируемые в трансгенных животных, ранее иммунизированных LAG-3. В предпочтительном варианте осуществления трансгенное животное представляет собой HuMab, KM или Kirin мышь. См., например, патент США 6794132, содержание которого полностью приведено здесь для ссылки.
Иммунизация мышей Ig человека
В одном варианте осуществления изобретения мышей с Ig человека иммунизируют очищенным или обогащенным препаратом на основе LAG-3 антигена, рекомбинантного LAG-3 белка или клеток, экспрессирующих LAG-3 белок. См., например, Lonberg et al. (1994), выше; Fishwild et al. (1996), выше; РСТ публикации WO 98/24884 или WO 01/14424, содержание которых полностью приведено здесь для ссылки. В предпочтительном варианте осуществления мышей возрастом 6-16 недель иммунизируют 5-50 мкг LAG-3 белка. Альтернативно, применяют слитый полипептид из части LAG-3 и части, не являющейся LAG-3.
В одном варианте осуществления трансгенных мышей иммунизируют интраперитонеально (I/P)
- 17 044665 или внутривенно (I/V) LAG-3 антигеном в полном адъюванте Фрейнда с последующими I/P или I/V иммунизациями антигеном в неполном адъюванте Фрейнда. В других вариантах осуществления применяют адъюванты, не являющиеся адъювантом Фрейнда, или цельные клетки без адъюванта. Плазма может быть подвергнута скринингу с применением ELISA, при этом клетки мышей с достаточными уровнями титра анти-LAG-3 иммуноглобулина человека могут применяться для получения слитых конструктов.
Получение гибридом, продуцирующих моноклональные антитела человека по изобретению
Для получения гибридом, продуцирующих моноклональные антитела человека по изобретению, спленоциты и/или клетки лимфатических узлов иммунизированных мышей, могут быть выделены и слиты с подходящей иммортализованной клеточной линией, такой как линия миеломных клеток мыши. Полученные гибридомы могут быть подвергнуты скринингу на продуцирование антигенспецифичных антител. Получение гибридом хорошо известно из уровня техники. См., например, Harlow and Lane (1988) Antibodies, A Laboratory Manual, Cold Spring Harbor Publications, New York.
Получение трансфектом, продуцирующих моноклональные антитела по изобретению
Антитела по изобретению могут быть также получены в трансфектоме клетки-хозяина, например с применением комбинирования способов рекомбинантных ДНК и способов трансфекции генов, как хорошо известно из уровня техники (например, Morrison, S. (1985) Science 229:1202). В одном варианте ДНК, кодирующую части или полноразмерные легкие и тяжелые цепи, полученную стандартными молекулярно-биологическими способами, вставляют в один или несколько векторов экспрессии, так что гены являются функционально связанными с транскрипционными и трансляционными регуляторными последовательностями. В данном контексте термин функционально связан означает, что ген антитела лигирован в вектор таким образом, что последовательности контроля транскрипции и трансляции в векторе осуществляют свою функцию, заключающуюся в регулировании транскрипции и трансляции гена антитела.
Термин регуляторная последовательность включает промоторы, энхансеры и другие элементы контроля экспрессии (например, сигналы полиаденилирования), которые контролируют транскрипцию или трансляцию генов цепей антитела. Данные регуляторные последовательности описаны, например, у Goeddel (Gene Expression Technology. Methods in Enzymology 185, Academic Press, San Diego, CA (1990)). Предпочтительные регуляторные последовательности для экспрессии в клетке-хозяине млекопитающего включают вирусные элементы, которые приводят к высоким уровням экспрессии белка в клетках млекопитающих, такие как промоторы и/или энхансеры, полученные из цитомегаловируса (CMV), вируса обезьян 40 (SV40), аденовируса (например, основной поздний промотор аденовируса (AdMLP)) и вируса полиомы. Альтернативно, могут применяться невирусные регуляторные последовательности, такие как промотор убиквитина или промотор β-глобина. Кроме того, могут применяться регуляторные элементы, составленные из последовательностей из разных источников, такие как промоторная система SRa, которая содержит последовательности из раннего промотора SV40, и длинный концевой повтор вируса Тклеточного лейкоза человека типа 1 (Takebe et al. (1988) Mol. Cell. Biol. 8:466-472). Вектор экспрессии и контрольные последовательности экспрессии выбирают таким образом, чтобы они были совместимы с применяемой клеткой-хозяином.
Ген легкой цепи антитела и ген тяжелой цепи антитела могут быть вставлены в один или различные векторы экспрессии. В предпочтительных вариантах осуществления применяют вариабельные участки для создания полноразмерных генов антитела любого изотипа путем их встраивания в векторы экспрессии, которые уже кодируют константный участок тяжелой цепи и константный участок легкой цепи требуемого изотипа, так что VH сегмент функционально связан с CH сегментом(ами) в векторе, a VL сегмент функционально связан с CL сегментом в векторе. Дополнительно или альтернативно, рекомбинантный вектор экспрессии может кодировать сигнальный пептид, обеспечивающий секрецию цепи антитела из клетки-хозяина. Ген цепей антитела может быть клонирован в вектор, так что сигнальный пептид связан в рамке считывания с амино-концом гена цепей антитела. Сигнальный пептид может представлять собой сигнальный пептид иммуноглобулина или гетерологичный сигнальный пептид (то есть сигнальный пептид из неиммуноглобулинового белка).
В дополнение к генам цепей антитела и регуляторным последовательностям рекомбинантные векторы экспрессии по изобретению могут нести дополнительные последовательности, такие как последовательности, которые регулируют репликацию вектора в клетках-хозяевах (например, ориджины репликации) и селектируемые маркерные гены. Селектируемый маркерный ген обеспечивает отбор клетокхозяев, в которые был введен вектор (см., например, патенты США 4399216, 4634665 и 5179017). Например, в типичном случае селектируемый маркерный ген обусловливает устойчивость к лекарственным веществам, таким как G418, гигромицин или метотрексат, клетки-хозяина, в которую был введен вектор. Предпочтительные селектируемые маркерные гены включают в ген дигидрофолатредуктазы (DHFR) (для применения в dhfr-клетках-хозяевах с отбором/амплификацией в присутствии метотрексата) и ген пео (для отбора в присутствии G418).
Для экспрессии легких и тяжелых цепей экспрессирующий вектор(ы), кодирующие тяжелые и легкие цепи, трансфицируют в клетку-хозяина с помощью стандартных способов. Различные формы терми
- 18 044665 на трансфекция охватывают широкий спектр способов, широко применяемых для введения экзогенной ДНК в прокариотическую или эукариотическую клетку-хозяин, например электропорацию, кальцийфосфатную преципитацию, ДЭАЭ-декстрановую трансфекцию и им подобные. Хотя теоретически возможно экспрессировать антитела по изобретению в прокариотических или эукариотических клеткаххозяевах, наиболее предпочтительной является экспрессия антител в эукариотических клетках и, наиболее предпочтительно, в клетках-хозяевах млекопитающих, поскольку такие эукариотические клетки, и в особенности клетки млекопитающих, скорее чем прокариотические, подходят для сборки и секретирования соответствующим образом сложенного и иммунологически активного антитела.
Предпочтительные клетки-хозяева млекопитающих для экспрессии рекомбинантных антител по изобретению включают клетки яичника китайского хомячка (СНО клетки) (включая dhfr СНО клетки, описанные у Urlaub and Chasin, (1980) Proc. Natl. Acad. Sci. USA 77:4216-4220, применяемые с селектируемым маркером DHFR, например, как описано у R. J. Kaufman and P. A. Sharp (1982) J. Mol. Biol. 159:601-621), NSO клетки миеломы, COS клетки и SP2 клетки. В частности, для применения с NSO клетками миеломы другая предпочтительная система экспрессии представляет собой систему экспрессии на основе GS генов, описанную в WO 87/04462, WO 89/01036 и ЕР 338,841. Если рекомбинантные векторы экспрессии, кодирующие гены антитела, вводят в клетки-хозяева млекопитающего, антитела продуцируют путем культивирования клеток-хозяев в течение периода времени, достаточного для обеспечения экспрессии антитела в клетках-хозяевах, или, более предпочтительно секреции антитела в культуральную среду, в которой выращиваются клетки-хозяева. Антитела могут быть выделены из культуральной среды с применением стандартных способов очистки белков.
Иммуноконъюгаты
Антитела по изобретению могут быть конъюгированы с терапевтическим агентом для образования иммуноконъюгата, такого как конъюгат антитело-лекарство (ADC). Подходящие терапевтические агенты включают антиметаболиты, алкилированные агенты, связывающие малую бороздку ДНК агенты, ДНК интеркалаты, агенты для поперечного связывания ДНК, ингибиторы гистонацетилазы, ингибиторы ядерного экспорта, ингибиторы протеасомы, ингибиторы топоизомеразы I или II, ингибиторы белков теплового шока, ингибиторы тирозинкиназы, антибиотики и антимитотические агенты. В ADC антитела и терапевтический агент предпочтительно конъюгированы через расщепляемый линкер, такой как пептидильный, дисульфидный или гидразонный линкер. Более предпочтительно, линкер представляет собой пептидильный линкер, такой как Val-Cit, Ala-Val, Val-Ala-Val, Lys-Lys, Pro-Val-Gly-Val-Val (SEQ ID NO: 39), Ala-Asn-Val, Val-Leu-Lys, Ala-Ala-Asn, Cit-Cit, Val-Lys, Lys, Cit, Ser или Glu. ADC могут быть получены как описано в патентах США 7087600; 6989452 и 7129261; РСТ публикациях WO 02/096910; WO 07/038658; WO 07/051081; WO 07/059404; WO 08/083312 и WO 08/103693; патентных публикациях США 20060024317; 20060004081 и 20060247295, описание которых приведено здесь для ссылки.
Биспецифические молекулы
В другом аспекте настоящее описание раскрывает биспецифические молекулы, включающие одно или несколько антител по изобретению, связанные, по меньшей мере, с одной другой функциональной молекулой, например другим пептидом или белком (например, другим антителом или лигандом для рецептора) для получения биспецифической молекулы, которая связывается, по меньшей мере, с двумя различными сайтами связывания или молекулами-мишенями. Таким образом, в соответствии с используемым здесь значением, термин биспецифическая молекула включает молекулы, обладающие тремя или более специфичностями. В предпочтительном варианте осуществления биспецифическая молекула включает первую специфичность связывания по отношению к LAG-3 и вторую специфичность связывания для инициации молекулы, которая захватывает цитотоксические эффекторные клетки, которые могут уничтожать экспрессирующую LAG-3 клетку-мишень. Примеры подходящих инициирующих молекул представляют собой CD64, CD89, CD16 и CD3. См., например, Kufer et al, TRENDS in Biotechnology, 22 (5), 238-244 (2004).
В одном варианте осуществления биспецифическая молекула обладает, помимо анти-Fc специфичности связывания и анти-LAG-3 специфичности связывания, третьей специфичностью. Третья специфичность может быть направлена в отношении фактора усиления (EF), например, молекула, которая связывается с поверхностным белком, вовлеченным в цитотоксическую активность, и за счет этого повышает иммунный ответ против клетки-мишени. Например, фактор против усиления может связывать цитотоксическую Т-клетку (например, через CD2, CD3, CD8, CD28, CD4, CD40 или ICAM-1) или другую иммунную клетку, что приводит к увеличенному иммунному ответу против клетки-мишени.
Биспецифические молекулы могут иметь различные формат и размер. На одной границе спектра размеров биспецифическая молекула сохраняет традиционный формат антитела за исключением того, что вместо обладания двумя участками связывания с идентичной специфичностью, оно обладает двумя участками связывания, каждый из которых имеет различную специфичность.
На другой границе находятся биспецифические молекулы, состоящие из двух одноцепочечных фрагментов антитела (scFv's), связанных пептидной цепью - так называемый Bs(scFv)2 конструкт. Биспецифические молекулы с промежуточным размером включают два различных F(ab) фрагмента, связанных пептидным линкером. Биспецифические молекулы этого и иных форматов могут быть получены с по
- 19 044665 мощью генетической модификации, соматической гибридизации или химическим способов. См., например, Kufer et al, cited supra; Cao and Suresh, Bioconjugate Chemistry, 9 (6), 635-644 (1998); и van Spriel et al., Immunology Today, 21 (8), 391-397 (2000), и приведенные здесь ссылки.
Фармацевтические композиции
В другом аспекте настоящее описание включает фармацевтическую композицию, включающую одно или несколько антител по настоящему изобретению, соединенные вместе с фармацевтически приемлемым носителем. Композиция может необязательно содержать один или несколько дополнительных фармацевтически активных ингредиентов, таких как другое антитело или лекарство. Фармацевтические композиции по изобретению также могут быть введены в рамках комбинационной терапии, например, с другим иммуностимулирующим агентом, противораковым агентом, противовирусным агентом или вакциной, так что анти-LAG-3 антитело стимулирует иммунный ответ против вакцины. Фармацевтическая композиция может включать любое количество эксципиентов. Эксципиенты, которые могут применяться, включают носители, поверхностно-активные агенты, загустители или эмульгирующие агенты, твердые связующие, средства для диспергирования или суспендирования, растворители, красители, отдушки, оболочки, распадающиеся агенты, любриканты, подсластители, консерванты, изотонические агенты и их комбинации. Отбор и применение подходящих эксципиентов описан у Gennaro, ed., Remington: The Science and Practice of Pharmacy, 20th Ed. (Lippincott Williams & Wilkins 2003), описание которого приведено здесь для ссылки.
Предпочтительно, фармацевтическая композиция является подходящей для внутривенного, внутримышечного, подкожного, парентерального, спинномозгового или эпидермального введения (например, с помощью инъекции или инфузии). В зависимости от пути введения активное соединение может быть покрыто материалом для его защиты от воздействия кислот и других естественных условий, которые могут привести к его инактивации. Выражение парентеральное введение в соответствии с используемым здесь значением означает способы введения, отличные от энтерального и топического введения, обычно с помощью инъекции, и включает, без ограничения, внутривенную, внутримышечную, внутриартериальную, интратекальную, внутрикапсульную, внутриглазничную, внутрисердечную, интрадермальную, интраперитонеальную, транстрахеальную, подкожную, внутрикожную, внутрисуставную, подкапсульную, субарахноидальную, интракапсульную, эпидуральную и надчревную инъекцию и инфузию. Альтернативно, антитело по изобретению может вводиться непарентеральным способом, таким как топический, эпидермальный способ или способ введения через слизистую оболочку, например, интраназально, перорально, вагинально, ректально, сублингвально или местно. Фармацевтические композиции по изобретению могут включать фармацевтически приемлемые соли. Термин фармацевтически приемлемая соль означает соль, которая сохраняет желаемую биологическую активность исходного соединения и не привносит никаких нежелательных токсикологических эффектов. Примеры таких солей включают кислотно-аддитивные соли и основно-аддитивные соли. Кислотно-аддитивные соли включают соли, полученные из нетоксичных неорганических кислот, таких как соляная, азотная, фосфорная, серная, бромистоводородная, йодистоводородная, фосфористая и им подобные, а также из нетоксичных органических кислот, таких как алифатические моно- и дикарбоновые кислоты, фенил-замещенные алкановые кислоты, гидроксиалкановые кислоты, ароматические кислоты, алифатические и ароматические сульфоновые кислоты и им подобные. Основно-аддитивные соли включают соли, полученные на основе щелочноземельных металлов, таких как натрий, калий, магний, кальций и им подобных, а также на основе нетоксичных органических аминов, таких как N,N-дибензилэтилендиамин, N-метилглюкамин, хлорпрокаин, холин, диэтаноламин, этилендиамин, прокаин и им подобных.
Фармацевтические композиции могут быть в форме стерильных водных растворов или дисперсий. Они также могут быть получены в форме микроэмульсии, липосомы или другой упорядоченной структуры, подходящей для высокой концентрации лекарственного средства.
Количество активного ингредиента, которое может быть объединено с материалом-носителем для приготовления отдельной лекарственной формы, будет варьироваться в зависимости от подвергаемого лечению субъекта и конкретного способа введения и в целом будет соответствовать количеству композиции, оказывающему терапевтический эффект. Обычно в расчете на сто процентов это количество будет находиться в диапазоне от около 0,01% до около девяносто девяти процентов активного ингредиента, предпочтительно от около 0,1 до около 70%, наиболее предпочтительно от около 1 до около 30% активного ингредиента в комбинации с фармацевтически приемлемым носителем. Режимы дозирования подбирают для обеспечения оптимального желаемого отклика (например, реакции на терапию). Например, может быть введен один болюс или могут быть введены несколько раздельных доз с течением времени или доза может быть пропорционально снижена или увеличена в зависимости от терапевтической ситуации. Особенно предпочтительным является составление парентеральных композиций в виде дозированной лекарственной формы для облегчения введения и единообразия дозировки.
Термин дозированная лекарственная форма в соответствии с используемым здесь значением означает физически дискретные единицы, подходящие в качестве единичных дозированных форм для подвергаемых лечению субъектов; каждая единица содержит предварительно определенное количество активного соединения, подсчитанное таким образом, чтобы обеспечивать достижение желаемого терапев
- 20 044665 тического эффекта вместе с требуемым фармацевтическим носителем. Альтернативно, антитело может быть введено в виде состава с замедленным высвобождением, в случае которого требуется менее частое введение.
Для введения антитела доза находится в диапазоне от около 0,0001 до 100 мг/кг и чаще от 0,01 до 5 мг/кг массы тела хозяина. Например, дозы могут составлять 0,3 мг/кг массы тела, 1 мг/кг массы тела, 3 мг/кг массы тела, 5 мг/кг массы тела или 10 мг/кг массы тела или находится в диапазоне 1-10 мг/кг. Примерная схема лечения включает введение один раз в неделю, один раз каждые две недели, один раз каждые три недели, один раз каждые четыре недели, один раз в месяц, один раз каждые 3 месяца или один раз каждые 3-6 месяцев. Предпочтительные схемы введения доз анти-LAG-3 антитела по изобретению включают 1 мг/кг массы тела или 3 мг/кг массы тела при внутривенном введении, причем данное антитело вводят с применением одной из следующих схем введения доз: (i) каждые четыре недели первые шесть доз, далее каждые три месяца; (ii) каждые три недели; (ш) 3 мг/кг массы тела однократно и далее 1 мг/кг массы тела каждые три недели. В некоторых способах дозировку корректируют для достижения концентрации антитела в плазме около 1-1000 мкг/мл, а в некоторых способах - около 25-300 мкг/мл.
Терапевтически эффективная дозаанти-LAG-3 антитела по изобретению предпочтительно приводит к снижению тяжести симптомов заболевания, увеличению частоты и продолжительности бессимптомных периодов заболевания или предупреждению ухудшения или нетрудоспособности вследствие заболевания. Например, для лечения субъектов с опухолью терапевтически эффективная дозировка предпочтительно ингибирует рост опухоли, по меньшей мере на 20%, более предпочтительно, по меньше мере, на 40%, еще более предпочтительно, по меньшей мере на 60% и более предпочтительно, по меньше мере, на 80% относительно субъекта в отсутствие лечения. Терапевтически эффективное количество терапевтического соединения может снижать размер опухоли или иным способом облегчать симптомы у субъекта, который, как правило, представляет собой человека или другое млекопитающее.
Фармацевтическая композиция может представлять собой состав с контролируемым высвобождением, включая имплантаты, чрескожные пластыри и микроинкапсулированные системы для доставки. Могут применяться биодеградируемые биосовместимые полимеры, такие как этиленвинилацетат, полиангидриды, полигликолевая кислота, коллаген, полиортоэфиры и полимолочная кислота. См., например, Sustained and Controlled Release Drug Delivery Systems, J.R. Robinson, ed., Marcel Dekker, Inc., New York, 1978. Терапевтические композиции могут вводится с помощью медицинских устройств, таких как устройства для подкожных инъекций без иглы (например, патенты США 5399163; 5383851; 5312335; 5064413; 4941880; 4790824 и 4596556); (2) помпы для микроинфузий (патент США 4487603); (3) чрескожные устройства (патент США 4486194); (4) инфузионные аппараты (патенты США 4447233 и 4447224); и (5) осмотические устройства (патенты США 4439196 и 4475196); описание которых приведено здесь для ссылки. В некоторых вариантах осуществления моноклональные антитела человека по изобретению могут быть получены так, чтобы обеспечивалось правильное распределение in vivo. Например, для обеспечения преодоления гематоэнцефалического барьера терапевтическими соединениями по изобретению они могут входить в состав липосом, которые могут дополнительно включать таргетирующие остатки для обеспечения селективного транспорта в определенные клетки или органы. См., например, патенты США 4522811; 5374548; 5416016 и 5399331; V.V. Ranade (1989) J. Clin. Pharmacol. 29:685; Umezawa et al, (1988) Biochem. Biophys. Res. Commun. 153:1038; Bloeman et al. (1995) FEBS Lett. 357:140; M. Owais et al. (1995) Antimicrob. Agents Chemother. 39:180; Briscoe et al. (1995) Am. J. Physiol. 1233:134; Schreiere et al. (1994) J. Biol. Chem. 269:9090; Keinanen and Laukkanen (1994) FEBS Lett. 346:123; и Killion and Fidler (1994) Immunomethods 4:273.
Варианты применения и способы по изобретению
Антитела (композиции, биспецифические антитела и иммуноконъюгаты) по настоящему изобретению обладают множеством in vitro и in vivo вариантов применения, включая, например, детектирование LAG-3 или стимулирование иммунных ответов за счет блокады LAG-3. В предпочтительном варианте осуществления антитела представляют собой антитела человека. Такие антитела могут вводиться в клетки в культуре, in vitro или ex vivo, или представляющих собой людей субъектам, например, in vivo для стимулирования иммунитета в различных ситуациях. В соответствии с этим в одном аспекте изобретение относится к способу модификации иммунного ответа у субъекта, включающему введение субъекту антитела или его антигенсвязывающей части по изобретению для модификации иммунного ответа у субъекта. Предпочтительно, ответ усиливается, стимулируется или подвергается ап-регулированию.
Предпочтительные субъекты включают представляющих собой людей пациентов, нуждающихся в усилении иммунного ответа. Данные способы предпочтительно являются подходящими для лечения представляющих собой людей пациентов, имеющих нарушение, которое может подвергаться лечению за счет усиления иммунного ответа (например, опосредованного Т-клетками иммунного ответа). В конкретном варианте осуществления указанные методы являются особенно подходящими для лечения рака in vivo. Для достижения антигенспецифичного стимулирования иммунитета анти-LAG-3 антитела могут вводиться совместно с представляющим интерес антигеном или антиген может уже присутствовать у подвергаемого лечению субъекта (например, субъекта с опухолью или вирусом). При введении антител к LAG-3 совместно с другим агентом указанные два агента могут вводиться в любом порядке или одно
- 21 044665 временно.
Изобретение также относится к способам детектирования присутствия антигена в образце или измерения количества антигена LAG-3 человека, включающим контактирование образца и контрольного образца с моноклональным антителом человеком или его антигенсвязывающей частью, которая специфично связывается с LAG-3 человека при условиях, которые обеспечивают образования комплекса между антителом или его частью и LAG-3 человека. Образование комплекса далее подвергается детектированию, при этом различие между образованием комплекса между образцом и контрольным образцом указывает на присутствие антигена LAG-3 человека в образце. Более того, анти-LAG-3 антитела по изобретению могут применяться для очистки LAG-3 человека за счет иммуноаффинной очистки.
С учетом способности анти-LAG-3 антител по изобретению ингибировать связывание LAG-3 с МНС молекулами II класса и стимулировать антигенспецифичные Т-клеточные ответы, изобретение также относится к in vitro и in vivo способам применения антител для стимулирования, усиления или апрегулирования антигенспецифичных Т-клеточных ответов. Например изобретение относится к способу стимулирования антигенспецифичного Т-клеточного ответа, включающему контактирование указанной Т-клетки с антителом по изобретению таким образом, что антигенспецифичный Т-клеточные ответ подвергается стимулированию. Для измерения антигенспецифичного Т-клеточного ответа может применяться любой подходящий индикатор антигенспецифичного Т-клеточного ответа. Неограничивающие примеры данных подходящих индикаторов включают увеличенную Т-клеточную пролиферацию в присутствии антитела и/или увеличение продуцирования цитокинов в присутствии антитела. В предпочтительно варианте осуществления стимулируется продуцирование интерлейкина-2 с помощью антигенспецифичной Т-клетки.
Изобретение также относится к способу стимулирования иммунного ответа (например, антигенспецифичного Т-клеточного ответа) у субъекта, включающему введение антитела по изобретению субъекту таким образом, что иммунный ответ (например, антигенспецифичный Т-клеточный ответ) субъекта подвергается стимулированию. В предпочтительном варианте осуществления субъект представляет собой субъект с опухолью, при этом стимулируется иммунный ответ против опухоли. В другом предпочтительном варианте осуществления субъект представляет собой субъект с вирусом, при этом стимулируется иммунный ответ против вируса.
В другом варианте осуществления изобретение относится к способу ингибирования роста опухолевых клеток у субъекта, включающему введение субъекту антитела по изобретению, так что рост опухоли у субъекта подвергается ингибированию. В другом варианте осуществления изобретение относится к способам лечения вирусной инфекции у субъекта, включающим введение субъекту антитела по изобретению, так что вирусная инфекция у субъекта подвергается лечению. Эти и другие способы по изобретению описаны более подробно ниже.
Рак
Блокада LAG-3 антителами может усиливать иммунный ответ пациента на раковые клетки. В одном аспекте настоящее изобретение относится к лечению субъекта in vivo с применением анти-LAG-3 антитела таким образом, что рост раковых опухолей подвергается ингибированию. Ahtu-LAG-З антитело может применяться самостоятельно для ингибирования роста раковых опухолей. Альтернативно, антиLAG-3 антитело может применяться совместно с другими иммуногенными агентами, стандартными способами лечения рака или другими антителами, как описано ниже.
В соответствии с этим в одном варианте осуществления изобретение относится к способу ингибирования роста опухолевых клеток у субъекта, включающему введение субъекту терапевтически эффективного количества анти-LAG-3 антитела или его антигенсвязывающей части. Предпочтительно, антитело представляет собой анти-LAG-3 антитело человека (такое как любое из описанных здесь антител человека против LAG-3 человека). Дополнительно или альтернативно, данное антитело может представлять собой химерное или гуманизированное анти-LAG-3 антитело.
Предпочтительные виды раковых опухолей, рост которых может быть ингибирован с применением антител по изобретению, включают опухоли, обычно восприимчивые к иммунотерапии. Неограничивающие примеры предпочтительных типов рака для лечения включают меланому (например, метастатическую злокачественную меланому), рак почки (например, гипернефрому), рак предстательной железы (например, не отвечающую на гормоны аденокарциному предстательной железы), рак молочной железы, рак ободочной кишки и рак легкого (например, немелкоклеточный рак легкого). Кроме того, изобретение включает трудноизлечимые или рецидивирующие злокачественные опухоли, рост которых может быть ингибирован с применением антител по изобретению.
Примеры других видов рака, которые могут быть подвергнуты лечению с применением способов по изобретению, включают рак кости, рак поджелудочной железы, рак кожи, рак головы и шеи, злокачественную меланому кожи или внутриглазную меланому, рак матки, рак яичника, рак прямой кишки, рак заднего прохода, рак желудка, рак яичка, карциному фаллопиевых труб, карциному эндометрия, карциному шейки матки, карциному влагалища, карциному вульвы, болезнь Ходжкина, неходжкинскую лимфому, рак пищевода, рак тонкого кишечника, рак эндокринной системы, рак щитовидной железы, рак паращитовидной железы, рак коры надпочечника, саркому мягких тканей, рак уретры, рак пениса, хро
- 22 044665 нический или острый лейкоз, включая острый миелоидный лейкоз, хронический миелоидный лейкоз, острый лимфобластный лейкоз, хронический лимфоцитарный лейкоз, солидные опухоли у детей, лимфоцитарную лимфому, рак мочевого пузыря, рак почек или мочеточника, карциному почечной лоханки, опухоль центральной нервной системы (ЦНС), первичную лимфому ЦНС, опухолевый ангиогенез, опухоль позвоночника, глиому ствола головного мозга, аденому гипофиза, саркому Капоши, эпидермоидный рак, плоскоклеточный рак, Т-клеточную лимфому, злокачественные опухоли, индуцированные влиянием окружающей среды, включая злокачественные опухоли, индуцированные асбестом, и комбинации указанных видов рака. Настоящее изобретение также может применяться для лечения метастатических видов рака, в частности метастатических видов рака, сопровождающихся экспрессией PD-L1 (Iwai et al. (2005) Int. Immunol. 17:133-144). Антитела к LAG-3 могут быть необязательно объединены с иммуногенным агентом, таким как раковые клетки, очищенные опухолевые антигены (включая рекомбинантные белки, пептиды и углеводные молекулы), клетки и клетки, трансфицированные генами, кодирующими иммуностимулирующие цитокины (Не et al (2004) J. Immunol. 173:4919-28). Неограничивающие примеры опухолевых вакцин, которые могут применяться, включают пептиды антигенов меланомы, такие как пептиды gp100, MAGE антигены, Trp-2, MART1 и/или тирозиназу, или опухолевые клетки, трансфицированные для экспрессии цитокина GM-CSF (описаны дополнительно ниже).
Было обнаружено, что некоторые опухоли человека, такие как меланомы, являются иммуногенными. Ответы против опухоли у хозяина могут быть активированы за счет повышения порога Т-клеточной активации с помощью блокады LAG-3.
Блокада LAG-3 является, по-видимому, более эффективной при комбинировании с протоколом вакцинации. Были разработаны многие экспериментальные стратегии противоопухолевого вакцинирования (см. Rosenberg, S., 2000, Development of Cancer Vaccines, ASCO Educational Book Spring: 60-62; Logothetis, C, 2000, ASCO Educational Book Spring: 300-302; Khayat, D. 2000, ASCO Educational Book Spring: 414-428; Foon, K. 2000, ASCO Educational Book Spring: 730-738; см. также Restifo, N. and Sznol, M., Cancer Vaccines, Ch. 61, стр. 3023-3043 в DeVita et al. (eds.), 1997, Cancer: Principles and Practice of Oncology, 5-е изд.). В одной из таких стратегий вакцину готовят с применением аутологичных или аллогенных опухолевых клеток. Было показано, что такие клеточные вакцины являются наиболее эффективными при трансдукции опухолевых клеток для экспрессии GM-CSF. Было показано, что GM-CSF является сильным активатором презентации антигена для опухолевой вакцинации (Dranoff et al. (1993) Proc. Natl. Acad. Sci U.S.A. 90: 3539-43). Исследование экспрессии генов и паттернов широкомасштабной экспрессии генов при различных опухолях позволило идентифицировать так называемые опухольспецифичные антигены (Rosenberg, SA (1999) Immunity 10: 281-7). Во многих случаях опухольспецифичные антигены представляют собой антигены дифференцировки, экспрессируемыми в опухолях и в клетке, из которой возникла данная опухоль, например антигены меланоцитов gp100, антигены MAGE и Trp-2. Особенно важно, что было показано, что многие из данных антигенов представляют собой мишени опухоль-специфичных Т-клеток, обнаруженных в хозяине. Блокада LAG-3 может применяться совместно с набором рекомбинантных белков и/или пептидов, экспрессируемых в опухоли, для продуцирования иммунного ответа на данные белки. Данные белки в норме рассматриваются иммунной системой как аутоантигены и, следовательно, являются толерантными к ней. Опухолевый антиген может также включать белок теломеразу, который необходим для синтеза теломеров хромосом и который экспрессируется при более чем 85% типов рака человека и только в ограниченном количестве соматических тканей (Kim et al. (1994) Science 266: 2011-2013). (Данные соматические ткани могут быть защищены от иммунной атаки различными способами). Опухолевый антиген также может представлять собой неоантигены, экспрессируемые в раковых клетках вследствие соматических мутаций, которые изменяют последовательность белка или создают слитые белки между двумя неродственными последовательностями (например, bcr-abl в хромосоме Philadelphia) или идиотип из В-клеточных опухолей.
Другие опухолевые вакцины могут включать белки из вирусов, участвующих в раковых заболеваниях человека, таких как папилломавирусы человека (HPV), вирусы гепатита (HBV и HCV) и вирус саркомы Капоши (KHSV). Другая форма опухолеспецифического антигена, которая может применяться совместно с блокадой LAG-3, представляет собой очищенные белки теплового шока (HSP), выделенные из самой опухолевой ткани. Белки теплового шока содержат фрагменты белков из опухолевых клеток, при этом данные HSP являются высокоэффективными в доставке антигенпрезентирующих клеток для индукции противоопухолевого иммунитета (Suot & Srivastava (1995) Science 269:1585-1588; Tamura et al. (1997) Science 278:117-120).
Дендритные клетки (DC) являются сильными антигенпрезентирующими клетками, которые могут применяться для прайминга антигенспецифических ответов. DC могут продуцироваться ex vivo и загружаться различными белковыми и пептидными антигенами, а также экстрактами опухолевых клеток (Nestle et al. (1998) Nature Medicine 4: 328-332). DC могут также быть подвергнуты генетической трансдукции для экспрессии данных опухолевых антигенов. DC были также слиты непосредственно с опухолевыми клетками для целей иммунизации (Kugler et al. (2000) Nature Medicine 6:332-336). В качестве способа вакцинации, DC иммунизация может быть эффективно объединена с блокадой LAG-3 для активации более сильных противоопухолевых ответов.
- 23 044665
Блокада LAG-3 быть объединена со стандартными способами лечения рака. Блокада LAG-3 может быть эффективно объединена с курсами химиотерапевтического лечения. В этих случаях является возможным уменьшить дозу вводимого химиотерапевтического реагента (Mokyr et al. (1998) Cancer Research 58: 5301-5304). Пример такой комбинации представляеть собой анти-LAG-3 антитело в комбинации с декарбазином для лечения меланомы. Другой пример данной комбинации представляет собой анtu-LAG-З антитело в комбинации с интерлейкином-2 (IL-2) для лечения меланомы. Научным обоснованием комбинированного применения блокады LAG-3 и химиотерапии является то, что гибель клеток, которая является следствием цитотоксического действия большинства химиотерапевтических соединений, должна приводить к повышенным уровням опухолевого антигена в пути презентации антигена. Другие комбинированные способы лечения, которые могут приводить к синергизму с блокадой LAG-3 посредством гибели клеток, представляют собой облучение, хирургию и выключение эндокринной функции. Каждый из этих протоколов позволяет создавать источник опухолевого антигена у хозяина. Ингибиторы ангиогенеза могут также комбинироваться с блокадой LAG-3. Ингибирование ангиогенеза приводит к гибели опухолевых клеток, которые могут подавать опухолевый антиген в пути презентации антигенов хозяина.
Блокирующие LAG-3 антитела могут также применяться в комбинации с биспецифическими антителами, которые таргетируют экспрессирующие Fca или Fcy рецептор эффекторные клетки на опухолевые клетки (см., например, патенты США 5922845 и 5837243). Биспецифические антитела могут применяться для таргетирования двух отдельных антигенов. Например, биспецифические антитела против рецептора Fc/опухолевого антигена (например, Her-2/neu) применяли для таргетирования макрофагов на участки опухоли. Такое таргетирование может более эффективно активировать опухоль-специфичные ответы. Т-клеточная ветвь данных ответов может увеличиваться благодаря применению блокады LAG-3. Альтернативно, антиген может доставляться непосредственно к DC с применением биспецифичных антител, которые связываются с опухолевым антигеном и специфическим в отношении дендритных клеток маркером поверхности клеток.
Опухоли избегают иммунного контроля благодаря большому количеству механизмов. Многие из таких механизмов могут быть преодолены инактивацией белков, которые экспрессируются опухолями и которые являются иммуносупрессивными. Они включают, среди прочего, TGF-β (Kehrl et al. (1986) J. Exp. Med. 163: 1037-1050), IL-10 (Howard & O'Garra (1992) Immunology Today 13: 198-200), и Fas лиганд (Hahne et al. (1996) Science 274: 1363-1365). Антитела к каждому из указанных агентов могут применяться в комбинации с анти-LAG-3 антителом для противодействия эффектам иммуносупрессивного агента и содействия иммунным ответам хозяина против опухоли.
Другие антитела, которые активируют иммунный ответ хозяина, могут применяться в комбинации с анти-LAG-3 антителом. Они включают молекулы на поверхности дендритных клеток, которые активируют функцию DC и презентацию антигена. Анти-CD40-антитела способны эффективно заменять активность Т-клеток-хелперов (Ridge et al. (1998) Nature 393: 474-478) и могут применяться совместно с антиLAG-3 антителами (Ito et al. (2000) Immunobiology 201 (5) 527-40). Активация антител к костимулирующим Т-клетки молекулам, таким как CTLA-4 (например, патент США 5811097), ОХ-40 (Weinberg et al. (2000) Immunol 164: 2160-2169), 4-1ВВ (Melero et al. (1997) Nature Medicine 3: 682-685 (1997), и ICOS (Hutloff et al. (1999) Nature 397: 262-266) может также обеспечивать повышенные уровни активации Тклеток.
В настоящее время для лечения различных опухолей гемопоэтического происхождения применяется трансплантация костного мозга. В то время как реакция отторжения трансплантата является следствием такого лечения, благоприятное терапевтическое воздействие может быть достигнуто за счет реакции трансплантат против опухоли. Блокада LAG-3 может применяться для повышения эффективности пересаженных опухоль-специфичных Т-клеток донора.
Также существует несколько экспериментальных протоколов лечения, которые предусматривают ex vivo активацию и экспансию антигенспецифичных Т-клеток и адаптивный перенос этих клеток реципиентам для стимулирования антигенспецифичных Т-клеток против опухоли (Greenberg & Riddell (1999) Science 285: 546-51). Такие способы могут быть также применяться для активации Т-клеточных ответов на инфекционные агенты, такие как CMV. Ex vivo активация в присутствии анти-LAG-3 антител может увеличивать встречаемость и активность адоптивно перенесенных Т-клеток.
Инфекционные болезни
Для лечения пациентов, инфицированных конкретными токсинами или патогенами, применяются другие способы по изобретению. Таким образом, другой аспект изобретения относится к способу лечения инфекционного заболевания у субъекта, включающему введение субъекту анти-LAG-3 антитела или его антигенсвязывающей части таким образом, что субъект подвергается лечению в отношении указанного инфекционного заболевания. Предпочтительно, антитело представляет собой анти-LAG-3 антитело человека (например, любое из описанных здесь анти-LAG-3 антител человека). Дополнительно или альтернативно, данное антитело может представлять собой химерное или гуманизированное антитело.
Подобно ее применению в отношении опухолей, как обсуждалось выше, опосредованная антителом
- 24 044665 блокада LAG-3 может применяться самостоятельно или в качестве дополнения в комбинации с вакцинами для стимулирования иммунного ответа на патогенны, токсины и аутоантигены. Примеры патогенов, против которых применение указанного терапевтического подхода может быть особенно эффективным, включают патогены, которые не поддаются уничтожению с применением существующих в настоящее время вакцин, или патогены, против которых действие стандартных вакцин не является достаточно эффективным. Они включают, без ограничения, ВИЧ, вирусы гепатита (А, В и С), вирусы гриппа, герпесвирусы, возбудителей гиардиоза, возбудителей малярии, лейшманиоза, Staphylococcus aureus, Pseudomonas aeruginosa. Блокада LAG-3 особенно полезна против распространенных инфекций с агентами, такими как ВИЧ, которые презентируют измененные антигены в течение периода инфицирования. Данные новые эпитопы распознаются как чужеродные в момент введения анти-LAG-3 антител, таким образом провоцируя сильный Т-клеточный ответ, который не заглушается негативными сигналами через LAG-3.
Некоторые примеры патогенных вирусов, вызывающих инфекции, которые могут подвергаться лечению способами по изобретению, включают ВИЧ, вирус гепатита (А, В или С), герпесвирус (например, VZV, HSV-1, HAV-6, HSV-II и CMV, вирус Эпштейна-Барра), аденовирус, вирус гриппа, флавивирусы, эховирус, риновирус, вирус Коксаки, коронавирус, респираторно-синцитиальный вирус, вирус эпидемического паротита, ротавирус, вирус кори, вирус коревой краснухи, парвовирус, вирус коровьей оспы, HTLV-вирус, вирус Денге, папилломавирус, вирус контагиозного моллюска, полиовирус, вирус бешенства, JC-вирус и вирус арбовирусного энцефалита.
Некоторые примеры патогенных бактерий, вызывающих инфекции, которые могут подвергаться лечению способами по изобретению включают хламидии, бактерии рода Rickettsia, микобактерии, стафилококки, стрептококки, пневмококки, менингококки и гонококки, Klebsiella, Proteus, Serratia, Pseudomonas, Legionella, дифтерийные бактерии, Salmonella, бациллы, возбудитель холеры, возбудитель столбняка, возбудитель ботулизма, возбудитель сибирской язвы, возбудитель чумы, возбудитель лептоспироза и бактерии, вызывающие болезнь Лайма.
Некоторые примеры патогенных грибов, вызывающих инфекции, которые могут подвергаться лечению способами по изобретению, включают Candida (albicans, krusei, glabrata, tropicalis и т.д.), Cryptococcus neoformans, Aspergillus (fumigatus, niger и т.д.), род Mucorales (mucor, absidia, rhizophus), Sporothrix schenkii, Blastomyces dermatitidis, Paracoccidioides brasiliensis, Coccidioides immitis и Histoplasma capsulatum. Некоторые примеры патогенных паразитов, вызывающих инфекции, которые могут подвергаться лечению способами по изобретению, включают Entamoeba histolytica, Balantidium coli, Naegleriafowleri, Acanthamoeba sp., Giardia lambia, Cryptosporidium sp., Pneumocystis carinii, Plasmodium vivax, Babesia microti, Trypanosoma brucei, Trypanosoma cruzi, Leishmania donovani, Toxoplasma gondii, Nippostrongylus brasiliensis. Во всех вышеуказанных способах блокада LAG-3 может комбинироваться с другими формами иммунотерапии, такими как лечение цитокинами (например, интерферонами, GM-CSF, G-CSF, IL-2) или терапия с применением биспецифических антител, которая обеспечивает усиленную презентацию опухолевых антигенов (см., например, Holliger (1993) Proc. Natl. Acad. Sci. USA 90:6444-6448; Poljak (1994) Structure 2:1121-1123).
Аутоиммунные реакции анти-LAG-3 антитела могут провоцировать и усиливать аутоиммунные ответы. Действительно, индукция противоопухолевых ответов с применением вакцин на основе опухолевых клеток и пептидов выявила, что многие противоопухолевые реакции включают реактивности против собственных антигенов (van Elsas et al. (2001) J. Exp. Med. 194:481-489; Overwijk, et al. (1999) Proc. Natl. Acad. Sci. U.S.A. 96: 2982-2987; Hurwitz, (2000) выше; Rosenberg & White (1996) J. Immunother Emphasis Tumor Immunol 19 (1): 81-4). Таким образом, можно рассматривать применение блокады против LAG-3 совместно с различными аутологичными белками для создания протоколов вакцинации для эффективного продуцирования иммунных ответов против данных аутологичных белков для лечения заболеваний. Например, болезнь Альцгеймера включает нежелательное накопление Ав пептида в амилоидных отложениях в головном мозге; реакции антител против амилоида способны очищать данные амилоидные отложения (Schenk et al., (1999) Nature 400: 173-177).
Другие аутологичные белки, такие как IgE, также могут применяться в качестве мишеней для лечения аллергии и астмы, a TNFa могут применяться для лечения ревматоидного артрита. Наконец, реакции антител на различные гормоны могут быть индуцированы применением анти-LAG-3 антитела. Нейтрализующие реакции антител против репродуктивных гормонов могут применяться для контрацепции. Нейтрализующая реакция антител против гормонов и других растворимых факторов, необходимых для роста определенных видов опухолей, также может рассматриваться в качестве возможных мишеней вакцинации.
Способы, аналогичные описанным выше способам, для применения анти-LAG-3 антитела, могут применяться для индуцирования терапевтических аутоиммунных реакций для лечения пациентов, имеющих нежелательное накапливание других аутоантигенов, таких как амилоидные отложения, включая Ав при болезни Альцгеймера, цитокинов, таких как TNFa, и IgE.
- 25 044665
Вакцины анти-LAG-3 антитела могут применяться для стимулирования антигенспецифических иммунных реакций путем совместного введения анти-LAG-3 антитела с представляющим интерес антигеном (например, вакциной). Таким образом, в другом аспекте настоящее изобретение относится к способу стимулирования иммунной реакции на антиген у субъекта, включающему введение указанному субъекту: (i) антигена и (ii) анти-LAG-3 антитела или его антигенсвязывающей части таким образом, что иммунная реакция на данный антиген у субъекта усиливается. Предпочтительно, антитело представляет собой анtu-LAG-З антитело человека (например, любое из описанных здесь анти-LAG-3 антител человека). Дополнительно или альтернативно, данное антитело может представлять собой химерное или гуманизированное антитело. Антиген может представлять собой, например, опухолевый антиген, вирусный антиген, бактериальный антиген или антиген из патогена. Неограничивающие примеры таких антигенов включают антигены, описанные в вышеприведенных разделах, такие как опухолевые антигены (или противоопухолевые вакцины), описанные выше, или антигены из вирусов, бактерий или других патогенов, описанных выше.
Подходящие пути введения композиций антител (например, моноклональных антител человека, полиспецифических и биспецифических молекул или иммуноконъюгатов) по изобретению in vivo и in vitro хорошо известны из уровня техники и могут быть выбраны специалистами в данной области. Например, композиции антител могут быть введены с помощью инъекции (например, внутривенной или подкожной). Подходящие дозы применяемых молекул будут зависеть от возраста и массы тела субъекта и концентрации и/или состава композиции антител.
Как описано выше, анти-LAG-3 антитела человека по изобретению могут вводиться совместно с одним или несколькими другими терапевтическими агентами, например цитотоксическим агентом, радиотоксическим агентом или иммуносупрессивным агентом. Антитело может быть связано с агентом (в виде иммунокомплекса) или оно может быть введено отдельно от агента. В последнем случае (в случае отдельного введения) антитело может вводиться до, после или совместно с указанным агентом или может вводиться совместно с другими известными видами терапиями, например противораковой терапией, например, облучением. Такие терапевтические агенты включают, среди прочего, противоопухолевые агенты, такие как доксорубицин (адриамицин), цисплатин, блеомицин сульфат, кармустин, хлорамбуцил, дакарбазин и циклофосфамидгидроксимочевину, которые сами по себе эффективны только при уровнях, являющихся токсичными или субтоксичными для пациента. Цисплатин вводят внутривенно в виде 100 мг/мл дозы один раз каждые четыре недели, а адриамицин вводят внутривенно в виде 60-75 мг/мл дозы один раз каждые 21 день. Совместное введение анти-LAG-3 антител человека или их антигенсвязывающих фрагментов по настоящему изобретению с химиотерапевтическими агентами обеспечивает два противораковых агента, которые действуют посредством различных механизмов, которые оказывают цитотоксическое действие в отношении опухолевых клеток человека. Такое совместное введение может решить проблемы, вызванные развитием резистентности к лекарствам или изменением антигенности опухолевых клеток, что делает их нереактивными в отношении антитела. В объем настоящего изобретения входят также наборы, включающие композиции антител по изобретению (например, антител человека, биспецифических или полиспецифических молекул или иммуноконъюгатов) и инструкции по применению. Набор также может содержать, по меньшей мере, один дополнительный реагент или один или несколько дополнительных антител человека по изобретению (например, антитело человека, имеющее комплементарную активность, которое связывается с эпитопом в антигене LAG-3, отличающимся от эпитопа первого антитела человека). Наборы обычно включают этикетку, указывающую предполагаемое применение содержимого данного набора. Термин этикетка включает любой текст или отпечатанный материал, наклеенный на упаковку или вложенный в упаковку данного набора, или прилагаемый к данному набору в какой-либо иной форме.
Комбинированная терапия
В другом аспекте изобретение относится к способам комбинированной терапии, при которых антиLAG-3 антитело (или его антигенсвязывающая часть) по настоящему изобретению вводится совместно с одним или несколькими дополнительными антителами, которые являются эффективными при стимулировании иммунных реакций для дополнительного усиления, стимулирования или ап-регулирования таким образом иммунных реакций у субъекта. В одном варианте осуществления изобретение относится к способу стимулирования иммунного ответа у субъекта, включающему введение субъекту анти-LAG-3 антитела и одного или нескольких дополнительных иммуностимулирующих антител, таких как анти-PD1 антитело, анти-PD-L1 антитело и/или анти-CTLA-4 антитело, так что у субъекта стимулируется иммунный ответ, например для ингибирования роста опухоли или стимулирования противовирусного ответа. В другом варианте осуществления субъекту вводят анти-LAG-3 антитело и анти-PD-1 антитело. В другом варианте осуществления субъекту вводят анти-LAG-3 антитело и анти-PD-L1 антитело. В другом варианте осуществления субъекту вводят анти-LAG-3 антитело и анти-CTLA-4 антитело. В одном варианте осуществления анти-LAG-3 антитело представляет собой антитело человека, такое как описанное антитело. Альтернативно, анти-LAG-3 антитело может представлять собой, например, химерное или гуманизированное антитело (например, полученное из анти-LAG-3 mAb мыши). В другом варианте осуще
- 26 044665 ствления по меньшей мере одно дополнительное иммуностимулирующее антитело (например, анти-PD1, анти-PD-L1 и/или анти-CTLA-4 антитело) представляет собой антитело человека. Альтернативно, по меньшей мере одно дополнительное иммуностимулирующее антитело может представлять собой, например, химерное или гуманизированное антитело (например, полученное из антu-PD-1, анти-PD-L1 и/или анти-CTLA-4 антитела мыши). В другом варианте осуществления изобретение относится к способу лечения гиперпролиферативного заболевания (например, рака), предусматривающему введение антитела против LAG-3 и антитела против CTLA-4. В других вариантах осуществления анти-LAG-3 антитело вводят в субтерапевтической дозе, анти-СТЕА-4-антитело вводят в субтерапевтической дозе или оба из них вводят в субтерапевтической дозе. В другом варианте осуществления настоящее изобретение относится к способу изменения побочного эффекта, связанного с лечением гиперпролиферативного заболевания иммуностимулирующим агентом, включающему введение анти-LAG-3 антитела и субтерапевтической дозы анти-CTLA-4 антитела субъекту. В некоторых вариантах осуществления субъект представляет собой человека. В других вариантах осуществления анти-CTLA-4 антитело представляет собой моноклональное антитело с последовательностью человека 10D1 (описанное в РСТ публикации WO 01/14424), а антиLAG-3 антитело представляет собой моноклональное антитело с последовательностью человека, такое как описанное здесь LAG3.5. Другие анти-CTLA-4 антитела в рамках способов по настоящему изобретению включают, например, способы, описанные в: WO 98/42752; WO 00/37504; патенте США 6207156; Hurwitz et al. (1998) Proc. Natl. Acad. Sci. USA 95(17): 10067-10071; Camacho et al. (2004) J. Clin. Oncology 22(145): Abstract No. 2505 (антитело СР-675206); и у Mokyr et al. (1998) Cancer Res. 58:5301-5304. В некоторых вариантах осуществления анти-CTLA-4 антитело связывается с CTLA-4 человека при значении KD 5 х 10’8 М или менее, связывается с CTLA-4 человека при значении KD 1x10’8 М или менее, связывается с CTLA-4 человека при значении KD 5 х 10’9 М или менее или связывается с CTLA-4 человека при значении KD от 1 х 10’8М до 1 х 10’10 М или менее. В другом варианте осуществления настоящее изобретение относится к способу лечения гиперпролиферативного заболевания (например, рака), включающему введение LAG-3 антитела и PD-1 антитела субъекту. В других вариантах осуществления анти-LAG-3 антитело вводят в субтерапевтической дозе, анти-PD-1 антитело вводят в субтерапевтической дозе или оба из них вводят в субтерапевтической дозе. В другом варианте осуществления настоящее изобретение относится к способу изменения побочного эффекта, связанного с лечением гиперпролиферативного заболевания иммуностимулирующим агентом, включающему введение анти-LAG-3 антитела и субтерапевтической дозы анти-PD-1 антитела субъекту. В некоторых вариантах осуществления субъект представляет собой человека. В некоторых вариантах осуществления анти-PD-1 антитело представляет собой моноклональное антитело с последовательностью человека и анти-LAG-3 антитело представляет собой моноклональное антитело с последовательностью человека, такое как описанное здесь LAG3.5. Примеры анти-PD-1 антител с последовательностью человека включают 17D8, 2D3, 4Н1, 5С4 и 4А11, которые описаны в РСТ публикации WO 06/121168. Другие анти-PD-1 антитела включают, например, ламбролизумаб (WO 2008/156712) и АМР514 (WO 2010/027423, WO 2010/027827, WO 2010/027828, WO 2010/098788). В некоторых вариантах осуществления анти-PD-1 антитело связывается с PD-1 человека при значении KD 5 х 10’8 М или менее, связывается с PD-1 человека при значении KD 1 х 10’8 М или менее, связывается с PD-1 человека при значении KD 5 х 10’9 М или менее или связывается с PD-1 человека при значении KD от 1 х 10’8М до 1 х 10’10 М или менее.
В другом варианте осуществления настоящее изобретение относится к способу лечения гиперпролиферативного заболевания (например, рака), включающему введение LAG-3 антитела и PD-L1 антитела субъекту. В дополнительных вариантах осуществления анти-PD-1-антитело вводят в субтерапевтической дозе, анти-PD-L1 антитело вводят в субтерапевтической дозе или оба из них вводят в субтерапевтической дозе. В другом варианте осуществления настоящее изобретение относится к способу изменения побочного эффекта, связанного с лечением гиперпролиферативного заболевания иммуностимулирующим агентом, предусматривающему введение анти-LAG-3 антитела и субтерапевтической дозы анти-PD-L1 антитела субъекту. В некоторых вариантах осуществления субъект представляет собой человека. В других вариантах осуществления анти-PD-L1 антитело представляет собой моноклональное антитело с последовательностью человека и анти-LAG-3 антитело представляет собой моноклональное антитело с последовательностью человека, такое как описанное здесь LAG3.5. Примеры анти-PD-L1 антител с последовательностью человека включают 3G10, 12А4, 10А5, 5F8, 10Н10, 1В12, 7Н1, 11Е6, 12В7 и 13G4, которые описаны в РСТ публикации WO 07/005874. Другие анти-PD-L1 антитела включают, например MPDL3280A (RG7446) (WO 2010/077634), MEDI4736 (WO2 011/066389) и MDX1105 (WO 2007/005874). В некоторых вариантах осуществления анти-PD-L1 антитело связывается с PD-L1 человека при значении KD 5 х 10’8 М или менее, связывается с PD-L1 человека при значении KD 1 х 10’8 М или менее, связывается с PD-L1 человека при значении KD 5 х 10’9 М или менее или связывается с PD-L1 человека при значении KD от 1 х 10’8 М до 1 х 10’10 М или менее.
Блокада LAG-3 и одного или нескольких вторых антигенов-мишеней, таких как CTLA-4 и/или PD-1 и/или PD-L1, антителами может стимулировать иммунный ответ против раковых клеток у пациента. Типы рака, рост которых может быть ингибирован антителами по настоящему изобретению, включают ти
- 27 044665 пы рака, являющиеся обычно чувствительными к иммунотерапии. Соответствующие примеры видов рака для лечения с применением комбинированной терапии по настоящему изобретению включают виды рака, перечисленные выше при описании монотерапии анти-LAG-3 антителами. В некоторых вариантах осуществления комбинация описанных здесь терапевтических антител может вводиться одновременно в виде единой композиции в фармацевтически приемлемом носителе или одновременно в виде отдельных композиций, при этом каждое антитело находится в фармацевтически приемлемом носителе. В другом варианте осуществления комбинация терапевтических антител может вводиться последовательно. Например, анти-CTLA-4 антитело и анти-LAG-3 антитело могут вводиться последовательно, так что антиCTLA-4 антитело вводится первым, а анти-LAG-3 антитело вводится вторым или анти-LAG-3 антитело вводится первым, а анти-CTLA-4 антитело вводится вторым. Дополнительно или альтернативно, антиPD-1 антитело и анти-LAG-3 антитело могут быть введены последовательно, так что анти-PD-1 антитело вводится первым, а анти-LAG-3 антитело вводится вторым или анти-LAG-3 антитело вводится первым, а анти-PD-1 антитело вводится вторым. Дополнительно или альтернативно, анти- PD-L1 антитело и антиLAG-3 антитело могут быть введены последовательно, так что анти- PD-L1 антитело вводится первым, а анти-LAG-3 антитело вводится вторым или анти-L AG-3 антитело вводится первым, а анти-PD-L1 антитело вводится вторым. Кроме того, если вводят последовательно более чем одну дозу комбинированной терапии, порядок последовательного введения может быть обратным или может сохраняться один и тот же порядок введения в каждой временной точке введения, последовательные введения могут комбинироваться с совместными введениями или любой их комбинацией. Например, первое введение комбинации анти-CTLA-4 антитела и анти-LAG-3 антитела может быть одновременным, второе введение может быть последовательным с введением анти-CTLA-4 и далее анти-LAG-3, а третье введение может быть последовательным с введением анти-LAG-3 и далее анти-CTLA-4 и т.д. Дополнительно или альтернативно, первое введение комбинации анти-PD-1 антитела и анти-LAG-3 антитела может быть одновременным, второе введение может быть последовательным с введением анти-PD-1 и далее анти-LAG-3, а третье введение может быть последовательным с введением анти-LAG-3 и далее анти-PD-1 и т.д. Дополнительно или альтернативно, первое введение комбинации αнтu-PD-L1 антитела и анти-LAG-3 антитела может быть одновременным, второе введение может быть последовательным с введением анти-PD-L1 и далее анти-LAG-3, а третье введение может быть последовательным с введением анти-LAG-3 и далее анти-PD-L1 и т.д. Другая репрезентативная схема введения доз может включать первое введение, которое является последовательным, с введением анти-LAG-3 первым и анти-CTLA-4 антителом (и/или антиPD-1 и/или анти-PD-L1) вторым, при этом последующие введения могут быть одновременными.
Необязательно, комбинация анти-LAG-3 и одного или нескольких дополнительных антител (например, анти-CTLA-4 и/или анти-PD-1 и/или анти-PD-L1 антител) может дополнительно комбинироваться с иммуногенным агентом, таким как раковые клетки, очищенные опухолевые антигены (включая рекомбинантные белки, пептиды и молекулы углеводов), клетки и клетки, трансфицированные генами, кодирующими иммуностимулирующие цитокины (Не et al. (2004) J. Immunol. 173:4919-28). Неограничивающие примеры опухолевых вакцин, которые могут применяться, включают пептиды антигенов меланомы, например пептиды gp100, антигены MAGE, Trp-2, MART1 и/или тирозиназу или опухолевые клетки, трансфицированные для экспрессии цитокина GM-CSF (описаны дополнительно ниже). Комбинированная блокада LAG-3 и CTLA-4 и/или PD-1 и/или PD-L1 может также комбинироваться с протоколом вакцинирования, таким как любой из подробно описанных выше протоколов вакцинирования с учетом монотерапии анти-LAG-3 антителами.
Комбинированная блокада LAG-3 и CTLA-4 и/или PD-1 и/или PD-L1 может также комбинироваться со стандартными видами терапии рака. Например, комбинированная блокада LAG-3 и CTLA-4 и/или PD1 и/или PD-L1 может эффективно комбинироваться с химиотерапевтическими схемами лечения. В этих случаях является возможным снизить дозировку другого химиотерапевтического агента, вводимого с комбинацией по настоящему изобретению (Mokyr et al. (1998) Cancer Research 58: 5301-5304). Пример такой комбинации представляет собой комбинацию анти-LAG-3 и анти-CTLA-4 и/или анти-PD-1 и/или анти-PD-L1 антител также в комбинации с декарбазином для лечения меланомы. Другой пример представляет собой комбинацию анти-LAG-3 и анти-CTLA-4 и/или анти-PD-1 и/или анти-PD-L1 антител также в комбинации с интерлейкином-2 (IL-2) для лечения меланомы. Научным обоснованием комбинированного применения блокады LAG-3 и CTLA-4 и/или PD-1 и/или PD-L1 с химиотерапией является то, что гибель клеток, которая является следствием цитотоксического действия большинства химиотерапевтических соединений, должна приводить к увеличенным уровням опухолевого антигена в пути презентации антигена. Другими комбинированными видами терапии, которые могут приводить к синергизму с комбинированной блокадой LAG-3 и CTLA-4 и/или PD-1 и/или PD-L1 посредством смерти клеток, являются облучение, хирургия и выключение эндокринной функции. Каждый из этих протоколов позволяет создавать источник опухолевого антигена у хозяина. Ингибиторы ангиогенеза могут также комбинироваться с комбинированной блокадой LAG-3 и CTLA-4 и/или PD-1 и/или PD-L1. Ингибирование ангиогенеза приводит к гибели опухолевых клеток, которые могут представлять собой источник опухолевого антигена, подаваемого в пути презентации антигенов хозяина.
Комбинация блокирующих LAG-3 и CTLA-4 и/или PD-1 и/или PD-L1 антител может также приме
- 28 044665 няться в комбинации с биспецифическими антителами, которые таргетируют экспрессирующие Fca или Fcy рецептор эффекторные клетки на опухолевые клетки (см., например, патенты США 5922845 и 5837243). Биспецифические антитела могут применяться для таргетирования двух отдельных антигенов. Эффективность Т-клеток при данных реакциях будет увеличена за счет применения комбинированной блокады LAG-3 и CTLA-4 и/или PD-1 и/или PD-L1.
Как другой пример, комбинации анти-LAG-3 и анти-CTLA-4 и/или анти-PD-1 антител и /или антиPD-L1 антител могут применяться в комбинации с противораковыми антителами, такими как Rituxan® (ритуксимаб), Herceptin® (трастузумаб), Bexxar® (тоситумомаб), Zevalin® (ибритумомаб), Campath® (алемтузумаб), Lymphocide® (эпртузумаб), Avastin® (бевацизумаб) и Tarceva® (эрлотиниб) и им подобными. В качестве примера и без связи с теорией, лечение противораковым антителом и противораковым антителом, конъюгированным с токсином, может приводить к гибели раковых клеток (например, опухолевых клеток), которые могут усиливать иммунную реакцию, опосредованную CTLA-4, PD-1, PD-L1 или LAG-3. В другом варианте осуществления изобретения лечение гиперпролиферативного заболевания (например, раковой опухоли) может включать противораковое антитело в комбинации с анти-LAG-3 и анти-CTLA-4 и/или анти-PD-1 и/или анти-PD-L1 антителами, одновременно или последовательно или в любой их комбинации, которые могут усиливать противоопухолевые иммунные реакции хозяина. Опухоли избегают иммунного контроля благодаря большому количеству механизмов. Многие из таких механизмов могут быть преодолены инактивацией белков, которые экспрессируются опухолями и которые являются иммуносупрессивными. Они включают, среди прочего, TGF-β (Kehrl et al. (1986) J. Exp. Med. 163: 1037-1050), IL-10 (Howard & O'Garra (1992) Immunology Today 13: 198-200) и Fas лиганд (Hahne et al. (1996) Science 274: 1363-1365). В другом примере антитела к каждому из указанных агентов могут быть также комбинированы с комбинацией анти-LAG-3 и анти-CTLA-4 и/или анти-PD-1 и/или анти-PD-L1 антител для противодействия эффектам иммуносупрессивных агентов и содействия иммунным реакциям хозяина против опухоли.
Другие антитела, которые могут быть применяться для активации иммунологической откликаемости хозяина, могут дополнительно применяться в комбинации с комбинацией анти-LAG-3 и анти-CTLA4 и/или анти-PD-1 и/или анти-PD-L1 антител. Они включают молекулы на поверхности дендритных клеток, которые активируют функцию DC и презентацию антигена. Ahtu-CD40 антитела (Ridge et al., выше) могут применяться в комбинации с комбинацией анти-LAG-3 и анти-CTLA-4 и/или анти-PD-1 и/или анти-PD-LI антител (Ito et al., выше). Другие активирующие антитела против Т-клеточных костимулирующих молекул (Weinberg et al, выше, Melero et al. supra, Hutloff et al., выше) также могут обеспечивать увеличенные уровни Т-клеточной активации. Как описано выше, в настоящее время для лечения различных опухолей гемопоэтического происхождения применяется трансплантация костного мозга. Комбинированная блокада LAG-3 и CTLA-4 и/или PD-1 и/или PD-L1 может применяться для увеличения эффективности пересаженных опухоль-специфических Т-клеток донора.
Несколько экспериментальных протоколов лечения включают ex vivo активацию и экспансию антигенспецифичных Т-клеток и адаптивный перенос этих клеток реципиентам для стимулирования антигенспецифичных Т-клеток против опухоли (Greenberg & Riddell, выше). Такие способы могут применяться для активации Т-клеточных ответов на инфекционные агенты, такие как CMV. Ожидается, что ex vivo активация в присутствии анти-LAG-3 и анти-CTLA-4 и/или анти-PD-1 и/или анти-PD-L1 антител увеличивает встречаемость и активность адаптивно перенесенных Т-клеток.
В некоторых вариантах осуществления настоящее изобретение относится к способу изменения побочного эффекта, связанного с лечением гиперпролиферативного заболевания иммуностимулирующим агентом, включающему введение субъекту анти-LAG-3 антитела и субтерапевтической дозы анти-CTLA4 и/или анти-PD-1 и/или анти-PD-L1 антител. Например, способы по настоящему изобретению относятся к способам уменьшения встречаемости индуцированного иммуностимулирующим антителом колита или диареи с помощью введения неабсорбируемого стероида пациенту. Поскольку любой пациент, который будет получать иммуностимулирующее терапевтическое антитело, имеет риск развития колита или диареи, индуцированной таким антителом, вся популяция пациентов подходит для терапии в соответствии со способами по настоящему изобретению. Хотя стероиды вводили для лечения воспалительного заболевания пищеварительного тракта (IBD) и предотвращения обострений IBD, их не применяли для профилактики (уменьшения встречаемости) IBD у пациентов, которые не имели диагноза IBD. Существенные побочные эффекты, связанные со стероидами, даже неабсорбируемыми стероидами, считались препятствием для профилактического применения.
В других вариантах осуществления комбинированная блокада LAG-3 и CTLA-4 и/или PD-1 и/или PD-L1 (т.е. иммуностимулирующих терапевтических антител анти-LAG-3 и анти-CTLA-4 и/или антиPD-1 антител и/или анти-PD-L1 антител) может дополнительно комбинироваться с применением любого неабсорбируемого стероида. В соответствии с используемым здесь значением, термин неабсорбируемый стероид означает глюкокортикоид, который демонстрирует экстенсивный метаболизм первого прохождения, так что по завершении метаболизма в печени биодоступность стероида является низкой, т.е. менее чем около 20%. В одном варианте осуществления изобретения неабсорбируемый стероид
- 29 044665 представляет собой будесонид. Будесонид представляет собой локально действующий глюкокортикостероид, который экстенсивно метаболизируется, прежде всего печенью, после пероральнрого введения. ENTOCORT EC® (Astra-Zeneca) представляет собой зависимую от рН и времени пероральную форму будесонида, разработанную для оптимизации доставки лекарственного средства в подвздошную кишку и через ободочную кишку. ENTOCORT ЕС® одобрен в США для лечения от мягкой до умеренной болезни Крона, затрагивающей подвздошную и/или восходящую ободочную кишку. Обычная пероральная доза ENTOCORT EC® для лечения болезни Крона составляет 6-9 мг/день. ENTOCORT EC® высвобождается в кишечнике перед абсорбцией и сохраняется в слизистой оболочке кишечника. После прохождения через ткань-мишень слизистой оболочки кишечника ENTOCORT EC® экстенсивно метаболизируется системой цитохрома Р450 в печени до метаболитов с незначительной глюкокортикоидной активностью. Таким образом, биодоступность является низкой (приблизительно 10%). Такая низкая биодоступность будесонида приводит к улучшенному терапевтическому индексу по сравнению с другими глюкокортикоидами с менее экстенсивным метаболизмом первого прохождения. Будесонид приводит к меньшим побочным эффектам, включая меньшую гипоталамическую-гипофизарную супрессию, чем системно действующие кортикостероиды. Однако продолжительное введение ENTOCORT EC® может приводить к системным глюкокортикоидным эффектам, таким как гиперкортицизм и супрессия надпочечников. См. PDR 58-е изд. 2004; 608-610.
В других вариантах осуществления комбинированная блокада LAG-3 и CTLA-4 и/или PD-1 и/или PD-L1 (т.е. иммуностимулирующих терапевтических антител анти-LAG-3 и анти-CTLA-4 и/или антиPD-1 и/или анти-PD-L1 антител) в комбинации с неабсорбируемым стероидом может дополнительно комбинироваться с салицилатом. Салицилаты включают 5-ASA агенты, такие как, например: сульфасалазин (AZULFIDINE®, Pharmacia & UpJohn); олсалазин (DIPENTUM®, Pharmacia & UpJohn); балсалазид (COLAZAL®, Salix Pharmaceuticals, Inc.); и месаламин (ASACOL®, Procter & Gamble Pharmaceuticals; PENTASA®, Shire US; CANASA®, Axcan Scandipharm, Inc.; ROWASA®, Solvay). В соответствии со способами по настоящему изобретению, салицилат, вводимый в комбинации с анти-LAG-3 и анти-CTLA-4 и/или анти-PD-1 и/или анти-PD-L1 антителами и неабсорбируемым стероидом, может включать любое перекрывающееся или последовательное введение салицилата и неабсорбируемого стероида с целью уменьшения заболеваемости колитом, индуцируемой иммуностимулирующими антителами. Таким образом, например, способы уменьшения заболеваемости колитом, индуцируемой иммуностимулирующими антителами по настоящему изобретению, включают введение салицилата и неабсорбируемого стероида одновременно или последовательно (например, салицилат вводят спустя 6 часов после введения неабсорбируемого стероида) или любой их комбинации. Кроме того, в соответствии с настоящим изобретением, салицилат и неабсорбируемый стероид могут вводиться одним и тем же способом (например, оба вводят перорально) или различными способами (например, салицилат вводят перорально, и неабсорбируемый стероид вводят ректально), которые могут отличаться от способа(ов), применяемых для введения анти-LAG-3 и анти-CTLA-4 и/или анти-PD-1 и/или αнтu-PD-L1 антител.
Данное описание далее проиллюстрировано следующими примерами, которые не должны рассматриваться в качестве ограничивающих. Содержание всех фигур и ссылок, последовательность из базы данных Genbank, патенты и опубликованные заявки на изобретение, ссылки на которые содержатся в настоящем описании, полностью включены здесь для ссылки. В частности, описания РСТ публикаций WO 09/045957, WO 09/073533, WO 09/073546 и WO 09/054863 полностью включены здесь для ссылки.
Примеры
Пример 1. Дизайн вариантов LAG3.1 (антитело 25F7)
Варианты описанного выше анти-LAG-3 антитела, 25F7, обозначаемые здесь как LAG3.1, были созданы на основе первоначального анализа аминокислотной последовательности антитела на потенциальные сайты распада. Экспрессию сайт-направленного мутагенеза VH участка LAG3.1 осуществляли с помощью набора для сайт-направленного мутагенеза QuikChange II XL® (Agilent Technologies). Измененные VH участки затем субклонировали в векторы UCOE® (EMD Millipore), которые содержат константный участок IgG4-S228P человека. Каждый из различных векторов тяжелой цепи котрансфицировали вектором, экспрессирующим каппа-цепь LAG3.1, в CHO-S клетки, при этом отбирали стабильные пулы на предмет экспрессии.
Идентифицировали пять потенциальных мотивов деамидирования в вариабельном участке тяжелой цепи CDR2. Данные сайты находились в положениях 52, 54, 56, 58 и 60 вариабельного участка тяжелой цепи LAG3.1 (SEQ ID NO: 2) (см. фиг. 1А). В частности, деамидирование NG последовательности в CDR2 VH (SEQ ID NO: 6) наблюдалось при любых условиях, как и дополнительная изомеризация последовательности. Деамидирование исходного материала составляло около 10%. Кроме того, было обнаружено, что данная NG последовательность не соответствует последовательности зародышевой линии (см. Фиг. 3). Однако, консенсусная последовательность зародышевой линии представляла собой потенциальный сайт гликозилирования и, таким образом, не присутствовала среди вариантов антител.
Были получены четыре варианта (обозначаемые здесь как LAG3.5, LAG3.6, LAG3.7 и LAG3.8), которые соответствовали двум потенциальным мотивам деамидирования (положения 54 и 56), как показано
- 30 044665 на фиг. 3. Данные варианты были подвергнуты матрице состояний, как указано в табл. 1 ниже, при этом анализировали следующие характеристики: химическая и термическая стабильность (физическая стабильность); (b) эксклюзионная хроматография (агрегирование); (с) гель для изоэлектрического фокусирования (IEF) (гетерогенность зарядов); (d) активность в рамках анализа Biacore (связывание и функциональная активность) и (е) картирование пептидов с помощью масс-спектрометрии (химические модификации/молекулярная стабильность).
Таблица 1
Буфер Ацетат (100 нМ NaCI, 3% масса/объем маннитола, 0,03% Твин-20) Цитрат (100 нМ NaCI, 3% масса/объем маннитола, 0,03% Твин-20)
рн 5,5, 6,0, 6,5, 7,0 5,5, 6,0, 6,5, 7,0
Температура 4°С и 37°С 4°С и 37°С
Время 0, 4, 8, 12 недель 0, 4, 8, 12 недель
Пример 2. Характеристика вариантов LAG-3
1. Связывание активированных СР4+ Т-клеток человека
Для тестирования способности вариантов антител связываться с нативным LAG-3 человека на поверхности активированных Т-клеток человека мононуклеарные клетки из периферической крови нормального здорового донора стимулировали на 15 см планшетах для культивации ткани при плотности 2х106 клеток/мл с комбинацией анти-CD3 (eBioscience, каталожный номер 16-0037-85) и анти-CD28 (BD Bioscience, каталожный номер 555725) антителами, присутствующими в растворе при 5 мкг/мл и 3 мкг/мл, соответственно. Спустя трое суток стимулирования клетки собирали, промывали 1 раз 1х PFAE буфером (1x PBS + 2% FBS, 0,02% азид натрия, 2 мМ Na ЭДТА) и ресуспендировали в 1x PFAE буфере для окрашивания.
Для реакции связывания варианты LAG3.1 подвергали серийному разбавлению холодным 1x PFAE буфером, затем смешивали 50 мкл разбавленного раствора с антителами с 50 мкл меченого Fitc CD4 против антител человека (BD Bioscience, каталожный номер 555346), разбавленного 1:16 в 1x PFAE буфере. Для реакции связывания 100 мкл этой разбавленной смеси антител добавляли в 2 х 105 клеток, при этом смесь культивировали при 4°С в течение 30 минут. Затем клетки промывали два раза 1x PFAE буфером. Добавляли 1:200 раствор меченого РЕ FcY-специфичного антитела козы против антител человека (Jackson ImmunoResearch, каталожный номер 109-116-170) и культивировали смесь в течение 30 мин при 4°С с последующим промыванием два раза холодным 1x PFAE буфером. После последнего промывания добавляли 150 мкл холодного 1x PFAE в каждый раствор и проводили анализ связывания антител с помощью проточной цитометрии с применением проточного цитометра FACSCanto (BD Bioscience).
Результаты анализа с применением проточной цитометрии обобщены на фиг. 4А, которая представляет собой график, показывающий значение ЕС50 для связывания антител с активированными CD4+ Т-клетками человека. Фиг. 4В представляет собой график, показывающий связывание антител с растворимым LAG-3/Fc антигеном человека с применением BIACORE. Как показано, значения аффинности связывания LAG3.5 и LAG3.8 являются немного более низкими по сравнению с LAG3.1, в то время как их константы диссоциации немного выше по сравнению с LAG3.1.
2. Физическая стабильность
Термическую стабильность и термическую денатурацию вариантов определяли с помощью Microcal VP-DSC. В частности, каждый вариант разбавляли PBS (Mediatech, каталожный номер 21-040-CV, лот 21040139). Итоговая концентрация образца составляла 250 мкг/мл после разбавления PBS. Образец нагревали до 74°С, охлаждали до 25°С и подвергали повторному нагреву до 74°С. PBS буфер применяли в качестве нулевого контроля. Данные подводили под модель без 2 состояний и осуществляли аппроксимацию кривую с помощью программного обеспечения Origin.
Как указано в табл. 2 и показано на фиг. 5, LAG3.5 обладал более высокой температурой плавления ТМ2, чем LAG3.1, что свидетельствует о более высокой общей стабильности.
- 31 044665
Таблица 2
МАЬ Tml (°C) Соответствует СН2 и/или Fab доменам Тт2 (°C) Соответствует СНЗ и/или Fab доменам
LAG3.1 70,7 75,7
LAG3.5 70,5 76,3
LAG3.6 67,8 70,8
LAG3.7 69,4 73,5
LAG3.8 70,3 75,4
Рефолдинг антител после денатурирования является обратной величиной долговременного потенциала агрегации. Таким образом, варианты LAG-3 также тестировали и сравнивали в плане термической обратимости. В частности, антитела нагревали до 74°С и охлаждали до комнатной температуры перед повторным нагревом до 74°С. Соотношение площади под кривыми второй и первой термограммы позволяет оценить термическую обратимость, которая прямо пропорциональна конформационной обратимости.
Как указано в табл. 3 и показано на фиг. 6, LAG3.5 обладал значительно более высокой термической обратимостью, чем все другие варианты. Следует отметить, что процентная обратимости LAG3.5 (47%) была более чем в два раза выше, чем процентная обратимость LAG3.1 (20%). Термическая обратимость строго коррелировала с долговременным потенциалом агрегации. Более низкая обратимость соответствует более высокой потенциальной агрегации. На основании данного наблюдения LAG3.1 потенциально будет обладать значительно более высокой агрегацией с течением времени по сравнению с LAG3.5. Аналогичным образом, все другие варианты могут потенциально обладать более высокой агрегацией с течением времени по сравнению с LAG3.5.
Таблица 3
МАЬ Термическая обратимость (%)
LAG3.1 20
LAG3.5 47
LAG3.6 0
LAG3.7 И
LAG3.8 26
3. Агрегация
Варианты также тестировали на стабильность в виде величины агрегации белка с применением стандартной эксклюзионной ВЭЖХ (SEC-HPLC) в соответствии со следующим протоколом: тестируемые образцы антител разбавляли до 1,0 мг/мл фосфатно-солевым буфером (PBS) и подвергали 10 мкл ВЭЖХ (Waters, model 2795). Сепарацию осуществляли на колонке с гель-фильтрацией (TOSOH Bioscience, TSKgel G3000 SWxl, 7,8 мм x 300 мм, продукт 08541) с применением мобильной фазы 0,1 М фосфата натрия, 0,15 М хлорида натрия, 0,1 М сульфата натрия, рН 7,2. Определяемое в рамках анализа вещество детектировали с помощью мониторинга УФ абсорбции при 280 нм, а процентную площадь пика композиции антител определяли с помощью программного обеспечения Empower. Как показано в табл. 4, LAG3.5 обладал существенно сниженной агрегацией по сравнению с LAG3.1.
Таблица 4
Образец IgG мономер (% площади пика) IgG агрегат (% площади пика)
LAG3.1 90 10
LAG3.5 96 4
LAG3.6 96 4
LAG3.7 95 5
LAG3.8 95 5
Пример 3. Отбор вариантов
На основе описанных выше исследований вариант антитела LAG3.5 был отобран для проведения дальнейшего анализа в свете его значительно увеличенной физической и химической стабильности по сравнению с его немодифицированной формой (LAG3.1), в частности его высокой способности в плане конформационного рефолдинга (термической обратимости). Данный анализ включал двухэтапный под
- 32 044665 ход с (а) усиленной нагрузкой, (b) и оценкой стабильности в реальном времени в течение 12 недель. В частности, LAG3.5 культивировали при 1,0 мг/мл в рН 8,0, 50 мМ бикарбонате аммония в течение 5 дней при 40°С. Анализировали степень модификаций спустя 5 дней, а также влияние на активность и стабильность. Затем вариант LAG3.5 подвергали анализу стабильности в реальном времени в PBS в течение 12 недель и дальнейшему анализу. Результаты данных исследований описаны ниже.
1. Связывание антигена
Как показано на фиг. 7 и в табл. 5, изменение связывания антигена спустя 5 дней не наблюдалось. Как также показано на фиг. 10А и В, LAG3.5 демонстрировал отсутствие изменения связывания антигена или физической стабильности спустя 12 недель. В частности, LAG3.5 сохраняет более высокую аффинность, чем LAG3.8, в течение всего периода продолжительностью 12 недель при 4°С и 40°С.
Таблица 5
ID клона Антиген KDxlO'9 (Μ) konx 104 (1/Ms) Kir' IO'4 (1/s)
Lag3.1 PBS 0,21 166 3,44
рН8 0,20 184 3,61
Lag3.5 PBS 0,25 130 3,22
рН8 0,20 148 2,98
Lag3.8 PBS 0,25 147 3,68
рН8 0,25 162 4,02
2. Химические модификации/Молекулярная стабильность
Пептидное картирование с помощью масс-спектрометрии применяли для анализа химической / молекулярной стабильности LAG3.5 по сравнению с LAG3.1. В частности, очищенное тело фрагментировали, алкилировали, диализировали и расщепляли трипсином (Promega кат. V5111) и GluC (Roche Кат. 11047817001). Продукты расщепления анализировали с помощью нано-ЖХ с тандемной массспектрометрией (Thermo Fisher LTQ Orbitrap).
Как показано на фиг. 8, LAG3.1 обладал повышенной гетерогенностью в VH по сравнению с LAG3.5 при анализе повышения стабильности стабильности при более высоком значении рН, что приводит к деамидированию аспарагиновых остатков (этап 1). Изменение массы вследствие изомеризации не могло быть определено при текущих экспериментальных условиях. Процентная доля изменения выражена в виде соотношения всех изменений и исходного пика.
Кроме того, как показано на фиг. 11, LAG3.1 обладал увеличенной гетерогенностью в VH по сравнению с LAG3.5 при продолжительном анализе стабильности в реальном времени в течение 12 недель при 4°С и 40°С (этап 2).
3. Физическая стабильность
Термическую обратимость измеряли в PBS и при рН 8,0. При обоих условиях LAG3.5 снова демонстрировал примерно вдвое увеличенный уровень фолдинга по сравнению с LAG3.1. В частности, как показано в табл. 6-8, LAG3.5 демонстрировал уровень рефолдинга 43% по сравнению с 18% в случае LAG3.1 в PBS. LAG3.5 также демонстрировал уровент рефолдинга 48% по сравнению с уровнем рефолдинга 29% в случае LAG3.1 при рН 8,0.
Таблица 6. ДСК:плавление
MAb Условие Tml Tm2
Lag3.1 PBS 70,7 75,7
Lag3.1 pH8 70,4 75,6
Lag3.5 PBS 70,8 76,4
Lag3.5 pH8 70,5 76,3
Таблица 7 - Fluorolog-2:анфолдинг
МаЬ/мутанты Средняя точка (Μ) Агрегация (Μ)
Lag3.1 PBS 1,99
Lag3.1 pH8 2,08
Lag3.5PBS 1,86
Lag3.5 pH8 2,00
- 33 044665
Таблица 8. ДСК:рефолдинг
МАЬ % обратимости, PBS % обратимости, pH 8
Lag3.1 18 29
Lag3.5 43 48
4. Гетерогенность зарядов
Для анализа гетерогенности зарядов варианты анализировали с применением изоэлектрофокусирования (ИЭФ) со стандартными маркерами со значением изоэлектрической точки белка 5,5 и 10,0 по сравнению с LAG3.1. Кратко, растворы антител наносили на предварительно изготовленный гель для изоэлектрофокусирования толщиной 1 мм со значением изоэлектрической точки белка 3-7 (Invitrogen, каталожный номер ЕС6648ВОХ) вместе с маркерами со значением изоэлектрической точки белка 3-10 (SERVA, каталожный номер 39212). Электрофорез осуществляли с применением ИЭФ 3-7 катодного буфера (Invitrogen, каталожный номер LC5370) и ИЭФ анодного буфера (Invitrogen, каталожный номер LC5370) и с применением электрического тока с постоянным значением напряжения 100 В в течение 1 часа, постоянным значением напряжения 200 В в течение 1 ч и постоянным значением напряжения 500 В в течение 30 мин. ИЭФ гели окрашивали кумасси синим для детектирования полосок белка и устраняли окраску раствором метанола и уксусной кислоты. Затем ИЭФ гели анализировали с помощью программного обеспечения ImageQuant TL. На основе данного анализа (данные не показаны) LAG3.5 демонстрировал значительно меньшую гетерогенность по сравнению с LAG3.1.
5. ХГВ-ВЭЖХ
Для анализа растворимости варианты анализировали с применением стандартной хроматографии гидрофобного взаимодействия (ХГВ-ВЭЖХ) в соответствии со следующим протоколом: 50 мкл 2 М сульфата аммония добавляли в 50 мкл тестируемого образца антител при 1 мг/мл, затем 80 мкл тестируемого образца наносили на ВЭЖХ колонку (Waters, модель 2795), последовательно соединенную с ХГВ колонкой (TOSOH Bioscience, эфир-5PW TSK-гель, 7,5 мм х 75 мм, номер продукта 07573). Образец элюировали при скорости потока 1,0 мл/мин градиентом из 100% буфера А (2М сульфат аммония, 0,1М фосфат натрия, рН 7,0) до 100% буфера В (0,1М фосфата натрия, рН 7,0) в течение 50 мин. Антитело детектировали путем отслеживания УФ абсорбции при 280 нм и анализировали данные с помощью программного обеспечения Empower. Как показано на фиг. 9, гидрофильность LAG3.5 обеспечивала растворимость при высоких концентрациях сульфата аммония.
Пример 4. Обращение ингибирования иммунной реакции, опосредованного Т-клетками
Активность LAG3.5 определяли с помощью функционального анализа, в рамках которого применяли антигенспецифичную Т-клеточную гибридому мыши (3А9). Гибридома 3А9 экспрессирует Тклеточный рецептор, специфичный в отношении пептида из лизозима яйца курицы (HEL48-62) и секретирует IL-2 при совместном культивировании с культивированными с пептидами совпадающими по МНС антиген-презентирующими клетками (LK35.2). Поскольку huLAG-3-Fc способен связывать с линиями МНС В-клеток класса II мышей, экспрессия huLAG-3 в 3А9 линии может оказывать ингибирующий эффект благодаря взаимодействию с классом II на презентирующей линии мышей. Сравнение пептидного профиля реакции источника 3А9 с профилем трансдуцированных LAG-3 3A9 клеток, совместно культивируемых с совпадающими по МНС антиген-презентирующими клетками, показало, что экспрессия LAG-3 человека ингибировала пептидные реакции по сравнению с контрольными 3А9 клектами. Данное ингибирование обращалось с помощью блокады LAG-3 с применением LAG3.5. Таким образом, в отношении LAG3.5 была показана блокада опосредованного LAG-3 ингибирования.
Пример 5. Активация Т-клеток с помощью LAG3.5
Функциональное влияние LAG3.5 на первичные Т-клетки анализировали с применением культур мононуклеарных клеток периферической крови (РВМС) человека, стимулируемых суперантигеном SEB. Весь объем РВМС выделяли из крови восемнадцати доноров, представляющих собой людей, и стимулировали в течение 72 ч в рамках любого из двух форматов анализа:
(i) фиксированное количество антитела (20 мкг/мл) и последовательные разбавления SEB или (ii) фиксированное количество SEB (85 нг/мл) и последовательные разбавления антитела. Уровень секретируемого IL-2, в качестве меры активности Т-клеток, отслеживали с помощью ELISA. Анти-PD-I антитело и ипилимумаб применяли в качестве положительных контролей, при этом также оценивали активность LAG3.5 в комбинации с анти-PD-1 или анти-CTLA-4 для подмножества доноров.
Повышенную секрецию IL-2 наблюдали в рамках диапазона концентраций SEB у пятнадцати из восемнадцати доноров, подвергаемых лечению только LAG3.5, по сравнению с лечением антителом с контрольным изотипом.
В большинстве случаев уровень стимулирования был меньшим, чем уровень, наблюдаемый при лечении анти-PD-! или ипилимумабом. С учетом LAG3.5 результаты двух форматов анализа (описаны выше) соответствовали друг другу. Более того, у 5 из 6 исследованных доноров комбинирование LAG3.5 с анти-PD-1 или ипилимумабом приводило к более высоким уровням стимулирования, чем уровни, наблюдаемые для антитела с контрольным изотипом, комбинированного с анти-PD-1 или ипилимумабом.
- 34 044665
Эти данные показали, что LAG3.5 может функционировать в рамках анализов нормальных Т-клеток человека и может также активировать реакции, опосредованные ингибированием функции PD-1 и CTLA-4.
Краткий перечень последовательностей
SEP ID NO: ОПИСАНИЕ ПОСЛЕДОВАТЕЛЬНОСТЬ
1 VH n.a. 25F7 (LAG3.1)
>1408_LAG-3_403_25F7.1_VHl_NT
CAGGTGCAGCTACAGCAGTGGGGCGCAGGACTGTTGAAGCCTTCGGAGACCCTGTC CCTCACCTGCGCTGTCTATGGTGGGTCCTTCAGTGATTACTACTGGAACTGGATCCG CCAGCCCCCAGGGAAGGGGCTGGAGTGGATTGGGGAAATCAATCATAATGGAAACA CCAACTCCAACCCGTCCCTCAAGAGTCGAGTCACCCTATCACTAGACACGTCCAAGA ACCAGTTCTCCCTGAAGCTGAGGTCTGTGACCGCCGCGGACACGGCTGTGTATTACT GTGCGTTTGGATATAGTGACTACGAGTACAACTGGTTCGACCCCTGGGGCCAGGGA ACCCTGGTCACCGTCTCCTCA | 2 | Ун а.а. 25F7 | | >1408_LAG-3_403_25F7.1_VHl_AA
QVQLQQWGAGLLKPSETLSLTCAVYGGSFSDYYWNWIRQPPGKGLEWIGEINHNGNTN SNPSLKSRVTLSLDTSKNQFSLKLRSVTAADTAVYYCAFGYSDYEYNWFDPWGQGTLV TVSS | 3 | Ук па. 25F7 | | >1408_LAG-3_403_25F7.1_VKl_NT
GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTTGTCTCCAGGGGAAAGAGCC ACCCTCTCCTGCAGGGCCAGTCAGAGTATTAGCAGCTACTTAGCCTGGTACCAACAG AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGCATCCAACAGGGCCACTGGC ATCCCAGCCAGGTTCAGTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGC AGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCAGCAGCGTAGCAACTGGCCT CTCACTTTTGGCCAGGGGACCAACCTGGAGATCAAA
[4 I Ук а.а. 25F7 I I >1408_LAG-3_403_25F7.1_VKl_AA
EIVLTQSPATLSLSPGERATLSCRASQSISSYLAWYQQKPGQAPRLLIYDASNRATGIPAR
FSGSGSGTDFTLTISSLEPEDFAVYYCQQRSNWPLTFGQGTNLEIK
5 VH CDR1 a.a. 25F7 DYYWN
6 VH CDR2 a.a. 25F7 EINHNGNTNSNPSLKS
7 VH CDR3 a.a. 25F7 GYSDYEYNWFDP
8 VK CDR1 a.a. 25F7 RASQSISSYLA
9 VK CDR2 a.a. 25F7 DASNRAT
10 VK CDR3 a.a. 25F7 QQRSNWPLT
11 VH n.a. LAG3.5
Ун n.a. LAG3.5 caggtgcagctacagcagtggggcgcaggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttcagtg attactactggaactggatccgccagcccccagggaaggggctggagtggattggggaaatcaatcatcgtggaagcaccaactccaacc cgtccctcaagagtcgagtcaccctatcactagacacgtccaagaaccagttctccctgaagctgaggtctgtgaccgccgcggacacggc tgtgtattactgtgcgtttggatatagtgactacgagtacaactggttcgacccctggggccagggaaccctggtcaccgtctcctca
I 12 | VH a.a. LAG3.5 | |
VH a.a. LAG3.5
QVQLQQWGAGLLKPSETLSLTCAVYGGSFSDYYWNWIRQPPGKGLEWIGE INHRGSTNSNPSLKSRVTLSLDTSKNQFSLKLRSVTAADTAVYYCAFGYS D YEYNWFDPWGQGTL VTVS S
I 13 I VK n.a.LAG3.5 | |
VK n.a. LAG3.5 gaaattgtgttgacacagtctccagccaccctgtctttgtctccaggggaaagagccaccctctcctgcagggccagtcagagtattagcag ctacttagcctggtaccaacagaaacctggccaggctcccaggctcctcatctatgatgcatccaacagggccactggcatcccagccagg ttcagtggcagtgggtctgggacagacttcactctcaccatcagcagcctagagcctgaagattttgcagtttattactgtcagcagcgtagca actggcctctcacttttggccaggggaccaacctggagatcaaa
14 VK a.a. LAG3.5
VK a.a. LAG3.5
EIVLTQSPATLSLSPGERATLSCRASQSISSYLAWYQQKPGQAPRLLIYD
ASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRSNWPLTFGQ
- 35 044665
GTNLEIK
15 VH CDR1 a.a. LAG3.5 DYYWN
16 VH CDR2 a.a. LAG3.5 EINHRGSTNSNPSLKS
17 VH CDR3 a.a. LAG3.5 GYSDYEYNWFDP
18 VK CDR1 a.a. LAG3.5 RASQSISSYLA
19 VK CDR2 a.a. LAG3.5 DASNRAT
20 VK CDR3 a.a. LAG3.5 QQRSNWPLT
21 LAG-3 эпитоп PGHPLAPG
22 LAG-3 эпитоп HPAAPSSW
23 LAG-3 эпитоп PAAPSSWG
24 VH CDR2 a.a. LAG3.6 EIIHSGSTNSNPSLKS
25 VH CDR2 a.a. LAG3.7 EINHGGGTNSNPSLKS
26 VH CDR2 a.a. LAG3.8 EINHIGNTNSNPSLKS
27 VH CDR2 a.a.HUMAN GERMLINE GEINHSGSTNY
28 (Gly4 -Ser)3
29 LAG-3 человека a.a.
последовательность LAG-3 человека а.а.
MWEAQFLGLLFLQPLWVAPVKPLQPGAEVPVVWAQEGAPAQLPCSPTIPLQDLSLLRR AGVTWQHQPDSGPPAAAPGHPLAPGPHPAAPSSWGPRPRRYTVLSVGPGGLRSGRLPL QPRVQLDERGRQRGDFSLWLRPARRADAGEYRAAVHLRDRALSCRLRLRLGQASMTA SPPGSLRASDWVILNC SF SRPDRPAS VHWFRNRGQGRVPVRESPHHHLAESFLFLPQ VSP MDSGPWGCILTYRDGFNVSIMYNLTVLGLEPPTPLTVYAGAGSRVGLPCRLPAGVGTRS FLTAKWTPPGGGPDLLVTGDNGDFTLRLEDVSQAQAGTYTCHIHLQEQQLNATVTLAII TVTPKSFGSPGSLGKLLCEVTPVSGQERFVWSSLDTPSQRSFSGPWLEAQEAQLLSQPW QCQLYQGERLLGAAVYFTELSSPGAQRSGRAPGALPAGHLLLFLTLGVLSLLLLVTGAF GFHLWRRQWRPRRFSALEQGIHPPQAQSKIEELEQEPEPEPEPEPEPEPEPEPEQL*
30 VH CDR2 a.a. LAG3.2 VIWYDGSNKYYADSVKG
31 VHLAG3.1 n.a.
LAG3.1HC
CAGGTGCAGCTACAGCAGTGGGGCGCAGGACTGTTGAAGCCTTCGGAGACCCTGTC
CCTCACCTGCGCTGTCTATGGTGGGTCCTTCAGTGATTACTACTGGAACTGGATCCG
CCAGCCCCCAGGGAAGGGGCTGGAGTGGATTGGGGAAATCAATCATAATGGAAACA
CCAACTCCAACCCGTCCCTCAAGAGTCGAGTCACCCTATCACTAGACACGTCCAAGA
ACCAGTTCTCCCTGAAGCTGAGGTCTGTGACCGCCGCGGACACGGCTGTGTATTACT
- 36 044665
GTGCGTTTGGATATAGTGACTACGAGTACAACTGGTTCGACCCCTGGGGCCAGGGA ACCCTGGTCACCGTCTCCTCAGCTAGCACCAAGGGCCCATCCGTCTTCCCCCTGGCG CCCTGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGA CTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGT GCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGT GACCGTGCCCTCCAGCAGCTTGGGCACGAAGACCTACACCTGCAACGTAGATCACA AGCCCAGCAACACCAAGGTGGACAAGAGAGTTGAGTCCAAATATGGTCCCCCATGC CCACCATGCCCAGCACCTGAGTTCCTGGGGGGACCATCAGTCTTCCTGTTCCCCCCA AAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGAGGTCACGTGCGTGGTGGTG GACGTGAGCCAGGAAGACCCCGAGGTCCAGTTCAACTGGTACGTGGATGGCGTGGA GGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTACCGTG TGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAG TGCAAGGTCTCCAACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCC AAAGGGCAGCCCCGAGAGCCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGAT GACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACA TCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCT CCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAGGCTAACCGTGGACAAG AGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCA CAACCACTACACACAGAAGAGCCTCTCCCTGTCTCTGGGTAAATGA
32 VHLAG3.1 a. a.
TRANSLATION\OF\LAG3.1HC
QVQLQQWGAGLLKPSETLSLTCAVYGGSFSDYYWNWIRQPPGKGLEWIGEINHNGNTN SNPSLKSRVTLSLDTSKNQFSLKLRSVTAADTAVYYCAFGYSDYEYNWFDPWGQGTLV TVSSASTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAV LQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFLG GPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQ FNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPS QEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVD KSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGK*
33 VlLAG3.1 n.a.
LAG3.1LC
GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTTGTCTCCAGGGGAAAGAGCC ACCCTCTCCTGCAGGGCCAGTCAGAGTATTAGCAGCTACTTAGCCTGGTACCAACAG AAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGCATCCAACAGGGCCACTGGC ATCCCAGCCAGGTTCAGTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGC AGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCAGCAGCGTAGCAACTGGCCT CTCACTTTTGGCCAGGGGACCAACCTGGAGATCAAACGTACGGTGGCTGCACCATCT GTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGT GCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAAC GCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAG CACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACA AAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGC TTCAACAGGGGAGAGTGTTAG
34 VlLAG3.1 a. a.
TRANSLATION\OF\LAG3.1LC
EIVLTQSPATLSLSPGERATLSCRASQSISSYLAWYQQKPGQAPRLLIYDASNRATGIPAR FSGSGSGTDFTLTISSLEPEDFAVYYCQQRSNWPLTFGQGTNLEIKRTVAAPSVFIFPPSDE QLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLS KADYEKHKVYACEVTHQGLSSPVTKSFNRGEC*
35 VHLAG3.5 a.a.
-

Claims (23)

  1. LAG3.5 последовательность тяжелой цепи - полностью
    QVQLQQWGAGLLKPSETLSLTCAVYGGSFSDYYWNWIRQPPGKGLEWIGE INHRGSTNSNPSLKSRVTLSLDTSKNQFSLKLRSVTAADTAVYYCAFGYS DYEYNWFDPWGQGTLVTVSSASTKGPSVFPLAPCSRSTSESTAALGCLVK DYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKT YTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDT LMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTY RVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYT LPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDS DGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGK* | 36 | VHLAG3.5 η.а. | |
    LAG3.5 последовательность тяжелой цепи - полностью caggtgcagctacagcagtggggcgcaggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttcagtg attactactggaactggatccgccagcccccagggaaggggctggagtggattggggaaatcaatcatcgtggaagcaccaactccaacc cgtccctcaagagtcgagtcaccctatcactagacacgtccaagaaccagttctccctgaagctgaggtctgtgaccgccgcggacacggc tgtgtattactgtgcgtttggatatagtgactacgagtacaactggttcgacccctggggccagggaaccctggtcaccgtctcctcagctag caccaagggcccatccgtcttccccctggcgccctgctccaggagcacctccgagagcacagccgccctgggctgcctggtcaaggact acttccccgaaccggtgacggtgtcgtggaactcaggcgccctgaccagcggcgtgcacaccttcccggctgtcctacagtcctcaggact ctactccctcagcagcgtggtgaccgtgccctccagcagcttgggcacgaagacctacacctgcaacgtagatcacaagcccagcaacac caaggtggacaagagagttgagtccaaatatggtcccccatgcccaccatgcccagcacctgagttcctggggggaccatcagtcttcctg ttccccccaaaacccaaggacactctcatgatctcccggacccctgaggtcacgtgcgtggtggtggacgtgagccaggaagaccccga ggtccagttcaactggtacgtggatggcgtggaggtgcataatgccaagacaaagccgcgggaggagcagttcaacagcacgtaccgtg tggtcagcgtcctcaccgtcctgcaccaggactggctgaacggcaaggagtacaagtgcaaggtctccaacaaaggcctcccgtcctcca tcgagaaaaccatctccaaagccaaagggcagccccgagagccacaggtgtacaccctgcccccatcccaggaggagatgaccaagaa ccaggtcagcctgacctgcctggtcaaaggcttctaccccagcgacatcgccgtggagtgggagagcaatgggcagccggagaacaact acaagaccacgcctcccgtgctggactccgacggctccttcttcctctacagcaggctaaccgtggacaagagcaggtggcaggagggg aatgtcttctcatgctccgtgatgcatgaggctctgcacaaccactacacacagaagagcctctccctgtctctgggtaaatga
    37 VLLAG3.5a.a.
    LAG3.5 последовательность каппа цепи - полностью
    EIVLTQSPATLSLSPGERATLSCRASQSISSYLAWYQQKPGQAPRLLIYD ASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRSNWPLTFGQ GTNLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKV DNALQSGNSQES VTEQD SKD STYSL S STLTL SKAD YEKHK VYACEVTHQG LSSPVTKSFNRGEC*
    I 38 I VlLAG3.5 n.a. | |
    LAG3.5 - последовательность каппа цепи - полностью gaaattgtgttgacacagtctccagccaccctgtctttgtctccaggggaaagagccaccctctcctgcagggccagtcagagtattagcag ctacttagcctggtaccaacagaaacctggccaggctcccaggctcctcatctatgatgcatccaacagggccactggcatcccagccagg ttcagtggcagtgggtctgggacagacttcactctcaccatcagcagcctagagcctgaagattttgcagtttattactgtcagcagcgtagca actggcctctcacttttggccaggggaccaacctggagatcaaacgtacggtggctgcaccatctgtcttcatcttcccgccatctgatgagc agttgaaatctggaactgcctctgttgtgtgcctgctgaataacttctatcccagagaggccaaagtacagtggaaggtggataacgccctcc aatcgggtaactcccaggagagtgtcacagagcaggacagcaaggacagcacctacagcctcagcagcaccctgacgctgagcaaagc agactacgagaaacacaaagtctacgcctgcgaagtcacccatcagggcctgagctcgcccgtcacaaagagcttcaacaggggagagt gttag
    ФОРМУЛА ИЗОБРЕТЕНИЯ
    1. Фармацевтическая композиция, содержащая:
    (a) моноклональное антитело или его антигенсвязывающую часть, которые связывают ген активации лимфоцитов 3 (LAG-3) человека, (b) анти-PD-1 антитело или его антигенсвязывающую часть и (c) фармацевтически приемлемый носитель;
    где моноклональное антитело или его антигенсвязывающая часть, которые связывают LAG-3 человека, содержат участки CDR1, CDR2 и CDR3 тяжелой цепи, содержащие аминокислотные последовательности SEQ ID NO: 15, 16 и 17, соответственно, и участки CDR1, CDR2 и CDR3 легкой цепи, содержащие аминокислотные последовательности SEQ ID NO: 18, 19 и 20, соответственно.
  2. 2. Фармацевтическая композиция по п.1, где моноклональное антитело или его антигенсвязываю
    - 38 044665 щая часть, которые связывают LAG-3 человека, содержат вариабельные участки тяжелой и легкой цепей, содержащие аминокислотные последовательности SEQ ID NOs: 12 и 14, соответственно.
  3. 3. Фармацевтическая композиция по п.1 или 2, где моноклональное антитело или его антигенсвязывающая часть, которые связывают LAG-3 человека, проявляют одно или комбинацию из следующих свойств:
    (a) связывание с LAG-3 обезьяны;
    (b) отсутствие связывания с LAG-3 мыши;
    (c) ингибирование связывания LAG-3 с молекулами главного комплекса гистосовместимости (МНС) II класса или (d) стимулирование иммунного ответа.
  4. 4. Фармацевтическая композиция по любому из пп.1-3, где моноклональное антитело или его антигенсвязывающая часть, которые связывают LAG-3 человека, стимулируют продуцирование интерлейкина-2 (IL-2) при антигенспецифичном Т-клеточном ответе и/или стимулируют противоопухолевый иммунный ответ.
  5. 5. Фармацевтическая композиция по любому из пп.1-4, где моноклональное антитело или его антигенсвязывающая часть, которые связывают LAG-3 человека, представляют собой полноразмерное антитело.
  6. 6. Фармацевтическая композиция по любому из пп.1-5, которая имеет изотип IgG1, IgG2 или IgG4.
  7. 7. Фармацевтическая композиция по любому из пп.1-6, где моноклональное антитело, которое связывает LAG-3 человека, представляет собой полноразмерное антитело IgG4 человека, которое связывает LAG-3 человека с KD 0.27 х 10-9 М или менее, как определено посредством поверхностного плазмонного резонанса.
  8. 8. Фармацевтическая композиция по любому из пп.1-7, где моноклональное антитело, которое связывает LAG-3 человека, содержит тяжелую и легкую цепи, содержащие аминокислотные последовательности SEQ ID NOs: 35 и 37 соответственно.
  9. 9. Фармацевтическая композиция по любому из пп.1-4, где моноклональное антитело или его антигенсвязывающая часть, которые связывают LAG-3 человека, представляют собой фрагмент антитела или одноцепочечное антитело.
  10. 10. Фармацевтическая композиция по любому из пп.1-9, где моноклональное антитело или его антигенсвязывающая часть, которые связывают LAG-3 человека, представляют собой антитело человека, гуманизированное или химерное антитело, и анти-PD-1 антитело или его антигенсвязывающая часть представляют собой антитело человека, гуманизированное или химерное антитело.
  11. 11. Фармацевтическая композиция по любому из пп.1-10, где моноклональное антитело или его антигенсвязывающая часть, которые связывают LAG-3 человека, и анти-PD-1 антитело или его антигенсвязывающая часть представляют собой антитела человека.
  12. 12. Фармацевтическая композиция по любому из пп.1-11, где анти-PD-1 антитело или его антигенсвязывающая часть содержат участки CDR1, CDR2 и CDR3 тяжелой и легкой цепей антитела 5С4.
  13. 13. Фармацевтическая композиция по любому из пп.1-12, где анти-PD-1 антитело или его антигенсвязывающая часть содержат вариабельные участки тяжелой и легкой цепей антитела 5С4.
  14. 14. Фармацевтическая композиция по любому из пп.1-13, подходящая для парентерального введения.
  15. 15. Фармацевтическая композиция по любому из пп.1-14, подходящая для внутривенного введения.
  16. 16. Фармацевтическая композиция по любому из пп.1-15 для стимулирования иммунного ответа у субъекта.
  17. 17. Фармацевтическая композиция по п.16, где субъект представляет собой субъекта с опухолью и стимулируется иммунный ответ против указанной опухоли.
  18. 18. Фармацевтическая композиция по п.16, где иммунный ответ представляет собой антигенспецифичный Т-клеточный ответ, так что стимулируется антигенспецифичный Т-клеточный ответ.
  19. 19. Фармацевтическая композиция по п.18, где стимулируется продуцирование интерлейкина-2 с помощью антигенспецифичной Т-клетки.
  20. 20. Фармацевтическая композиция по любому из пп.1-15 для ингибирования роста опухолевых клеток у субъекта.
  21. 21. Фармацевтическая композиция по любому из пп.1-15 для лечения рака у субъекта.
  22. 22. Фармацевтическая композиция по п.21, где рак представляет собой меланому, метастатическую злокачественную меланому, рак почки, гипернефрому, рак предстательной железы, не отвечающую на гормоны аденокарциному предстательной железы, рак молочной железы, рак ободочной кишки, рак легкого или немелкоклеточный рак легкого.
  23. 23. Фармацевтическая композиция по п.21 или 22, где рак представляет собой трудноизлечимую или рецидивирующую злокачественную опухоль, или метастатический рак.
    -
EA202090227 2012-07-02 2013-07-02 Фармацевтическая композиция, содержащая анти-lag-3 антитело и анти-pd-1 антитело EA044665B1 (ru)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US61/667,058 2012-07-02

Publications (1)

Publication Number Publication Date
EA044665B1 true EA044665B1 (ru) 2023-09-21

Family

ID=

Similar Documents

Publication Publication Date Title
US11345752B2 (en) Optimization of antibodies that bind lymphocyte activation gene-3 (LAG-3), and uses thereof
JP7286692B2 (ja) リンパ球活性化遺伝子-3(lag-3)へ結合するヒト抗体およびその使用
EA044665B1 (ru) Фармацевтическая композиция, содержащая анти-lag-3 антитело и анти-pd-1 антитело