EA041120B1 - Новые пептиды и комбинации пептидов для применения в иммунотерапии рака предстательной железы и других видов рака - Google Patents

Новые пептиды и комбинации пептидов для применения в иммунотерапии рака предстательной железы и других видов рака Download PDF

Info

Publication number
EA041120B1
EA041120B1 EA201890440 EA041120B1 EA 041120 B1 EA041120 B1 EA 041120B1 EA 201890440 EA201890440 EA 201890440 EA 041120 B1 EA041120 B1 EA 041120B1
Authority
EA
Eurasian Patent Office
Prior art keywords
peptide
cancer
cells
peptides
cell
Prior art date
Application number
EA201890440
Other languages
English (en)
Inventor
Андреа Мар
Тони Вайншенк
Оливер Шор
Дженс Фрицше
Харприт Сингх
Филлип Мюллер
Джулия Лейбольд
Валентина Голдфингер
Original Assignee
Имматикс Байотекнолоджиз Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Имматикс Байотекнолоджиз Гмбх filed Critical Имматикс Байотекнолоджиз Гмбх
Publication of EA041120B1 publication Critical patent/EA041120B1/ru

Links

Description

Настоящее изобретение относится к пептидам, белкам, нуклеиновым кислотам и клеткам для применения в иммунотерапевтических методах. В частности, настоящее изобретение относится к иммунотерапии рака. Настоящее изобретение относится далее к опухолеассоциированным пептидным эпитопам Т-клеток, в отдельности или в комбинации с другими опухолеассоциированными пептидами, которые могут, например, служить в качестве активных фармацевтических ингредиентов вакцинных композиций, стимулирующих противоопухолевые иммунные ответы, или стимулировать Т-клетки ex vivo с их перенесением в организм пациента. Пептиды, связанные с молекулами главного комплекса гистосовместимости (МНС), или пептиды в отдельности могут быть также мишенями антител, растворимых Т-клеточных рецепторов и других связывающих молекул.
Настоящее изобретение относится к нескольким новым пептидным последовательностям и их вариантам, образованным из молекул HLA I класса человеческих опухолевых клеток, которые могут быть использованы в вакцинных композициях для вызывания противоопухолевых иммунных ответов или в качестве мишеней для разработки фармацевтически/иммунологически активных соединений и клеток.
Уровень техники
Рак предстательной железы является вторым, наиболее часто диагностируемым видом рака в мире и занимает пятое место среди наиболее частых причин смерти от рака среди мужчин, на долю которого в 2012 г. по оценкам приходилось 1,1 миллиона новых случаев (15% всех случаев раковых заболеваний среди мужчин) и 0,3 миллиона смертельных исходов (7% числа смертей среди мужчин). В тот же самый период он был наиболее часто встречающимся видом рака среди мужчин в 84 странах мира, в основном в странах с высоким или очень высоким уровнем развития, но также и в нескольких странах Центральной и Южной Африки. Согласно данным Американского общества по борьбе с раком в 2015 г. в США ожидается приблизительно 220800 новых случаев заболевания раком предстательной железы и 27540 смертельных исходов от него. Факторами риска являются возраст, семейная предрасположенность и расовая принадлежность (World Cancer Report, 2014; SEER Stat facts, 2014; American Cancer Society, 2015).
Практически все случаи рака предстательной железы являются аденокарциномами, которые развиваются из железистых клеток предстательной железы. Редкие формы рака предстательной железы включают саркомы, мелкоклеточные карциномы, нейроэндокринные опухоли (немелкоклеточные карциномы) или переходно-клеточные карциномы (American Cancer Society, 2015).
Стратегия лечения рака предстательной железы в основном зависит от стадии рака. При локальноограниченном раке предстательной железы без метастазов варианты лечения включают активное наблюдение (ожидание и наблюдение), полную хирургическую резекцию предстательной железы и местное применение высокодозной лучевой терапии совместно с брахитерапией или без нее. Гормонподавляющая терапия и применяемая местно послеоперационная лучевая терапия представляют собой дополнительные варианты лечения для пациентов, подверженных высокому риску. Стандарт лечения рака предстательной железы с метастазами также включает полную хирургическую резекцию предстательной железы, местное применение высокодозной лучевой терапии и гормон-подавляющую терапию. Опухоли, не отвечающие на гормон-депривационную терапию, называются кастрационно-резистентным раком предстательной железы (КРРПЖ). Пациенты с КРРПЖ получают доцетаксел, абиратерон и вакцину на основе дендритных клеток, сипулейцел-Т. Для лечения метастазов в кости применяют радий-223 в отдельности или же радий-223, доцетаксел или абитерон в комбинации с бифосфонатами или деносумабом (S3-Leitlinie Prostatakarzinom, 2014).
Основанная на дендритных клетках вакцина сипулейцел-Т стала первой противораковой вакциной, одобренной Управлением по контролю за продуктами питания и лекарственными средствам США (FDA). В связи с положительным влиянием на выживаемость пациентов с кастрационно-резистентным раком предстательной железы (КР РПЖ) множество усилий прилагается для разработки дальнейших иммунотерапевтических методов. Что касается стратегий вакцинации, то многообещающие результаты в рамках различных клинических исследований показали пептидная вакцина на основе простатспецифического антигена (PSA)-TRICOM, персонализированная пептидная вакцина PPV, вакцина на основе ДНК pTVG-HP, вакцина на основе цельных клеток, экспрессирующих ГМ-КСФ, GVAX. Кроме того, вакцины на основе дендритных клеток, помимо сипулейцел-Т, а именно ВРХ-101 и DCVAC/Pa, как было показано, вызывают клинические ответы у пациентов с раком предстательной железы. Ингибиторы иммунных контрольных точек, такие как ипилимумаб и ниволумаб, в настоящее время проходят оценку в рамках клинических исследований в качестве монотерапии, а также в комбинации с другими методами лечения, включая антиандрогенную терапию, местную лучевую терапию, PSA-TRICOM и GVAX. Исследования иммуномодулирующего средства тасквинимод, которое значительно уменьшало прогрессирование и повышало выживаемость без прогрессирования в рамках клинического исследования II фазы, сейчас продолжаются на III фазе. Леналидомид, другой иммуномодулятор, вызывал многообещающие эффекты в клинических исследованиях ранних фаз, однако не улучшил выживаемость на III фазе клинического исследования. Несмотря на эти неутешительные результаты, сейчас проводятся дальнейшие клинические испытания леналидомида (Quinn et al., 2015).
Принимая во внимание серьезные побочные эффекты и высокие расходы, связанные с лечением рака, существует необходимость идентифицировать факторы, которые могут быть использованы для лече- 1 041120 ния рака вообще и рака предстательной железы в частности. Также существует необходимость идентифицировать факторы, представляющие собой биомаркеры рака в целом и рака предстательной железы в частности, что позволит лучше ставить диагноз, составлять прогноз и предсказывать успех лечения.
Иммунотерапия рака представляет собой вариант специфического воздействия на раковые клетки при снижении до минимума побочных эффектов. В иммунотерапии рака находит применение существование опухолеассоциированных антигенов.
Актуальная классификация опухолеассоциированных антигенов (ТАА) включает следующие основные группы.
а) Раково-тестикулярные антигены: первые в истории идентифицированные ТАА, которые могут распознаваться Т-клетками, принадлежат к этому классу, называвшемуся первоначально раковотестикулярные антигены (СТ), так как его члены экспрессируются в отличных по гистологической структуре опухолях человека, а среди нормальных тканей - только в сперматоцитах/сперматогониях семенника и изредка в плаценте. Так как клетки семенника не экспрессируют молекулы HLA I и II класса, то эти антигены не могут быть распознаны Т-клетками в нормальных тканях и поэтому могут рассматриваться как иммунологически опухолеспецифические. Хорошо известными примерами антигенов СТ являются члены семейства MAGE и NY-ESO-1.
б) Антигены дифференциации: данные ТАА встречаются в опухолевых и нормальных тканях, из которых образуется опухоль. Большинство из известных антигенов дифференциации обнаружено в меланомах и нормальных меланоцитах. Многие из этих линиеспецифических белков меланоцитов участвуют в биосинтезе меланина и поэтому не являются опухолеспецифическими, однако, несмотря на это, они широко применяются в противораковой терапии. Примеры включают, но не ограничиваются, тирозиназой и Melan-A/MART-1 для меланомы или ПСА для рака предстательной железы.
в) Избыточно экспрессируемые ТАА: гены, кодирующие широко экспрессированные ТАА, были обнаружены в различных по гистологической структуре опухолях, а также во многих нормальных тканях, в основном с более низким уровнем экспрессии. Возможно, что многие эпитопы, процессируемые и потенциально презентируемые нормальными тканями, находятся ниже порогового уровня для распознавания Т-клетками, в то время как их избыточная экспрессия в опухолевых клетках может инициировать противораковый ответ, нарушая установившуюся ранее толерантность. Известными примерами ТАА этого класса являются Her-2/neu, сурвивин, теломераза или WT1.
г) Опухолеспецифические антигены: данные уникальные ТАА образуются в результате мутаций нормальных генов (таких как β-катенин, CDK4 и т.д.). Некоторые из этих молекулярных изменений ассоциированы с неопластической трансформацией и/или прогрессией. Опухолеспецифические антигены в основном способны индуцировать сильные иммунные ответы, не заключая в себе риска аутоиммунных реакций по отношению к нормальным тканям. С другой стороны, данные ТАА в большинстве случаев подходят только для определенной опухоли, на которой они были идентифицированы, и обычно не являются общими для многих отдельных опухолей. Опухолевая специфичность (или ассоциация) пептида может также возникнуть, если пептид образован из опухолевого (опухолеассоциированного) экзона в случае белков с опухолеспецифическими (-ассоциированными) изоформами.
д) ТАА, образующиеся в результате аномальных посттрансляционных модификаций: такие ТАА могут образоваться из белков, которые не являются ни специфическими, ни избыточно экспрессируемыми в опухолях, однако, несмотря на это, становятся опухолеассоциированными в ходе посттрансляционных процессов, происходящих преимущественно в опухолях. Примеры для этого класса возникают в результате изменения характера гликозилирования, приводящего к появлению новых эпитопов в опухолях, как в случае MUC1, или при таких событиях, как белковый сплайсинг во время деградации, которые могут быть опухолеспецифическими или могут не быть ими.
е) Онковирусные белки: данные ТАА являются вирусными белками и могут играть ведущую роль в онкогенном процессе, и, так как они являются чужеродными (не человеческого происхождения), они могут провоцировать Т-клеточный ответ. Примерами таких белков являются вирусные белки вируса папилломы человека типа 16, Е6 и Е7, которые экспрессированы в карциноме шейки матки.
Мишенями иммунотерапии, основанной на Т-клетках, являются пептидные эпитопы, полученные из опухолеассоциированных или опухолеспецифических белков, которые презентируются молекулами главного комплекса гистосовместимости человека (МНС) (МНС). Антигены, которые распознаются опухолеспецифическими Т-лимфоцитами, т.е. их эпитопами, могут быть молекулами, образованными из любого класса белков, таких как ферменты, рецепторы, факторы транскрипции и т.д., которые экспрессируются и по сравнению с неизмененными клетками того же происхождения обычно имеют повышенный уровень в клетках соответствующей опухоли.
Как и в случае всех других видов раковых заболеваний, развивающихся не из жизненно важных органов и тканей, простат-специфические антигены могут быть хорошим выбором для иммунотерапии рака, поскольку простат-специфические антигены представляют собой опухолеспецифические мишени у пациентов после простатэктомии. У больных раком пациентов, не прошедших простатэктомию, такие антигены также могут представлять собой интерес, поскольку предстательная железа не рассматривается как жизненно важный орган, и подобный подход применялся при меланоме с использованием мелано- 2 041120 цитных дифференцирующих антигенов. Существует несколько примеров, демонстрирующих, что простат-специфические или в высокой степени ассоциированные с предстательной железой антигены являются надежными мишенями, например, сипулейцел-Т (Provenge) компании Dendreon, включающий простатическую кислую фосфатазу в качестве используемого опухолевого антигена (Westdorp et al., 2014). Этот антиген не является эксклюзивно экспрессируемым в предстательной железе, но экспрессируется в предстательной железе избыточно на уровне, превышающем на 1-2 порядка уровень в других тканях (Graddis et al., 2011).
Существуют два класса молекул МНС, МНС I класса и МНС II класса. Молекулы МНС I класса состоят из альфа-тяжелой цепи и бета-2-микроглобулина, молекулы МНС II класса - из альфа- и бета-цепи. Их трехмерная форма образует связывающую бороздку, которая используется для нековалентного взаимодействия с пептидами.
Молекулы МНС I класса встречаются на большинстве клеток, имеющих ядро. Они презентируют пептиды, образующиеся при протеолитическом расщеплении преимущественно эндогенных белков, дефектных рибосомных продуктов (DRIP) и более крупных пептидов. Однако пептиды, образованные из эндосомальных компартментов или экзогенных источников, также часто встречаются на молекулах МНС I класса. Этот неклассический способ презентации I классом в литературе называется кросспрезентацией. (Brossart and Bevan, 1997; Rock et al., 1990). Молекулы МНС II класса могут встречаться преимущественно на профессиональных антигенпрезентирующих клетках (АПК) и в первую очередь презентировать пептиды экзогенных или трансмембранных белков, которые поглощаются АПК, например, во время эндоцитоза и впоследствии процессируются.
Комплексы пептида и молекул МНС I класса распознаются CD8-положительными Т-клетками, несущими подходящий Т-клеточный рецептор (ТКР), тогда как комплексы пептида и молекул МНС II класса распознаются CD4-положительными хелперными Т-клетками, несущими подходящий ТКР. Хорошо известно, что ТКР, пептид и МНС встречаются в стехиометрическом соотношении 1:1:1.
CD4-положительные хелперные Т-клетки играют важную роль в индуцировании и поддержании эффективных ответов CD8-положительных цитотоксических Т-клеток. Идентификация CD4положительных Т-клеточных эпитопов, образованных из опухолеассоциированных антигенов (ТАА), может быть чрезвычайно важна для разработки фармацевтических препаратов для инициации противоопухолевых иммунных ответов (Gnjatic et al., 2003). В месте локализации опухоли Т-хелперные клетки поддерживают благоприятное для ЦТЛ цитокиновое окружение (Mortara et al., 2006) и привлекают эффекторные клетки, к примеру ЦТЛ, естественные киллерные клетки (NK), макрофаги, гранулоциты (Hwang et al., 2007).
При отсутствии воспаления экспрессия молекул МНС II класса преимущественно ограничена клетками иммунной системы, в особенности профессиональными антигенпрезентирующими клетками (АПК), например моноцитами, образованными из моноцитов клетками, макрофагами, дендритными клетками. Было обнаружено, что опухолевые клетки больных раком пациентов экспрессируют молекулы МНС II класса (Dengjel et al., 2006).
Удлиненные (более длинные) пептиды по изобретению могут выступать в качестве активных эпитопов МНС II класса. Т-хелперные клетки, активированные эпитопами МНС II класса, играют важную роль в управлении эффекторной функцией ЦТЛ в противоопухолевом иммунитете. Эпитопы Т-хелперных клеток, инициирующие ответы Т-хелперных клеток типа ТН1, поддерживают эффекторные функции CD8-положительных киллерных Т-клеток, которые включают цитотоксиче-ские функции, направленные против опухолевых клеток, проявляющих комплексы опухолеассоциированный пептид/МНС на их клеточной поверхности. Таким образом, опухолеассоциированные пептидные эпитопы Т-хелперных клеток, одни или в комбинации с другими опухолеассоциированными пептидами, могут служить в качестве активных фармацевтических ингредиентов вакцинных композиций, которые стимулируют противоопухолевые иммунные ответы.
На моделях млекопитающих животных, например мышах, было показано, что даже при отсутствии CD8-положительных Т-лимфоцитов, CD4-положительных Т-клеток достаточно для ослабления клинических проявлений опухолей посредством ингибирования ангиогенеза при секреции интерферон-гамма (ИНФ-гамма). (Beatty and Paterson, 2001; Mumberg et al., 1999). Существуют доказательства того, что CD4 Т-клетки являются эффекторными клетками прямого противоопухолевого действия (Braumuller et al., 2013; Tran et al., 2014).
Так как конститутивная экспрессия молекул HLA II класса обычно ограничена иммунными клетками, то выделение пептидов II класса непосредственно из первичных опухолей ранее считалось невозможным. Тем не менее Dengjel с соавторами удалось идентифицировать ряд эпитопов МНС II класса непосредственно из опухолей (WO 2007/028574, ЕР 1760088 В1).
Так как оба вида ответов, зависящих от CD8 и от CD4, вносят свой вклад в противоопухолевый эффект сообща и синергически, то идентификация и характеристика опухолеассоциированных антигенов, распознаваемых как CD8+ Т-клетками (лиганд: молекула МНС I класса + пептидный эпитоп), так и CD4положительными хелперными Т-клетками (лиганд: молекула МНС II класса + пептидный эпитоп) являются важными при разработке противоопухолевых вакцин.
- 3 041120
Для того чтобы пептид МНС I класса инициировал (вызывал) клеточный иммунный ответ, он также должен связываться с молекулой МНС. Этот процесс зависит от аллеля молекулы МНС и специфических полиморфизмов аминокислотной последовательности пептида. Пептиды, связывающиеся с МНС I класса, как правило, имеют 8-12 аминокислотных остатков в длину и обычно содержат два консервативных остатка (якори) в их последовательности, которые взаимодействуют с соответствующей связывающей бороздкой молекулы МНС. Таким образом, каждый аллель МНС имеет связывающий мотив, определяющий, какие пептиды могут специфически связываться со связывающей бороздкой.
В зависящей от МНС I класса иммунной реакции пептиды не только должны быть в состоянии связываться с конкретными молекулами МНС I класса, экспрессируемыми опухолевыми клетками, но они также должны затем распознаваться Т-клетками, несущими специфические Т-клеточные рецепторы (ТКР).
Для того чтобы белки были распознаны Т-лимфоцитами в качестве опухолеспецифических или -ассоциированных антигенов и чтобы они могли использоваться в терапии, должны выполняться особые предварительные требования. Антиген должен экспрессироваться преимущественно опухолевыми клетками и не экспрессироваться или экспрессироваться в сравнительно малом количестве здоровыми тканями. В предпочтительном варианте осуществления пептид должен избыточно презентироваться опухолевыми клетками по сравнению с нормальными здоровыми тканями. Кроме того, желательно, чтобы соответствующий антиген не только присутствовал в каком-либо виде опухоли, но и также имел высокую концентрацию (т.е. несколько копий соответствующего пептида на клетку). Опухолеспецифические и опухолеассоциированные антигены часто образованы из белков, напрямую задействованных в трансформации нормальной клетки в опухолевую, в связи с их функцией, например при контроле клеточного цикла или подавлении апоптоза. Кроме того, нисходящие мишени белков, напрямую являющихся причиной трансформации, могут быть представлены в повышенном количестве и, таким образом, быть косвенно опухолеассоциированными. Такие косвенно опухолеассоциированные антигены могут также быть мишенями вакцинационного подхода (Singh-Jasuja et al., 2004). Необходимо, чтобы эпитопы присутствовали в аминокислотной последовательности антигена, чтобы гарантировать, что такой пептид (иммуногенный пептид), образованный из опухолеассоциированного антигена, ведет к Т-клеточному ответу in vitro или in vivo.
В сущности, любой пептид, способный связываться с молекулой МНС, может выполнять функцию Т-клеточного эпитопа. Предварительным условием для индукции Т-клеточного ответа in vitro или in vivo является присутствие Т-клетки с соответствующим ТКР и отсутствие иммунологической толерантности к данному конкретному эпитопу.
Поэтому антигены ТАА являются отправной точкой для разработки терапии на основе Т-клеток, включающей противоопухолевые вакцины, но не ограничивающейся ими. Методы идентификации и определения характеристики ТАА обычно основаны на использовании Т-клеток, которые могут быть выделены из организма пациентов или здоровых субъектов или же они могут быть основаны на генерировании различающихся транскрипционных профилей или различающихся паттернов экспрессии пептидов между опухолевыми и нормальными тканями. Однако идентификация генов, избыточно экспрессированных в опухолевых тканях или человеческих опухолевых клеточных линиях или же селективно экспрессированных в таких тканях или клеточных линиях, не дает точной информации об использовании антигенов, транскрибированных с данных генов, в иммунотерапии. Это обусловлено тем, что только отдельная субпопуляция эпитопов этих антигенов подходит для такого применения, так как Т-клетка с соответствующим ТКР должна быть в наличии, и необходимо, чтобы отсутствовала или была минимальной иммунологическая толерантность к этому конкретному эпитопу. Поэтому в наиболее предпочтительном варианте осуществления изобретения важно выбрать только те пептиды, презентируемые в избытке или селективно, против которых может быть обнаружена функциональная и/или пролиферирующая Т-клетка. Такая функциональная Т-клетка определяется как Т-клетка, которая при стимуляции специфическим антигеном может быть распространена посредством клонирования и способна к выполнению эффекторных функций (эффекторная Т-клетка).
В случае нацеливания на комплексы пептида с МНС специфических ТКР (например, растворимых ТКР) и антител или других связывающихся с ними молекул (каркасов) в соответствии с изобретением иммуногенность лежащих в основе пептидов является второстепенной. В таких случаях презентация является определяющим фактором.
Краткое изложение сущности изобретения
В первом аспекте настоящее изобретение относится к пептиду, включающему аминокислотную последовательность, выбранную из группы, состоящей из последовательностей с SEQ ID NO: 1 по SEQ ID NO: 48, или его варианту, который по меньшей мере на 77%, предпочтительно, по меньшей мере на 88% гомологичен (предпочтительно по меньшей мере на 77% или по меньшей мере на 88% идентичен) последовательности с SEQ ID NO: 1 по SEQ ID NO: 48, где указанный вариант связывается с МНС и/или индуцирует Т-клеточную перекрестную реакцию с указанным пептидом, или его фармацевтически приемлемой соли, где указанный пептид не является базовым полипептидом полной длины.
Настоящее изобретение относится далее к пептиду по настоящему изобретению, включающему по- 4 041120 следовательность, которая выбрана из группы, состоящей из последовательностей с SEQ ID NO: 1 по
SEQ ID NO: 48, или его варианту, который по меньшей мере на 77%, предпочтительно по меньшей мере на 88% гомологичен (предпочтительно, по меньшей мере на 77% или по меньшей мере на 88% идентичен) последовательности с SEQ ID NO: 1 по SEQ ID NO: 48, где указанный пептид или его вариант обладает общей длиной, составляющей 8-100, предпочтительно 8-30 и наиболее предпочтительно 8-14 аминокислот.
В последующих таблицах представлены пептиды в соответствии с настоящим изобретением, соответствующие им SEQ ID NOs и потенциальные исходные (лежащие в основе) гены для данных пептидов. Все пептиды табл. 1, 3 и 5 связываются с HLA-A*02. Все пептиды табл. 2, 4 и 6 связываются с HLA-A*24. Пептиды табл. 3 и 4 были раскрыты ранее в виде обширных списков в качестве результатов скринингов с высокой пропускной способностью с высокой долей ошибок или были вычислены с помощью алгоритмов, однако ранее ни в коей мере не были ассоциированы с раковыми заболеваниями. Пептиды из табл. 5 и 6 являются дополнительными пептидами, которые могут быть полезны в комбинации с другими пептидами по изобретению. Пептиды табл. 7 и 8 полезны также для диагностики и/или лечения различных других злокачественных заболеваний, которые включают избыточную экспрессию или избыточную презентацию соответствующего базового полипептида.
Таблица 1
Пептиды, связывающиеся с HLA-A*02,
в соответствии с настоящим изобретением
SEQ ID No. Последовательность Идент. номер(а) гена Официальный(ые) символ(ы)гена
1 VTAQIGIVAV 81285 OR51E2
2 SMLGEEIQL 9687 GREB1
3 HLLEDIAHV 4744 NEFH
4 ALLTFVWKL 79054 TRPM8
5 KIFSRLIYI 79054 TRPM8
6 ALLESRVNL 50940 PDE11A
7 TLLQWGWSV 10257 АВСС4
8 LLDFSLADA 1674 DES
9 GMLNEAEGKAIKL 4629 MYH11
10 TLWRGPVW 261729 STEAP2
11 YLEEECPAT 563 AZGP1
12 SLNEEIAFL 1674 DES
13 AMAPNHAW 4057 LTF
14 KMDEASAQLL 54682 MANSC1
15 KMDEASAQLLA 54682 MANSC1
16 KMDEASAQL 54682 MANSC1
17 RLGIKPESV 1466 CSRP2
18 GLSEFTEYL 4131 МАР1В
19 LLPPPPLLA 23245 ASTN2
20 SLLSHQVLL 57221 KIAA1244
21 YLNDSLRHV 283078 МКХ
22 SLYDSIAFI 56978 PRDM8
23 AVAGADVIITV 1428 CRYM
Таблица 2 Пептиды, связывающиеся с HLA-A*24, в соответствии с настоящим изобретением
SEQ ID No. Последовательность Идент. номер(а) гена Официальный(ые) символ(ы)гена
24 SYNDALLTF 79054 TRPM8
25 IYEPYLAMF 79054 TRPM8
26 RYADDTFTPAF 5865 RAB3B
27 GYLQGLVSF 9622 KLK4
28 YYAKEIHKF 7043 TGFB3
29 RYGSPINTF 647024 C6orf132
30 SYSPAHARL 2624 GATA2
31 AYTSPPSFF 171024 SYNPO2
32 PYQLNASLFTF 171024 SYNPO2
33 QYGKDFLTL 79088 ZNF426
34 AFSPDSHYLLF 3679 ITGA7
35 IYTRVTYYL 64499, 7177 TPSB2, TPSAB1
36 RYMWINQEL 374654 KIF7
37 RYLQDLLAW 5339 PLEC
38 VYSDKLWIF 8216 LZTR1
39 SYIDVAVKL 57544 TXNDC16
- 5 041120
Таблица 3 Дополнительные пептиды, связывающиеся с HLA-A*O2, в соответствии с настоящим изобретением, ассоциация которых с раком не была известна ранее. J = фосфосерин
SEQ ID No. Последовательность Идент. номер(а) гена Официальный(ые) символ(ы) гена
40 RTFJPTYGL 23336 SYNM
Таблица 4 Дополнительные пептиды, связывающиеся с HLA-A*24, в соответствии с настоящим изобретением, ассоциация _______которых с раком не была известна ранее________
SEQ ID No. Последовательность Идент. номер(а) гена Официальный(ые) символ(ы) гена
41 RYLQKIEEF 3755 KCNG1
42 TYIGQGYII 60681 FKBP10
43 AYIKNGQLF 56978 PRDM8
44 VYNTVSEGTHF 25800 SLC39A6
45 RYFKTPRKF 25792 CIZ1
46 VYEEILHQI 116496 FAM129A
47 SYTPVLNQF 10497 UNC13B
48 AWAPKPYHKF 23043, 50488, 9448 TNIK, MINK1, МАР4К4
Таблица 5 Пептиды, связывающиеся с HLA-A*O2, полезные, например, для персонализированной противораковой терапии
SEQ ID No. Последовательность Идент. номер(а) гена Официальный(ые) символ(ы) гена
49 SLFHPEDTGQV 354 KLK3
50 TLGPASFLV 389816 LRRC26
51 AMFDKKVQL 23336 SYNM
52 ALGDLVQSV 7782 SLC30A4
53 YLLKDKGEYTL 2316 FLNA
Таблица 6 Пептиды, связывающиеся с HLA-A*24, полезные, например, для персонализированной противораковой терапии
SEQ ID No.
Последовательность AYSEКУТЕF LYFEKGEYF LFHPEDTGQVF KYADKIYSI GYIDKVRQL IYPDVTYAF
Идент. номер(а) гена
3817__________
55____________
354___________
2346__________
4744
1135
Официальный(ые) символ(ы) гена
KLK2___________
АСРР_________
KLK3___________
F0LH1_________
NEFH
CHRNA2
Для выбранных пептидов табл. 7 демонстрирует, на каких дополнительных видах опухолей они были обнаружены и имели либо избыточную презентацию более чем на 5% исследованных опухолевых образцов, либо презентацию более чем на 5% исследованных опухолевых образцов с соотношением среднего геометрического для опухоли и для нормальных тканей, составляющим более трех. Избыточная презентация определяется как более высокая представленность на опухолевом образце по сравнению с образцом нормальной ткани с наивысшей презентацией. Нормальными (нераковыми) тканями, в сравнении с которыми проводили испытание на избыточную презентацию, были выбраны следующие: жировая ткань, ткани надпочечной железы, артерии, костного мозга, головного мозга, центрального нерва, толстой кишки, двенадцатиперстной кишки, пищевода, глаза, желчного пузыря, сердца, почки, печени, легких, лимфатических узлов, мононуклеарные лейкоциты, ткань поджелудочной железы, паращитовидной железы, периферического нерва, брюшной полости, гипофиза, плевры, прямой кишки, слюнной железы, скелетных мышц, кожи, тонкой кишки, селезенки, желудка, щитовидной железы, трахеи, мочеточника, мочевого пузыря и вен.
заболеваниях, в особенности заболеваниях
Таблица 7
Пептиды в соответствии с настоящим изобретением и их конкретное применение при других пролиферативных
SEQ ID No. Последовательность Другие релевантные органы / заболевания
1 VTAQIGIVAV МРЛ, меланома
2 SMLGEEIQL ГКК, РМЖ, меланома, рак матки
3 HLLEDIAHV ККМ, рак матки
5 KIFSRLIYI Меланома
6 ALLESRVNL ГКК, РПЖ
7 TLLQWGWSV Рак матки, рак желчного пузыря, рак желчных протоков
- 6 041120
8 LLDFSLADA КРК, РМЖ, меланома, рак мочевого пузыря, рак матки
10 TLWRGPWV НМРЛ, ПКК, КРК, ГКК, лейкоз, РЯ, рак пищевода, рак желчного пузыря, рак желчных протоков, ХЛЛ
12 SLNEEIAFL МРЛ, РПЖ, рак мочевого пузыря, рак желчного пузыря, рак желчных протоков
13 АМАР N HAW Рак головного мозга
16 KMDEASAQL Рак мочевого пузыря
17 RLGIKPESV Рак головного мозга, ГКК, РМЖ, рак матки
18 GLSEFTEYL Рак головного мозга
19 LLPPPPLLA Рак головного мозга, меланома, рак мочевого пузыря
20 SLLSHQVLL МРЛ, КРК, ГКК, рак мочевого пузыря, РМЖ, рак пищевода, рак матки
22 SLYDSIAFI Рак головного мозга, лейкоз, ОМЛ
26 RYADDTFTPAF ГКК
27 GYLQGLVSF ГКК
28 YYAKEIHKF НМРЛ, ГКК
29 RYGSPINTF НМРЛ, РЖ, ГКК
31 AYTSPPSFF РЖ, ГКК
33 QYGKDFLTL НМРЛ, рак головного мозга, ГКК
34 AFSPDSHYLLF НМРЛ, ПКК, рак головного мозга, ГКК
35 IYTRVTYYL НМРЛ, РЖ
36 RYMWINQEL НМРЛ, рак головного мозга, ГКК
37 RYLQDLLAW НМРЛ, ПКК, рак головного мозга
38 VYSDKLWIF НМРЛ, рак головного мозга, РЖ, ГКК
40 RTFJPTYGL Рак мочевого пузыря
41 RYLQKIEEF НМРЛ, ПКК, рак головного мозга
42 TYIGQGYII НМРЛ, рак головного мозга, РЖ, ГКК
43 AYIKNGQLF Рак головного мозга
44 VYNTVSEGTHF НМРЛ, рак головного мозга, ГКК
45 RYFKTPRKF ГКК
47 SYTPVLNQF ГКК
48 AWAPKPYHKF НМРЛ, ПКК, рак головного мозга, ГКК
НМРЛ = немелкоклеточный рак легких,
МРЛ = мелкоклеточный рак легких, ПКК = рак почки, КРК = рак толстой или прямой кишки, ГКК = рак печени, РПЖ = рак поджелудочной железы, РМЖ = рак молочной железы, ККМ = карцинома клеток Меркеля, РЯ = рак яичника, ОМЛ = острый миелоидный лейкоз, ХЛЛ = хронический лимфоцитарный лейкоз, РЖ = рак желудка, J = фосфосерин.
Настоящее изобретение также в основном относится к пептидам в соответствии с настоящим изобретением для применения в лечении пролиферативных заболеваний, например рака легких, мелкоклеточного рака легких, меланомы, рака печени, рака молочной железы, рака матки, карциномы клеток Меркеля, рака поджелудочной железы, рака желчного пузыря, рака желчных протоков, КРК, рака мочевого пузыря, немелкоклеточного рака легких, рака почек, лейкоза (например, ОМЛ или ХЛЛ), рака яичника, рака пищевода, рака головного мозга и рака желудка.
Особенно предпочтительными являются пептиды - в отдельности или в комбинации - в соответствии с настоящим изобретением, выбранные из группы, состоящей из последовательностей с SEQ ID NO: 1 по SEQ ID NO: 48. Более предпочтительными являются пептиды - в отдельности или в комбинации - выбранные из группы, состоящей из последовательностей с SEQ ID NO: 1 по SEQ ID NO: 6 (см. табл. 1) и с SEQ ID NO: 24 по SEQ ID NO: 28 (см. табл. 2) или с SEQ ID NO: 1, 4, 5, 6, 49 и 52 или SEQ ID NO: 2, 3 и 54 и их применение в иммунотерапии рака легких, мелкоклеточного рака легких, меланомы, рака печени, рака молочной железы, рака матки, карциномы клеток Меркеля, рака поджелудочной железы, рака желчного пузыря, рака желчных протоков, КРК, рака мочевого пузыря, немелкоклеточного рака легких, рака почек, лейкоза (например, ОМЛ или ХЛЛ), рака яичника, рака пищевода, рака головного мозга и рака желудка и, наиболее предпочтительно, рака предстательной железы. Как показано в табл. 7 выше, многие из пептидов в соответствии с настоящим изобретением присутствуют в других видах опухолей и могут, таким образом, применяться в иммунотерапии при других показаниях. См. также фиг. 1 и пример 1.
Таким образом, другой аспект настоящего изобретения относится к применению по меньшей мере одного пептида по настоящему изобретению в соответствии с любой из последовательностей с
- 7 041120
SEQ ID NO: 1, 12 и 20 - в одном предпочтительном варианте осуществления в комбинации - для лечения немелкоклеточного рака легких.
Таким образом, другой аспект настоящего изобретения относится к применению по меньшей мере одного пептида по настоящему изобретению в соответствии с любой из последовательностей с SEQ ID NO: 1, 2, 5, 8 и 19 - в одном предпочтительном варианте осуществления в комбинации - для лечения меланомы.
Таким образом, другой аспект настоящего изобретения относится к применению по меньшей мере одного пептида по настоящему изобретению в соответствии с любой из последовательностей с SEQ ID NO: 2, 6, 10, 17, 20, 26, 27, 28, 29, 31, 33, 34, 36, 38, 42, 44, 45, 47 и 48 - в одном предпочтительном варианте осуществления в комбинации - для лечения рака печени.
Таким образом, другой аспект настоящего изобретения относится к применению по меньшей мере одного пептида по настоящему изобретению в соответствии с любой из последовательностей с SEQ ID NO: 2, 8, 17 и 20 - в одном предпочтительном варианте осуществления в комбинации - для лечения рака молочной железы.
Таким образом, другой аспект настоящего изобретения относится к применению по меньшей мере одного пептида по настоящему изобретению в соответствии с любой из последовательностей с SEQ ID NO: 2, 3, 7, 8, 17 и 20 - в одном предпочтительном варианте осуществления в комбинации - для лечения рака матки.
Таким образом, другой аспект настоящего изобретения относится к применению по меньшей мере одного пептида по настоящему изобретению в соответствии с SEQ ID NO: 3 для лечения ККМ.
Таким образом, другой аспект настоящего изобретения относится к применению по меньшей мере одного пептида по настоящему изобретению в соответствии с любой из последовательностей с SEQ ID NO: 6 и 12 - в одном предпочтительном варианте осуществления в комбинации - для лечения РПЖ.
Таким образом, другой аспект настоящего изобретения относится к применению по меньшей мере одного пептида по настоящему изобретению в соответствии с любой из последовательностей с SEQ ID NO: 7, 10 и 12-в одном предпочтительном варианте осуществления в комбинации - для лечения рака желчного пузыря и/или рака желчных протоков.
Таким образом, другой аспект настоящего изобретения относится к применению по меньшей мере одного пептида по настоящему изобретению в соответствии с любой из последовательностей с SEQ ID NO: 8, 10 и 20 - в одном предпочтительном варианте осуществления в комбинации - для лечения КРК.
Таким образом, другой аспект настоящего изобретения относится к применению по меньшей мере одного пептида по настоящему изобретению в соответствии с любой из последовательностей с SEQ ID NO: 10 и 22 - в одном предпочтительном варианте осуществления в комбинации - для лечения лейкоза.
Таким образом, другой аспект настоящего изобретения относится к применению по меньшей мере одного пептида по настоящему изобретению в соответствии с SEQ ID NO: 10 для лечения РЯ.
Таким образом, другой аспект настоящего изобретения относится к применению по меньшей мере одного пептида по настоящему изобретению в соответствии с любой из последовательностей с SEQ ID NO: 10 и 20 - в одном предпочтительном варианте осуществления в комбинации - для лечения рака пищевода.
Таким образом, другой аспект настоящего изобретения относится к применению по меньшей мере одного пептида по настоящему изобретению в соответствии с SEQ ID NO: 10 для лечения ХЛЛ.
Таким образом, другой аспект настоящего изобретения относится к применению по меньшей мере одного пептида по настоящему изобретению в соответствии с любой из последовательностей с SEQ ID NO: 6 и 12 - в одном предпочтительном варианте осуществления в комбинации - для лечения РПЖ.
Таким образом, другой аспект настоящего изобретения относится к применению по меньшей мере одного пептида по настоящему изобретению в соответствии с любой из последовательностей с SEQ ID NO: 10, 28, 29, 33, 34, 35, 36, 37, 38, 41, 42, 44 и 48 - в одном предпочтительном варианте осуществления в комбинации - для лечения НМРЛ.
Таким образом, другой аспект настоящего изобретения относится к применению по меньшей мере одного пептида по настоящему изобретению в соответствии с любой из последовательностей с SEQ ID NO: 10, 34, 37, 41 и 48 - в одном предпочтительном варианте осуществления в комбинации - для лечения ПКК.
Таким образом, другой аспект настоящего изобретения относится к применению по меньшей мере одного пептида по настоящему изобретению в соответствии с любой из последовательностей с SEQ ID NO: 13, 17, 18, 19, 22, 33, 34, 36, 37, 38, 41, 42, 43, 44 и 48 - в одном предпочтительном варианте осуществления в комбинации - для лечения рака головного мозга.
Таким образом, другой аспект настоящего изобретения относится к применению по меньшей мере одного пептида по настоящему изобретению в соответствии с SEQ ID NO: 22 для лечения ОМЛ.
- 8 041120
Таким образом, другой аспект настоящего изобретения относится к применению по меньшей мере одного пептида по настоящему изобретению в соответствии с любой из последовательностей с
SEQ ID NO: 29, 31, 35, 38 и 42 - в одном предпочтительном варианте осуществления в комбинации - для лечения РЖ.
Таким образом, другой аспект настоящего изобретения относится к применению пептидов в соответствии с настоящим изобретением - предпочтительно в комбинации - в лечении пролиферативного заболевания, выбранного из группы: рак легких, мелкоклеточный рак легких, меланома, рак печени, рак молочной железы, рак матки, карцинома клеток Меркеля, рак поджелудочной железы, рак желчного пузыря, рак желчных протоков, КРК, рак мочевого пузыря, немелкоклеточный рак легких, рак почек, лейкоз (например, ОМЛ или ХЛЛ), рак яичника, рак пищевода, рак головного мозга и рак желудка и наиболее предпочтительно рак предстательной железы.
Настоящее изобретение, более того, относится к пептидам в соответствии с настоящим изобретением, имеющим способность связываться с молекулой главного комплекса гистосовместимости человека (МНС) I класса или - в удлиненной форме, такой как вариант по длине - МНС II класса.
Настоящее изобретение далее относится к пептидам в соответствии с настоящим изобретением, где указанные пептиды (каждый из них) состоят или состоят по существу из аминокислотной последовательности в соответствии с SEQ ID NO: 1 по SEQ ID NO: 48.
Настоящее изобретение далее относится к пептидам в соответствии с настоящим изобретением, где указанный пептид модифицирован и/или включает непептидные связи.
Настоящее изобретение далее относится к пептидам в соответствии с настоящим изобретением, где указанный пептид является частью слитого белка, в частности слитого с N-терминальными аминокислотами HLA-DR антиген-ассоциированной инвариантной цепи (li), или слитого с антителом (или встроенный в последовательность), таким как, например, антителом, специфичным для дендритных клеток.
Другой вариант осуществления настоящего изобретения относится к не встречающемуся в природе пептиду, где указанный пептид состоит или состоит по существу из аминокислотной последовательности в соответствии с SEQ ID NO: 1 по SEQ ID NO: 48 и был получен синтетическим способом (например, синтезирован) в виде фармацевтически приемлемой соли. Способы синтетического получения пептидов хорошо известны в данной области. Соли пептидов в соответствии с настоящим изобретением существенно отличаются от пептидов по своему состоянию(ям) in vivo, так как синтезированные пептиды не являются солями in vivo. He встречающаяся в природе солевая форма пептида опосредует растворимость пептида, в частности, в контексте фармацевтических композиций, включающих пептиды, например вакцин на основе пептидов, раскрытых в настоящем описании. Достаточная и по меньшей мере существенная растворимость пептида(ов) необходима для эффективного введения пептидов субъекту, подлежащему лечению. Предпочтительно, если соли являются фармацевтически приемлемыми солями пептидов. Соли в соответствии с изобретением включают щелочные и щелочноземельные соли, такие как соли рядов Гофмейстера, включающие в качестве анионов PO4 3-, SO42-, CH3COO-, Cl-, Br, NO3-, ClO4 -, I-, SCN- и в качестве катионов NH4+, Rb+, K+, Na+, Cs+, Li+, Zn2+, Mg2+, Ca2+, Mn2+, Cu2+ и Ва2+. В частности, соли выбраны из (NH4)3PO4, (NH4)2HPO4, (NH4)H2PO4, (NH4)2SO4, NH4CH3COO, NH4Cl, NH4Br, NH4NO3, NH4ClO4, NH4I, NH4SCN, Rb3PO4, Rb2HPO4, RbH2PO4, Rb2SO4, Rb4CH3COO, Rb4Cl, Rb4Br, Rb4NO3, Rb4ClO4, Rb4I, Rb4SCN, K3PO4, K2HPO4, KH2PO4, K2SO4, KCH3COO, KCl, KBr, KNO3, KClO4, KI, KSCN, Na3PO4, Na2HPO4, NaH2PO4, Na2SO4, NaCH3COO, NaCl, NaBr, NaNO3, NaClO4, Nal, NaSCN, ZnCl2 Cs3PO4, Cs2HPO4, CsH2PO4, Cs2SO4, CsCH3COO, CsCl, CsBr, CsNO3, CsClO4, CsI, CsSCN, Li3PO4, Li2HPO4, LiH2PO4, Li2SO4, LiCH3COO, LiCl, LiBr, LiNO3, LiClO4, LiI, LiSCN, Cu2SO4, Mg3(PO4)2, Mg2HPO4, Mg(H2PO4)2, Mg2SO4, Mg(CH3COO)2, MgCl2, MgBr2, Mg(NO3)2, Mg(ClO4)2, MgI2, Mg(SCN)2, MnCl2, Ca3(PO4)2, Ca2HPO4, Ca(H2PO4)2, CaSO4, Са(CHзCOO)2, CaCF, CaBr2, Са(NOз)2, Ca(ClO4)2, Cab, Ca(SCN)2, Ba3(PO4)2, Ba2HPO4, Ba(H2PO4)2, BaSO4, Ва(CHзCOO)2, BaCk, BaBr2, Ва(NOз)2, Ba(ClO4)2, Bab и Ba(SCN)2. Особенно предпочтительными являются ацетат NH, MgCl2, KH2PO4, Na2SO4, KCl, NaCl и CaCl2, такие как, например, хлоридные или ацетатные (трифторацетатные) соли.
Как правило, пептиды и варианты (по меньшей мере те, что содержат пептидные связи между аминокислотными остатками) могут быть синтезированы Fmoc-полиамидным способом твердофазного синтеза пептидов, как раскрыто у Lukas et al. (Lukas et al., 1981) и в прилагающихся ссылках. Временная защита N-аминогруппы производится 9-флуоренилметилоксикарбонильной (Fmoc) группой. Повторное расщепление этой высоко щелочелабильной защитной группы осуществляется при использовании 20% пиперидина в N,N-диметилформамиде. Функциональные группы боковой цепи могут быть защищены получением таких соединений, как их бутиловые эфиры (в случае серина, треонина и тирозина), бутиловые сложные эфиры (в случае глютаминовой кислоты и аспарагиновой кислоты), бутилоксикарбонильное производное (в случае лизина и гистидина), тритильное производное (в случае цистеина) и производное 4-метокси-2,3,6-триметилбензолсульфонила (в случае аргинина). Если глютамин или аспарагин являются С-терминальными остатками, для защиты амидогруппы боковой цепи используется 4,4'-диметоксибензгидрильная группа. Твердофазный носитель основан на полимере полидиметилакриламиде, состоящем из трех мономеров: диметилакриламида (каркасный мономер), бис-акрилоилэтилендиамина (компонент для перекрестной сшивки, линкер) и метилового эфира акрило- 9 041120 илсаркозина (функционализирующий агент). Для образования легкорасщепляемой связи пептида и смолы используется нестойкое к действию кислот производное 4-гидроксиметилфеноксиуксусной кислоты. Все аминокислотные производные добавляются в виде предварительно синтезированных симметричных ангидридных производных, за исключением аспарагина и глютамина, которые добавляются с применением обратной реакции соединения, опосредованной ^№дициклогексилкарбодиимид/1-гидроксибензотриазолом. Все реакции сочетания и снятия защитных групп отслеживались с помощью методов контроля с применением нингидрина, тринитробензолсульфоновой кислоты или изотина. После завершения синтеза пептиды отщепляются от смолы-носителя с сопутствующим удалением защитных групп боковой цепи при обработке 95% трифторуксусной кислотой, содержащей 50% смеси поглотителей. Обычно используемые поглотители включают этандитиол, фенол, анизол и воду, окончательный выбор зависит от составляющих аминокислот синтезируемого пептида. Также возможна комбинация твердофазных и жидкофазных методов синтеза пептидов (см., например, (Bruckdorfer et al., 2004), и прилагаемые ссылки).
Трифторуксусную кислоту удаляют выпариванием в вакууме с последующим измельчением с диэтиловым эфиром для получения сырого пептида. Любые присутствующие поглотители удаляются простой технологией экстракции, которая позволяет получить сырой пептид без поглотителей после лиофилизации водной фазы. Реагенты для синтеза пептидов, как правило, имеются в наличии, например, в Calbiochem-Novabiochem (Ноттингем, Великобритания).
Очистка может быть произведена любой методикой или комбинацией таких методик, как перекристаллизация, эксклюзионная хроматография, ионообменная хроматография, хроматография гидрофобного взаимодействия и (обычно) обращенно-фазовая высокоэффективная жидкостная хроматография с использованием, к примеру, градиентного разделения в системе ацетонитрил/вода.
Настоящее изобретение далее относится к нуклеиновой кислоте, кодирующей пептиды в соответствии с настоящим изобретением. Настоящее изобретение далее относится к нуклеиновой кислоте в соответствии с настоящим изобретением, которая является ДНК, кДНК, ПНК, РНК или их комбинациями.
Настоящее изобретение далее относится к вектору экспрессии, способному к экспрессии и/или экспрессирующему нуклеиновую кислоту в соответствии с настоящим изобретением.
Настоящее изобретение далее относится к пептиду в соответствии с настоящим изобретением, к нуклеиновой кислоте в соответствии с настоящим изобретением или к вектору экспрессии в соответствии с настоящим изобретением для применения в лечении заболеваний и в медицине, в частности в лечении рака.
Настоящее изобретение далее относится к антителам, которые является специфическими по отношению к пептидам в соответствии с настоящим изобретением или комплексам указанных пептидов в соответствии с настоящим изобретением и МНС и способам их получения.
Настоящее изобретение далее относится к Т-клеточным рецепторам (ТКР), в частности к растворимым ТКР и клонированным ТКР, встроенным в аутологичные или аллогенные Т-клетки, и способам их получения, а также к естественным киллерным клеткам (NK) или другим клеткам, несущим указанный ТКР или вступающим в перекрестную реакцию с указанными ТКР.
Антитела и ТКР являются дополнительными вариантами осуществления иммунотерапевтического применения пептидов в соответствии с настоящим изобретением.
Настоящее изобретение далее относится к клетке-хозяину, включающей нуклеиновую кислоту в соответствии с настоящим изобретением или вектор экспрессии, описанный ранее. Настоящее изобретение далее относится к клетке-хозяину в соответствии с настоящим изобретением, которая является антигенпрезентирующей клеткой, предпочтительно дендритной клеткой.
Настоящее изобретение далее относится к способу получения пептида в соответствии с настоящим изобретением, причем указанный способ включает культивацию клетки-хозяина в соответствии с настоящим изобретением и выделение пептида из указанной клетки-хозяина или его культуральной среды.
Настоящее изобретение далее относится к указанному способу в соответствии с настоящим изобретением, где антиген нагружен на молекулы МНС I или II класса, экспрессированные на поверхности подходящей антигенпрезентирующей клетки или искусственной антигенпрезентирующей клетки, при контактировании достаточного количества антигена с антигенпрезентирующей клеткой.
Настоящее изобретение далее относится к способу в соответствии с настоящим изобретением, где антигенпрезентирующая клетка включает вектор экспрессии, способный экспрессировать или экспрессирующий указанный пептид, содержащий последовательности с SEQ ID NO: 1 по SEQ ID NO: 48, предпочтительно содержащий последовательности с SEQ ID NO: 1 по SEQ ID NO: 6 (см. табл. 1) и с SEQ ID NO: 24 по SEQ ID NO: 28 (см. табл. 2) или вариантную аминокислотную последовательность.
Настоящее изобретение далее относится к активированным Т-клеткам, полученным способом в соответствии с настоящим изобретением, где указанная Т-клетка селективно распознают клетку, которая экспрессирует полипептид, включающий аминокислотную последовательность в соответствии с настоящим изобретением.
Настоящее изобретение далее относится к способу уничтожения клеток-мишеней у пациента, чьи клетки-мишени аберрантно экспрессируют полипептид, включающий любую аминокислотную последо- 10 041120 вательность в соответствии с настоящим изобретением, причем способ включает введение пациенту эффективного числа Т-клеток, полученных в соответствии с настоящим изобретением.
Настоящее изобретение далее относится к применению любого описанного пептида, нуклеиновой кислоты в соответствии с настоящим изобретением, вектора экспрессии в соответствии с настоящим изобретением, клетки в соответствии с настоящим изобретением, активированного Т-лимфоцита, Т-клеточного рецептора или антитела или других молекул, связывающихся с пептидом и/или комплексом пептид-МНС в соответствии с настоящим изобретением в качестве медикамента или в производстве медикамента. Предпочтительно, если указанный медикамент обладает активным противораковым действием.
Предпочтительно, если указанный медикамент предназначен для клеточной терапии, является вакциной или белком на основе растворимого ТКР или антителом.
Настоящее изобретение далее относится к применению в соответствии с настоящим изобретением, где указанные раковые клетки являются клетками рака легких, мелкоклеточного рака легких, меланомы, рака печени, рака молочной железы, рака матки, карциномы клеток Меркеля, рака поджелудочной железы, рака желчного пузыря, рака желчных протоков, КРК, рака мочевого пузыря, немелкоклеточного рака легких, рака почек, лейкоза (например, ОМЛ или ХЛЛ), рака яичника, рака пищевода, рака головного мозга и рака желудка и наиболее предпочтительно клетками рака предстательной железы.
Настоящее изобретение далее относится к биомаркерам на основе пептидов в соответствии с настоящим изобретением, в контексте изобретения называемые мишенями, которые могут быть использованы при постановке диагноза рака, предпочтительно рака предстательной железы. В роли маркера может выступать избыточная презентация самого(их) пептида(ов), или избыточная экспрессия соответствующего(их) гена(ов). Эти маркеры могут также использоваться для предсказания вероятности успеха лечения, предпочтительно иммунотерапии, и, наиболее предпочтительно, иммунотерапии, направленной на ту же мишень, которая была идентифицирована биомаркером. Например, для окрашивания срезов опухоли для выявления присутствия интересующего пептида в комплексе с МНС может использоваться антитело или растворимый ТКР.
Факультативно, антитело обладает дополнительной эффекторной функцией, например несет иммуностимулирующий домен или токсин.
Настоящее изобретение относится также к применению этих новых мишеней в контексте лечения рака.
Как терапевтические способы применения против других видов раковых заболеваний, так и диагностическое применение раскрыты в последующем более подробном описании продуктов экспрессии (полипептидов), лежащих в основе пептидов в соответствии с изобретением.
АТФ-связывающие кассетные транспортеры подсемейства С (CFTR/MRP), член 4 (АВСС4) АВСС4 способен выкачивать широкий спектр эндогенных и ксенобиотических органических соединений анионовой природы из клетки, включая широкий спектр антивирусных, цитостатических средств, антибиотиков и препаратов для лечения сердечно-сосудистых заболеваний, а также молекул, задействованных в передаче клеточных сигналов, таким образом наделяя АВСС4 ключевой функцией в процессах защиты клетки и внеклеточных сигнальных путях (Russel et al., 2008). Уровни АВСС4 повышены при раке предстательной железы, и, как было продемонстрировано, экспрессия регулируется за счет андрогенного воздействия in vitro. Следовательно, антиандрогенная терапия снижает уровень экспрессии АВСС4 в ткани рака предстательной железы. Более того, уровень АВСС4 снижается при прогрессировании рака предстательной железы (Но et al., 2008; Montani et al., 2013). Избыточная экспрессия АВСС4 была также продемонстрирована в случае других раковых заболеваний, например рака легких (Zhao et al., 2014). Подавление экспрессии АВСС4, как было показано, ингибирует пролиферацию избыточно экспрессирующих АВСС4 раковых клеток in vitro (Zhao et al., 2014) и восстанавливает чувствительность к химиотерапевтическим средствам в линиях клеток с лекарственной резистентностью (Zhang et al., 2014).
Астротактин 2 (ASTN2) - ASTN2, как предполагается, выполняет функцию в процессе миграции нервных клеток (Wilson et al., 2010).
Альфа-2-гликопротеин 1, связывающий цинк-домены (AZGP1) - ASTN2 стимулирует расщепление липидов в адипоцитах и вызывает масштабную потерю жиров, ассоциированную с некоторыми видами рака поздней стадии (UniProt, 2015). Уровень экспрессии AZGP1 повышен при раке предстательной железы, который обнаруживается также в образцах сыворотки и предлагается в качестве потенциального биомаркера (Hale et al., 2001). Его уровни снижаются в опухолях высокой степени злокачественности, и экспрессия AZGP1 ассоциируется со снижением уровня смертности и рецидивов опухоли у пациентов с раком предстательной железы (Lapointe et al., 2004; Severi et al., 2014). AZGP1 предлагается в качестве биомаркера рака молочной железы, и уровни AZGP1 снижены при слабо дифференцированной опухоли (Hassan et al., 2008).
Открытая рамка считывания 132 хромосомы 6 (C6orf132) - C6orf132 локализован на хромосоме 6р21.1 (RefSeq, 2002).
Белок 1 с доменом zinc finger, взаимодействующий с CDKN1A (CIZ1) - CIZ1 кодирует белок с
- 11 041120 доменом zinc finger, взаимодействующий с CDKN1A, который выполняет функции гена-супрессора опухоли (Nishibe et al., 2013). При колоректальном раке CIZ1, как предполагается, задействован в прогрессировании рака за счет регулирования пролиферации клеток, клеточного цикла, апоптоза и образовании клетками колоний (Yin et al., 2013). Вариант CIZ1, в котором отсутствует часть С-концевого домена, был обнаружен в клетках рака легких даже на ранней стадии, и он имеет потенциал биомаркера (Higgins et al., 2012).
Кристаллин, мю (CRYM) - CRYM специфически катализирует восстановление иминных связей (Hallen et al., 2011). CRYM является геном, регулируемым андрогенами, уровень экспрессии которого повышен при раке предстательной железы и снижен при резистентных к кастрации формах опухолей (Malinowska et al., 2009). CRYM избыточно экспрессировался при немелкоклеточном раке легких и метастазах лейомиосаркомы матки в сравнении с первичной опухолью (Chong et al., 2006; Davidson et al., 2014). Экспрессия CRYM была также обнаружена в образцах рака молочной железы, и CRYM был обнаружен в сыворотке пациентов с раком молочной железы при анализе методом SEREX (Forti et al., 2002).
Белок 2, обогащенный цистеином и глицином (CSRP2) - CSRP2 принадлежит к семейству генов CSRP, кодирующих белки, содержащих LIM-домен. Избыточная экспрессия CSRP2 ассоциируется с дедифференциацией гепатоклеточной карциномы (Midorikawa et al., 2002).
Десмин (DES) - DES - это белки промежуточных филаментов III класса, присутствующие в мышечных клетках. Они образуют волокнистую сеть, соединяющую миофибриллы друг с другом и с плазматической мембраной с периферии структур Z-линии (Clemen et al., 2015). Экспрессия DES снижена в ткани рака предстательной железы, и низкий уровень экспрессии DES ассоциируется более коротким периодом выживаемости без признаков заболевания (Wu et al., 2014). При колоректальной карциноме уровень экспрессии DES повышен при опухолях поздних стадий, возможно, в связи с увеличенной плотностью микрососудистой сети и, таким образом, более высокими уровнями перицитов (Arentz et al., 2011). Кроме того, повышенные уровни DES ассоциируются со сниженной выживаемостью при колоректальном раке (Ma et al., 2009).
Семейство со сходством последовательности 129, член A (FAM129A) - FAM129A локализован на хромосоме 1q25 (RefSeq, 2002). Избыточная экспрессия FAM129A была продемонстрирована при плоскоклеточной карциноме головы и шеи (Ito et al., 2010а), опухолях щитовидной железы (Matsumoto et al., 2006) и почечноклеточной карциноме (Adachi et al., 2004).
FK506-связывающий белок 10 (FKBP10) - FKBP10 кодирует FK506-связывающий белок 10, который принадлежит к семейству пептидилпролил-цис/транс-изомеразы типа FKBP. Продукт гена FKBP10 локализуется в эндоплазматическом ретикулуме и выступает в роли молекулярного шаперона (RefSeq, 2002). FKBP10 был идентифицирован в качестве нового гена, который участвует в приобретении и сохранении клетками лейкоза фенотипа, резистентного к действию адриамицина (Sun et al., 2014). FKBP10 ассоциируется с колоректальным раком за счет повышения его уровня (Olesen et al., 2005). Напротив, недостаточная экспрессия FKBP10 была характерна для эпителиальных карцином яичника (Quinn et al., 2013).
GATA-связывающий белок 2 (GATA2) - GATA2 является важнейшим элементом, необходимым для гемопоэза, и мутации GATA2 ассоциируются с миелодиспластическим синдромом и миелоидным лейкозом (Bresnick et al., 2012). В отношении солидных опухолей избыточную экспрессию GATA2 описывают при раке молочной железы, и она коррелировала с неблагоприятным прогнозом при колоректальной карциноме и глиобластоме (Chen et al., 2013; Wang et al., 2015; Wang et al., 2012). Напротив, в других сообщениях выдвигается предположение о скорее сниженной экспрессии GATA2 в опухолевой ткани и сообщается об ассоциации низкого уровня GATA2 с агрессивностью опухоли и неблагоприятным исходом при гепатоклеточной карциноме, раке мочевого пузыря или почечноклеточной карциноме (Kandimalla et al., 2012; Peters et al., 2014; Li et al., 2014).
Эстрогензависимый регулятор роста рака молочной железы (GREB1) - GREB1 является эстрогенчувствительным геном, являющимся геном раннего ответа сигнального пути, регулируемого рецептором эстрогена. Считается, что он играет важную роль в чувствительных к гормонам тканях и при раке (RefSeq, 2002). GREB1 избыточно экспрессируется при раке предстательной железы и доброкачественной гиперплазии предстательной железы и задействован в вызванном андрогенами росте клеток рака предстательной железы (Rae et al., 2006). GREB1 также опосредует стимулируемую эстрогенами пролиферацию клеток рака яичника и молочной железы (Laviolette et al., 2014).
Интегрин-альфа 7 (ITGA7) - ITGA7 является альфа-субъединицей димера интегрина альфа-7/бета-1 - рецептора ламинина 1. ITGA7 - это ген-супрессор опухоли, который является критическим для подавления роста злокачественных опухолей. Анализ мутаций обнаружил мутации ITGA7 при раке предстательной железы, гепатоклеточной карциноме, лейомиосаркоме мягких тканей и мультиформной глиобластоме. Уровень ITGA7 был понижен при неметастатическом раке предстательной железы и лейомиосаркоме (Tan et al., 2013).
Потенциал-независимый калиевый канал, подсемейство G, член 1 (KCNG1) - KCNG1 обильно экспрессируется в скелетных мышцах (Gutman et al., 2005).
KIAA1244 - KIAA1244 кодирует члена 3 семейства ARFGEF и локализован на хромосоме 6q23.3.
- 12 041120 (RefSeq, 2002). Избыточная экспрессия KIAA1244 была обнаружена на большинстве раковых опухолей молочной железы (Nishidate et al., 2004).
Член семейства кинезинов 7 (KIF7) - KIF7 причастен к развитию некоторых заболеваний, включая синдром Жубера, гидролетальный и акрокаллозальный синдромы. Он также участвует в образовании первичных цилий (Klejnot and Kozielski, 2012). Аберрантная активация сигнального пути Hedgehog, в котором KIF7 играет важную роль, ведет к патологическим последствиям при различных опухолевых заболеваниях человека, таких как базальноклеточная карцинома кожи, рак желудка и рак поджелудочной железы (Li et al., 2012; Katoh and Katoh, 2005).
Калликреин-связанная пептидаза 4 (KLK4) - KLK4 является одним из 15 членов подсемейства калликреинов, гены которых локализованы в кластере на хромосоме 19 (Hu et al., 2000). Уровень KLK4 повышен при раке молочной железы, раке яичника и раке предстательной железы (Schmitt et al., 2013). При раке предстательной железы KLK4 взаимодействует с сигнальным путем андрогенов и mTOR (Jin et al., 2013).
Лактотрансферрин (LTF) - LTF является многофункциональным белком, наиболее высокие уровни которого обнаружены в молоке и в более низкой концентрации - в других жидкостях слизистых оболочек. LTF, как было показано, вызывает антибактериальную и противовоспалительную активность, задействован в гомеостазе железа и играет роль в росте и дифференциации клеток, а также в защите от развития рака и метастазов (Ward et al., 2005). Уровень LTF снижен в ткани рака предстательной железы и сыворотке по сравнению с доброкачественной гиперплазией предстательной железы. Кроме того, пониженные уровни LTF коррелируют со снижением выживаемости пациентов (Shaheduzzaman et al., 2007). LTF ингибирует рост клеток, блокируя ход клеточного цикла, возможно, с помощью нескольких механизмов, включая ингибирование сигнальных путей NF-каппаВ и Akt (Deng et al., 2013; Ye et al., 2014). Кроме того, LTF также оказывает проаптотическое действие, включая активацию сигнальных путей каспазы-3 и JNK (Sakai et al., 2005; Wang et al., 2011).
Регулятор транскрипции 1, содержащий домен лейциновых застежек (LZTR1) - LZTR1, возможно, играет роль в регуляции сигнального пути Ras/MAPK (Yamamoto et al., 2015). LZTR1 имеет частые мутации или он удален при глиобластоме (Frattini et al., 2013).
Белок 1, содержащий домен MANSC (MANSC1) - MANSC1 локализован на хромосоме 12р13.2 (RefSeq, 2002). Уровень MANSC1 значительно понижен при опухолях предстательной железы; он может быть важен для инициации или прогрессировании карциномы предстательной железы (Kibel et al., 2004). У пациентов с различными гематологическими злокачественными заболеваниями была продемонстрирована повышенная экспрессия MANSC1 (Haferlach et al., 2011).
Белок, ассоциированный с микротрубочками 1В (МАР1 В) - МАР1В является белком, стабилизирующим микротрубочки, который играет важную роль в развитии центральной нервной системы и функционировании аксонов (Halpain and Dehmelt, 2006). Иммуногистохимический анализ мелкокруглоклеточных опухолей у пациентов детского возраста позволил предположить, что МАР1В экспрессируется при нейробластоме, рабдомиосаркоме и опухоли Вильмса, но не при саркоме Юинга (Willoughby et al., 2008).
Митоген-активируемая киназа протеинкиназы 4 (МАР4К4) - МАР4К4 является членом семейства сериновых/треониновых протеинкиназ и опосредует сигнальный путь TNF-альфа (RefSeq, 2002). МАР4К4 предложен в качестве биомаркера агрессивности рака предстательной железы (Rizzardi et al., 2014).
Киназа 1 с доменом, подобным misshapen (MINK1) - MINK1 регулирует организацию цитоскелета и процесс клеточного старения, вызванный онкогенами. Она необходима для цитокинеза (Hyodo et al., 2012). MINK1 активируется Ras и опосредует активацию р38 во время блокировки роста и старения (Nicke et al., 2005).
Ген гомеобокса Mohawk (MKX) - MKX является фактором транскрипции, о котором сообщалось, что он играет роль в развитии костей, скелетных мышц и хрящевых структур (Ito et al., 2010b).
Миозин, тяжелая цепь 11, гладкие мышцы (MYH11) - MYH11 расположен на участке хромосомы 16q12 и экспрессируется в пуповинной артерии, мочевом пузыре, пищеводе и трахее человека (Matsuoka et al., 1993). Инверсия в локусе хромосомы MYH11 (inv(16); CBFB-MYH11) часто обнаруживается при остром миелоидном лейкозе, приводя к образованию онкогенного химерного белка центрального фактора связывания (CBF-бета) и MYH11 (Liu et al., 1993). Низкие уровни экспрессии MYH11 были связаны с неблагоприятным прогнозом при колоректальном раке (Wang et al., 2014).
Нейрофиламент, тяжелый полипептид (NEFH) - нейрофиламенты являются гетерополимерами промежуточного филамента IV типа, состоящими из легкой, средней и тяжелой цепей. Нейрофиламенты включают аксоскелет и функционально поддерживают калибр нейронов. Они также могут играть роль во внутриклеточном транспорте к аксонам и дендритам. NEFH кодирует тяжелый белок нейрофиламентов (RefSeq, 2002). У пациентов с метастатической почечноклеточной карциномой метилирование CpG-островков гена NEFH продемонстрировало опухолеспецифическое увеличение, ассоциацию с поздней стадией заболевания и отдаленными метастазами и значимо ассоциировалось с плохой выживаемостью без прогрессирования и снижением общей выживаемости (Dubrowinskaja et al., 2014).
- 13 041120
Обонятельный рецептор, семейство 51, подсемейство Е, член 2 (OR51E2) - OR51E2 является членом семейства обонятельных рецепторов, связанных с G-белком, который преимущественно экспрессируется в предстательной железе человека и часто экспрессируется в избытке при раке предстательной железы (Weng et al., 2005). Полученные из OR51E2 пептиды могут использоваться как диагностические маркеры, а также в качестве мишеней иммунной системы при разработке вакцин против рака (Matsueda et al., 2012).
Фосфодиэстераза 11A (PDE11 А) - PDEIIA катализирует гидролиз цАМФ и цГМФ, тем самым подавляя соответствующие сигнальные пути (Fawcett et al., 2000). Мутации PDE11A ассоциируются с адренокортикальной гиперплазией, а также с семейной формой герминогенной опухоли яичек (Greene et al., 2010; Horvath and Stratakis, 2008). В одном из исследований миссенс-мутации были также идентифицированы в PDE11A у 30% пациентов с раком предстательной железы. Варианты были охарактеризованы как демонстрирующие сниженную активность PDE11A in vitro, и уровни их экспрессии были снижены in vivo (Faucz et al., 2011).
Плектин (PLEC) - PLEC кодирует плектин, члена семейства плакинов, белок, задействованный в поперечной сшивке и организации цитоскелета и комплексов адгезии (Bouameur et al., 2014). PLEC экспрессируется в избытке клетками колоректальной аденокарциномы, плоскоклеточной карциномы головы и шеи и рака поджелудочной железы (Lee et al., 2004; Katada et al., 2012; Bausch et al., 2011).
Белок 8, содержащий домен PR (PRDM8) - PRDM8 является транскрипционным репрессором с активностью гистонной метилтрансферазы. PRDM8 регулируется сигнальным путем Notch-Hes и играет роль в развитии ЦНС (Kinameri et al., 2008)
RAB3B, член семейства RAS-онкогенов (RAB3B) - RAB3B является ГТФ-связывающим белком с низкой молекулярной массой, который задействован в регуляции экзоцитоза (Rotondo et al., 2009). RAB3B экспрессируется в избытке у пациентов с раком предстательной железы, позволяя предположить, что RAB3B вместе с AR, FoxA1 и NKX3-1 являются важными регуляторами прогрессирования рака предстательной железы (Tan et al., 2012).
Семейство транспортеров растворенных веществ 39, член 6 (транспортер цинка) (SLC39A6) SLC39A6 кодирует транспортер цинка ZIP6, эффекторную молекулу, расположенную за растворимыми факторами роста (Lue et al., 2011). При раке молочной железы избыточная экспрессия SLC39A6 ассоциируется с более коротким периодом времени до развития рецидивов, а также сокращением времени до наступления смерти, связанной с заболеванием (Andres et al., 2013).
Эпителиальный антиген предстательной железы 2 с шестью трансмембранными доменами (STEAP2) - STEAP2 кодирует многопроходный мембранный белок, который локализован в комплексе Гольджи, плазматической мембране и тубулярно-везикулярных структурах в цитозоле (RefSeq, 2002). Уровень экспрессии STEAP2 повышен у пациентов с раком предстательной железы поздних стадий. Избыточная экспрессия STEAP2, как было продемонстрировано, увеличивает пролиферацию клеток, а также способность к миграции и инвазии in vitro, тогда как его нокдаун ингибировал рост клетки и, возможно, способствует апоптозу (Wang et al., 2010; Whiteland et al., 2014). Вместе с другими членами семейства белков STEAP STEAP2 экспрессируется в избытке также и при других видах рака. Кроме того, белки STEAP исследовали в качестве биомаркеров рака и потенциальных мишеней иммунотерапии рака (Grunewald et al., 2012).
Синемин, белок промежуточных филаментов (SYNM) - SYNM связывает десмин с внеклеточным матриксом и играет важную структурообразующую роль в мышцах (Bhosle et al., 2006). Экспрессия SYNM понижена при раке молочной железы и гепатоклеточной карциноме, что коррелирует с уменьшением выживаемости, метастазами в лимфатические узлы и высокой степенью злокачественности (Noetzel et al., 2010; Liu et al., 2011).
Синаптоподин 2 (SYNPO2) - SYNPO2, также известный как миоподин, является актинсвязывающим белком, который играет роль в регуляции миграции клеток в ответ на хемотаксические стимулы (Kai et al., 2015). SYNPO2 считается геном-супрессором опухоли и отсутствие SYNPO2 при раке предстательной железы коррелирует с инвазивностью и клиническим рецидивом (Yu et al., 2006).
Трансформирующий фактор роста, бета 3 (TGFB3) - TGFB3 является одним по меньшей мере из трех изоформ TGF-бета. В нормальных клетках сигнальный путь TGF-бета останавливает ход клеточного цикла в фазе G1, останавливая пролиферацию, вызывая дифференциацию или способствуя апоптозу (Hanahan and Weinberg, 2000). При НМРЛ TGFB3 является проинвазивным фактором (Petrella et al., 2012).
Киназа, взаимодействующая с TRAF2 и NCK (TNIK) - TNIK является киназой зародышевого центра и потенциально задействована в регуляции актинового цитоскелета (Fu et al., 1999). TNIK - это необходимый, специфический активатор генов-мишеней Wnt. TNIK описывали как ключевой элемент TRAF6зависимых сигнальных путей JNK и NF-каппаВ и передатчик сигналов активации и трансформации в Вклетках человека (Shkoda et al., 2012) При гормон-рецептор-негативном раке молочной железы TNIK был идентифицирован в качестве потенциального онкогена, влияющего на рост и пролиферацию (Jiao et al., 2013).
Триптаза альфа/бета 1 (TPSAB1), триптаза бета 2 (TPSB2) - TPSAB1 и TPSB2 являются серинпро- 14 041120 теазами, которые преимущественно экспрессируются мастоцитами. Присутствие триптазаположительных мастоцитов в опухолевой ткани коррелирует с ангиогенезом при нескольких видах опухолей, включая меланому, карциному эндометрия, рак молочной железы, рак желудка и колоректальный рак (Ammendola et al., 2014).
Катионный канал с транзиторным рецепторным потенциалом, подсемейство М, член 8 (TRPM8) TRPM8 - это натриевый и кальциевый канал, активируемый в ответ на раздражение холодом. TRPM8 экспрессируется преимущественно в эпителиальных клетках предстательной железы и, кроме того, также в некоторых сенсорных нейронах (Prevarskaya et al., 2007). О TRPM8 сообщалось, что он экспрессируется в избытке при раке предстательной железы и других видах рака, таких как опухоли молочной железы, толстой кишки, легких и кожи (Tsavaler et al., 2001).
Белок 16, содержащий домен тиоредоксина (TXNDC16) - TXNDC16 кодирует белок из 858 аминокислот с предполагаемым доменом тиоредоксина 2; его функция неизвестна. Аутоантитела к TXNDC16 были выявлены у пациентов с менингиомой (Comtesse et al., 2005).
Unc-13 гомолог В (UNC13B) - UNC13B является компонентом белкового комплекса в пресинаптической активной зоне, который контролирует высвобождение нейротрансмиттеров с помощью экзоцитоза синаптических везикул (Sudhof, 2012).
Белок 426 с доменом Zinc finger 426 (ZNF426) - ZNF426 - это регуляторный белок транскрипции (Yang and Wood, 2007).
Подробное описание изобретения
Стимуляция иммунных ответов зависит от присутствия антигенов, распознаваемых иммунной системой хозяина как чужеродные. Открытие существования опухолеассоциированных антигенов повысило возможность использования иммунной системы хозяина для вмешательства в рост опухоли. Различные механизмы управления обеими ветвями иммунной системы, как гуморальной, так и клеточной, исследуются в настоящее время для иммунотерапии рака.
Специфические элементы клеточных иммунных ответов способны к специфическому распознаванию и уничтожению опухолевых клеток. Выделение Т-клеток из популяций опухоль-инфильтрирующих клеток или из периферической крови предполагает, что такие клетки играют важную роль в естественной иммунной защите против рака. В частности, CD8-положительные Т-клетки, которые распознают пептиды, связанные с молекулами I класса главного комплекса гистосовместимости (МНС), играют важную роль в этом ответе. Эти пептиды обычно состоят из 8-10 аминокислотных остатков, полученных из белков или дефектных рибосомных продуктов (DRIP), находящихся в цитозоле. Молекулы МНС человека называются также человеческими лейкоцитарными антигенами (HLA).
Все термины, используемые здесь, если не указано иное, имеют значения, данные ниже.
Понятие Т-клеточный ответ означает специфическую пролиферацию и активацию эффекторных функций, индуцированных пептидом in vitro или in vivo. Для цитотоксических Т-клеток, рестриктированных по МНС I класса, эффекторными функциями может быть лизис клеток-мишеней, нагруженных пептидом, нагруженных предшественником пептида, или клеток-мишеней, естественно презентирующих пептид; секреция цитокинов, предпочтительно интерферона-гамма,
TNF-альфа или ИЛ-2, индуцированная пептидом; секреция эффекторных молекул, предпочтительно гранзимов или перфоринов, индуцированная пептидом, или дегрануляция.
Понятие пептид в контексте настоящего описания обозначает серии аминокислотных остатков, связанных друг с другом обычно пептидными связями между альфа-аминными и карбонильными группами смежных аминокислот. Пептиды предпочтительно имеют длину в 9 аминокислот, но могут быть короче - 8 аминокислот в длину и длиннее - 10, 11, 12 или 13 или длиннее, и в случае пептидов, связанных с молекулами МНС II класса (удлиненные варианты пептидов по изобретению), они могут иметь длину в 14, 15, 16, 17, 18, 19 или 20 или более аминокислот.
Кроме того, понятие пептид включает в себя соли серий аминокислотных остатков, связанных друг с другом обычно пептидными связями между альфа-аминными и карбонильными группами смежных аминокислот. Предпочтительно, если соли являются фармацевтически приемлемыми солями пептидов, такими как, например, хлорид или ацетат (трифторацетат). Было замечено, что соли пептидов в соответствии с настоящим изобретением существенно отличаются от пептидов в их состоянии(ях) in vivo, так как пептиды не являются солями in vivo.
Понятие пептид включает также понятие олигопептид. Понятие олигопептид в контексте настоящего описания обозначает серии аминокислотных остатков, связанных друг с другом обычно пептидными связями между альфа-аминными и карбонильными группами смежных аминокислот. Длина олигопептида не особенно важна для изобретения до тех пор, пока в нем сохраняются надлежащие эпитоп или эпитопы. Олигопептиды типично бывают менее чем около 30 аминокислотных остатков в длину и более чем около 15 аминокислот в длину.
Понятие полипептид обозначает серии аминокислотных остатков, связанных один с другим типично пептидными связями между альфа-аминными и карбонильными группами смежных аминокислот. Длина полипептида не особенно важна для изобретения до тех пор, пока сохраняются надлежащие эпи- 15 041120 топы. В отличие от терминов пептид или олигопептид, термин полипептид введен для обозначения молекул, содержащих более приблизительно 30 аминокислотных остатков.
Пептид, олигопептид, белок или полинуклеотид, кодирующий такую молекулу, является иммуногенным (и, таким образом, иммуногеном в рамках настоящего изобретения), если он способен индуцировать иммунный ответ. В случае настоящего изобретения иммуногенность получает более специфическое определение как способность индуцировать Т-клеточный ответ. Таким образом, иммуноген будет представлять собой молекулу, которая способна индуцировать иммунный ответ, и, в случае настоящего изобретения, молекулу, способную индуцировать Т-клеточный ответ. В другом аспекте иммуноген может быть пептидом, комплексом пептида и МНС, олигопептидом и/или белком, используемым для получения специфических антител или ТКР против него.
Для Т-клеточного эпитопа I класса необходим короткий пептид, который связан с рецептором МНС I класса, образующим трехчленный комплекс (альфа-цепь МНС I класса, бета-2-микроглобулин и пептид), который может быть распознан Т-клеткой, несущей подходящий Т-клеточный рецептор, связывающийся с комплексом МНС/пептид с подходящей аффинностью. Пептиды, связывающиеся с молекулами МНС I класса, типично имеют длину в 8-14 аминокислот и, особенно типично, длину в 9 аминокислот.
У человека имеется три различных генетических локуса, которые кодируют молекулы МНС I класса (молекулы МНС человека называются также человеческими лейкоцитарными антигенами (HLA)): HLA-A, HLA-B и HLA-C. HLA-A*O1, HLA-A*02 и HLA-A*07 являются примерами различных аллелей МНС I класса, которые могут экспрессироваться из этих локусов.
В табл. 8 показаны частоты экспрессии F HLA-A*02 и HLA-A*24 и наиболее частых серологических видов HL-D.R. Частоты экспрессии выведены из частот гаплотипа Gf среди американцев, приводимых в работе Mori et al. (Mori et al., 1997), с использованием формулы Харди-Вейнберга F=1-(1-Gf)2. Комбинации А*02 или А*24 с определенными аллелями HLA-DR вследствие неравномерного распределения связей могут быть обогащенными или менее частыми, чем ожидается от их индивидуальных частот выявления. Более подробная информация представлена в работе Chanock et al. (Chanock et al., 2004).
Таблица 8
Аллель Популяция Рассчитанный фенотип по частоте аллеля
A*02 Европеоидная раса (Северная Америка) 49,1%
A*02 Афроамериканцы (Северная Америка) 34,1%
A*02 Монголоиды (Северная Америка) 43,2%
A*02 Латиноамериканцы (Северная Америка) 48,3%
DR1 Европеоидная раса (Северная Америка) 19,4%
DR2 Европеоидная раса (Северная Америка) 28,2%
DR3 Европеоидная раса (Северная Америка) 20,6%
DR4 Европеоидная раса (Северная Америка) 30,7%
DR5 Европеоидная раса (Северная Америка) 23,3%
DR6 Европеоидная раса (Северная Америка) 26,7%
DR7 Европеоидная раса (Северная Америка) 24,8%
DR8 Европеоидная раса (Северная Америка) 5,7%
DR9 Европеоидная раса (Северная Америка) 2,1%
DR1 Афроамериканцы (Северная Америка) 13,20%
DR2 Афроамериканцы (Северная Америка) 29,80%
DR3 Афроамериканцы (Северная Америка) 24,80%
DR4 Афроамериканцы (Северная Америка) 11,10%
DR5 Афроамериканцы (Северная Америка) 31,10%
DR6 Афроамериканцы (Северная Америка) 33,70%
DR7 Афроамериканцы (Северная Америка) 19,20%
DR8 Афроамериканцы (Северная Америка) 12,10%
DR9 Афроамериканцы (Северная Америка) 5,80%
DR1 Монголоиды (Северная Америка) 6,80%
DR2 Монголоиды (Северная Америка) 33,80%
DR3 Монголоиды (Северная Америка) 9,20%
DR4 Монголоиды (Северная Америка) 28,60%
DR5 Монголоиды (Северная Америка) 30,00%
DR6 Монголоиды (Северная Америка) 25,10%
DR7 Монголоиды (Северная Америка) 13,40%
DR8 Монголоиды (Северная Америка) 12,70%
DR9 Монголоиды (Северная Америка) 18,60%
DR1 Латиноамериканцы (Северная Америка) 15,30%
DR2 Латиноамериканцы (Северная Америка) 21,20%
DR3 Латиноамериканцы (Северная Америка) 15,20%
DR4 Латиноамериканцы (Северная Америка) 36,80%
DR5 Латиноамериканцы (Северная Америка) 20,00%
DR6 Латиноамериканцы (Северная Америка) 31,10%
DR7 Латиноамериканцы (Северная Америка) 20,20%
DR8 Латиноамериканцы (Северная Америка) 18,60%
DR9 Латиноамериканцы (Северная Америка) 2,10%
- 16 041120
А*24 Филиппины 65%
А*24 Русские ненцы 61%
А*24:02 Япония 59%
А*24 Малайзия 58%
А*24:02 Филиппины 54%
А*24 Индия 47%
А*24 Южная Корея 40%
А*24 Шри-Ланка 37%
А*24 Китай 32%
А*24:02 Индия 29%
А*24 Западная Австралия 22%
А*24 США 22%
А*24 Россия, Самара 20%
А*24 Южная Америка 20%
А*24 Европа 18%
Пептиды по изобретению, предпочтительно когда они включены в состав вакцины по изобретению согласно описанию в настоящем документе, связываются с HLAA*02 или HLA-A*24. Вакцина также может включать универсальные пептиды, связывающиеся с МНС II класса. Поэтому вакцина по изобретению может применяться для лечения рака у пациентов, которые являются А*02-положительными, причем в связи с универсальной по связыванию природе данных пептидов не нужен подбор аллотипов МНС II класса.
Если пептиды А*02 по изобретению скомбинировать с пептидами, связывающимися с другим аллелем, например А*24, лечение может пройти более высокий процент любой популяции пациентов по сравнению с вакцинацией для каждого аллеля МНС I класса в отдельности. Тогда как в большинстве популяций любым одним аллелем могут быть охвачены менее чем 50% пациентов, вакциной, включающей эпитопы HLA-A*24 и HLA-A*02 можно лечить не менее 60% пациентов любой соответствующей популяции. Говоря конкретно, следующие процентные доли пациентов будут положительными по меньшей мере для одного из этих аллелей в различных регионах: США - 61%, Западная Европа - 62%, Китай 75%, Южная Корея - 77%, Япония - 86% (рассчитано по данным www.allelefrequencies.net).
В предпочтительном варианте осуществления понятие нуклеотидная последовательность относится к гетерополимеру дезоксирибонуклеотидов.
Нуклеотидная последовательность, кодирующая конкретный пептид, олигопептид или полипептид, может быть встречающейся в природе или может быть синтезирована. В целом, сегменты ДНК, кодирующие пептиды, полипептиды и белки данного изобретения, собраны из фрагментов кДНК и коротких олигонуклеотидных линкеров или же из серий олигонуклеотидов для получения синтетического гена, который способен экспрессироваться в рекомбинантной транскрипционной единице, включающей регуляторные элементы, образованные из микробного или вирусного оперона.
В контексте настоящего описания понятие нуклеотид, кодирующий пептид относится к нуклеотидной последовательности, кодирующей пептид, включая искусственные (сделанные человеком) старти стоп-кодоны, совместимые с биологической системой, которой должна экспрессироваться последовательность, например дендритная клетка или другая клеточная система, пригодная для получения ТКР.
Используемая в контексте данного описания ссылка на последовательность нуклеиновой кислоты включает как однонитевую, так и двунитевую нуклеиновую кислоту. Таким образом, например, для ДНК специфическая последовательность, если в контексте не указано иное, относится к однонитевой ДНК такой последовательности, дуплексу такой последовательности с его комплементом (двунитевая ДНК) и комплементу такой последовательности.
Понятие кодирующая область относится к тому участку гена, который в естественных или обычных условиях кодирует продукт экспрессии того гена в его естественном геномном окружении, т.е. участку, кодирующему in vivo нативный продукт экспрессии гена.
Кодирующая область может быть получена из не мутировавшего (нормального), мутировавшего или измененного гена или может даже быть получена из последовательности ДНК или же гена, целиком синтезированного в лаборатории с использованием методов, хорошо известных специалистам в области синтеза ДНК.
Понятие продукт экспрессии означает полипептид или белок, являющийся природным продуктом трансляции гена и любой последовательности нуклеиновой кислоты, которая кодирует эквиваленты, образующиеся в результате вырождения генетического кода и, таким образом, кодирует ту/те же самую(ые) аминокислоту(ы).
Понятие фрагмент, если он относится к кодирующей последовательности, означает участок ДНК, включающий меньше чем полную кодирующую область, продукт экспрессии которого по существу сохраняет ту же самую биологическую функцию или активность, что и продукт экспрессии полной кодирующей области.
Понятие сегмент ДНК относится к полимеру ДНК в виде отдельного фрагмента или в качестве компонента более крупной конструкции ДНК, которая была образована из ДНК, выделенной по меньшей мере один раз по существу в чистой форме, т.е. без контаминирующих эндогенных материалов и в количестве или с концентрацией, позволяющей идентификацию, манипуляцию и восстановление сегмента и
- 17 041120 его составных нуклеотидных последовательностей стандартными биохимическими методами, например с использованием вектора для клонирования. Такие фрагменты предлагаются в форме открытой рамки считывания, не прерываемой внутренними нетранслированными последовательностями или интронами, которые обычно присутствуют в эукариотических генах. Последовательности нетранслированной ДНК могут присутствовать за открытой рамкой считывания, где она не интерферирует с манипуляцией или экспрессией кодирующих областей.
Понятие праймер означает короткую последовательность нуклеиновой кислоты, которая может быть спарена с одной нитью ДНК с получением свободного конца 3'OH, на котором ДНК-полимераза начинает синтезировать дезоксирибонуклеотидную цепь.
Понятие промотор означает участок ДНК, задействованный в связывании РНК-полимеразы для инициации транскрипции.
Понятие выделенный означает, что материал удален из его исходного окружения (к примеру, естественного окружения, если он встречается в природе). Например, встречающийся в природе полинуклеотид или полипептид, представленный в живых организмах, не является выделенным, но тот же самый полинуклеотид или полипептид, отделенный от некоторых или всех сосуществующих материалов природной системы, является выделенным. Такие полинуклеотиды могли быть частью вектора и/или такие полинуклеотиды или полипептиды могли быть частью композиции и все-таки могли быть выделены, так что такой вектор или композиция не является частью своего естественного окружения.
Полинуклеотиды и рекомбинантные или иммуногенные полипептиды, раскрытые в соответствии с настоящим изобретением, могут также быть в очищенной форме. Понятие очищенный не требует абсолютной чистоты; скорее оно предназначено для дачи относительного определения и может включать препараты с высокой очисткой или препараты только с частичной очисткой, в соответствии с тем, как эти термины понимаются специалистами в соответствующей области. Например, отдельные клоны, выделенные из библиотеки кДНК, как обычно очищались до электрофоретической гомогенности. Очистка исходного материала или природного материала от примесей по меньшей мере на один порядок величины, предпочтительно два или три порядка и более предпочтительно четыре или пять порядков величины определенно рассматривается в изобретении. Более того, определенно включен заявленный полипептид, чистота которого составляет предпочтительно 99,999%, или по меньшей мере 99,99%, или 99,9% и даже желательно 99% по массе или более.
Нуклеиновые кислоты и полипептиды как продукты экспрессии, раскрываемые в соответствии с настоящим изобретением, в равной степени, как и векторы экспрессии, содержащие такие нуклеиновые кислоты и/или такие полипептиды, могут быть в обогащенной форме. Используемый здесь термин обогащенный означает, что концентрация материала по меньшей мере приблизительно в 2, 5, 10, 100 или 1000 раз выше его естественной концентрации (например), преимущественно 0,01% по массе, предпочтительно по меньшей мере около 0,1% по массе. Рассматриваются также обогащенные препараты с концентрацией примерно 0,5, 1, 5, 10 и 20% по массе. Последовательности, конструкции, векторы, клоны и другие материалы, включенные в настоящее изобретение, могут быть предпочтительно в обогащенной форме или выделенными. Понятие активный фрагмент означает фрагмент - обычно пептида, полипептида или последовательности нуклеиновой кислоты, - который дает иммунный ответ (т.е. обладает иммуногенной активностью), если он введен отдельно или факультативно с подходящим адъювантом или в векторе животному, такому как млекопитающее, например кролику или мыши, также включая человека; причем такой иммунный ответ принимает форму стимуляции Т-клеточного ответа у животногореципиента, такого как человек. Альтернативно, активный фрагмент может также быть использован для инициации ответа Т-клетки in vitro.
В контексте настоящего описания понятия участок, сегмент и фрагмент, если они использованы по отношению к полипептидам, относятся к непрерывной последовательности остатков, таких как аминокислотные остатки, последовательность которых формирует подкласс более крупной последовательности. Например, если полипептид был подвергнут обработке любой из известных эндопептидаз, таких как трипсин или химотрипсин, то полученные в результате такой обработки олигопептиды будут представлять участки, сегменты или фрагменты исходного полипептида. При использовании по отношению к полинуклеотидам эти понятия относятся к продуктам, полученным при обработке указанных полинуклеотидов любой из эндонуклеаз.
В соответствии с настоящим изобретением понятие процентная доля идентичности или идентичный с процентной долей, если оно относится к последовательности, означает, что последовательность сравнивается с заявленной или описанной последовательностью после выравнивания сравниваемой последовательности (Сравниваемая последовательность) с описанной или заявленной последовательностью (Контрольная последовательность). Процентная доля идентичности определяется затем по следующей формуле: процентная доля идентичности = 100[1 - (C/R)], где С является числом различий между Контрольной последовательностью и Сравниваемой последовательностью по длине выравнивания между Контрольной последовательностью и Сравниваемой последовательностью, где:
(i) каждое основание или аминокислота в Контрольной последовательности, которые не имеют соответствующего выравненного основания или аминокислоты в Сравниваемой последовательности; и
- 18 041120 (ii) каждая брешь в Контрольной последовательности; и (iii) каждое выравненное основание или аминокислота в Контрольной последовательности, которые отличаются от выравненного основания или аминокислоты в Сравниваемой последовательности, представляют собой различие; и (iv) выравнивание должно начинаться с позиции 1 выравненных последовательностей;
R - это число оснований или аминокислот в Контрольной последовательности по длине выравнивания со Сравниваемой последовательностью с любой брешью, образующейся в Контрольной последовательности, считающейся также за основание или аминокислоту.
Если существует противопоставление между Сравниваемой последовательностью и Контрольной последовательностью, для которых процентная доля идентичности, по расчетам выше, приблизительно равна или выше установленной минимальной Процентной доли идентичности, тогда Сравниваемая последовательность имеет установленную минимальную процентную долю идентичности с Контрольной последовательностью, если даже могут существовать выравнивания, в которых подсчитанная здесь выше процентная доля идентичности меньше, чем установленная процентная доля идентичности.
Как было упомянуто выше, в настоящем изобретении, таким образом, предложен пептид, включающий последовательность, которая выбрана из группы, состоящей из последовательностей с SEQ ID NO: 1 по SEQ ID NO: 48 или их вариант, который на 88% гомологичен последовательностям с SEQ ID NO: 1 по SEQ ID NO: 48 или их варианту, который индуцирует перекрестную реакцию Т-клеток с указанным пептидом. Пептиды по изобретению обладают способностью связываться с молекулой главного комплекса гистосовместимости человека (МНС) I класса или - удлиненные версии упомянутых пептидов - с МНС II класса.
В настоящем изобретении термин гомологичный относится к степени идентичности (см. выше, Процентная доля идентичности) между последовательностями двух аминокислотных последовательностей, т.е. пептидных или полипептидных последовательностей. Упомянутая ранее гомология определяется при сравнении двух последовательностей, сопоставляемых в оптимальных условиях для сравниваемых последовательностей. Такая гомология последовательностей может быть подсчитана с помощью создания выравнивания, например, по алгоритму ClustalW. Широко распространено программное обеспечение для анализа последовательностей, в частности Vector NTI, GENETYX или другие инструменты, предоставляемые банками данных свободного доступа.
Специалист в данной области будет в состоянии оценить, будут ли Т-клетки, индуцированные вариантом конкретного пептида, способны к перекрестной реакции с самим пептидом (Аррау et al., 2006; Colombetti et al., 2006; Fong et al., 2001; Zaremba et al., 1997).
Под вариантом данной аминокислотной последовательности авторы изобретения имеют в виду, что боковые цепи, например, одного или двух аминокислотных остатков изменены (например, путем их замещения боковой цепью остатка другой встречающейся в природе аминокислоты или какой-либо другой боковой цепью) так, что пептид по-прежнему способен связываться с молекулой HLA по существу таким же путем, как и пептид, состоящий из данной аминокислотной последовательности с SEQ ID NO: 1 по SEQ ID NO: 48. Например, пептид может быть модифицирован таким образом, что он по меньшей мере сохранит, если не улучшит, способность взаимодействовать и связываться со связывающей бороздкой подходящей молекулы МНС, такой как HLA-A*02 или -DR, и, таким образом, он по меньшей мере сохранит, если не улучшит, способность связываться с ТКР активированных Т-клеток.
Данные Т-клетки могут затем вступать в перекрестную реакцию с клетками и уничтожать клетки, которые экспрессируют полипептид, который содержит природную аминокислотную последовательность родственного пептида, как определено в аспектах этого изобретения. По информации из научной литературы и банков данных (Rammensee et al., 1999; Godkin et al., 1997), конкретные позиции связывающихся с HLA пептидов являются типичными якорными остатками, формирующими центральную последовательность, подходящую к соединительному элементу рецептора HLA, который определяется полярными, электрофизическими, гидрофобными и пространственными свойствами полипептидных цепей, образующих связывающую бороздку. Так, специалист данной области будет в состоянии модифицировать аминокислотные последовательности с SEQ ID NO: 1 по SEQ ID NO: 48, сохраняя известные якорные остатки, и будет в состоянии определить, сохранят ли такие варианты способность связываться с молекулами МНС I или II класса. Варианты по настоящему изобретению сохраняют способность связываться с ТКР активированных Т-клеток, которые могут впоследствии вступать в перекрестную реакцию и уничтожать клетки, экспрессирующие полипептид, который содержит природную аминокислотную последовательность родственного пептида, как определено в аспектах настоящего изобретения.
Исходные (немодифицированные) пептиды, раскрываемые в данном описании, могут быть модифицированы путем замены одного или нескольких остатков в различных, возможно отобранных, участках по длине пептидной цепи, если не заявлено иное. Предпочтительно, если такие замены расположены на конце аминокислотной цепи. Такие замены могут носить консервативный характер, например, когда одна аминокислота заменяется аминокислотой с похожей структурой и характеристиками, так же как при замене гидрофобной аминокислоты на другую гидрофобную аминокислоту. Еще более консервативной будет замена аминокислот одинакового или похожего размера и химического характера, как, например,
- 19 041120 при замене лейцина на изолейцин. В исследованиях вариаций последовательностей внутри семейств встречающихся в природе гомологичных белков определенные замены аминокислот допускаются чаще, чем другие, и они часто связаны со сходствами по размеру, заряду, полярности и гидрофобности между исходной аминокислотой и ее заменой; и таковой является основа определения консервативных замен.
Консервативные замены определены в контексте настоящего описания как обмены внутри одной из последующих пяти групп:
группа 1 - малые, алифатические, неполярные или слабо полярные остатки (Ala, Ser, Thr, Pro, Gly);
группа 2 - полярные, отрицательно заряженные остатки и их амиды (Asp, Asn, Glu, Gln);
группа 3 - полярные, положительно заряженные остатки (His, Arg, Lys);
группа 4 - крупные, алифатические, неполярные остатки (Met, Leu, Ile, Val, Cys);
группа 5 - крупные, ароматические остатки (Phe, Tyr, Trp).
Менее консервативные замены могут охватывать замену одной аминокислоты другой, имеющей похожие характеристики, но отличающейся в какой-то степени по размеру, как в случае замены аланина остатком изолейцина. Высоконеконсервативные замены могут охватывать замену кислой аминокислоты полярной или даже такой, которая имеет основный характер. Такие радикальные замены не могут, однако быть отвергнуты как потенциально неэффективные из-за того, что химические эффекты не полностью предсказуемы, и радикальные замены могут неожиданно привести к благоприятным эффектам, не предсказуемым исходя из обычных химических принципов.
Разумеется, в таких заменах могут участвовать другие структуры, отличающиеся от обычных L-аминокислот. Таким образом, D-аминокислоты могут быть заменены L-аминокислотами, обычно встречающимися в антигенных пептидах по изобретению и также охватываемые настоящим раскрытием сущности изобретения. Кроме того, нестандартные аминокислоты (т.е. отличающиеся от повсеместно встречающихся протеиногенных аминокислот) могут быть также использованы в целях замены для получения иммуногенов и иммуногенных полипептидов в соответствии с настоящим изобретением.
Если были произведены замены более чем в одной позиции с получением пептида по существу с эквивалентной или большей антигенной активностью, как определено ниже, то комбинации таких замен будут проанализированы для определения того, приведут ли эти комбинации замен к дополнительным или синергическим эффектам по отношению к антигенности пептида. По большей части не более 4 позиций внутри пептида должны замещаться одновременно.
Пептид, состоящий по существу из аминокислотной последовательности, как указано в настоящем документе, может иметь замену одной или двух неякорных аминокислот (см. ниже относительно якорного мотива), так что способность связываться с молекулой главного комплекса гистосовместимости человека (МНС) I или II класса не будет существенно изменена или подвергнута негативному влиянию по сравнению с немодифицированным пептидом. В другом варианте осуществления в пептиде, состоящем, по существу, из аминокислотной последовательности, как указано в настоящем документе, одна или две аминокислоты могут быть заменены партнерами по консервативной замене (см. информацию ниже), так что способность связываться с молекулой главного комплекса гистосовместимости человека (МНС) I или II класса не будет существенно изменена или подвергнута негативному влиянию по сравнению с немодифицированным пептидом.
Аминокислотные остатки, которые не вносят существенный вклад во взаимодействие с Т-клеточным рецептором, могут быть модифицированы заменой на другую аминокислоту, включение которой существенно не влияет на реактивность Т-клетки и не устраняет связывание с соответствующим МНС. Таким образом, помимо данного условия, пептид по изобретению может быть любым пептидом (в этот термин авторы изобретения включают олигопептиды или полипептиды), который включает аминокислотные последовательности или их участок или их вариант, как дано.
Таблица 9 Варианты и мотив пептидов, связывающихся с HLA-A*O2, в соответствии с SEQ ID NO: 2, 4 и 8
- 20 041120
V V
V I
V А
т
т V
т I
т А
Q
Q V
Q I
Q А
Позиция 1 2 3 4 5 6 7 8 9
SEQ ID NO. 4 А L L Т F V W К L
Варианты V
I
А
М
М V
м I
м А
А
А V
А I
А А
V
V V
V I
V А
т
т V
т I
т А
Q
Q V
Q I
Q А
Позиция 1 2 3 4 5 6 7 8 9
SEQ ID No. 8 L L D F S L А D А
Варианты I
L
V
М
М I
м L
м V
А
А I
А L
А V
V
V I
V L
V V
Т
т I
т L
т V
Q
Q I
Q L
Q V
Таблица 10
Варианты и мотив пептидов, связывающихся с HLA-A*24, _____в соответствии с SEQ ID NO: 25, 30 и 34_____
Позиция 1 2 3 4 5 6 7 8 9 10 11
SEQ ID 25 I Y Е Р Y L А М F
Вариант I
L
F
F I
F L
Позиция 1 2 3 4 5 6 7 8 9 10 11
SEQ ID 30 S Y S Р А Н А R L
Вариант I
F
F
F I
F F
Позиция 1 2 3 4 5 6 7 8 9 10 11
SEQ ID 34 А F S Р D S Н Y L L F
Вариант Y I
Y L
Y
I
L
- 21 041120
Более длинные (удлиненные) пептиды также могут быть пригодными. Возможно, чтобы эпитопы, связывающиеся с молекулами МНС I класса, хотя они обычно имеют длину между 8 и 11 аминокислотами, были получены при процессинге пептидов из более длинных пептидов или белков, включающих истинный эпитоп. Предпочтительно, чтобы остатки, которые примыкают к истинному эпитопу, существенно не влияли на протеолитическое расщепление, необходимое для презентации истинного эпитопа во время процессинга.
Пептиды по изобретению могут быть удлинены с помощью вплоть до четырех аминокислот, это значит, что 1, 2, 3 или 4 аминокислоты могут быть добавлены к одному из концов в любой комбинации, представленной между 4:0 и 0:4. Комбинации элонгаций в соответствии с изобретением могут быть взяты из табл. 11.
Таблица 11
Комбинации элонгаций пептидов по изобретению
С-конец N-конец
4 0
3 0 или 1
2 0 или 1 или 2
1 0 или 1 или 2 или 3
0 0 или 1 или 2 или 3 или 4
N-конец С-конец
4 0
3 0 или 1
2 0 или 1 или 2
1 0 или 1 или 2 или 3
0 0 или 1 или 2 или 3 или 4
Аминокислотами для элонгации/удлинения могут быть пептиды исходной последовательности белка или любая(ые) другая(ие) аминокислота(ы). Элонгация может быть использована для повышения стабильности или растворимости пептидов.
Таким образом, эпитопы настоящего изобретения могут быть идентичны встречающимся в природе опухолеассоциированным или опухолеспецифическим эпитопам или могут включать эпитопы, отличающиеся не более чем четырьмя остатками от контрольного пептида, при условии, что они имеют, по существу, идентичную антигенную активность.
В альтернативном варианте осуществления пептид удлинен с одной или другой стороны или с двух сторон одновременно добавлением более 4 аминокислот, предпочтительно до общей длины вплоть до 30 аминокислот. Это может привести к образованию пептидов, связывающихся с МНС II класса. Связывание с МНС II класса может быть проверено известными из уровня техники способами.
Соответственно, в настоящем изобретении предлагаются пептидные эпитопы и эпитопы пептидных вариантов, связывающихся с молекулами МНС I класса, в которых указанный пептид или вариант имеет общую длину между 8 и 100, предпочтительно между 8 и 30 и наиболее предпочтительно между 8 и 14, а именно 8, 9, 10, 11, 12, 13, 14 аминокислот, в случае удлиненных пептидов, связывающихся с молекулами МНС II класса, длина может также быть 15, 16, 17, 18, 19, 20, 21 или 22 аминокислоты.
Разумеется, пептид или вариант в соответствии с настоящим изобретением будет обладать способностью связываться с молекулой главного комплекса гистосовместимости человека (МНС) I или II класса. Связывание пептида или варианта с комплексом МНС может быть проверено способами, известными из уровня техники.
Предпочтительно, чтобы Т-клетки, специфичные для пептида в соответствии с настоящим изобретением, были испытаны относительно замещенных пептидов; концентрация пептида, при которой замещенные пептиды достигают половины максимального роста лизиса относительно фона, составляет не более чем около 1 мМ, предпочтительно не более чем около 1 мкМ, более предпочтительно не более чем около 1 нМ, еще более предпочтительно не более чем около 100 пМ и наиболее предпочтительно не более чем около 10 пМ. Также предпочтительно, чтобы замещенный пептид распознавался Т-клетками более чем одного индивида, по меньшей мере двух и более предпочтительно трех индивидов.
В особенно предпочтительном варианте осуществления изобретения пептид состоит или по существу состоит из аминокислотной последовательности в соответствии с SEQ ID NO: 1 по SEQ ID NO: 48.
Состоит по существу из подразумевает, что пептид в соответствии с настоящим изобретением, помимо любой из последовательностей с SEQ ID NO: 1 по SEQ ID NO: 48, или его вариант содержит дополнительные находящиеся на N- и/или С-конце фрагменты последовательности аминокислот, которые не являются обязательно формирующими часть пептида, которая функционирует как эпитоп для молекул МНС.
Тем не менее эти фрагменты могут быть важны для обеспечения эффективного введения пептида в соответствии с настоящим изобретением в клетки. В одном варианте осуществления настоящего изобретения пептид является частью слитого белка, которая включает, например, 80 N-терминальных аминокислот антиген-ассоциированной инвариантной цепи (p33, в дальнейшем li) HLA-DR, как взятый из банка данных NCBI, инвентарный номер - GenBank Accession-number Х00497. В других видах слияния пептиды по настоящему изобретению могут быть слиты с антителом, описанным в настоящем докумен- 22 041120 те, или его функциональной частью, в частности встроены в последовательность антитела, так чтобы быть специфической мишенью указанного антитела, или, например, слиты с или встроены в антитело, являющееся специфичным для дендритных клеток, описанных в настоящем документе.
Кроме того, пептид или вариант может быть дополнительно модифицирован для улучшения стабильности и/или связывания с молекулами МНС в целях получения более сильного иммунного ответа. Методы такой оптимизации пептидной последовательности хорошо известны из уровня техники и включают, например, введение реверсированных пептидных или непептидных связей.
В реверсированной пептидной связи аминокислотные остатки присоединены не пептидными связями (-CO-NH-), а пептидная связь реверсируется. Такие ретрообратные пептидомиметики могут быть получены методами, известными из уровня техники, например, такими, как описано в работе Meziere et al. (1997) (Meziere et al., 1997), включенной в настоящее описание по ссылке. Этот подход охватывает получение псевдопептидов, которые содержат изменения, охватывающие остов, но не ориентацию боковых цепей. Meziere et al. (Meziere et al., 1997) показывают, что эти псевдопептиды пригодны для связывания с МНС и индукции ответов Т-хелперных клеток. Ретрообратные пептиды, которые содержат связи NH-CO вместо пептидных связей CO-NH, намного более устойчивы к протеолизу.
Непептидной связью является, например, -CH2-NH, -CH2S-, -CH2CH2-, -СН=СН-, -СОСН2-, -СН(ОН)СН2- и -CH2SO-. В патенте США № 4897445 предлагается метод твердофазного синтеза непептидных связей (-CH2-NH) в полипептидных цепях, который включает полипептиды, синтезированные с использованием стандартной методики, и непептидную связь, синтезированную при реакции аминоальдегида и аминокислоты в присутствии NaCNBH3.
Пептиды, включающие последовательности, описанные выше, могут быть синтезированы с дополнительными химическими группами, находящимися на их аминном и/или карбоксильном концах, для увеличения стабильности, биологической доступности и/или аффинности пептидов. Например, гидрофобные группы, такие как карбобензоксильные, данзильные или трет-бутилоксикарбонильные группы, могут быть добавлены к аминным концам пептидов. Подобным образом, ацетильная группа или 9-флуоренилметокси-карбонильная группа может быть размещена на аминных концах пептидов. Кроме того, гидрофобная группа, трет-бутилоксикарбонильная или амидная группа могут быть добавлены к карбоксильным концам пептидов.
Кроме того, все пептиды по изобретению могут быть синтезированы в целях изменения их пространственной конфигурации. Например, может быть использован D-изомер одного или нескольких аминокислотных остатков пептида, а не обычный L-изомер. Более того, по меньшей мере один из аминокислотных остатков пептидов по изобретению может быть замещен одним из хорошо известных не встречающихся в природе аминокислотных остатков. Изменения, такие как данные, могут служить для повышения стабильности, биологической доступности и/или связывающих свойств пептидов по изобретению.
Подобным образом, пептид или вариант по изобретению может быть модифицирован химическим способом посредством реакции отдельных аминокислот как до, так и после синтеза пептида. Примеры таких модификаций хорошо известны из уровня техники и обобщаются, например, в работе R. Lundblad, Chemical Reagents for Protein Modification, 3rd ed. CRC Press, 2004 (Lundblad, 2004), которая включена в описание по ссылке. Химическая модификация аминокислот включает, но без ограничения, модификацию с помощью ацилирования, амидинирования, пиридоксилирования лизина, восстановительного алкилирования, тринитробензилирования аминных групп 2,4,6-тринитробензолсульфоновой кислотой (TNBS), амидную модификацию карбоксильных групп и сульфгидрильную модификацию с помощью окисления надмуравьиной кислотой цистеина до цистеиновой кислоты, образование производных ртути, образование смешанных дисульфидов с другими тиоловыми соединениями, реакцию с малеимидом, карбоксиметилирование йодоуксусной кислотой или йодацетамидом и карбамоилирование цианатом при щелочном уровне рН, хотя не ограничиваясь ими. В этой связи специалист в данной области может проконсультироваться с главой 15 в работе Current Protocols In Protein Science, Eds. Hassan et al. (John Wiley and Sons NY 1995-2000) (Coligan et al., 1995) для получения более обширной информации о методах, связанных с химической модификацией белков.
Вкратце, модификация, например, аргинильных остатков в белках часто основана на реакции вицинальных дикарбонильных соединений, таких как фенилглиоксаль, 2,3-бутандион и 1,2-циклогександион, с образованием аддукта. Другим примером является реакция метилглиоксаля с остатками аргинина. Цистеин может быть модифицирован без сопутствующей модификации других нуклеофильных сайтов, таких как лизин и гистидин. В результате для модификации цистеина доступно большое число реагентов. Веб-сайты компаний, таких как Sigma-Aldrich (http://www.sigma-aldrich.com), предоставляют информацию по конкретным реагентам.
Распространено также избирательное восстановление дисульфидных связей в белках. Дисульфидные связи могут быть образованы и окислены во время тепловой обработки биофармацевтических средств. K-реагент Вудворда может использоваться для модификации определенных остатков глютаминовой кислоты. N-(3-(Диметиламинопропил)-N'-этилкарбодиимид может использоваться для образования внутримолекулярных поперечных связей между остатком лизина и остатком глютаминовой кислоты.
- 23 041120
Например, диэтилпирокарбонат является реагентом для модификации гистидильных остатков в белках. Гистидин может также быть модифицирован при использовании 4-гидрокси-2-ноненаля. Реакция остатков лизина и других α-аминных групп полезна, например, при связывании пептидов с поверхностями или поперечной сшивке белков/пептидов. Лизин является сайтом присоединения полиэтиленгликоля и основным сайтом модификации при гликозилировании белков. Остатки метионина в белках могут быть модифицированы, например, с помощью йодацетамида, бромэтиламина и хлорамина Т.
Тетранитрометан и N-ацетилимидазол могут быть использованы для модификации тирозильных остатков. Поперечная сшивка посредством образования дитирозина может быть произведена с помощью перекиси водорода/ионов меди.
В последних исследованиях по модификации триптофана использовались N-бромсукцинимид, 2-гидрокси-5-нитробензилбромид или 3-бром-3-метил-2-(2-нитрофенилмеркапто)-3H-индол (BPNSскатол).
Успешная модификация терапевтических белков и пептидов ПЭГ (полиэтиленгликолем) часто связана с увеличением полупериода циркуляции, тогда как поперечная сшивка белков глутаральдегидом, полиэтиленгликоль-диакрилатом и формальдегидом используется для получения гидрогелей. Химическая модификация аллергенов для иммунотерапии часто достигается при карбамоилировании цианатом калия.
Пептид или вариант, в котором пептид модифицирован или включает непептидные связи, является предпочтительным вариантом осуществления изобретения. Как правило, пептиды и варианты (по меньшей мере те, что содержат пептидные связи между аминокислотными остатками) могут быть синтезированы Fmoc-полиамидным способом твердофазного синтеза пептидов, как раскрыто у Lukas et al. (Lukas et al., 1981) и в прилагающихся ссылках. Временная защита N-аминогруппы производится 9-флуоренилметилоксикарбонильной (Fmoc) группой. Повторное расщепление этой высокощелочелабильной защитной группы осуществляется при использовании 20% пиперидина в N,N-диметилформамиде. Функциональные группы боковой цепи могут быть защищены получением таких соединений, как их бутиловые эфиры (в случае серина, треонина и тирозина), бутиловые сложные эфиры (в случае глютаминовой кислоты и аспарагиновой кислоты), бутилоксикарбонильное производное (в случае лизина и гистидина), тритильное производное (в случае цистеина) и производное 4-метокси-2,3,6-триметилбензолсульфонила (в случае аргинина). Если глютамин или аспарагин являются С-терминальными остатками, для защиты амидогруппы боковой цепи используется 4,4'-диметоксибензгидрильная группа. Твердофазный носитель основан на полимере полидиметилакриламиде, состоящем из трех мономеров: диметилакриламида (каркасный мономер), бис-акрилоилэтилендиамина (компонент для перекрестной сшивки, линкер) и метилового эфира акрилоилсаркозина (функционализирующий агент). Для образования легкорасщепляемой связи пептида и смолы используется не стойкое к действию кислот производное 4-гидроксиметилфеноксиуксусной кислоты. Все аминокислотные производные добавляются в виде предварительно синтезированных симметричных ангидридных производных, за исключением аспарагина и глютамина, которые добавляются с применением обратной реакции соединения, опосредованной N,N-дициклогексил-карбодиимид/1гидроксибензотриазолом. Все реакции сочетания и снятия защитных групп отслеживались с помощью методов контроля с применением нингидрина, тринитробензолсульфоновой кислоты или изотина. После завершения синтеза пептиды отщепляются от смолы-носителя с сопутствующим удалением защитных групп боковой цепи при обработке 95% трифторуксусной кислотой, содержащей 50% смеси поглотителей. Обычно используемые поглотители включают этандитиол, фенол, анизол и воду, окончательный выбор зависит от составляющих аминокислот синтезируемого пептида. Также возможна комбинация твердофазных и жидкофазных методов синтеза пептидов (см., например, (Bruckdorfer et al., 2004) и прилагаемые ссылки).
Трифторуксусную кислоту удаляют выпариванием в вакууме с последующим измельчением с диэтиловым эфиром для получения сырого пептида. Любые присутствующие поглотители удаляются простой технологией экстракции, которая позволяет получить сырой пептид без поглотителей после лиофилизации водной фазы. Реагенты для синтеза пептидов, как правило, имеются в наличии, например, в Calbiochem-Novabiochem (Ноттингем, Великобритания).
Очистка может быть произведена любой методикой или комбинацией таких методик, как перекристаллизация, эксклюзионная хроматография, ионообменная хроматография, хроматография гидрофобного взаимодействия и (обычно) обращенно-фазовая высокоэффективная жидкостная хроматография с использованием, к примеру, градиентного разделения в системе ацетонитрил/вода.
Анализ пептидов может быть произведен при помощи тонкослойной хроматографии, электрофореза, в частности капиллярного электрофореза, твердофазной экстракции (ТФЭ), обращено-фазовой высокоэффективной жидкостной хроматографии, аминокислотного анализа после кислотного гидролиза и масс-спектрометрического анализа при бомбардировке быстрыми атомами (FAB), а также массспектрометрического анализа MALDI и ESI-Q-TOF.
В целях выбора презентируемых в избытке пептидов был рассчитан профиль презентации, позволяющий оценить медианное значение презентации образца, а также вариации повторных измерений. В
- 24 041120 профиле сравниваются образцы опухолевой формы, представляющей интерес, с фоновым уровнем образцов нормальной ткани. Каждый из этих профилей может быть затем консолидирован в показатель избыточной презентации путем расчета значения р по линейной модели со смешанными эффектами (Pinheiro et al., 2015), скорректировав ее для повторных анализов на уровень ложноположительных обнаружений (Benjamini and Hochberg, 1995) (cp. пример 1).
Для идентификации и относительной количественной оценки лигандов HLA с помощью массспектрометрического анализа молекулы HLA из подвергнутых шоковой заморозке образцов тканей были очищены и из них выделены HLA-ассоциированные пептиды. Поскольку пептиды, полученные из простат-специфических антигенов, могут быть идентифицированы в любой ткани предстательной железы, вне зависимости от того, является ли она доброкачественной или злокачественной, в целях идентификации пептидов, кодируемых простат-специфическими антигенами, в дополнение к препаратам ткани рака предстательной железы также были проанализированы образцы доброкачественной гиперплазии предстательной железы. Выделенные пептиды были разделены и последовательности были идентифицированы с помощью методов жидкостной хроматографии и масс-спектрометрии (LC-MS) с ионизацией электрораспылением (nanoESI) в режиме реального времени. Полученные пептидные последовательности подтверждали сравнением картины фрагментации природных пептидов TUMAP, записанной на образцах рака предстательной железы (N=34 А*02-положительных образцов и N=37 А*24-положительных образцов), а также дополнительны образцов доброкачественных гиперплазии предстательной железы (N=10 А*02-положительных образцов и N=3 А*24-положительных образца) с картинами фрагментации соответствующих синтетических контрольных пептидов с идентичными последовательностями. Поскольку пептиды были идентифицированы непосредственно в качестве лигандов молекул HLA опухолевой ткани, то эти результаты дают прямое доказательство естественного процессирования и презентации идентифицированных пептидов на опухолевой ткани, полученной от 70 пациентов с опухолями предстательной железы.
Технологическая платформа лекарственных средств, находящихся в разработке, XPRESIDENT® v2.1 (см., например, патентную заявку США 2013-0096016, включенную в настоящее описание в своей полноте путем ссылки) позволяет произвести идентификацию и выбор соответствующих избыточно презентируемых пептидов в качестве кандидатов для вакцины, основываясь на прямом относительном количественном определении уровней HLA-рестриктированных пептидов на раковой ткани в сравнении с несколькими различными нераковыми тканями и органами. Это было осуществлено путем разработки дифференциального количественного определения на основе данных ЖХ-МС без использования изотопной метки (label-free), обработанных запатентованной технологической платформой для анализа данных, объединяющей алгоритмы для идентификации последовательности, спектральной кластеризации, подсчета ионов, выравнивания времени удерживания, деконволюции по состояниям заряда и нормализации.
Для каждого пептида и образца были подсчитаны уровни презентации, включающие оценки погрешности. Были идентифицированы пептиды, презентируемые исключительно на опухолевой ткани, и пептиды, избыточно презентируемые на опухолевых тканях в сравнении с не пораженными раком тканями и органами.
Комплексы HLA-пептид из образцов ткани опухоли предстательной железы были очищены, и HLA-ассоциированные пептиды были выделены и проанализированы методом ЖХ-МС (см. примеры). Все TUMAP, содержащиеся в настоящей патентном документе, были идентифицированы с помощью этого подхода на образцах опухолей предстательной железы, что подтверждает их презентацию на опухолях предстательной железы.
Пептиды TUMAP, идентифицированные на многочисленных тканях рака предстательной железы, гиперплазии предстательной железы и нормальных тканях, были подвергнуты количественному анализу с помощью ЖХ/МС без изотопной метки с использованием подсчета ионов. Метод основан на предположении, что площади пика пептида при анализе методом ЖХ/МС коррелируют с его содержанием в образце. Все количественные сигналы пептида в различных экспериментах с использованием ЖХ/МС были нормализованы, исходя из основной тенденции, было вычислено их среднее значение на образец и сведены в гистограмму в так нащываемый профиль презентации. В профиле презентации консолидированы различные методы анализа, такие как поиск в банке данных белков, спектральная кластеризация, деконволюция состояния заряда (разряд) и выравнивание времени удерживания и нормализация.
Кроме того, технологическая платформа XPRESIDENT® v2.x позволяет проведение прямого абсолютного количественного определения уровня МНС-, предпочтительно HLA-рестриктированного, пептида на раковых или других инфицированных тканях. Вкратце, общее число клеток было подсчитано из общего содержания ДНК проанализированного образца ткани. Общее количество пептида TUMAP в образце ткани измеряли с помощью нано-ЖХ-МС/МС в виде соотношения природного пептида TUMAP и известного количества версии пептида TUMAP с изотопной меткой, так называемого внутреннего стандарта. Эффективность выделения пептида TUMAP определяли методом введения стандартной добавки комплекса пептид-МНС всех выбранных пептидов TUMAP в лизат ткани в самый ранний возможный момент процесса выделения пептида TUMAP и их обнаружением с помощью нано-ЖХ-МС/МС, за чем
- 25 041120 следовало завершение процедуры выделения пептида. Общее число клеток и общее количество пептида были подсчитаны по трем повторным измерениям на образец ткани. Пептидспецифическую эффективность выделения подсчитывали как средний показатель из десяти экспериментов с введением стандартных добавок с тремя повторными измерениями для каждого (см. пример 6).
В настоящем изобретении предложены пептиды, которые пригодны для лечения раковых заболеваний/опухолей, предпочтительно рака предстательной железы, клетки которых презентируют в избытке или исключительно пептиды по изобретению. Как показал масс-спектрометрический анализ, эти пептиды естественно презентировались молекулами HLA на образцах опухолей предстательной железы человека.
Многие из исходных генов/белков (называемых также белками полной длины или базовыми белками), из которых были получены пептиды, были в высокой степени избыточно экспрессированы в опухоли по сравнению с нормальными тканями - понятие нормальные ткани в связи с настоящим изобретением подразумевает клетки нормальной непростатической ткани, демонстрирующие высокую степень ассоциации исходных генов с опухолью (см. пример 2). Более того, сами пептиды в высшей степени избыточно презентируются на опухолевой ткани - понятие опухолевая ткань в связи с настоящим изобретением подразумевает образец ткани пациента, страдающего раковой опухолью предстательной железы, но не на нормальных тканях (см. пример 1).
Связанные с HLA пептиды могут распознаваться иммунной системой, конкретно Т-лимфоцитами. Т-клетки могут разрушать клетки, презентирующие распознанный комплекс HLA/пептид; к примеру, опухолевые клетки предстательной железы, презентирующие полученные пептиды.
Было показано, что пептиды по настоящему изобретению способны стимулировать Т-клеточные ответы и/или избыточно презентируются и поэтому могут использоваться для получения антител и/или ТКР, такие как растворимые ТКР, в соответствии с настоящим изобретением (см. примеры 3, 4). Кроме того, пептиды, если находятся в комплексе с соответствующей молекулой МНС, могут быть использованы для получения антител и/или ТКР, в частности растворимых ТКР, в соответствии с настоящим изобретением. Соответствующие способы хорошо известны специалисту в данной области, а также могут быть найдены в соответствующих литературных источниках. Таким образом, пептиды по настоящему изобретению пригодны для генерирования иммунного ответа в организме пациента для уничтожения опухолевых клеток. Иммунный ответ у пациента может быть индуцирован при непосредственном введении описанных пептидов или подходящих веществ-предшественников (к примеру, удлиненных пептидов, белков или нуклеиновых кислот, кодирующих эти пептиды) пациенту, в идеальном случае в комбинации с веществом, усиливающим иммуногенность (т.е. адъювантом). Можно ожидать, что иммунный ответ, вызванный такой терапевтической вакцинацией, будет высокоспецифично направлен против опухолевых клеток, так как целевые пептиды по настоящему изобретению не презентируются на нормальных непростатических тканях, в сравнимом количестве копий, предотвращая, тем самым, риск нежелательных аутоиммунных реакций против нормальных клеток у пациента. Простатспецифические антигены могут быть хорошим выбором для иммунотерапии рака предстательной железы, поскольку простатспецифические антигены представляют собой опухолеспецифические мишени у пациента после простатэктомии. У пациентов с раком предстательной железы, не прошедших простатэктомию, такие антигены также могут представлять собой интерес, поскольку предстательная железа не рассматривается как жизненно важный орган.
Настоящее описание далее относится к Т-клеточным рецепторам (ТКР), включающим альфа-цепь и бета-цепь (альфа/бета-ТКР). Также предложены пептиды по изобретению, способные связываться с ТКР и антителами, если они презентируются молекулой МНС. Настоящее описание также относится к нуклеиновым кислотам, векторам и клеткам-хозяевам для экспрессии ТКР и пептидам по настоящему изобретению и методам их применения.
Понятие Т-клеточный рецептор относится к гетеродимерной молекуле, включающей альфаполипептидную цепь (альфа-цепь) и бета-полипептидную цепь (бета-цепь), где гетеродимерный рецептор способен связываться с пептидным антигеном, презентируемым молекулой HLA. Это понятие включает также так называемые гамма/дельта-ТКР.
В одном варианте осуществления предложен способ получения ТКР согласно настоящему описанию, причем способ включает культивацию клетки-хозяина, способной экспрессировать ТКР в условиях, подходящих для стимуляции экспрессии ТКР.
Настоящее описание в другом аспекте далее относится к способам в соответствии с настоящим описанием, где антиген нагружен на молекулы МНС I или II класса, экспрессированные на поверхности подходящей антигенпрезентирующей клетки или искусственной антигенпрезентирующей клетки, при контактировании достаточного количества антигена с антигенпрезентирующей клеткой, или же антиген нагружен на тетрамеры МНС I или II класса путем тетрамеризации комплексов антиген-мономер МНС I или II класса.
Альфа- и бета-цепи альфа-/бета-ТКР и гамма- и дельта-цепи гамма-/дельта-ТКР, как правило, считаются такими, что каждая из них имеет два домена, а именно вариабельные и константные домены. Вариабельный домен состоит из последовательно расположенных вариабельного сегмента (V) и соеди- 26 041120 нительного сегмента (J). Вариабельный домен может также включать лидерный сегмент (L). Бета- и дельта-цепи могут также включать сегменты разнообразия (D). Константные домены альфа и бета могут также включать С-терминальные трансмембранные (ТМ) домены, которые заякоривают альфа- и бетацепи на клеточной мембране.
В отношении гамма-/дельта-ТКР понятие гамма вариабельный домен ТКР, используемый в контексте данного изобретения, относится к соединению сегмента гамма V ТКР (TRGV) без лидерного сегмента (L) и сегмента ТКР гамма J (TRGJ), а понятие константный домен ТКР гамма относится к внеклеточному сегменту TRGC или С-терминальной усеченной последовательности TRGC. В равной степени понятие дельта вариабельный домен ТКР относится к соединению сегмента ТКР дельта V (TRDV) без лидерного сегмента (L) и сегмента ТКР дельта D/J (TRDD/TRDJ), а понятие константный домен ТКР-дельта относится к внеклеточному сегменту TRDC или С-терминальной усеченной последовательности.
ТКР по настоящему изобретению предпочтительно связываются с комплексом пептида-молекула HLA по изобретению с аффинностью связывания (KD) около 100 мкМ или ниже, около 50 мкМ или ниже, около 25 мкМ или ниже или около 10 мкМ или ниже. Более предпочтительными являются высокоаффинные ТКР с аффинностью связывания, составляющей около 1 мкМ или ниже, около 100 нМ или ниже, около 50 нМ или ниже, около 25 нМ или ниже. Неограничивающие примеры диапазонов предпочтительной аффинности связывания для ТКР по настоящему изобретению включают значения от около 1 до около 10 нМ; от около 10 до около 20 нМ; от около 20 до около 30 нМ; от около 30 до около 40 нМ; от около 40 до около 50 нМ; от около 50 до около 60 нМ; от около 60 до около 70 нМ; от около 70 до около 80 нМ; от около 80 до около 90 нМ и от около 90 до около 100 нМ.
Понятие специфическое связывание, используемое в связи с понятием ТКР по настоящему изобретению, и его грамматические варианты используются для обозначения ТКР с аффинностью связывания (KD) для комплекса пептида по изобретению и молекулы HLA 100 мкМ или ниже.
Альфа/бета гетеродимерные ТКР согласно настоящему описанию могут иметь введенную дисульфидную связь между их константными доменами. Предпочтительные ТКР этого вида включают те, что имеют последовательность константного домена TRAC и последовательность константного домена TRBC1 или TRBC2, кроме тех случаев, когда Thr 48 домена TRAC и Ser 57 доменов TRBC1 или TRBC2 замещены остатками цистеина, причем указанные остатки цистеина формируют дисульфидную связь между последовательностью константного домена TRAC и последовательностью константного домена TRBC1 или TRBC2 ТКР.
С введением межцепочечной связи, упомянутой выше, или без нее альфа/бета гетеродимерные ТКР по настоящему изобретению могут иметь последовательность константного домена TRAC и последовательность константного домена TRBC1 или TRBC2 и последовательность константного домена TRAC и последовательность константного домена TRBC1 или TRBC2 ТКР может быть связана встречающейся в природе дисульфидной связью между Cys4 экзона 2 домена TRAC и Cys2 экзона 2 домена TRBC1 или TRBC2.
ТКР по настоящему изобретению могут включать поддающуюся обнаружению метку, выбранную из группы, состоящей из радионуклида, флуорофора и биотина. ТКР по настоящему изобретению могут быть конъюгированы с терапевтически активным ингредиентом, таким как радионуклид, химиотерапевтическим средством или токсином.
В одном варианте осуществления ТКР по настоящему изобретению, имеющий по меньшей мере одну мутацию альфа-цепи и/или имеющий по меньшей мере одну мутацию бета-цепи, обладает модифицированным гликозилированием в сравнении с ТКР без мутаций.
В одном варианте осуществления ТКР, содержащий по меньшей мере одну мутацию в альфа-цепи ТКР и/или бета-цепи ТКР, имеет аффинность связывания по отношению к и/или полупериод связывания с комплексом пептида по изобретению и молекулы HLA, которые по меньшей мере вдвое выше, чем у ТКР, содержащего альфа-цепь ТКР без мутаций и/или бета-цепь ТКР без мутаций. Усиление аффинности опухолеспецифических ТКР, а также ее использование опирается на существование окна с оптимальными показателями аффинности для ТКР. Существование такого окна основано на наблюдениях, что ТКР, специфические для HLA-А2-рестриктированных патогенов, обладают показателями KD, которые в основном примерно в 10 раз ниже по сравнению с ТКР, специфическими для HLA-A2рестриктированных опухолеассоциированных аутоантигенгов. Сейчас известно, хотя опухолевые антигены имеют иммуногенный потенциал, поскольку опухоли возникают из собственных клеток индивида, только мутантные белки или белки с изменениями в трансляционном процессинге будут восприниматься иммунной системой как чужеродные. Антигены, уровень которых повышен или которые экспрессируются в избытке (так называемые аутоантигены), не будут в обязательном порядке вызывать функциональный иммунный ответ против опухоли: Т-клетки, экспрессирующие ТКР, которые являются высокоактивными по отношению к данным антигенам, будут подвергаться отрицательному отбору внутри вилочковой железы в процессе, известном как центральная толерантность, что означает, что останутся лишь Т-клетки с низкоаффинными ТКР к аутоантигенам. Поэтому аффинность ТКР или вариантов согласно
- 27 041120 настоящему описанию по отношению к пептидам по изобретению может быть усилена способами, хорошо известными из уровня техники.
Настоящее описание относится далее к способу идентификации и выделения ТКР в соответствии с настоящим описанием, причем указанный способ включает инкубацию МКПК HLA-A*02отрицательных здоровых доноров с А2/пептидными мономерами по изобретению, инкубацию МКПК с тетрамерфикоэритрином (РЕ) и выделение Т-клеток с высокой авидностью с помощью сортировки клеток с активированной флуоресценцией (FACS)-Calibur.
Настоящее описание относится далее к способу идентификации и выделения ТКР в соответствии с настоящим описанием, причем указанный способ включает получение трансгенной мыши с целыми человеческими локусами гена TCRae (1,1 и 0,7 млн. п.н.), Т-клетки которой экспрессируют различные ТКР человека, компенсируя недостаток ТКР у мыши, иммунизацию мыши пептидом HAVCR1-001, инкубацию МКПК, полученных у трансгенной мыши, с тетрамерфикоэритрином (РЕ) и выделение Т-клеток с высокой авидностью с помощью сортировки клеток с активированной флуоресценцией (FACS)-Calibur.
В одном аспекте для получения Т-клеток, экспрессирующих ТКР согласно настоящему описанию, нуклеиновые кислоты, кодирующие цепи ТКР-альфа и/или ТКР-бета согласно настоящему описанию, клонируют в векторы экспрессии, такие как гамма-ретровирус или -лентивирус. Рекомбинантные вирусы получают и проводят испытание их функциональности, такой как антигенная специфичность и функциональная авидность. Аликвота конечного продукта затем используется для трансдукции целевой популяции Т-клеток (как правило, очищенных от МКПК пациента), которую культивируют перед инфузией пациенту.
В другом аспекте для получения Т-клеток, экспрессирующих ТКР согласно настоящему описанию, РНК ТКР синтезируют с помощью методик, известных из уровня техники, например транскрипционные системы in vitro. Синтезированные in vitro РНК ТКР затем вводят с помощью электропорации в первичные CD8+ Т-клетки, полученные у здоровых доноров, в целях повторной экспрессии альфа-и/или бетацепей опухолеспецифических ТКР.
Для увеличения уровня экспрессии нуклеиновые кислоты, кодирующие ТКР согласно настоящему описанию, могут быть функционально связаны с сильными промоторами, такими как длинные терминальные повторы ретровируса (LTR), цитомегаловируса (CMV), вируса стволовых клеток мыши (MSCV) U3, фосфоглицераткиназой (PGK), β-актином, убиквитином и комбинированным промотором вируса обезьян 40 (SV40)/CD43, фактором элонгации (EF)-1a и промотором вируса некроза селезёнки (SFFV). В предпочтительном варианте осуществления промотор является гетерологичным по отношению к экспрессируемой нуклеиновой кислоте.
В дополнение к сильным промоторам экспрессионные кассеты ТКР согласно настоящему описанию могут содержать дополнительные элементы, которые могут усиливать экспрессию трансгена, включая центральный полипуриновый тракт (сРРТ), который способствует ядерной транслокации лентивирусных конструкций (Follenzi et al., 2000), и посттранскрипционный регуляторный элемент вируса гепатита сурков (wPRE), который повышает уровень экспрессии трансгена за счет увеличения стабильности РНК (Zufferey et al., 1999).
Альфа- и бета-цепи ТКР по настоящему изобретению могут кодироваться нуклеиновыми кислотами, локализованными в отдельных векторах, или могут кодироваться полинуклеотидами, локализованными в одном и том же векторе.
Для достижения высоких уровней экспрессии ТКР на поверхности требуется транскрипция высоких уровней как цепей ТКР-альфа, так и ТКР-бета, введенного ТКР. Для этого цепи ТКР-альфа и ТКР-бета согласно настоящему описанию могут быть клонированы в бицистронные конструкции в одном векторе, который, как было показано, способен преодолеть данное препятствие. Использование участка внутренней посадки рибосомы вируса (IRES) между цепями ТКР-альфа и ТКР-бета приводит к скоординированной экспрессии обеих цепей, поскольку цепи ТКР-альфа и ТКР-бета образуются из одного транскрипта, который разделяется на два белка во время транскрипции, обеспечивая получение равного молярного соотношения цепей ТКР-альфа и ТКР-бета. (Schmitt et al. 2009). (Schmitt et al. 2009).
Нуклеиновые кислоты, кодирующие ТКР согласно настоящему описанию, могут быть кодоноптимизированы для увеличения экспрессии клеткой-хозяином. Избыточность генетического кода позволяет кодирование некоторых аминокислот более чем одним кодоном, однако некоторые конкретные кодоны менее оптимальны, чем другие, по причине относительной доступности подходящих тРНК, а также других факторов (Gustafsson et al., 2004). Как было показано, модификации последовательностей генов ТКР-альфа и ТКР-бета, так чтобы каждая аминокислота кодировалась оптимальным кодоном для экспрессии генов млекопитающих, а также удаление нестабильных мотивов мРНК или криптических сайтов сплайсинга, существенно усиливали экспрессию генов ТКР-альфа и ТКР-бета (Scholten et al., 2006).
Кроме того, нарушение комплементарности между введенными и эндогенными цепями ТКР может привести к приобретению специфичности, которая будет представлять значительный риск для аутоиммунности. Например, формирование смешанных димеров ТКР может снизить число молекул CD3, име- 28 041120 ющихся в наличии для формирования правильно спаренных комплексов ТКР, и, таким образом, может существенно снизить функциональную авидность клеток, экспрессирующих введенный ТКР (Kuball et al., 2007).
Для снижения ошибочного спаривания С-концевой домен введенных цепей ТКР согласно настоящему описанию может быть модифицирован в целях стимуляции межцепочечной аффинности, при этом снижая способность введенных цепей спариваться с эндогенным ТКР. Данные стратегии могут включать замещение С-концевых доменов ТКР-альфа и ТКР-бета-цепей человека их мышиными эквивалентами (С-концевой муринизированный домен); получение второй межцепочечной дисульфидной связи в С-концевом домене за счет введения второго остатка цистеина в обе цепи: ТКР-альфа и ТКР-бета введенного ТКР (модификация цистеином); обмен взаимодействующими остатками в С-концевом домене ТКР-альфа и ТКР-бета-цепей (выступ-во-впадину) и слияние вариабельных доменов цепей ТКР-альфа и ТКР-бета непосредственно в CD3Z (слияние CD3Z). (Schmitt et al. 2009).
В одном варианте осуществления клетка-хозяин генетически модифицирована, чтобы экспрессировать ТКР согласно настоящему описанию. В предпочтительных вариантах осуществления клетка-хозяин является человеческой Т-клеткой или предшественником Т-клетки. В одних вариантах осуществления Т-клетка или предшественник Т-клетки получены у пациента, больного раком. В других вариантах осуществления Т-клетка или предшественник Т-клетки получены у здорового донора. Клетки-хозяева согласно настоящему описанию могут быть аллогенными или аутологичными в отношении пациента, подлежащего лечению. В одном варианте осуществления клетка-хозяин является гамма/дельта Т-клеткой, трансформированной для экспрессии альфа-/бета-ТКР.
Фармацевтическая композиция является композицией, подходящей для введения человеку в рамках лечения. Предпочтительно, если фармацевтическая композиция является стерильной и произведена в соответствии с правилами GMP (надлежащей производственной практики).
Фармацевтические композиции включают пептиды как в свободной форме, так и в форме фармацевтически приемлемой соли (см. также выше). Используемое в контексте данного изобретения понятие фармацевтически приемлемая соль относится к производным раскрытых пептидов, причем пептид модифицирован путем получения кислых или основных солей вещества. Например, кислые соли получают из свободного основания (как правило, где нейтральная форма лекарственного средства имеет нейтральную группу -NH2) с применением реакции с подходящей кислотой. Подходящие кислоты для получения кислых солей включают как органические кислоты, например уксусную кислоту, пропионовую кислоту, гликолевую кислоту, пировиноградную кислоту, щавелевую кислоту, яблочную кислоту, малоновую кислоту, янтарную кислоту, малеиновую кислоту, фумаровую кислоту, винную кислоту, лимонную кислоту, бензойную кислоту, коричную кислоту, миндальную кислоту, метансульфоновую кислоту, этансульфоновую кислоту, п-толуолсульфокислоту, салициловую кислоту и т.п., так и неорганические кислоты, например соляную кислоту, бромистоводородную кислоту, серную кислоту, азотную кислоту, фосфорную кислоту и т.п. И наоборот, приготовление основных солей кислотных компонентов, которые могут присутствовать на пептиде, производится при использовании фармацевтически приемлемого основания, такого как гидроксид натрия, гидроксид калия, гидроксид аммония, гидроксид кальция, триметиламин и т.п.
В одном особенно предпочтительном варианте осуществления фармацевтические композиции включают пептиды в виде солей уксусной кислоты (ацетаты), трифторацетатов или соляной кислоты (хлориды).
Предпочтительно, если медикамент по настоящему изобретению является иммунотерапевтическим препаратом, таким как вакцина. Она может вводиться непосредственно пациенту, в пораженный орган или системно в/к, в/м, п/к, в/б и в/в или вноситься ex vivo в клетки, полученные от пациента, или в человеческую клеточную линию, которые затем могут вводиться пациенту или использоваться in vitro для селекции субпопуляции из иммунных клеток, полученных от пациента, которые после этого вновь вводятся пациенту. Если нуклеиновая кислота введена в клетки in vitro, то может быть полезно, чтобы клетки были трансфицированными, чтобы совместно экспрессировать иммуностимулирующие цитокины, такие как интерлейкин-2. Пептид может быть по существу чистым или в комбинации с иммуностимулирующим адъювантом (см. ниже), или использоваться в комбинации с иммуностимулирующими цитокинами, или же вводиться с подходящей системой доставки, например, липосомами. Пептид может быть также конъюгирован с подходящим носителем, таким как гемоцианин фиссуреллы (KLH) или маннан (см. WO 95/18145 и (Longenecker et al., 1993)). Пептид может быть также меченым или может быть слитым белком или гибридной молекулой. Пептиды, последовательность которых дана в настоящем изобретении, как ожидается, стимулируют CD4+ или CD8+ Т-клетки. Тем не менее стимуляция CD8 Т-клеток более эффективна в присутствии поддержки, предоставляемой CD4 хелперными Т-клетками. Таким образом, для эпитопов МНС I класса, которые стимулируют CD8 Т-клетки, партнеры в слиянии или участки гибридной молекулы надлежащим образом предоставляют эпитопы, которые стимулируют CD4положительные Т-клетки. CD4- и CD8-стимулирующие эпитопы хорошо известны из уровня техники и включают те, что были идентифицированы в настоящем изобретении.
В одном аспекте вакцина включает по меньшей мере один пептид, имеющий аминокислотную по- 29 041120 следовательность с SEQ ID NO: 1 по SEQ ID NO: 48, и по меньшей мере один дополнительный пептид, предпочтительно от 2 до 50, более предпочтительно от 2 до 25, еще более предпочтительно от 2 до 20 и наиболее предпочтительно 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 или 18 пептидов. Пептид(ы) может(могут) быть получен(ы) из одного или более специфических ТАА и может(могут) связываться с молекулами МНС I класса.
В еще одном аспекте изобретения предлагается нуклеиновая кислота (например, полинуклеотид), кодирующая пептид или вариант пептида по изобретению. Полинуклеотид может быть, например, ДНК, кДНК, ПНК, РНК или их комбинациями, как одно-, так и/или двухнитевыми; природными или стабилизированными формами полинуклеотидов, такими как, например, полинуклеотиды с фосфоротиоатным остовом, и может содержать или не содержать интроны при условии, что полинуклеотид кодирует пептид. Разумеется, только пептиды, которые содержат встречающиеся в природе аминокислотные остатки, присоединенные встречающимися в природе пептидными связями, могут кодироваться полинуклеотидом. В другом аспекте изобретения предложен вектор экспрессии, способный экспрессировать полипептид в соответствии с изобретением.
Был разработан ряд способов связывания полинуклеотидов, в особенности ДНК, с векторами, например, с помощью комплементарных липких концов. К примеру, к сегменту ДНК могут быть добавлены комплементарные гомополимерные хвосты для встраивания в векторную ДНК. Этот вектор и сегмент ДНК в таком случае соединены водородной связью между комплементарными гомополимерными хвостами, образуя молекулы рекомбинантной ДНК.
Синтетические линкеры, содержащие один или несколько сайтов рестрикции, обеспечивают альтернативный способ присоединения сегмента ДНК к векторам. Синтетические линкеры, содержащие ряд сайтов распознавания рестрикционной эндонуклеазы, имеются в продаже в различных источниках, включая International Biotechnologies Inc, Нью-Хейвен, Коннектикут, США.
В желаемом способе модификации ДНК, кодирующей полипептид по изобретению, используется полимеразная цепная реакция, как раскрыто в работе Saiki R.K. et al. (Saiki et al., 1988). Этот способ может быть использован для введения ДНК в подходящий вектор, например, при конструировании в подходящих сайтах рестрикции или же он может быть использован для модификации ДНК другими пригодными путями, известными из уровня техники. Если используются вирусные векторы, то предпочтительными являются поксвирусные или аденовирусные векторы.
Затем ДНК (или в случае ретровирусных векторов РНК) может экспрессироваться в подходящем хозяине для получения полипептида, включающего пептид или вариант по изобретению. Таким образом, ДНК, кодирующая пептид или вариант по изобретению, может быть использована в соответствии с известными методиками, модифицированными соответствующим образом с учетом раскрытых в данном описании идей, для конструирования вектора экспрессии, который затем используется для трансформации подходящей клетки-хозяина для экспрессии и получения полипептида по изобретению. Такие методики включают те, что раскрыты, например, в патентах США № 4440859, 4530901, 4582800, 4677063, 4678751, 4704362, 4710463, 4757006, 4766075 и 4810648.
ДНК (или в случае ретровирусных векторов - РНК), кодирующая полипептид, представляющий собой соединение по изобретению, может быть присоединена к обширному ряду других последовательностей ДНК для введения в соответствующего хозяина. ДНК-спутник будет зависеть от природы хозяина, способа введения ДНК хозяину и от того, желательно ли поддержание в эписомальной или интеграционной форме.
Как правило, ДНК вводится в вектор экспрессии, такой как плазмида, с соответствующей ориентацией и правильной рамкой считывания для экспрессии. Если необходимо, то ДНК может быть соединена с соответствующими нуклеотидными последовательностями, обеспечивающими координацию транскрипции и трансляции, распознаваемыми желательным хозяином, хотя такие контрольные элементы обычно имеются в векторе экспрессии. Вектор вводится затем хозяину стандартными способами. Как правило, не все хозяева трансформируются вектором. Поэтому будет необходимо выделить трансформированные клетки-хозяева. Одна из методик отбора включает введение в вектор экспрессии последовательности ДНК с любыми необходимыми элементами контроля, которая кодирует выбранный признак в трансформированной клетке, такой как устойчивость к антибиотикам.
В качестве альтернативы ген для такого выбираемого признака может быть на другом векторе, который используется для совместной трансформации желаемой клетки-хозяина.
Клетки-хозяева, которые были трансформированы рекомбинантной ДНК по изобретению, культивируют затем в течение достаточного времени и при соответствующих условиях, известных специалистам данной области, с учетом раскрытых в данном описании идей, что ведет к экспрессии полипептида, который после этого может быть выделен.
Известно множество систем экспрессии, включающих бактерии (например, Е. coli и Bacillus subtilis), дрожжи (например, Saccharomyces cerevisiae), мицелиальные грибы (например, Aspergillus spec), растительные клетки, клетки животных и насекомых. Предпочтительно, чтобы система была клетками млекопитающих, такими как клетки СНО, имеющимися в наличии в Американской коллекции типовых культур АТСС.
- 30 041120
Типичная клеточная векторная плазмида млекопитающих для конститутивной экспрессии включает промотор CMV или SV40 с подходящим концевым участком поли-А и маркером устойчивости, таким как неомицин. Одним примером является pSVL, имеющимся в наличии в компании Pharmacia, Пискатеуэй, Нью-Джерси, США. Примером индуцируемого вектора экспрессии млекопитающих является pMSG, также имеющийся в наличии в Pharmacia. Пригодными плазмидными векторами дрожжей являются pRS403-406 и pRS413-416, и они, как правило, имеются в наличии у компании Stratagene Cloning Systems, Ла Джолла, Калифорния 92037, США. Плазмиды pRS403, pRS404, pRS405 и pRS406 являются дрожжевыми интегрирующими плазмидами (Ylps) и включают дрожжевые селектируемые маркеры HIS3, TRP1, LEU2 и URA3. Плазмиды pRS413-416 являются дрожжевыми плазмидами с центромерами (Ycp). Основанные на промоторе CMV векторы (например, компании Sigma-Aldrich) обеспечивают кратковременную или устойчивую экспрессию, цитоплазмическую экспрессию или секрецию и N-терминальную или С-терминальную маркировку в различных комбинациях FLAG, 3xFLAG, c-myc или МАТ. Данные слитые белки позволяют проводить выявление, очистку и анализ рекомбинантного белка. Слияния с двойной меткой обеспечивают гибкость при выявлении.
Сильный регуляторный участок промотора цитомегаловируса человека (CMV) повышает уровни конститутивной экспрессии белка, достигающие 1 мг/л в клетках COS. Для менее активных клеточных линий белковые уровни обычно составляют ~0,1 мг/л. Присутствие точки начала репликации SV40 будет приводить к высоким уровням репликации ДНК в пермиссивных клетках COS. Векторы CMV, например, могут содержать точку начала репликации рМВ1 (производное pBR322) в бактериальных клетках, ген бета-лактамазы для отбора устойчивости к ампициллину у бактерий, polyA гормона роста человека и точку начала репликации f1. Векторы, содержащие лидерную последовательность препротрипсина (РРТ), могут направлять секрецию слитых белков FLAG в культуральной среде для очистки с использованием антител к FLAG, смол и планшетов. Другие векторы и системы экспрессии для применения с различными клетками-хозяевами хорошо известны из уровня техники.
В другом предпочтительном варианте осуществления кодируются два или более пептида или варианта пептидов по изобретению, и, таким образом, они экспрессируются последовательно (как в случае структуры типа бусины на нити). В этих целях пептиды или варианты пептидов могут быть соединены или слиты воедино с помощью фрагментов линкерных аминокислот, таких как, например, LLLLLL, или же могут быть соединены без какого(их)-либо дополнительного(ых) пептида(ов) между ними. Эти структуры могут быть также использованы в противораковой терапии и, возможно, индуцировать иммунные ответы с участием как молекул МНС I, так и МНС II класса.
Настоящее изобретение относится также к клетке-хозяину, трансформированной с помощью полинуклеотидной векторной конструкции по настоящему изобретению. Клетка-хозяин может быть как прокариотической, так и эукариотической. Бактериальные клетки могут быть предпочтительно прокариотическими клетками-хозяевами при некоторых условиях и обычно являются штаммом Е. coli, таким как, например, Е. coli штамма DH5, имеющимся в наличии в Bethesda Research Laboratories Inc., Бетесда, Мэриленд, США, и RR1, имеющимся в наличии в Американской коллекции типовых культур (American Type Culture Collection (ATCC), Роквил, Мэриленд, США (№ АТСС 31343). Предпочтительные эукариотические клетки-хозяева включают дрожжи, клетки насекомых и млекопитающих, предпочтительно клетки позвоночных, таких как линии фибробластных клеток и клеток толстой кишки таких видов, как мышь, крыса, обезьяна или человек. Дрожжевые клетки-хозяева включают YPH499, YPH500 и YPH501, которые, как правило, имеются в наличии в Stratagene Cloning Systems, Ла Джола, Калифорния 92037, США. Предпочтительные клетки-хозяева млекопитающих включают клетки яичника китайского хомяка (СНО), имеющиеся в наличии в АТСС как CCL61, эмбриональные клетки швейцарской мыши линии NIH/3T3, имеющиеся в наличии в АТСС как CRL 1658, клетки COS-1 из почек обезьяны, имеющиеся в наличии в АТСС как CRL 1650, и клетки 293, являющиеся эмбриональными клетками почек эмбрионов человека. Предпочтительными клетками насекомых являются клетки Sf9, которые могут трансфицироваться с помощью бакуловирусных векторов экспрессии. Обзор в отношении выбора подходящих клеток-хозяев для экспрессии представлен, например, в учебном пособии авторов Paulina Balbas и Argelia Lorence Methods in Molecular Biology Recombinant Gene Expression, Reviews and Protocols, часть первая, второе издание, ISBN 978-1-58829-262-9, и другой литературе, известной специалисту в данной области.
Трансформация соответствующих клеток-хозяев с помощью ДНК-конструкции по настоящему изобретению производится при помощи хорошо известных способов, которые обычно зависят от типа используемого вектора. Относительно трансформации прокариотических клеток-хозяев см., например, работу Cohen et al. (Cohen et al., 1972) и (Cohen et al., 1972). Трансформация дрожжевых клеток описывается в работе Sherman et al. (Sherman et al., 1986). Также подходит метод Бигса (Beggs) (Beggs, 1978). Что касается клеток позвоночных, то подходящие для трансфекции таких клеток реагенты, например фосфат кальция и DEAE-декстран или липосомальные составы, имеются в наличии в Stratagene Cloning Systems или Life Technologies Inc., Гейтерсберг, Мэриленд 20877, США. Электропорация также подходит для трансформации и/или трансфекции клеток и хорошо известна из уровня техники для трансформации дрожжевых клеток, бактериальных клеток, клеток насекомых и клеток позвоночных.
Успешно трансформированные клетки, т.е. клетки, которые содержат конструкцию ДНК по на- 31 041120 стоящему изобретению, могут быть идентифицированы хорошо известными способами, такими как ПЦР.
Альтернативно, наличие белка в супернатанте может быть выявлено с применением антител.
Следует понимать, что некоторые клетки-хозяева по изобретению подходят для получения пептидов по изобретению, например бактериальные, дрожжевые клетки и клетки насекомых. Тем не менее в конкретных терапевтических методах могут использоваться другие клетки-хозяева. Например, антигенпрезентирующие клетки, такие как дендритные клетки, могут с пользой быть использованы для экспрессии пептидов по изобретению так, что их можно будет нагружать на подходящие молекулы МНС. Таким образом, в настоящем изобретении предложена клетка-хозяин, включающая нуклеиновую кислоту или вектор экспрессии в соответствии с изобретением.
В предпочтительном варианте осуществления клетка-хозяин является антигенпрезентирующей клеткой, в частности дендритной клеткой или антигенпрезентирующей клеткой. АПК, нагруженные рекомбинантным слитым белком, содержащим простатическую кислую фосфатазу (РАР), были одобрены Управлением по контролю за продуктами питания и лекарственными средствам США (FDA) 29 апреля 2010 г. для применения при лечении метастатического HRPC (гормон-рефрактерного рака предстательной железы), протекающего бессимптомно или с минимально выраженными симптомами (сипулейцел-Т) (Rini et al., 2006; Small et al., 2006).
В другом аспекте изобретения предложен способ получения пептида или его варианта, причем способ включает культивацию клетки-хозяина и выделение пептида из клетки-хозяина или его культуральной среды.
В другом варианте осуществления пептид, нуклеиновая кислота или вектор экспрессии по изобретению применяются в медицине. Например, пептид или его вариант может приготавливаться для внутривенного (в/в) введения, подкожного (п/к) введения, внутрикожного (в/к) введения, внутрибрюшинного (в/б) введения, внутримышечного (в/м) введения. Предпочтительные способы введения пептидов включают п/к, в/к, в/б, в/м и в/в. Предпочтительные способы введения ДНК включают в/к, в/м, п/к, в/б и в/в. Вводиться могут, к примеру, дозы от 50 мкг до 1,5 мг, предпочтительно от 125 до 500 мкг пептида или ДНК, в зависимости от соответствующего пептида или ДНК. Дозировка в данном диапазоне успешно использовалась в предыдущих клинических исследованиях (Walter et al., 2012).
Полинуклеотид, применяемый в активной вакцинации, может быть по существу чистым или содержаться в подходящем векторе или системе доставки. Нуклеиновая кислота может быть ДНК, кДНК, ПНК, РНК или их комбинацией. Методы конструирования и введения такой нуклеиновой кислоты хорошо известны из уровня техники. Обзор представлен, например, в работе Teufel et al. (Teufel et al., 2005). Полинуклеотидные вакцины просто получить, однако механизм действия этих векторов по индуцированию иммунного ответа понятен не полностью. Подходящие векторы и системы доставки включают вирусные ДНК и/или РНК, такие как системы, которые основаны на аденовирусе, вирусе осповакцины, ретровирусах, вирусе герпеса, аденоассоциированном вирусе или гибридах, содержащих элементы более чем одного вируса. Невирусные системы доставки включают катионные липиды и катионные полимеры и хорошо известны из уровня техники в области доставки ДНК. Также может быть использована физическая доставка, такая как посредством генного пистолета. Пептид или пептиды, кодируемые нуклеиновой кислотой, могут быть слитым белком, например, с эпитопом, который стимулирует Т-клетки против соответствующего противоположного определяющего комплементарность участка CDR, как описывается выше.
Медикамент по изобретению может также включать один или более адъювантов. Адъюванты - это вещества, которые неспецифически усиливают или потенцируют иммунный ответ (например, иммунные ответы, опосредованные CD8-положительными Т-клетками или хелперными Т-клетками (ТН) на антиген, и могут, таким образом, рассматриваться как полезные в медикаменте по настоящему изобретению. Подходящие адъюванты включают, но без ограничения, 1018 ISS, соли алюминия, AMPLIVAX®, AS15, BCG, CP-870,893, CpG7909, CyaA, dSLIM, флагеллин или лиганды TLR5, полученные из флагеллина, лиганд FLT3, ГМ-КСФ, IC30, IC31, имиквимод (ALDARA®), резимиквимод, ImuFact IMP321, интерлейкины, такие как ИЛ-2, ИЛ-13, ИЛ-21, интерферон-альфа или бета или их пегилированные производные, IS Patch, ISS, ISCOMATRIX, иммуностимулирующие комплексы ISCOM, JuvImmune®, LipoVac, MALP2, MF59, монофосфорил липид А, Монтанид IMS 1312, Монтанид ISA 206, Монтанид ISA 50V, Монтанид ISA-51, эмульсии вода в масле и масло в воде, OK-432, ОМ-174, ОМ-197-МР-ЕС, ONTAK, OspA, векторную систему PepTel®, основанные на поли(лактид когликолиде) [PLG] и декстране микрочастицы, талактоферрин SRL172, виросомы и другие вирусоподобные частицы, YF-17D, VEGF trap, R848, бетаглюкан, Pam3Cys, стимулон Aquila QS21, который получают из сапонина, микобактериальные экстракты и синтетические имитаторы бактериальных клеточных стенок и другие запатентованные адъюванты, такие как Detox компании Ribi, Quil или Superfos. Предпочтительными адъювантами являются такие, как адъювант Фрейнда или ГМ-КСФ. Несколько иммунологических адъювантов (например, MF59), специфических для дендритных клеток, и их получение были описаны ранее (Allison and Krummel, 1995). Также могут использоваться цитокины. Несколько цитокинов были непосредственно соотнесены с влиянием на миграцию дендритных клеток к лимфоидным тканям (например, TNF-), ускоряя созревание дендрит- 32 041120 ных клеток до эффективных, презентирующих антиген Т-лимфоцитам, клеток (например, ГМ-КСФ,
ИЛ-1 и ИЛ-4) (патент США № 5849589, специально включенный сюда в полном объеме путем ссылки) и действуя как иммуноадъюванты (например, ИЛ-12, ИЛ-15, ИЛ-23, ИЛ-7, ИНФ-альфа, ИНФ-бета) (Gabrilovich et al., 1996).
Об иммуностимулирующих олигонуклеотидах CpG также сообщалось, что они усиливают эффекты адъювантов в составе вакцин. Не желая быть связанными соответствием какой-либо конкретной теории, авторы полагают, что CpG-олигонуклеотиды при активации врожденной (не приобретенной) иммунной системы действуют с помощью Toll-подобных рецепторов (TLR), в основном TLR9. Вызванная CpG активация TLR9 усиливает антигенспецифичные гуморальные и клеточные ответы на широкий спектр антигенов, включая пептидные или белковые антигены, живые или убитые вирусы, вакцины из дендритных клеток, аутологичные клеточные вакцины и полисахаридные конъюгаты как в профилактических, так и терапевтических вакцинах. Более важно то, что улучшается созревание и дифференциация дендритных клеток, приводя к повышенной активации клеток типа ТН1 и интенсивной выработке цитотоксических Т-лимфоцитов (ЦТЛ) даже при отсутствии помощи со стороны CD4 Т-клеток. Активация ТН1, вызванная стимуляцией TLR9, сохраняется даже в присутствии вакцинных адъювантов, таких как квасцы или неполный адъювант Фрейнда (IFA), которые обычно способствуют активации ТН2. CpG-олигонуклеотиды проявляют даже большую адъювантную активность, если они входят в состав или вводятся в организм вместе с другими адъювантами или в таких составах, как микрочастицы, наночастицы, липидные эмульсии или в подобных составах, которые в особенности необходимы для инициации сильного ответа, если антиген относительно слаб. Они также ускоряют иммунную реакцию и позволяют снизить дозы антигена приблизительно на два порядка в сравнении с ответами антитела на полную дозу вакцины без CpG, что наблюдалось в некоторых экспериментах (Krieg, 2006). В патенте США № 6406705 В1 описывается комбинированное применение CpG-олигонуклеотидов, адъювантов, не включающих нуклеиновые кислоты, и антигена для вызывания антигенспецифического иммунного ответа. Антагонистом CpG TLR9 является dSLIM (иммуномодулятор со структурой типа двухцепочечный стебель-петля) компании Mologen (Берлин, Германия), который является предпочтительным компонентом фармацевтической композиции по настоящему изобретению. Также могут быть использованы другие молекулы, связывающиеся с TLR, такие как TLR 7, TLR 8 и/или TLR 9, связывающиеся с РНК.
Другие примеры пригодных к использованию адъювантов включают, но без ограничения, химически модифицированные CpG (например, CpR, Idera), аналоги ds-РНК, такие как поли-(1:С) и их производные (например, AmpliGen®, Hiltonol®, поли(ICLC), поли(IC-R), поли(I:С12U), бактериальные ДНК или РНК, отличные от CpG, а также иммуноактивные малые молекулы и антитела, такие как циклофосфамид, сунитиниб, бевацизумаб®, целебрекс, NCX-4016, силденафил, тадалафил, варденафил, сорафениб, темозоломид, темсиролимус, XL-999, СР-547632, пазопаниб, VEGF Trap, ZD2171, AZD2171, антиCTLA4, другие антитела, нацеленные на основные структуры иммунной системы (например, антитела к CD40, TGF-бета, рецептору TNF-альфа) и SC58175, которые могут действовать терапевтически и/или как адъюванты. Количества и концентрации адъювантов и добавок, пригодных для использования в контексте настоящего изобретения, могут быть легко определены опытным специалистом без проведения излишних экспериментов.
Предпочтительными адъювантами являются анти-CD40, имиквимод, резиквимод, ГМ-КСФ, циклофосфамид, сунитиниб, бевацизумаб, интерферон-альфа, CpG олигонуклеотиды и их производные, поли(1:С) и ее производные, РНК, силденафил и составы из твердых микрочастиц с PLG или виросомы.
В предпочтительном варианте осуществления фармацевтической композиции в соответствии с изобретением адъювант выбран из группы, состоящей из колониестимулирующих факторов, таких как гранулоцитарно-макрофагальный колониестимулирующий фактор (ГМ-КСФ, сарграмостим), циклофосфамид, имиквимод, резиквимод и интерферон-альфа.
В предпочтительном варианте осуществления фармацевтической композиции в соответствии с изобретением адъювант выбран из группы, состоящей из колониестимулирующих факторов, таких как гранулоцитарно-макрофагальный колониестимулирующий фактор (ГМ-КСФ, сарграмостим), циклофосфамид, имиквимод и резиквимод. В предпочтительном варианте осуществления фармацевтической композиции в соответствии с изобретением адъювантом является циклофосфамид, имиквимод или резиквимод. Еще более предпочтительными адъювантами являются монтанид IMS 1312, монтанид ISA 206, монтанид ISA 50 V, монтанид ISA-51, поли-ICLC (Hiltonol®) и моноклональные антитела к CD40 или их комбинации.
Эта композиция используется для парентерального введения, такого как подкожное, внутрикожное, внутримышечное или для перорального введения. Для этого пептиды и, факультативно, другие молекулы растворяют или суспендируют в фармацевтически приемлемом, предпочтительно водном, носителе. Помимо того, композиция может содержать вспомогательные вещества, такие как буферы, связующие агенты, балластные вещества, разбавители, ароматизаторы, смазочные вещества и т.д. Пептиды могут быть также введены вместе с иммуностимулирующими агентами, такими как цитокины. Обширный список вспомогательных веществ, которые могут быть использованы в такой композиции, может быть взят, на- 33 041120 пример, из работы A. Kibbe, Handbook of Pharmaceutical Excipients (Kibbe, 2000). Композиция может использоваться для предупреждения, профилактики и/или лечения аденоматозных или раковых заболеваний. Примеры фармацевтических композиций могут быть взяты, например, из ЕР 2112253.
Важно понимать, что иммунный ответ, вызванный вакциной в соответствии с изобретением, направлен на раковые клетки на различных стадиях клеточного цикла и различных стадиях развития опухоли. Кроме того, атака направлена на различные сигнальные пути, ассоциированные с раковым заболеванием. Это является преимуществом в сравнении с вакцинами, направленными только на одну или немногие мишени, что может привести к тому, что опухоль легко приспособится к такой атаке (ускользание опухоли). Кроме того, не все отдельные опухоли имеют одинаковые паттерны экспрессии антигенов. Поэтому комбинация нескольких опухолеассоциированных пептидов гарантирует, что на каждой отдельной опухоли имеются по меньшей мере некоторые из этих мишеней. Композиция разработана исходя из того, что, как ожидается, каждая опухоль экспрессирует несколько антигенов и охватывает несколько независимых сигнальных путей, необходимых для роста и сохранения опухоли. Таким образом, вакцина в виде готовой к применению может быть легко использована для более крупной популяции пациентов. Это означает, что предварительный отбор пациентов для лечения вакциной может быть ограничен HLA-типированием, не требуя никакого дополнительного анализа биомаркеров экспрессии антигена, однако при этом остается гарантия одновременного воздействия на несколько мишеней в виде индуцированного иммунного ответа, что важно для эффективности (Banchereau et al., 2001; Walter et al., 2012).
В контексте настоящего описания понятие каркас относится к молекуле, которая специфически связывается с (например, антигенной) детерминантой. В одном варианте осуществления каркас способен направлять единицу, к которой он прикреплен (например, (второй) антигенсвязывающий элемент) к сайту-мишени, например к конкретному виду опухолевых клеток или стромы опухоли, несущих антигенную детерминанту (например, комплекс пептида с МНС в соответствии с настоящим документом). В другом варианте осуществления каркас способен активировать пути передачи сигналов за счет его антигенамишени, например антигена комплекса Т-клеточного рецептора. Каркасы включают, но без ограничения, антитела и их фрагменты, антигенсвязывающие домены антитела, включающие вариабельный участок тяжелой цепи антитела и вариабельный участок легкой цепи антитела, связывающие белки, включающие по меньшей мере один мотив анкиринового повтора и однодоменные антигенсвязывающие (SDAB) молекулы, аптамеры, (растворимые) ТКР и (модифицированные) клетки, такие как аллогенные или аутологичные Т-клетки. Чтобы оценить, является ли молекула каркасом, связывающимся с мишенью, может быть проведен анализ связывания.
Специфическое связывание обозначает, что каркас связывается с представляющим интерес комплексом пептида с МНС лучше, чем с другими встречающимися в природе комплексами пептида с МНС, в такой степени, что каркас, снабженный активной молекулой, способной уничтожать клетку, несущую специфическую мишень, не способен уничтожить другую клетку без специфической мишени, но презентирующую другой(ие) комплекс(ы) пептида с МНС. Связывание с другими комплексами пептида с МНС не играет роли, если пептид перекрестно реагирующего комплекса пептида с МНС не является встречающимся в природе, т.е. не образован из человеческого HLA-пептидома. Испытания для оценки потенциала уничтожения клетки-мишени хорошо известны из уровня техники. Они должны проводиться с использованием клеток-мишеней (первичные клетки или клеточные линии) с неизмененной презентацией комплексов пептида с МНС или клеток, нагруженных пептидами, таким образом, что будет достигаться уровень встречающихся в природе комплексов пептида с МНС.
Каждый каркас может включать метку, которая обеспечивает возможность обнаружения связанного каркаса за счет определения наличия или отсутствия сигнала, подаваемого меткой. Например, каркас может быть помечен флуоресцентным красителем или любой другой применимой маркерной молекулы клетки. Такие маркерные молекулы хорошо известны из области техники. Например, флуоресцентное мечение, например, с помощью флуоресцентного красителя может обеспечивать визуализацию связанного аптамера посредством флуоресцентной или лазерной сканирующей микроскопии или проточной цитометрии.
Каждый каркас может быть конъюгирован со второй активной молекулой, такой как, например, ИЛ-21, антитело к CD3, антитело к CD28.
Для получения дальнейшей информации о полипептидных каркасах см., например, раздел уровня техники патентной заявки WO 2014/071978 А1 и цитируемую в ней литературу.
Настоящее изобретение далее относится к аптамерам. Аптамеры (см., например, заявку WO 2014/191359 и цитируемую в ней литературу) - это короткие одноцепочечные молекулы нуклеиновых кислот, которые могут сворачиваться в определенные трехмерные структуры и распознавать специфические структуры-мишени. Оказалось, что они представляют собой подходящую альтернативу для разработки таргетной терапии. Как было продемонстрировано, аптамеры селективно связываются с различными сложными мишенями с высокой аффинностью и специфичностью.
Аптамеры, распознающие молекулы, которые находятся на поверхности клеток, были идентифицированы в последнее десятилетие и предоставляют возможность для разработки диагностических и тера- 34 041120 певтических подходов. Так как было продемонстрировано, что аптамеры практически не обладают токсичностью и иммуногенностью, они являются многообещающими кандидатами для биомедицинского применения. Действительно, аптамеры, например аптамеры, распознающие простатический специфический мембранный антиген, были успешно задействованы в таргетной терапии и продемонстрировали функциональность в моделях с ксенотрансплантатами in vivo. Кроме того, были идентифицированы аптамеры, распознающие конкретные опухолевые линии.
Могут быть отобраны ДНК-аптамеры, проявляющие широкий спектр свойств по распознаванию различных раковых клеток и, в частности, клеток, образованных из солидных опухолей, тогда как неопухолегенные и первичные здоровые клетки не распознаются. Если идентифицированные аптамеры распознают не только конкретный опухолевый подтип, но и взаимодействуют с различными опухолями, это делает возможным применение аптамеров в качестве так называемых диагностических и терапевтических средств широкого спектра действия.
Более того, исследование поведения по связыванию с клетками с помощью проточной цитометрии показало, что аптамеры проявляли очень хорошую кажущуюся аффинность, которая выражалась на наномолярном уровне.
Аптамеры пригодны для диагностических и терапевтических целей. Кроме того, как могло быть продемонстрировано, некоторые аптамеры захватываются опухолевыми клетками и, таким образом, могут действовать в качестве молекулярных носителей для направленной доставки противораковых средств, таких как миРНК, в опухолевые клетки.
Могут быть отобраны аптамеры к сложным мишеням, таким как клетки и ткани и комплексы пептидов, включающих, предпочтительно состоящих из последовательности в соответствии с любой из последовательностей с SEQ ID NO: 1 по SEQ ID NO: 48 в соответствии с представленным изобретением с молекулой МНС, используя метод cell-SELEX (Systematic Evolution of Ligands by Exponential enrichment систематическая эволюция лигандов при экспоненциальном обогащении).
Пептиды по настоящему изобретению могут использоваться для получения и разработки специфических антител к комплексам МНС/пептид. Они могут быть использованы в терапии, нацеливающей токсины или радиоактивные вещества на пораженную ткань. Другим видом использования данных антител может быть нацеливание радионуклидов на пораженную ткань в целях визуализации, такой как ПЭТ (позитронно-эмиссионная томография). Это может помочь в обнаружении небольших метастазов или в определении размера и точной локализации пораженных тканей.
Таким образом, в другом аспекте изобретения предложен способ получения рекомбинантного антитела, специфически связывающегося с главным комплексом гистосовместимости человека (МНС) I или II класса в комплексе с рестриктированным по HLA антигеном, причем способ включает иммунизацию генетически модифицированного, не являющегося человеком млекопитающего, содержащего клетки, экспрессирующие молекулы указанного главного комплекса гистосовместимости человека (МНС) I или II класса с растворимой формой молекулы МНС I или II класса в комплексе с указанным рестриктированным по HLA антигеном; выделение молекул мРНК из продуцирующих антитела клеток указанного не являющегося человеком млекопитающего; создание библиотеки фагового отображения, содержащей фаги, экспонирующие белковые молекулы, закодированные указанными молекулами мРНК; и выделение по меньшей мере одного фага из указанной библиотеки фагового отображения, причем указанный по меньшей мере один фаг экспонирует на поверхности указанное антитело, специфически связывающееся с указанным главным комплексом гистосовместимости человека (МНС) I или II класса в комплексе с указанным рестриктированным по HLA антигеном.
В другом аспекте изобретения предложено антитело, которое специфически связывается с главным комплексом гистосовместимости человека (МНС) I или II класса в комплексе с рестриктированным по HLA антигеном, где антитело предпочтительно является поликлональным антителом, моноклональным антителом, биспецифичным антителом и/или химерным антителом.
Соответствующие способы получения таких антител и одноцепочечных главных комплексов гистосовместимости I класса, в равной степени как и другие инструменты для получения данных антител, раскрыты в патентных заявках WO 03/068201, WO 2004/084798, WO 01/72768, WO 03/070752 и в опубликованных работах (Cohen et al., 2003a; Cohen et al., 2003b; Denkberg et al., 2003), которые все в целях настоящего изобретения в явном виде включены во всей полноте путем ссылки.
Предпочтительно, если антитело связывается с аффинностью связывания ниже 20 нМ, предпочтительно ниже 10 нМ, с комплексом, который также называется специфическим в контексте настоящего изобретения.
Настоящее изобретение относится к пептиду, включающему последовательность, которая выбрана из группы, состоящей из последовательностей с SEQ ID NO: 1 по SEQ ID NO: 48 или их варианта, который по меньшей мере на 88% гомологичен (предпочтительно, если он идентичен) последовательности с SEQ ID NO: 1 по SEQ ID NO: 48 или их варианту, который индуцирует перекрестную реакцию Т-клеток с указанным пептидом, где указанный пептид не является базовым полипептидом полной длины.
Настоящее изобретение далее относится к пептиду, включающему последовательность, которая выбрана из группы, состоящей из последовательностей с SEQ ID NO: 1 по SEQ ID NO: 48 или их варианта,
- 35 041120 который по меньшей мере на 88% гомологичен (предпочтительно, если он идентичен) SEQ ID NO: 1 по
SEQ ID NO: 48, где указанный пептид или его вариант имеет общую длину от 8 до 100, предпочтительно от 8 до 30 и наиболее предпочтительно от 8 до 14 аминокислот.
Настоящее изобретение далее относится к пептидам в соответствии с изобретением, способным связываться с молекулой главного комплекса гистосовместимости человека (МНС) I или II класса.
Настоящее изобретение далее относится к пептидам в соответствии с изобретением, где пептид состоит или состоит по существу из аминокислотной последовательности в соответствии с SEQ ID NO: 1 по SEQ ID NO: 48.
Настоящее изобретение далее относится к пептидам в соответствии с изобретением, где пептид модифицирован (химическим способом) и/или включает непептидные связи.
Настоящее изобретение далее относится к пептидам в соответствии с изобретением, где пептид является частью слитого белка, в частности, включающим N-терминальные аминокислоты HLA-DR антиген-ассоциированной инвариантной цепи (li), или где пептид слит с антителом (или слит с последовательностью антитела), например таким антителом, которое является специфичным для дендритных клеток.
Настоящее изобретение далее относится к нуклеиновой кислоте, кодирующей пептиды в соответствии с изобретением, при условии, что пептид не является полностью (целиком) человеческим белком.
Настоящее изобретение далее относится к нуклеиновой кислоте в соответствии с изобретением, которая является ДНК, кДНК, ПНК, РНК или их комбинациями.
Настоящее изобретение далее относится к вектору экспрессии, способному экспрессировать нуклеиновую кислоту в соответствии с настоящим изобретением.
Настоящее изобретение далее относится к пептиду в соответствии с настоящим изобретением, к нуклеиновой кислоте в соответствии с настоящим изобретением или к вектору экспрессии в соответствии с настоящим изобретением для применения в медицине, в частности в лечении рака пищевода.
Настоящее изобретение далее относится к клетке-хозяину, включающей нуклеиновую кислоту в соответствии с изобретением или вектор экспрессии в соответствии с изобретением.
Настоящее изобретение далее относится к клетке-хозяину в соответствии с настоящим изобретением, которая является антигенпрезентирующей клеткой, предпочтительно дендритной клеткой.
Настоящее изобретение далее относится к способу получения пептида в соответствии с настоящим изобретением, причем указанный способ включает культивацию клетки-хозяина в соответствии с настоящим изобретением и выделение пептида из указанной клетки-хозяина или его культуральной среды.
Настоящее изобретение далее относится к способу в соответствии с настоящим изобретением, где антиген нагружен на молекулы МНС I или II класса, экспрессированные на поверхности подходящей антигенпрезентирующей клетки, при контактировании достаточного количества антигена с антигенпрезентирующей клеткой.
Настоящее изобретение далее относится к способу в соответствии с изобретением, где антигенпрезентирующая клетка включает вектор экспрессии, способный экспрессировать указанный пептид, содержащий последовательность с SEQ ID NO: 1 по SEQ ID NO: 48 или указанную вариантную аминокислотную последовательность.
Настоящее изобретение далее относится к активированным Т-клеткам, полученным способом в соответствии с настоящим изобретением, где указанные Т-клетки селективно распознают клетку, которая аберрантно экспрессирует полипептид, включающий аминокислотную последовательность в соответствии с настоящим изобретением.
Настоящее изобретение далее относится к способу уничтожения клеток-мишеней у пациента, чьи клетки-мишени аберрантно экспрессируют полипептид, включающий любую аминокислотную последовательность в соответствии с настоящим изобретением, причем способ включает введение пациенту эффективного числа Т-клеток в соответствии с настоящим изобретением.
Настоящее изобретение далее относится к применению любого описанного пептида, нуклеиновой кислоты в соответствии с настоящим изобретением, вектора экспрессии в соответствии с настоящим изобретением, клетки в соответствии с настоящим изобретением или активированного цитотоксического Т-лимфоцита в соответствии с настоящим изобретением в качестве медикамента или в производстве медикамента. Настоящее изобретение далее относится к способу применения в соответствии с настоящим изобретением, где медикамент проявляет противораковую активность.
Настоящее изобретение далее относится к способу применения в соответствии с изобретением, где медикамент является вакциной. Настоящее изобретение далее относится к способу применения в соответствии с изобретением, где медикамент проявляет противораковую активность.
Настоящее изобретение далее относится к применению в соответствии с изобретением, где указанные раковые клетки являются предпочтительно клетками рака предстательной железы или других солидных или гематологических опухолей, например рака легких, мелкоклеточного рака легких, меланомы, рака печени, рака молочной железы, рака матки, карциномы клеток Меркеля, рака поджелудочной железы, рака желчного пузыря, рака желчных протоков, КРК, рака мочевого пузыря, немелкоклеточного рака легких, рака почек, лейкоза (например, ОМЛ или ХЛЛ), рака яичника, рака пищевода, рака головно- 36 041120 го мозга и рака желудка, наиболее предпочтительно клетками рака предстательной железы.
Настоящее изобретение далее относится к конкретным белкам-маркерам и биомаркерам, основанным на пептидах в соответствии с настоящим изобретением, в контексте изобретения называемые мишенями, которые могут быть использованы при постановке диагноза и/или составлении прогноза течения рака предстательной железы. Настоящее изобретение относится также к применению этих новых мишеней для лечения рака.
Понятие антитело или антитела используется в контексте данного изобретения в широком смысле и включает как поликлональные, так и моноклональные антитела. В дополнение к интактным или полным молекулам иммуноглобулина в понятие антитела включены также фрагменты (например, участки CDR, фрагменты Fv, Fab и Fc) или полимеры таких молекул иммуноглобулина и гуманизированные версии молекул иммуноглобулина при условии, что они проявляют любое из желаемых свойств (например, специфически связываются с (поли)пептидным маркером рака предстательной железы, доставляют токсин к клетке рака предстательной железы, экспрессирующей раковый ген-маркер на повышенном уровне и/или ингибируют активность полипептида-маркера рака предстательной железы) в соответствии с изобретением.
Если возможно, антитела по изобретению могут быть куплены в коммерческих источниках. Антитела по изобретению могут быть также получены при использовании хорошо известных способов. Опытному специалисту будет понятно, что для получения антител по изобретению могут использоваться как полипептидные маркеры рака предстательной железы полной длины, так и их фрагменты. Полипептид, необходимый для получения антитела по изобретению, может быть частично или полностью очищенным из природного источника или же может быть получен с использованием методики рекомбинантной ДНК.
Например, кДНК, кодирующая пептид в соответствии с настоящим изобретением, такой как пептид с последовательностью с SEQ ID NO: 1 по SEQ ID NO: 48, полипептид или вариант или его фрагмент, может быть экспрессирована в прокариотических клетках (например, бактерий) или эукариотических клетках (например, дрожжей, насекомых или клетках млекопитающих), после чего рекомбинантный белок может быть очищен и использован в получении препарата из моноклональных или поликлональных антител, которые специфически связываются с полипептидным маркером рака яичника, использованным для получения антитела по изобретению.
Специалисту данной области будет понятно, что получение двух или более различных наборов моноклональных или поликлональных антител увеличивает вероятность получения антитела со специфичностью и аффинностью, необходимыми для предназначенного для него использования (например, для ELISA, иммуногистохимии, визуализации in vivo, терапии на основе иммунотоксина). Антитела испытывают на желаемую для них активность с помощью известных методов в соответствии с целью применения антител (например, ELISA, иммуногистохимия, иммунотерапия и т.д.; для получения дальнейшей информации по генерированию и испытанию антител см., например, Greenfield, 2014 (Greenfield, 2014)). Например, антитела могут быть исследованы с помощью ELISA или метода иммунного блоттинга (Western-blot), иммуногистохимического окрашивания зафиксированных формалином образцов раковых тканей или замороженных тканевых срезов. После первоначального определения их характеристик in vitro антитела, предназначаемые для терапевтического или диагностического применения in vivo, исследуют в соответствии с известными клиническими методами анализа.
Понятие моноклональное антитело в контексте настоящего изобретения обозначает антитело, полученное, по существу, из гомогенной популяции антител, т.е. отдельные антитела внутри популяции идентичны, за исключением возможных естественных мутаций, которые могут быть представлены в небольших количествах. Моноклональные антитела в контексте настоящего изобретения специфически включают химерные антитела, в которых участок тяжелой и/или легкой цепи идентичен или гомологичен соответствующим последовательностям антител, полученных из конкретного вида или относящихся к конкретному классу или подклассу антител, в то время как остальная(ые) часть(и) цепи идентична(ы) или гомологична(ы) соответствующим последовательностям антител, полученных из другого вида или относящихся к другому классу или подклассу антител, в равной степени как и фрагментов таких антител, пока они проявляют желаемую антагонистическую активность (патент США № 4816567, который включен в настоящее описание в полном объеме).
Моноклональные антитела по изобретению могут быть получены при использовании гибридомного метода. В рамках гибридомного метода мышь или другое подходящее животное-хозяин обычно иммунизируется иммунизирующим веществом, чтобы инициировать лимфоциты, которые вырабатывают или способны вырабатывать антитела, которые будут специфически связываться с иммунизирующим веществом. Альтернативно, лимфоциты могут быть иммунизированы in vitro.
Моноклональные антитела могут быть также получены с помощью технологий рекомбинантных ДНК, таких как описываемые в патенте США № 4816567. ДНК, кодирующая моноклональные антитела по изобретению, может быть легко выделена и секвенирована с помощью стандартных методик (например, при использовании олигонуклеотидных зондов, которые способны специфически связываться с генами, кодирующими тяжелые и легкие цепи мышиных антител).
- 37 041120
In vitro-методы также подходят для получения моновалентных антител. Расщепление антител для получения их фрагментов, в особенности Fab-фрагментов, может быть произведено при использовании стандартных методик, известных из уровня техники. К примеру, расщепление может производиться при использовании папаина. Примеры расщепления под воздействием папаина описываются в заявке WO 94/29348 и в патенте США № 4342566. Расщепление антител под воздействием папаина обычно приводит к двум идентичным фрагментам, связывающимся с антигеном и называемым Fab-фрагментами, каждый из которых имеет отдельный антигенсвязывающий сайт и остаточный Fc-фрагмент. В результате обработки пепсином получается фрагмент F(ab')2 и фрагмент pFc'.
Фрагменты антител, как связанные с другими последовательностями, так и не связанные, могут также включать вставки, делеции, замещения или другие выбранные модификации конкретных участков или аминокислотных остатков при условии, что активность фрагмента незначительно изменена или повреждена по сравнению с немодифицированным антителом или фрагментом антитела. Данные модификации могут внести некоторые дополнительные свойства, такие как добавление/удаление аминокислот, способных к дисульфидному связыванию, увеличение их биологической стойкости, изменение их секреторных характеристик и т.д. В любом случае фрагмент антитела должен обладать свойством биологической активности, таким как активностью связывания, регуляцией связывания на связывающем домене и т.д. Функциональные или активные участки антитела могут быть идентифицированы при мутагенезе конкретного участка белка с последующей экспрессией и исследованием экспрессированного полипептида. Такие способы полностью очевидны для опытного специалиста в данной области и могут включать сайт-специфический мутагенез нуклеиновой кислоты, кодирующей фрагмент антитела.
Антитела по изобретению могут далее включать гуманизированные антитела или человеческие антитела. Гуманизированные формы нечеловеческих (например, мышиных) антител - это химерные иммуноглобулины, иммуноглобулиновые цепи или их фрагменты (такие как Fv, Fab, Fab' или другие антигенсвязывающие субпоследовательности антител), которые содержат минимальную последовательность, полученную из нечеловеческого иммуноглобулина. Гуманизированные антитела включают человеческие иммуноглобулины (антитело-реципиент), в которых остатки из определяющего комплементарность участка (CDR) реципиента замещены остатками из CDR биологических видов, не являющихся человеком (донорское антитело), таких как мыши, крысы или кролики, имеющими желаемую специфичность, аффинность и связывающую способность. В некоторых случаях остатки Fv-каркаса (FR) человеческого иммуноглобулина замещены соответствующими остатками нечеловеческого происхождения. Гуманизированные антитела могут также включать остатки, которые не встречаются ни в антителе-реципиенте, ни в импортированном CDR или каркасных последовательностях. Как правило, гуманизированное антитело будет включать по сути все из по меньшей мере одного и, как правило, двух вариабельных доменов, в которых все или по существу все участки CDR соответствуют таковым нечеловеческого иммуноглобулина, и все или по сути все из участков FR являются таковыми консенсусной последовательности иммуноглобулина человека. Оптимально, чтобы гуманизированное антитело содержало также по меньшей мере часть константного участка иммуноглобулина (Fc), как правило, человеческого иммуноглобулина.
Способы гуманизации нечеловеческих антител хорошо известны из уровня техники. В целом, гуманизированное антитело имеет один или более аминокислотный остаток, введенный в него из источника, не являющегося человеческим. Такие аминокислотные остатки нечеловеческого происхождения часто называются импортированными остатками, которые обычно берутся из импортированного вариабельного домена. Гуманизация может быть по существу произведена посредством замены участков CDR или последовательностей CDR грызунов на соответствующие последовательности человеческого антитела. Соответственно, такие гуманизированные антитела являются химерными антителами (патент США № 4816567), где существенно меньшая часть, чем один интактный человеческий вариабельный домен, была заменена соответствующей последовательностью видов, не являющихся человеком. На практике гуманизированные антитела являются обычно человеческими антителами, в которых некоторые остатки CDR и, возможно, остатки FR заменены на остатки аналогичных сайтов антител грызунов.
Использоваться могут трансгенные животные (например, мыши), которые способны при иммунизации вырабатывать полный спектр человеческих антител при отсутствии выработки эндогенного иммуноглобулина. Например, было описано, что гомозиготная делеция гена, кодирующего участок присоединения тяжелой цепи антитела у химерных и мутантных мышей зародышевой линии, приводит к полному ингибированию выработки эндогенных антител. Перенос генной матрицы иммуноглобулина клеток зародышевой линии человека в таких мутантных мышах зародышевой линии будет приводить к выработке человеческих антител после антигенной стимуляции. Человеческие антитела могут быть также получены в библиотеках фагового отображения.
Антитела по изобретению предпочтительно вводятся субъекту в фармацевтически приемлемом носителе. Подходящее количество фармацевтически приемлемой соли обычно используется в составе для придания композиции изотоничности. Примеры фармацевтически приемлемых носителей включают физиологический раствор, раствор Рингера и раствор глюкозы. Уровень рН раствора составляет предпочтительно от около 5 до около 8 и более предпочтительно от около 7 до около 7,5. Кроме того, предлагаются носители, включающие препараты пролонгированного высвобождения, такие как полупроницаемые мат- 38 041120 рицы твердых гидрофобных полимеров, содержащие антитело, матрицы которых имеют вид профилированных объектов, к примеру пленки, липосомы или микрочастицы. Для специалиста в данной области будет очевидно, что определенные носители могут быть более предпочтительными в зависимости от, например, способа введения и концентрации вводимого антитела.
Антитела могут вводиться субъекту, пациенту или в клетку посредством инъекции (например, внутривенно, внутрибрюшинно, подкожно, внутримышечно) или другими способами, такими как вливание, которое гарантирует доставку к кровотоку эффективным образом. Антитела также могут вводиться внутритуморальными или перитуморальными способами, чтобы вызвать местные, а также и системные терапевтические эффекты. Предпочтительными являются местное или внутривенное введение.
Эффективная дозировка и режим введения антител могут быть определены эмпирически, а принятие таковых решений под силу специалисту в данной области. Специалистам в данной области будет понятно, что дозировка антител, которые должны быть введены, будет варьироваться в зависимости от, например, субъекта, которому будет вводиться антитело, способа введения, конкретного типа используемого антитела и других вводимых медикаментов. Типичная дневная дозировка антител, как монотерапии, может варьироваться от около 1 мкг/кг вплоть до 100 мг/кг массы тела или более в день, в зависимости от факторов, упоминаемых выше. После введения антитела, предпочтительно для лечения рака предстательной железы, эффективность терапевтического антитела может быть оценена различными способами, известными компетентному специалисту в данной области. Например, размер, количество и/или распределение рака у субъекта, проходящего лечение, может контролироваться с помощью стандартных методов визуализации опухоли. Введенное в терапевтических целях антитело, которое блокирует рост опухоли, приводит к уменьшению размера и/или предотвращает развитие новых опухолей в сравнении с течением болезни, которое бы имело место без введения антитела, и является эффективным антителом для лечения рака.
В другом аспекте изобретения предложен способ получения растворимого Т-клеточного рецептора (ТКР), распознающего конкретный комплекс пептида и МНС. Такие растворимые Т-клеточные рецепторы могут быть получены из специфических Т-клеточных клонов, и их аффинность может быть повышена за счет мутагенеза, направленного на определяющие комплементарность участки. Для выбора Т-клеточного рецептора может использоваться фаговое отображение (заявка США 2010/0113300, (Liddy et al., 2012)). В целях стабилизации Т-клеточных рецепторов в процессе фагового отображения и в случае практического применения в качестве лекарственного средства альфа- и бета-цепи могут быть связаны, например, посредством не встречающихся в природе дисульфидных связей, других ковалентных связей (одноцепочечный Т-клеточный рецептор) или с помощью доменов димеризации (Boulter et al., 2003; Card et al., 2004; Willcox et al., 1999). В целях выполнения определенных функций на клетках-мишенях Т-клеточный рецептор может быть связан с токсинами, лекарственными средствами, цитокинами (см., например, заявку США 2013/0115191), доменами, рекрутирующими эффекторные клетки, такими как анти-CD3 домен, и т.д. Более того, он может быть экспрессирован на Т-клетках, используемых для адоптивного переноса. Дополнительную информацию можно найти в патентных заявках WO 2004/033685 A1 и WO 2004/074322 A1. Комбинация растворимых ТКР описывается в патентной заявке WO 2012/056407 A1. Другие способы получения описаны в патентной заявке WO 2013/057586 A1.
Помимо того, пептиды и/или ТКР, или антитела, или другие связывающиеся молекулы настоящего изобретения могут быть использованы для подтверждения диагноза рака, поставленного патоморфологом на основании исследования биоптата.
Антитела или ТКР могут также применяться для диагностики in vivo. Как правило, антитело помечают радионуклеотидом (таким как n1In, 99Тс, 14С, 131I, 3Н, 32Р или 35S), так что опухоль может быть локализована с помощью иммуносцинтиграфии. В одном варианте осуществления антитела или их фрагменты связываются с внеклеточными доменами двух или более мишеней белка, выбранного из группы, состоящей из указанных выше белков, при показателе аффинности (Kd) ниже чем 1x10 мкМ.
Антитела для диагностических целей могут помечаться зондами, подходящими для обнаружения различными способами визуализации. Способы обнаружения зондов включают, но без ограничения, флуоресценцию, световую, конфокальную и электронную микроскопию; магнитно-резонансную томографию и спектроскопию; флюороскопию, компьютерную томографию и позитронно-эмиссионную томографию. Подходящие зонды включают, но без ограничения, флуоресцеин, родамин, эозин и другие флюорофоры, радиоизотопы, золото, гадолиний и другие лантаноиды, парамагнитное железо, фтор-18 и другие позитронно-активные радионуклиды. Более того, зонды могут быть би- или мультифункциональными и обнаруживаться более чем одним из приведенных способов. Данные антитела могут быть помечены напрямую или опосредованно указанными зондами. Присоединение зондов к антителам включает ковалентное присоединение зонда, внедрение зонда в антитело и ковалентное присоединение хелатирующего соединения для присоединения зонда, среди других широко признанных методов в данной области. Для иммуногистохимических исследований образец пораженной ткани может быть свежим или замороженным или может быть залит парафином и зафиксирован таким консервантом, как формалин. Зафиксированный или залитый срез приводят в контакт с помеченным первичным антителом и вторичным антителом, где антитело используется для обнаружения экспрессии белков in situ.
- 39 041120
Другой аспект настоящего изобретения включает способ получения активированных Т-клеток in vitro, причем способ включает контактирование Т-клеток in vitro с нагруженными антигеном молекулами МНС человека, экспрессированными на поверхности подходящей антигенпрезентирующей клетки на период времени, достаточного для активации антигенспецифическим образом Т-клетки, где антиген является пептидом в соответствии с изобретением. Предпочтительно, если с антигенпрезентирующей клеткой применяется достаточное количество антигена.
Предпочтительно, если в клетке млекопитающих не имеется пептидного транспортера ТАР или имеется его пониженный уровень или пониженная функциональная активность. Подходящие клетки с дефицитом пептидного транспортера ТАР включают Т2, RMA-S и клетки дрозофилы. ТАР - это транспортер, связанный с процессингом антигена.
Линия человеческих клеток с недостаточностью Т2, на которые загружаются пептиды, имеется в наличии в Американской коллекции типовых культур, 12301 Parklawn Drive, Rockville, Maryland 20852, США под каталожным номером CRL 1992; клеточная линия дрозофилы, линия Schneider 2 имеется в наличии в АТСС под каталожным номером CRL 19863; клеточная линия мыши RMA-S описывается в работе Ljunggren et al. (Ljunggren and Karre, 1985).
Предпочтительно, если до трансфекции указанная клетка-хозяин, по существу, не экспрессирует молекулы МНС I класса. Также предпочтительно, если клетка-стимулятор экспрессирует молекулу, важную для обеспечения сигнала костимуляции для Т-клеток, такую как любая из В7.1, В7.2, ICAM-1 и LFA 3. Последовательности нуклеиновых кислот многочисленных молекул МНС I класса и костимуляторных молекул общедоступны в банках данных GenBank и EMBL.
В случае использования эпитопа МНС I класса в качестве антигена Т-клетки являются CD8-положительными Т-клетками.
Если антигенпрезентирующая клетка трансфицирована для экспрессии такого эпитопа, то предпочтительно, чтобы клетка включала вектор экспрессии, способный экспрессировать пептид, содержащий SEQ ID NO: 1 по SEQ ID NO: 48 или вариант такой аминокислотной последовательности.
Для получения Т-клеток in vitro могут быть использованы многие другие способы. Например, для получения ЦТЛ используются аутологичные опухоль-инфильтрующие лимфоциты. Plebanski et al. (Plebanski et al., 1995) для получения Т-клеток использовали аутологичные лимфоциты периферической крови (ЛПК). Кроме того, возможно получение аутологичных Т-клеток посредством нагрузки дендритных клеток пептидом или полипептидом или посредством инфицирования рекомбинантным вирусом. Для получения аутологичных Т-клеток также можно использовать В-клетки. Кроме того, для получения аутологичных Т-клеток могут быть использованы макрофаги, нагруженные пептидом или полипептидом или инфицированные рекомбинантным вирусом. S. Walter et al. (Walter et al., 2003) описывают прайминг Т-клеток in vitro с использованием искусственных антигенпрезентирующих клеток (иАПК), что является также подходящим способом получения Т-клеток против выбранного пептида. В настоящем изобретении иАПК были получены прикреплением предварительно образованных комплексов МНС-пептид к поверхности полистироловых частиц (микросфер) с помощью биохимического способа с биотиномстрептавидином. Данная система допускает точный контроль плотности МНС на иАПК, который позволяет селективно вызвать высоко- или низкоавидные антигенспецифические Т-клеточные ответы с высокой эффективностью в образцах крови. Кроме комплексов МНС-пептид, иАПК должны нести другие белки с костимуляторной активностью, такие как антитела к CD28, прикрепленные к их поверхности. Кроме того, такая основанная на иАПК система часто требует добавления соответствующих растворимых факторов, к примеру цитокинов, таких как интерлейкин-12.
При получении Т-клеток могут быть также использованы аллогенные клетки, и этот способ подробно описывается в патентной заявке WO 97/26328, включенной сюда путем ссылки. Например, кроме клеток дрозофилы и Т2-клеток, для презентации антигенов могут использоваться другие клетки, такие как клетки яичника китайского хомяка (СНО), бакуловирус-инфицированные клетки насекомых, бактерии, дрожжи, инфицированные осповакциной клетки-мишени. Кроме того, могут быть использованы растительные вирусы (см., например, работу Porta et al. (Porta et al., 1994), в которой описывается разработка мозаичного вируса китайской вигны как высокопродуктивной системы презентации чужеродных пептидов).
Активированные Т-клетки, которые направлены против пептидов по изобретению, пригодны для терапии. Таким образом, в другом аспекте изобретения предложены активированные Т-клетки, получаемые вышеупомянутыми способами по изобретению.
Активированные Т-клетки, полученные с помощью приведенного выше способа, будут селективно распознавать клетку, которая аберрантно экспрессирует полипептид, включающий аминокислотную последовательность с SEQ ID NO: 1 по SEQ ID NO: 48.
Предпочтительно, чтобы Т-клетка распознавала клетку при взаимодействии посредством ее ТКР с комплексом HLA/пептид (например, при связывании). Т-клетки пригодны для способа уничтожения клеток-мишеней у пациента, клетки-мишени которого аберрантно экспрессируют полипептид, включающий аминокислотную последовательность по изобретению, где пациенту вводится эффективное число активированных Т-клеток. Т-клетки, которые введены пациенту, могут быть получены от пациента и активи
- 40 041120 роваться, как описывалось выше (т.е. они являются аутологичными Т-клетками). Альтернативно, Т-клетки получают не от пациента, а от другого индивида. Разумеется, предпочтительно, если индивид является здоровым индивидом. Под здоровым индивидом авторы изобретения имеют в виду, что индивид имеет хорошее общее состояние здоровья, предпочтительно, чтобы он имел компетентную иммунную систему и более предпочтительно не страдал ни одним заболеванием, которое можно легко проконтролировать и выявить.
Клетками-мишенями in vivo для CD8-положительных Т-клеток в соответствии с настоящим изобретением могут быть клетки опухоли (которые иногда экспрессируют молекулы МНС II класса) и/или стромальные клетки, окружающие опухоль (опухолевые клетки) (которые иногда также экспрессируют молекулы МНС II класса; (Dengjel et al., 2006)).
Т-клетки по настоящему изобретению могут быть использованы в качестве активных ингредиентов в терапевтической композиции. Таким образом, в изобретении предложен также способ уничтожения клеток-мишеней у пациента, чьи клетки-мишени аберрантно экспрессируют полипептид, включающий аминокислотную последовательность по изобретению, причем способ включает введение пациенту эффективного числа Т-клеток, как определено выше.
Под понятием аберрантно экспрессированный авторы изобретения подразумевают также, что полипептид экспрессирован в избытке по сравнению с уровнями экспрессии в нормальных тканях или что ген является молчащим в ткани, из которой образовалась опухоль, однако он экспрессирован в опухоли. Под понятием экспрессирован в избытке авторы изобретения понимают, что полипептид представлен на уровне, который по меньшей мере в 1,2 раза выше уровня, представленного в нормальной ткани; предпочтительно по меньшей мере в 2 раза и более предпочтительно по меньшей мере в 5 или 10 раз выше уровня, представленного в нормальной ткани.
Т-клетки могут быть получены способами, известными из уровня техники, к примеру теми, что описаны выше.
Протоколы для этого так называемого адоптивного переноса Т-клеток хорошо известны из уровня техники. С обзорами можно ознакомиться в работах Gattioni et al. и Morgan et al. (Gattinoni et al., 2006; Morgan et al., 2006).
Другой аспект настоящего изобретения включает применение пептидов в комплексе с МНС для получения Т-клеточного рецептора, нуклеиновая кислота которого клонирована и введена в клетку-хозяин, предпочтительно Т-клетку. Данная сконструированная Т-клетка может быть затем введена пациенту для лечения рака.
Любая молекула по изобретению, т.е. пептид, нуклеиновая кислота, антитело, вектор экспрессии, клетка, активированная Т-клетка, Т-клеточный рецептор или нуклеиновая кислота, кодирующая его, пригодна для лечения нарушений, характеризующихся клетками, ускользающими от иммунного ответа. Поэтому любая молекула по настоящему изобретению может применяться в качестве медикамента или в производстве медикамента. Молекула может быть использована сама по себе или в комбинации с другой(ими) молекулой(ами) по изобретению или известной(ыми) молекулой(ами).
В настоящем изобретении также предложен комплект, включающий:
(а) контейнер, который содержит фармацевтическую композицию, как описанная выше, в виде раствора или в лиофилизированной форме;
(б) факультативно, второй контейнер, содержащий разбавитель или восстанавливающий раствор для лиофилизированного состава; и (в) факультативно, инструкции по (i) применению раствора или (ii) восстановлению раствора и/или по применению лиофилизированного состава.
Кроме того, комплект может также включать один или более (iii) буферов, (iv) разбавителей, (v) фильтров, (vi) игл или (v) шприцев. Контейнер является предпочтительно бутылью, флаконом, шприцем или пробиркой; и он может быть контейнером многоразового применения. Фармацевтическая композиция предпочтительно является лиофилизированной.
Комплект согласно настоящему изобретению предпочтительно включает лиофилизированный состав по настоящему изобретению в подходящем контейнере и инструкции для его восстановления и/или по его применению. Подходящие контейнеры включают, например, бутыли, флаконы, (например, двухкамерные флаконы), шприцы (такие как двухкамерные шприцы) и пробирки. Контейнер может быть изготовлен из разных материалов, таких как стекло или пластмасса. Предпочтительно, если комплект и/или контейнер содержит(ат) инструкции по применению контейнера или связанные с ним инструкции, которые дают указания по восстановлению и/или применению. Например, на этикетке может быть указано, что лиофилизированный состав должен быть восстановлен до таких концентраций пептидов, как описано выше. На этикетке далее может быть указано, что состав применяется или предназначается для подкожного введения.
Контейнер с составом может быть флаконом многоразового использования, который позволяет повторное введение (например, от 2 до 6 введений) восстановленного состава. Комплект может дополнительно включать второй контейнер, включающий подходящий разбавитель (например, раствор бикарбоната натрия).
- 41 041120
После смешивания разбавителя и лиофилизированного состава окончательная концентрация пептида в восстановленном составе составляет предпочтительно по меньшей мере 0,15 мг/мл/пептида (=75 мкг) и предпочтительно не более чем 3 мг/мл/пептида (=1500 мкг). Комплект может дополнительно включать другие материалы, желательные с коммерческой и с точки зрения пользователя, включая другие буферы, разбавители, фильтры, иглы, шприцы и вкладыши в упаковку с инструкциями по применению.
Комплекты по настоящему изобретению могут включать один контейнер, который содержит лекарственную форму фармацевтических композиций в соответствии с настоящим изобретением с другими компонентами или без них (например, другие соединения или фармацевтические композиции этих других соединений) или может иметь отдельные контейнеры для каждого компонента.
Комплект по изобретению предпочтительно включает состав по изобретению, упакованный для применения в комбинации с совместным введением второго соединения (такого как адъюванты (например, ГМ-КСФ), химиотерапевтического средства, природного продукта, гормона или антагониста, средства против ангиогенеза или ингибитора ангиогенеза; апоптоз-индуцирующего средства или хелатора) или их фармацевтической композиции. Компоненты комплекта до введения пациенту могут быть предварительно смешаны или же каждый компонент может находиться в отдельном контейнере. Компоненты комплекта могут быть представлены в виде одного или нескольких жидких растворов, предпочтительно водного раствора, более предпочтительно стерильного водного раствора. Компоненты комплекта также могут быть предоставлены в виде твердой формы, которая может быть превращена в жидкость при добавлении подходящих растворителей, которые предпочтительно предоставляются в другом, отдельном, контейнере.
Контейнер терапевтического комплекта может быть флаконом, пробиркой, колбой, бутылью, шприцем или любыми другими средствами, заключающими в себе твердое вещество или жидкость. Обычно, если имеется более одного компонента, комплект содержит второй флакон или другой контейнер, что позволяет произвести отдельное введение. Комплект может также содержать другой контейнер для фармацевтически приемлемой жидкости. Лечебный комплект будет предпочтительно содержать аппарат (например, одну или более игл, шприцы, глазные пипетки, пипетки и т.д.), который обеспечивает введение веществ по изобретению, которые являются компонентами настоящего комплекта.
Настоящий состав подходит для введения пептидов любым приемлемым способом, таким как оральный (энтеральный), назальный, глазной, подкожный, внутрикожный, внутримышечный, внутривенный или чрескожный способ. Предпочтительно, чтобы введение было п/к и наиболее предпочтительно введение в/к с помощью инфузионного насоса.
Так как пептиды по изобретению были выделены из опухолей предстательной железы, медикамент по изобретению предпочтительно используется для лечения опухолей предстательной железы.
Кроме того, настоящее изобретение далее относится к способу получения персонализированного фармацевтического препарата для отдельного пациента, включающий производство фармацевтической композиции, включающей по меньшей мере один пептид, выбранный из хранилища предварительно прошедших скрининг пептидов TUMAP, где по меньшей мере один пептид, используемый в фармацевтической композиции, выбран по его пригодности для отдельного пациента. В одном варианте осуществления фармацевтическая композиция является вакциной. Способ может быть адаптирован для получения Т-клеточных клонов для дальнейшего применения, например при выделении ТКР или растворимых антител или других методов лечения.
Персонализированный фармацевтический препарат подразумевает разработанные специально для отдельного пациента терапевтические средства, которые будут применяться исключительно для лечения такого пациента, включая активно персонализированные противораковые вакцины и средства адоптивной клеточной терапии с использованием аутологичной ткани пациента.
В контексте настоящего изобретения термин хранилище относится к группе или набору пептидов, которые предварительно прошли скрининг на иммуногенность и/или избыточную презентацию в конкретном виде опухоли. Понятие хранилище не подразумевает, что конкретные пептиды, включенные в вакцину, были изготовлены заблаговременно и хранились в реальном помещении, хотя эта возможность также принимается во внимание. Во внимание определенно принимается тот факт, что пептиды могут быть изготовлены de novo для каждой производимой индивидуализированной вакцины или могут быть получены заранее и находиться на хранении. Хранилище (например, в форме банка данных) состоит из опухолеассоциированных пептидов, которые в высокой степени избыточно экспрессировались в опухолевой ткани пациентов с раком предстательной железы с различными HLA-A, HLA-B и HLA-C-аллелями. Оно может содержать пептиды, связанные с молекулами МНС I класса и МНС II класса или удлиненные пептиды, связанные с молекулами МНС I класса. Помимо опухолеассоциированных пептидов, собранных из тканей нескольких опухолей предстательной железы, хранилище может содержать маркерные пептиды, связанные с HLA-A*02 и HLA-A*24. Эти пептиды позволяют произвести количественное сравнение интенсивности Т-клеточного иммунного ответа, индуцированного пептидами TUMAP, и, следовательно, позволяют сделать важный вывод о способности вакцины вызывать противоопухолевые ответы. Во-вторых, они выполняют функцию важных пептидов положительного контроля,
- 42 041120 полученных не из собственного антигена в случае, если у пациента не наблюдаются вызванные вакциной Т-клеточные ответы на пептиды TUMAP, полученные из собственных антигенов. И в-третьих, оно может позволить сделать заключения относительно статуса иммунокомпетентности пациента.
Пептиды TUMAP для хранилища были идентифицированы с помощью интегрированного подхода функциональной геномики, комбинирующего анализ экспрессии генов, масс-спектрометрию и Т-клеточную иммунологию (XPresident ®). Этот подход гарантирует, что только те пептиды TUMAP, которые действительно присутствуют в большом проценте опухолей, но не экспрессируются или экспрессируются лишь минимально на нормальной ткани, были выбраны для последующего анализа. В целях первоначального отбора пептидов образцы ткани рака предстательной железы, а также доброкачественной гиперплазии предстательной железы пациентов и кровь здоровых доноров были проанализированы поэтапно:
1. HLA-лиганды из опухолевого материала идентифицировали с помощью масс-спектрометрии.
2. Для идентификации экспрессированных в избытке генов в злокачественной ткани (рак предстательной железы) по сравнению с рядом нормальных органов и тканей применяли анализ экспрессии информационной рибонуклеиновой кислоты (мРНК) всего генома.
3. Идентифицированные HLA-лиганды сравнивали с данными по экспрессии генов. Пептиды, презентируемые в избытке или селективно презентируемые на опухолевой ткани, предпочтительно кодируемые селективно экспрессированными или экспрессированными в избытке генами, выявленными на этапе 2, считали подходящими TUMAP-кандидатами для мультипептидной вакцины.
4. Было произведено изучение литературы для выявления дополнительных свидетельств, подтверждающих релевантность идентифицированных в качестве TUMAP пептидов.
5. Релевантность избыточной экспрессии на уровне мРНК подтверждали повторным обнаружением выбранных на этапе 3 пептидов TUMAP на опухолевой ткани и отсутствием (или нечастым обнаружением) на здоровых тканях.
6. В целях оценки того, может ли быть осуществима индукция in vivo Т-клеточных ответов выбранными пептидами, были проведены анализы иммуногенности in vitro при использовании человеческих Т-клеток здоровых доноров, а также пациентов, больных раком предстательной железы.
В одном из аспектов пептиды предварительно прошли скрининг на иммуногенность до их включения в хранилище. В качестве примера, но не для ограничения изобретения иммуногенность пептидов, включенных в хранилище, определяется способом, включающим прайминг Т-клеток in vitro посредством повторных стимуляций CD8+ Т-клеток здоровых доноров клетками, презентирующими искусственный антиген, нагруженными комплексами пептид-МНС и антителами к CD28.
Этот способ является предпочтительным для редких видов рака и пациентов с редким профилем экспрессии. В отличие от мультипептидных коктейлей с постоянным составом, уже разработанных на данное время, хранилище позволяет достигнуть существенно более высокого соответствия фактической экспрессии антигенов в опухоли составу вакцины. Выбранные отдельные пептиды или комбинации из нескольких готовых к применению пептидов будут использоваться для каждого пациента в рамках мультитаргетного подхода. Теоретически, подход, основанный на выборе, например, 5 различных антигенных пептидов из библиотеки из 50 экземпляров, уже приведет приблизительно к 17 миллионам возможных составов лекарственного препарата (ЛП).
В одном аспекте для включения в вакцину пептиды выбирают по их пригодности для отдельного пациента на основе способа в соответствии с настоящим изобретением, как описано в настоящем документе или как изложено ниже.
Фенотип HLA, данные транскриптомики и протеомики собирают с опухолевого материала и образцов крови пациентов для идентификации наиболее подходящих пептидов для каждого пациента, в состав которых входят пептиды TUMAP как из хранилища, так и уникальные для пациента (т.е. мутированные). Выбирать будут те пептиды, которые селективно или избыточно экспрессируются в опухолях пациентов и, где это возможно, проявляют сильную иммуногенность in vitro при анализе с индивидуальными МКПК пациента.
Предпочтительно, чтобы пептиды, включенные в вакцину, были идентифицированы способом, включающим (а) идентификацию опухолеассоциированных пептидов (TUMAP), презентируемых опухолевым образцом отдельного пациента; (б) сравнение идентифицированных на этапе (а) пептидов с хранилищем (банком данных) пептидов, как описано выше; и (в) выбор по меньшей мере одного пептида из хранилища (банка данных), который коррелирует с опухолеассоциированным пептидом, идентифицированным у пациента. Например, пептиды TUMAP, презентируемые опухолевым образцом, идентифицируют с помощью (а1) сравнения данных по экспрессии в опухолевом образце с данными нормальной ткани, соответствующей типу ткани опухолевого образца, для идентификации белков, которые в опухолевом образце экспрессируются в избытке или аберрантно; и (а2) установления корреляции между данными экспрессии и последовательностями лигандов МНС, связанных с молекулами МНС I и/или II класса в опухолевом образце, в целях идентификации лигандов МНС, которые получены из белков, избыточно или аберрантно экспрессируемых опухолью. Предпочтительно, если последовательности лигандов МНС идентифицируются с помощью элюирования связанных пептидов из молекул МНС, выделенных из
- 43 041120 опухолевого образца, и секвенирования элюированных лигандов. Предпочтительно, если опухолевый образец и нормальная ткань получены от одного и того же пациента.
Помимо этого, или в качестве альтернативы этому, при выборе пептидов с использованием модели хранилища (банка данных) пептиды TUMAP могут быть идентифицированы у пациента de novo и затем быть включены в вакцину. В качестве одного примера пептиды-кандидаты TUMAP могут быть идентифицированы у пациента с помощью (а1) сравнения данных по экспрессии в опухолевом образце с данными нормальной ткани, соответствующей типу ткани опухолевого образца, для идентификации белков, которые в опухолевом образце экспрессируются в избытке или аберрантно; и (а2) установления корреляции между данными экспрессии и последовательностями лигандов МНС, связанных с молекулами МНС I и/или II класса в опухолевом образце, в целях идентификации лигандов МНС, которые получены из белков, избыточно или аберрантно экспрессируемых опухолью. В качестве другого примера могут быть идентифицированы белки, имеющие мутации, являющиеся уникальными для опухолевого образца, соотносимого с соответствующей нормальной тканью отдельного пациента, и могут быть идентифицированы пептиды TUMAP, специфической мишенью которых является мутация. Например, геном опухоли и соответствующей нормальной ткани могут быть секвенированы методом полногеномного секвенирования: для обнаружения несинонимичных мутаций на кодирующих белок участках генов геномную ДНК и РНК экстрагируют из опухолевых тканей, а нормальную, не имеющую мутаций геномную ДНК зародышевой линии экстрагируют из мононуклеарных клеток периферической крови (МПК). Применяемый подход секвенирования нового поколения (NGS) заключается в повторном секвенировании кодирующих белок участков (повторное секвенирование экзома). В этих целях экзонную ДНК из человеческих образцов фиксируют с помощью поставляемых изготовителем наборов для обогащения целевыми фрагментами, за чем следует секвенирование, например, с помощью системы HiSeq2000 (Illumina). В дополнение к этому опухолевую мРНК секвенируют для прямого количественного определения генной экспрессии и подтверждения того, что мутировавшие гены экспрессированы в опухолях пациентов. Считывание полученных в результате миллионов последовательностей осуществляется алгоритмами программного обеспечения. Получаемый список содержит мутации и экспрессию генов. Опухолеспецифические соматические мутации определяют сравнением с вариантами зародышевой линии из МПК и устанавливают приоритетность. Идентифицированные de novo пептиды могут быть затем испытаны на иммуногенность, как описывается выше в случае хранилища, и пептиды-кандидаты TUMAP, обладающие подходящей иммуногенностью, выбирают для включения в вакцину.
В отдельном варианте осуществления изобретения пептиды, включенные в вакцину, идентифицируют с помощью (а) идентификации опухолеассоциированных пептидов (TUMAP), презентируемых опухолевым образцом отдельного пациента способами, описанными выше; (б) сравнения пептидов, идентифицированных на этапе (а), с хранилищем пептидов, как описано выше, которые предварительно прошли скрининг на иммуногенность и избыточную презентацию в опухолях по сравнению с соответствующими нормальными тканями; (в) выбора по меньшей мере одного пептида из хранилища, который коррелирует с опухолеассоциированным пептидом, идентифицированным у пациента; и (г) факультативно, выбора по меньшей мере одного пептида, идентифицированного de novo на этапе (а) с подтверждением его иммуногенности.
В отдельном варианте осуществления изобретения пептиды, включенные в вакцину, идентифицируют с помощью (а) идентификации опухолеассоциированных пептидов (TUMAP), презентируемых опухолевым образцом отдельного пациента; и (б) выбора по меньшей мере одного пептида, идентифицированного de novo на этапе (а) и подтверждения его иммуногенности.
После того как отобраны пептиды для персонализированной вакцины на основе пептидов, изготавливают вакцину. Вакцина - это предпочтительно жидкая лекарственная форма, состоящая из отдельных пептидов, растворенных в ДМСО в концентрации 20-40%, предпочтительно около 30-35%, такой как около 33% ДМСО.
Каждый пептид, включаемый в продукт, растворяют в ДМСО. Концентрация отдельных пептидных растворов должна выбираться в зависимости от числа пептидов, предназначенных для включения в продукт. Растворы отдельных пептидов в ДМСО смешивают в равном соотношении для получения раствора, содержащего все пептиды, предназначенные для включения в продукт, с концентрацией ~2,5 мг/мл на пептид. Смешанный раствор затем разбавляют водой для инъекций в соотношении 1:3 для достижения концентрации 0,826 мг/мл на пептид в 33% ДМСО. Разбавленный раствор фильтруют через стерильный фильтр с размером пор 0,22 мкм. Получают конечный нерасфасованный раствор.
Конечный нерасфасованный раствор разливают во флаконы и хранят при -20°C до использования. Один флакон содержит 700 мкл раствора, содержащего 0,578 мг каждого пептида. Из них 500 мкл (приблизительно 400 мкг на пептид) будут вводить с помощью внутрикожной инъекции.
Кроме того, пептиды по настоящему изобретению пригодны не только для лечения рака, но и также в качестве диагностических средств. Так как пептиды были получены из клеток опухоли предстательной железы и так как было определено, что данные пептиды не присутствуют или присутствуют в небольшом количестве в нормальных тканях, то эти пептиды могут быть использованы для диагностики наличия опухоли.
- 44 041120
Присутствие заявленных пептидов на тканевых биоптатах и в образцах крови может помочь патоморфологу в постановке диагноза рака. Выявление конкретных пептидов с помощью антител, массспектрометрии или других методов, известных из уровня техники, могут дать патоморфологу свидетельства того, что образец ткани является злокачественной, или воспаленной, или пораженной заболеванием вообще или же может использоваться в качестве биомаркера рака предстательной железы. Присутствие групп пептидов может позволить классифицировать или выделить подклассы пораженных тканей.
Обнаружение пептидов на образцах пораженной заболеванием ткани может позволить принять решение о пользе от терапии, воздействующей на иммунную систему, в особенности, если Т-лимфоциты, как известно или ожидается, задействованы в механизме действия. Отсутствие экспрессии МНС является хорошо описанным механизмом, при котором инфицированные или злокачественные клетки уклоняются от иммунного контроля. Таким образом, присутствие пептидов показывает, что этот механизм не используется проанализированными клетками.
Пептиды по настоящему изобретению могут использоваться в анализе ответов лимфоцитов на действие этих пептидов, таких как Т-клеточные ответы или ответы в виде антител к пептиду или пептиду в комплексе с молекулами МНС. Данные ответы лимфоцитов могут использоваться в качестве прогностических маркеров для принятия решения о дальнейших этапах терапии. Данные ответы могут также использоваться в качестве суррогатных маркеров ответов в иммунотерапевтических подходах, направленных на индуцирование ответов лимфоцитов с помощью различных средств, например вакцинации белком, нуклеиновыми кислотами, аутологичными материалами, адоптивным переносом лимфоцитов. В условиях, когда проводится генная терапия, в целях оценки побочных эффектов могут быть проанализированы ответы лимфоцитов на пептиды. Мониторинг реакций лимфоцитов может также быть ценным инструментом для обследований в рамках последующего наблюдения после трансплантации, к примеру, для выявления реакций хозяин против трансплантата и трансплантат против хозяина.
Настоящее изобретение будет описано ниже с помощью примеров, которые описывают его предпочтительные варианты осуществления, со ссылкой на сопровождающие фигуры, тем не менее не ограничивая объема изобретения. В соответствии с целями настоящего изобретения все цитируемые источники включены в данное описание во всей полноте путем ссылки.
Краткое описание фигур
На фиг. 1А-1С представлена избыточная презентация различных пептидов в нормальных тканях (белые столбцы) и тканях рака предстательной железы и тканях доброкачественной гиперплазии предстательной железы (черные столбцы).
На фиг. 1D, 1E представлены все клеточные линии, нормальные ткани и раковые ткани, на которых были обнаружены отдельные пептиды (SLLSHQVLL (А*02) (SEQ ID NO: 20) и SLLSHQVLL (А*24) (SEQ ID NO: 20)).
Фиг. 1А: ген: OR51E2, пептид: VTAQIGIVAV (A*02; SEQ ID NO: 1) - ткани слева направо: 1 жировая ткань, 3 надпочечные железы, 6 артерий, 5 костных мозгов, 7 головных мозгов, 3 молочные железы, 1 центральный нерв, 13 толстых кишок, 1 двенадцатиперстная кишка, 8 пищеводов, 2 желчных пузыря, 5 сердец, 16 почек, 21 печень, 46 легких, 4 лимфатических узла, 4 образца лейкоцитов, 4 яичника, 7 поджелудочных желез, 4 периферических нерва, 1 брюшина, 3 гипофиза, 4 плаценты, 3 плевры, 6 прямых кишок, 7 слюнных желез, 4 скелетные мышцы, 6 образцов кожи, 2 тонких кишки, 4 селезенки, 7 желудков, 4 семенника, 3 вилочковые железы, 4 щитовидные железы, 10 трахей, 3 мочеточника, 6 мочевых пузырей, 2 матки, 2 вены, 3 предстательные железы, 44 опухоли предстательной железы. Пептид также был обнаружен на клетках мелкоклеточного рака легких (не показано).
Фиг. 1В: ген: MANSC1, пептид: KMDEASAQLL (A*02; SEQ ID NO: 14) - ткани слева направо: 1 жировая ткань, 3 надпочечные железы, 6 артерий, 5 костных мозгов, 7 головных мозгов, 3 молочные железы, 1 центральный нерв, 13 толстых кишок, 1 двенадцатиперстная кишка, 8 пищеводов, 2 желчных пузыря, 5 сердец, 16 почек, 21 печень, 46 легких, 4 лимфатических узла, 4 образца лейкоцитов, 4 яичника, 7 поджелудочных желез, 4 периферических нерва, 1 брюшина, 3 гипофиза, 4 плаценты, 3 плевры, 6 прямых кишок, 7 слюнных желез, 4 скелетные мышцы, 6 образцов кожи, 2 тонких кишки, 4 селезенки, 7 желудков, 4 семенника, 3 вилочковые железы, 4 щитовидные железы, 10 трахей, 3 мочеточника, 6 мочевых пузырей, 2 матки, 2 вены, 3 предстательные железы, 44 опухоли предстательной железы.
Фиг. 1С: ген: TRPM8, пептид: SYNDALLTF (A*24; SEQ ID NO: 24) - ткани слева направо: 2 надпочечные железы, 1 артерия, 4 головных мозга, 1 молочная железа, 5 толстых кишок, 1 сердце, почек, 9 печеней, 9 легких, 3 поджелудочные железы, 1 гипофиз, 2 прямые кишки, 3 образца кожи, 1 селезенка, 12 желудков, 1 вилочковая железа, 2 матки, 40 опухолей предстательной железы. Пептид также был обнаружен на клетках немелкоклеточного рака легких (не показано).
Фиг. 1D: ген: KIAA1244, пептид: SLLSHQVLL (A*02; SEQ ID NO::20) - ткани слева направо: 1 клеточная линия поджелудочной железы, 20 раковых тканей (1 рак головного мозга, 1 рак молочной железы, 2 рака толстой кишки, 1 рак пищевода, 1 рак почки, 1 рак печени, 3 рака легких, 8 раков предстательной железы, 1 рак желудка, 1 рак мочевого пузыря). Набор нормальных тканей был таким же, как и в А-В, но пептид не был выявлен ни на каких нормальных тканях.
- 45 041120
Фиг. 1Е: ген: KIAA1244, пептид: QYGKDFLTL (A*22; SEQ ID NO::33) - ткани слева направо:
ткани доброкачественной гиперплазии предстательной железы, 3 нормальные ткани (1 печень, легкое, 1 прямая кишка), 31 раковая ткань (5 раков головного мозга, 4 рака печени, 15 раков легких, раков предстательной железы). Набор нормальных тканей был таким же, как и в С, но ткани, на которых пептид не был выявлен, не показаны.
На фиг. 1F-1K представлена избыточная презентация различных пептидов в нормальных тканях (белые столбцы) и тканях рака предстательной железы и тканях доброкачественной гиперплазии предстательной железы (черные столбцы).
На фиг. 1L-1S показаны все клеточные линии, нормальные ткани и раковые ткани, на которых были выявлены различные пептиды.
Фиг. 1F: ген: NEFH, пептид: HLLEDIAHV (А*02; SEQ ID NO: 3) - ткани слева направо: 1 жировая ткань, 3 надпочечные железы, 6 артерий, 5 костных мозгов, 7 головных мозгов, 3 молочные железы, 1 центральный нерв, 13 толстых кишок, 1 двенадцатиперстная кишка, 8 пищеводов, 2 желчных пузыря, 5 сердец, 16 почек, 4 образца лейкоцитов, 21 печень, 46 легких, 4 лимфатических узла, 3 яичника, 7 поджелудочных желез, 4 периферических нерва, 1 брюшина, 3 гипофиза, 2 плаценты, 3 плевры, 6 прямых кишок, 7 слюнных желез, 4 скелетные мышцы, 5 образцов кожи, 2 тонких кишки, 4 селезенки, 7 желудков, 4 семенника, 3 вилочковые железы, 4 щитовидные железы, 9 трахей, 3 мочеточника, мочевых пузырей, 2 матки, 2 вены, 3 предстательные железы, 33 ткани рака предстательной железы и 10 тканей доброкачественной гиперплазии предстательной железы.
Фиг. 1G: ген: PDE11A, пептид: ALLESRVNL (А*02; SEQ ID NO: 6) - ткани слева направо: 1 жировая ткань, 3 надпочечные железы, 6 артерий, 5 костных мозгов, 7 головных мозгов, 3 молочные железы, 1 центральный нерв, 13 толстых кишок, 1 двенадцатиперстная кишка, 8 пищеводов, 2 желчных пузыря, 5 сердец, 16 почек, 4 образца лейкоцитов, 21 печень, 46 легких, 4 лимфатических узла, 3 яичника, 7 поджелудочных желез, 4 периферических нерва, 1 брюшина, 3 гипофиза, 2 плаценты, 3 плевры, 6 прямых кишок, 7 слюнных желез, 4 скелетные мышцы, 5 образцов кожи, 2 тонких кишки, 4 селезенки, 7 желудков, 4 семенника, 3 вилочковые железы, 4 щитовидные железы, 9 трахей, 3 мочеточника, 6 мочевых пузырей, 2 матки, 2 вены, 3 предстательные железы, 33 ткани рака предстательной железы и 10 тканей доброкачественной гиперплазии предстательной железы.
Фиг. 1Н: ген: KLK4, пептид: GYLQGLVSF (A*24; SEQ ID NO: 27) - ткани слева направо: 2 надпочечные железы, 1 артерия, 4 головных мозга, 1 молочная железа, 5 толстых кишок, 1 сердце, 13 почек, 9 печеней, 9 легких, 3 поджелудочные железы, 1 гипофиз, 2 прямые кишки, 3 образца кожи, 1 селезенка, 12 желудков, 1 вилочковая железа, 2 матки, 37 тканей рака предстательной железы и 3 ткани доброкачественной гиперплазии предстательной железы.
Фиг. 1I: ген: TGFB3, пептид: YYAKEIHKF (A*24; SEQ ID NO: 28) - ткани слева направо: 2 надпочечные железы, 1 артерия, 4 головных мозга, 1 молочная железа, 5 толстых кишок, 1 сердце, 13 почек, 9 печеней, 9 легких, 3 поджелудочные железы, 1 гипофиз, 2 прямые кишки, 3 образца кожи, 1 селезенка, 12 желудков, 1 вилочковая железа, 2 матки, 37 тканей рака предстательной железы и 3 ткани доброкачественной гиперплазии предстательной железы.
Фиг. 1J: ген: KLK3, пептид: SLFHPEDTGQV (A*02; SEQ ID NO: 49) - ткани слева направо: 1 жировая ткань, 3 надпочечные железы, 6 артерий, 5 костных мозгов, 7 головных мозгов, 3 молочные железы, 1 центральный нерв, 13 толстых кишок, 1 двенадцатиперстная кишка, 8 пищеводов, 2 желчных пузыря, 5 сердец, 16 почек, 4 образца лейкоцитов, 21 печень, 46 легких, 4 лимфатических узла, 3 яичника, 7 поджелудочных желез, 4 периферических нерва, 1 брюшина, 3 гипофиза, 2 плаценты, 3 плевры, 6 прямых кишок, 7 слюнных желез, 4 скелетные мышцы, 5 образцов кожи, 2 тонких кишки, 4 селезенки, 7 желудков, 4 семенника, 3 вилочковые железы, 4 щитовидные железы, 9 трахей, 3 мочеточника, 6 мочевых пузырей, 2 матки, 2 вены, 3 предстательные железы, 33 ткани рака предстательной железы и 10 тканей доброкачественной гиперплазии предстательной железы.
Фиг. 1K: ген: KLK2, пептид: AYSEKVTEF (A*24; SEQ ID NO: 54) - ткани слева направо: 2 надпочечные железы, 1 артерия, 4 головных мозга, 1 молочная железа, 5 толстых кишок, 1 сердце, 13 почек, 9 печеней, 9 легких, 3 поджелудочные железы, 1 гипофиз, 2 прямые кишки, 3 образца кожи, 1 селезенка, 12 желудков, 1 вилочковая железа, 2 матки, 37 тканей рака предстательной железы и 3 ткани доброкачественной гиперплазии предстательной железы.
Фиг. 1L: ген: GREB1, пептид: SMLGEEIQL (A*02; SEQ ID NO: 2) - ткани слева направо: 1 ткань доброкачественной гиперплазии предстательной железы (ДГПЖ), 3 клеточные линии (3 кожи), 1 нормальная ткань (1 матка), 26 раковых тканей (2 рака молочной железы, 2 рака печени, 1 рак легких, 1 рак яичника, 13 раков предстательной железы, 6 раков кожи, 1 рак матки.
Фиг. 1М: ген: TRPM8, пептид: ALLTFVWKL (A*02; SEQ ID NO: 4) - ткани слева направо: 3 ткани доброкачественной гиперплазии предстательной железы (ДГПЖ), 13 раковых тканей (1 рак головного мозга, 12 раков предстательной железы).
Фиг. 1N: ген: TRPM8, пептид: KIFSRLIYI (A*02; SEQ ID NO: 5) - ткани слева направо: 4 ткани доброкачественной гиперплазии предстательной железы (ДГПЖ), 10 раковых тканей (1 рак головного мозга, 8 раков предстательной железы, 1 рак кожи).
- 46 041120
Фиг. 1O: ген: MANSC1, пептид: KMDEASAQLL (A*02; SEQ ID NO: 16) - ткани слева направо:
раковая ткань (20 раков предстательной железы, 1 рак мочевого пузыря).
Фиг. 1Р: ген: C6orf132, пептид: RYGSPINTF (A*24; SEQ ID NO: 29) - ткани слева направо: 4 ткани доброкачественной гиперплазии предстательной железы (ДГПЖ), 54 раковые ткани (1 рак печени, 24 рака легких, 26 раков предстательной железы, 3 рака желудка).
Фиг. 1Q: ген: ITGA7, пептид: AFSPDSHYLLF (A*24; SEQ ID NO: 34) - ткани слева направо: 5 тканей доброкачественной гиперплазии предстательной железы (ДГПЖ), 44 раковые ткани (10 раков головного мозга, 1 рак почек, 4 рака печени, 18 раков легких, 11 раков предстательной железы).
Фиг. 1R: ген: TPSB2, TPSAB1, пептид: IYTRVTYYL (А*24; SEQ ID NO: 35) - ткани слева направо: 3 ткани доброкачественной гиперплазии предстательной железы (ДГПЖ), 59 раковых тканей (36 раков легких, 14 раков предстательной железы, 9 раков желудка).
Фиг. 1S: ген: SLC30A4, пептид: ALGDLVQSV (A*02; SEQ ID NO: 52) - ткани слева направо: 1 ткань доброкачественной гиперплазии предстательной железы (ДГПЖ), 11 раковых тканей (1 рак лимфатического узла, 9 раков предстательной железы, 1 рак кожи).
На фиг. 2А-2Е представлены примеры профилей экспрессии (относительная экспрессия в сравнении с нормальной почкой) исходных генов настоящего изобретения, которые в высокой степени экспрессированы в избытке или исключительно экспрессированы в клетках рака предстательной железы в панели образцов нормальных тканей и 20 образцах рака предстательной железы. Ткани слева направо: надпочечная железа, артерия, костный мозг, головной мозг (целиком), молочная железа, толстая кишка, пищевод, сердце, почка (три повторных измерения), лейкоциты, печень, легкие, лимфатический узел, яичник, поджелудочная железа, плацента, предстательная железа, слюнная железа, скелетная мышца, кожа, тонкая кишка, селезенка, желудок, семенник, вилочковая железа, щитовидная железа, мочевой пузырь, шейка матки, матка, вена, 20 образцов рака предстательной железы.
Фиг. 2А: NEFH.
Фиг. 2В: АВСС4.
Фиг. 2С: RAB3B.
Фиг. 2D: OR51E2.
Фиг. 2Е: KLK2.
На фиг. 3 показаны типичные данные по иммуногенности: результаты проточного цитометрического анализа после пептид-специфического окрашивания мультимеров. A) TYIGQGYII (FKBP10; SEQ ID NO: 42); В) IYTRVTYYL (TPSB2, TPSAB1; SEQ ID NO: 35).
На фиг. 4А-С представлены отдельные результаты пептид-специфических ответов in vitro CD8+ Т-клеток здорового HLA-A*02+ донора. CD8+ Т-клетки примировали с помощью искусственных АПК, стимулированных моноклональными антителами к CD28 и HLA-A*02 в комплексе с пептидом с последовательностью SEQ ID NO: 1 (А, левая секция), пептидом с последовательностью SEQ ID NO: 3 (В, левая секция) или пептидом с последовательностью SEQ ID NO: 5 (С, левая секция) соответственно. После трех циклов стимуляции обнаружение клеток, реагирующих с пептидом, производилось с помощью двойного окрашивания мультимеров, используя A*02/SEQ ID NO: 1 (A), A*02/SEQ ID NO: 3 (В) или A*02/SEQ ID NO: 5 (С). Правые секции (А, В и С) представляют собой контрольное окрашивание клеток, простимулированных нерелевантными комплексами пептида и А*02. Из числа отдельных жизнеспособных клеток путем гейтирования выделяли CD8+ лимфоциты. Гейты Буля помогали исключить ложноположительные ответы, обнаруженные с помощью мультимеров, специфических в отношении различных пептидов. Указывается частота выявления специфических мультимер-положительных клеток среди CD8+ лимфоцитов.
На фиг. 5А, В представлены типичные результаты ответов in vitro пептидспецифических CD8+ Т-клеток здорового HLA-A*24+ донора. CD8+ Т-клетки примировали с помощью искусственных АПК, стимулированных моноклональными антителами к CD28 и HLA-A*24 в комплексе с пептидом с последовательностью SEQ ID NO: 24 (А, левая секция) или пептидом с последовательностью SEQ ID NO: 27 (В, левая секция) соответственно. После трех циклов стимуляции обнаружение клеток, реагирующих с пептидом, производилось с помощью двойного окрашивания мультимеров A*24/Seq ID No 24 (А) или A*24/SEQ ID NO: 27 (В). Правые секции (А и В) представляют собой контрольное окрашивание клеток, простимулированных нерелевантными комплексами пептида и А*24. Из числа отдельных жизнеспособных клеток путем гейтирования выделяли CD8+ лимфоциты. Гейты Буля помогали исключить ложноположительные ответы, обнаруженные с помощью мультимеров, специфических в отношении различных пептидов. Указывается частота выявления специфических мультимер-положительных клеток среди CD8+ лимфоцитов.
Примеры
Пример 1.
Идентификация и количественное определение опухолеассоциированных пептидов, презентируемых на поверхности клетки.
Образцы тканей.
Ткани опухоли предстательной железы пациентов были получены из компаний Asterand (Детройт,
- 47 041120
США и Ройстон, Хартфордшир, Великобритания); BioServe (Белтсвиль, Мэриленд, США); Geneticist Inc. (Глендейл, Калифорния, США); Indivumed GmbH (Гамбург, Германия); Университетской клиники г. Гейдельберг; клиники Saint Savas, Афины, Греция; Университетской клиники г. Тюбинген. Нормальные ткани были получены из компаний Asterand (Детройт, США и Ройстон, Хартфордшир, Великобритания); Bio-Options Inc., Калифорния, США; BioServe, Белтсвиль, Мэриленд, США; Geneticist Inc., Глендейл, Калифорния, США; Университетской клиники г. Женевы; Университетской клиники г. Гейдельберг; Медицинского университета префектуры Киото (KPUM); Осакского университета (OCU); Университетской клиники г. Мюнхена; компании ProteoGenex Inc., Кальвер-Сити, Калифорния, США; Tissue Solutions Ltd., Глазго, Великобритания; Университетской клиники г. Тюбинген. Перед проведением хирургического операции или аутопсии было получено информированное согласие всех пациентов в письменной форме. Сразу же после удаления ткани были подвергнуты шоковой заморозке и хранились до выделения TUMAP-пептидов при температуре -70°C или ниже.
Выделение пептидов HLA из образцов тканей.
Пулы пептидов HLA из подвергнутых шоковой заморозке образцов тканей были получены методом иммунопреципитации из плотных тканей в соответствии с незначительно измененным протоколом (Falk et al., 1991; Seeger et al., 1999) при использовании HLA-А*02-специфического антитела ВВ7.2 или HLA-A, -В, -С-специфического антитела W6/32, CNBr-активированной сефарозы, кислотной обработки и ультрафильтрации.
Масс-спектрометрический анализ.
Полученные пулы комплексов пептид-HLA были разделены в соответствии с их гидрофобностью обратнофазовой хроматографией (nanoAcquity UPLC system, Waters), и элюированные пептиды анализировали на гибридных масс-спектрометрах LTQ-velos и -fusion (ThermoElectron), снабженном источником ESI. Пулы пептидов наносили непосредственно на аналитическую микрокапиллярную колонку из плавленого кварца (75 мкм в/д х 250 мм) с обращенно-фазовым сорбентом 1,7 мкм С18 (Waters) с применением скорости потока в 400 нл/мин. Затем пептиды разделяли с использованием двухэтапного 180-минутного бинарного градиента от 10 до 33% растворителя В при скорости потока 300 нл/мин. Для создания градиента использовали растворитель А (0,1% муравьиной кислоты в воде) и растворитель В (0,1% муравьиной кислоты в ацетонитриле). Позолоченный стеклянный капилляр (PicoTip, New Objective) использовали для введения в источник нано-ESI. Масс-спектрометры LTQ-Orbitrap работали в информационно-зависимом режиме с применением стратегии ТОР5. Вкратце, цикл сканирования начинался с полного сканирования с высокой точностью масс на спектрометре Orbitrap (R=30000), за чем следовало сканирование МС/МС также на Orbitrap (R=7500) на 5 особенно многочисленных ионахпредшественниках с динамическим исключением отобранных ранее ионов. Тандемные масс-спектры интерпретировали при помощи программы SEQUEST с дополнительным контролем вручную. Идентифицированную пептидную последовательность подтверждали сравнением полученной картины фрагментации природного пептида с картиной фрагментации синтетического контрольного пептида с идентичной последовательностью.
Относительное количественное определение методом ЖХ/МС без изотопных меток проводили путем подсчета ионов, т.е. с помощью экстракции и анализа результатов ЖХ/МС (Mueller et al., 2007). Этот метод основан на предположении, что площадь пика ЖХ/МС сигнала пептида коррелирует с его концентрацией в образце. Извлеченные характеристики обрабатывали с помощью деконволюционного анализа состояния заряда и путем выравнивания времени удерживания (Mueller et al., 2008; Sturm et al., 2008). Наконец, все результаты спектров ЖХ/МС были сопоставлены методом перекрестных ссылок с результатами по идентификации последовательности, чтобы объединить количественные данные различных образцов и тканей в профили презентации пептидов. Количественные данные были нормализованы с применением двухуровневой системы в соответствии с центральной тенденцией с целью учета вариабельности внутри технических и биологических повторных измерений. Таким образом, каждый идентифицированный пептид может быть ассоциирован с количественными данными, позволяющими провести относительную количественную оценку образцов и тканей. Кроме того, все количественные данные, полученные для пептидов-кандидатов, были проконтролированы вручную в целях обеспечения взаимосогласованности данных и для проверки точности автоматического метода анализа. Для каждого пептида был рассчитан профиль презентации, показывающий средний уровень презентации в образце, а также вариабельность репликатов. В профиле сравниваются образцы рака предстательной железы и образцы доброкачественной гиперплазии предстательной железы с фоновым уровнем образцов нормальной ткани. Профили презентации типичных пептидов, презентируемых в избытке, показаны на фиг. 1. Показатели презентации отдельных пептидов показаны в табл. 12 и 13.
В табл. 12 представлены пептиды, связывающиеся с HLA-A*02, которые в очень высокой степени избыточно презентируются на опухолях в сравнении с панелью нормальных тканей (+++), в высокой степени избыточно презентируются на опухолях в сравнении с панелью нормальных тканей (++) или избыточно презентируются на опухолях в сравнении с панелью нормальных тканей (+).
- 48 041120
Таблица 12
Показатели презентации
SEQ ID No. Последовательность Презентация пептида
1 VTAQIGIVAV +++
2 SMLGEEIQL +++
3 HLLEDIAHV +++
4 ALLTFVWKL +++
5 KIFSRLIYI +++
6 ALLESRVNL +++
7 TLLQWGWSV +++
8 LLDFSLADA +++
9 GMLNEAEGKAIKL ++
10 TLWRGPVW +++
11 YLEEECPAT +++
12 SLNEEIAFL +++
14 KMDEASAQLL +++
15 KMDEASAQLLA +++
17 RLGIKPESV ++
18 GLSEFTEYL +++
19 LLPPPPLLA +++
20 SLLSHQVLL +++
21 YLNDSLRHV +++
22 SLYDSIAFI +++
23 AVAGADVIITV +
40 RTFJPTYGL ++
В таблице представлены пептиды HLA-A*24, которые в очень высокой степени избыточно презентируются на опухолях в сравнении с панелью нормальных тканей (+++), в высокой степени избыточно презентируются на опухолях в сравнении с панелью нормальных тканей (++) или избыточно презентируются на опухолях в сравнении с панелью нормальных тканей (+).
Таблица 13 ______Показатели презентации______
SEQ ID No. Последовательность Презентация пептида
24 SYNDALLTF +++
25 IYEPYLAMF +
26 RYADDTFTPAF +++
27 GYLQGLVSF +++
28 YYAKEIHKF +++
29 RYGSPINTF +++
30 SYSPAHARL +++
31 AYTSPPSFF +++
32 PYQLNASLFTF +++
34 AFSPDSHYLLF +++
35 IYTRVTYYL +++
36 RYMWINQEL ++
37 RYLQDLLAW +++
38 VYSDKLWIF ++
39 SYIDVAVKL +
41 RYLQKIEEF +++
42 TYIGQGYII +++
43 AYIKNGQLF +++
44 VYNTVSEGTHF +
45 RYFKTPRKF ++
46 VYEEILHQI ++
47 SYTPVLNQF ++
48 AWAPKPYHKF ++
Пример 2.
Определение профиля экспрессии генов, кодирующих пептиды по изобретению.
Избыточной презентации или специфической презентации пептида на опухолевых клетках по сравнению с нормальными клетками достаточно для его пригодности в иммунотерапии, и некоторые пептиды являются опухолеспецифическими, несмотря на присутствие их исходных белков также и в нормальных тканях. Тем не менее выявление профилей экспрессии мРНК привносит дополнительный уровень безопасности при отборе пептидных мишеней для иммунотерапии. В особенности в случае терапевтических методов с высокой степенью риска для безопасности, таких как ТКР с созревшей аффинностью, идеальный целевой пептид будет получен из белка, являющегося уникальным для опухоли и не встречающегося на нормальных тканях.
Источники и приготовление РНК.
Хирургически удаленные тканевые препараты были предоставлены различными организациями, которые перечислены выше (см. пример 1) после получения письменной формы информированного согласия от каждого пациента. Препараты опухолевой ткани были мгновенно заморожены после операции и впоследствии гомогенизированы с помощью ступки и пестика в жидком азоте. Суммарная РНК была приготовлена из данных образцов с использованием реагента TRI (Ambion, Дармштадт, Германия) с последующей очисткой на RNeasy (QIAGEN, Хильден, Германия); оба метода осуществлялись в соответст- 49 041120 вии с указаниями производителей.
Суммарная РНК здоровых человеческих тканей была куплена (Ambion, Хантингтон, Великобритания; Clontech, Гейдельберг, Германия; Stratagene, Амстердам, Нидерланды; BioChain, Хейард, Калифорния, США). РНК нескольких индивидов (от 2 до 123 индивидов) была смешана таким образом, что РНК каждого индивида имела равный вес.
Качество и количество всех образцов РНК оценивали на биоанализаторе Agilent 2100 (Agilent, Вальдбронн, Германия) с использованием набора RNA 6000 Pico LabChip Kit (Agilent).
Эксперименты с микрочипами.
Анализ экспрессии генов всех образцов РНК из опухолевой и нормальной ткани был произведен с помощью олигонуклеотидных микрочипов Affymetrix Human Genome (HG) U133A или HG-U133 Plus 2.0 (Affymetrix, Санта Клара, Калифорния, США). Все этапы были выполнены в соответствии с руководством Affymetrix. Вкратце, двунитевую кДНК синтезировали из 5-8 мкг суммарной РНК с использованием Superscript RTII (Invitrogen) и олиго-dT-Т7 праймера (MWG Biotech, Эберсберг, Германия), как описывается в руководстве. Транскрипцию in vitro производили с использованием набора для мечения РНК-транскриптов BioArray High Yield RNA Transcript Labelling Kit (ENZO Diagnostics, Inc., Фармингдейл, Нью-Йорк, США) для чипов U133A или набора GeneChip IVT Labelling Kit (Affymetrix) для чипов U133 Plus 2.0 с последующей фрагментацией, гибридизацией кРНК и окрашиванием стрептавидинфикоэритрином и биотинилированным антителом к стрептавидину (Molecular Probes, Лейден, Нидерланды). Изображения сканировали на Agilent 2500A GeneArray Scanner (U133A) или Affymetrix Gene-Chip Scanner 3000 (U133 Plus 2.0), а данные анализировали в программе GCOS (Affymetrix) с использованием настроек по умолчанию для всех параметров. Для нормализации использовались 100 служебных генов, предоставленных Affymetrix. Относительные значения экспрессии были подсчитаны из отношений логарифмов зарегистрированных сигналов, полученных компьютерной программой, а значение для образца нормальной почки было произвольно задано значением 1,0. Типичные профили экспрессии исходных генов, предложенных в настоящем изобретении, которые в высокой степени экспрессированы в избытке или исключительно экспрессированы в клетках рака предстательной железы, представлены на фиг. 2А-2Е. Показатели экспрессии других отдельных генов показаны в табл. 14.
В табл. 14 представлены пептиды, полученные из генов, которые в очень высокой степени избыточно экспрессируется в опухолях в сравнении с панелью нормальных тканей (+++), в высокой степени избыточно экспрессируется в опухолях в сравнении с панелью нормальных тканей (++) или избыточно экспрессируется в опухолях в сравнении с панелью нормальных тканей (+).
Таблица 14
Показатели презентации
SEQ ID No Последовательность Экспрессия гена
1 VTAQIGIVAV ++
2 SMLGEEIQL ++
3 HLLEDIAHV +++
4 ALLTFVWKL +
5 KIFSRLIYI +
7 TLLQWGWSV ++
11 YLEEECPAT +
19 LLPPPPLLA +
24 SYNDALLTF +
25 IYEPYLAMF +
26 RYADDTFTPAF ++
28 YYAKEIHKF +
44 VYNTVSEGTHF ++
Пример 3.
Иммуногенность in vitro для пептидов, презентируемых МНС I класса.
Для получения информации об иммуногенности пептидов TUMAP по настоящему изобретению заявители провели исследования с использованием прайминга Т-клеток in vitro на основе повторных стимуляций CD8+ Т-клеток искусственными антигенпрезентирующими клетками (иАПК), нагруженными комплексами пептид-МНС и антителом к CD28. Таким образом, заявители могли показать для некоторых выбранных иммуногенность пептидов TUMAP, рестриктированных по HLA-А*0201 и по HLA-A*24, по изобретению, демонстрируя, что эти пептиды являются Т-клеточными эпитопами, против которых у человека имеются CD8+ Т-клетки-предшественники (табл. 15А, 15В).
Прайминг CD8+ Т-клеток in vitro.
В целях проведения стимуляций in vitro искусственными антигенпрезентирующими клетками, нагруженными комплексом пептид-МНС (рМНС) и антителом к CD28, заявители сначала выделили CD8+ Т-клетки из свежего продукта лейкафереза HLA-A*02 методом позитивной селекции с помощью микросфер CD8 (Miltenyi Biotec, Бергиш-Гладбах, Германия). Кровь была получена от здоровых доноров (после подписания формы информированного согласия) из Университетской клиники г. Мангейм, Германия.
МКПК и выделенные CD8+ лимфоциты инкубировали до использования в Т-клеточной среде
- 50 041120 (ТСМ), состоящей из RPMI-Glutamax (Invitrogen, Карлсруэ, Германия) с добавлением 10% инактивированной нагреванием человеческой сыворотки АВ (PAN-Biotech, Эйденбах, Германия), 100 Ед/мл пенициллина/100 мкг/мл стрептомицина (Cambrex, Кёльн, Германия), 1 мМ пирувата натрия (СС Pro, Обердорла, Германия) и 20 мкг/мл гентамицина (Cambrex). 2,5 нг/мл ИЛ-7 (PromoCell, Гейдельберг, Германия) и 10 Ед/мл ИЛ-2 (Novartis Pharma, Нюрнберг, Германия) также добавляли на этом этапе в среду ТСМ.
Получение микросфер, покрытых рМНС и антителами к CD28, стимуляции Т-клеток и считывание производили на хорошо исследованной системе in vitro, используя четыре различные молекулы рМНС для каждого цикла стимуляций и восемь различных молекул рМНС для каждого цикла считывания.
Очищенный костимуляторный IgG2a мыши к антителам человека CD28 Ab 9.3 (Jung et al., 1987) был химически биотинилирован с использованием сульфо-N-гидроксисукцинимидобиотина, как рекомендуется изготовителем (Perbio, Бонн, Германия). Использованные микросферы представляли собой полистирольные частицы размером 5,6 мкм, покрытые стрептавидином (Bangs Laboratories, Иллинойс, США).
рМНС, использованные для положительных и отрицательных контрольных стимуляций, были A*O2O1/MLA-OO1 (пептид ELAGIGILTV (SEQ ID NO: 60) из модифицированного Melan-A/MART-1) и A*0201/DDX5-001 (YLLPAIVHI из DDX5, SEQ ID NO: 61) соответственно.
800000 микросфер/200 мкл вносили в лунки 96-луночного планшета в присутствии 4x12,5 нг другого биотинилированного комплекса рМНС, промывали и затем добавляли 600 нг биотинилированных антител к CD28 в объеме 200 мкл. Стимуляцию проводили в 96-луночных планшетах путем совместной инкубации 1x106 CD8+ Т-клеток с 2x105 промытых покрытых микросфер в 200 мкл среды ТСМ с добавлением 5 нг/мл ИЛ-12 (PromoCell) в течение 3 дней при 37°C. Половина среды была затем заменена на свежую среду ТСМ с добавлением 80 Ед/мл ИЛ-2, и инкубация была продолжена в течение 4 дней при 37°C. Данный цикл стимуляций производили в общей сложности три раза. Для считывания с рМНС-мультимеров использовали восемь различных молекул рМНС на цикл. Использовался двумерный комбинаторный подход к кодировке, как было описано ранее (Andersen et al., 2012) с незначительными изменениями, относящимися к мечению с 5 различными флуорохромами. Наконец, проводили анализ мультимеров посредством окрашивания клеток набором для определения жизнеспособности клеток при воздействии ближнего ИК-излучения с красителем Live/dead (Invitrogen, Карлсруэ, Германия), клоном SK1 антител CD8-FITC (BD, Гейдельберг, Германия) и мультимерами рМНС с флуоресцентными метками. Для анализа использовали цитометр BD LSRII SORP, снабженный подходящими лазерами и фильтрами. Пептидспецифические клетки были подсчитаны как процентная доля от всех CD8+ клеток. Оценку результатов анализа мультимеров проводили с помощью программы FlowJo (Tree Star, Орегон, США). Прайминг in vitro специфических мультимер-положительных CD8+ лимфоцитов оценивали сравнением со стимуляциями отрицательного контроля. Иммуногенность для заданного антигена была определена, если было обнаружено, что по меньшей мере в одной подлежащей оценке простимулированной in vitro лунке одного здорового донора содержалась специфическая CD8+ Т-клеточная линия после стимуляции in vitro (т.е. когда данная лунка содержала по меньшей мере 1% специфичных мультимерположительных среди CD8-положительных Т-клеток и процентная доля специфичных мультимерположительных клеток была по меньшей мере в 10 раз выше медианного значения стимуляций отрицательного контроля).
Иммуногенность in vitro для пептидов рака предстательной железы.
Для проанализированных пептидов, связанных с молекулами HLA I класса, иммуногенность in vitro могла быть продемонстрирована генерированием пептид-специфических Т-клеточных линий. Типичные результаты проточного цитометрического анализа после TUMAP-специфического окрашивания мультимеров для двух пептидов по изобретению показаны на фиг. 3 вместе с соответствующими отрицательными контролями. Результаты для пяти пептидов по изобретению обобщаются в табл. 15А. Другие результаты для 6 пептидов по изобретению обобщаются в табл. 15В.
Таблица 15А
Иммуногенность in vitro пептидов HLA I класса по изобретению
Seq ID Последовательность лунки доноры
17 RLGIKPESV ++ ++++
29 RYGSPINTF + +++
34 AFSPDSHYLLF + +++
35 IYTRVTYYL ++ ++++
42 TYIGQGYII + ++++
Отдельные результаты экспериментов по иммуногенности in vitro, проведенных заявителем для пептидов по изобретению. + =<20%; ++ = 20-49%; +++ = 50-69% ++++ = >70%.
- 51 041120
Таблица 15В
Иммуногенность in vitro пептидов HLA I класса по изобретению
SEQ ID Последовательность Положительные лунки [%]
1 VTAQIGIVAV ++++
3 HLLEDIAHV ++
5 KIFSRLIYI +++
6 ALLESRVNL +
24 SYNDALLTF +++
27 GYLQGLVSF ++
Отдельные результаты экспериментов по иммуногенности in vitro, проведенных заявителем для пептидов по изобретению. + = <20%; ++ = 20-49%; +++ = 50-69% ++++ = >70%.
Пример 4. Синтез пептидов.
Все пептиды были синтезированы стандартным и общепринятым методом твердофазного синтеза пептидов с использованием Fmoc-методики. Идентичность и чистоту каждого отдельного пептида определяли с помощью масс-спектрометрии и аналитической ОФ ВЭЖХ. Были получены пептиды в виде белого или грязно-белого лиофилизата (соль трифторацетата) со степенью чистоты >50%. Все пептиды TUMAP предпочтительно вводят в виде солей трифторацетатов или ацетатов, возможны также другие солевые формы.
Пример 5.
Анализ связывания МНС.
Пептиды-кандидаты для Т-клеточной терапии в соответствии с настоящим изобретением далее были испытаны на их способность связываться с МНС (аффинность). Отдельные комплексы пептида и молекулы МНС были получены с помощью реакции обмена лигандами под воздействием УФ-излучения, при которой УФ-чувствительный пептид расщепляется под воздействием УФ-излучения, и получается продукт обмена с исследуемым пептидом. Только пептиды-кандидаты, которые могут эффективно связываться и стабилизировать восприимчивые к пептиду молекулы МНС, предотвращают диссоциацию комплексов с МНС. Для определения выхода продукта реакции обмена проводили анализ методом ELISA на основе обнаружения легкой цепи (в2т) стабилизированных комплексов с МНС. Этот анализ производили в основном, как описано у Rodenko et al. (Rodenko et al., 2006).
В 96-луночные планшеты MAXISorp (NUNC) на ночь вносили 2 мкг/мл стрептавидина в PBS при комнатной температуре, промывали 4 раза и блокировали в течение 1 ч при 37°C в 2% БСА, содержащем блокирующий буфер. Полученные в результате рефолдинга мономеры HLA-A*02:01/MLA-001 служили в качестве стандарта, покрывающего диапазон 15-500 нг/мл. Мономерные комплексы пептид-МНС после реакции обмена под воздействием УФ-излучения 100-кратно разводили в блокирующем буфере. Образцы инкубировали в течение 1 ч при 37°C, промывали четыре раза, инкубировали в течение 1 ч при 37°C с 2 мкг/мл пероксидазы хрена, конъюгированной с антителом к в2т, снова промывали и проводили обнаружение с помощью раствора ТМБ; реакцию останавливали NH2SO4. Величину поглощения измеряли при длине волны 450 нм. Пептиды-кандидаты, которые демонстрировали высокий выход реакции обмена (предпочтительно более 50%, наиболее предпочтительно, более 75%), обычно являются предпочтительными для генерирования и получения антител или их фрагментов и/или Т-клеточных рецепторов или их фрагментов, поскольку они проявляют достаточную авидность по отношению к молекулам МНС и предотвращают диссоциацию комплексов МНС.
- 52 041120
Таблица 16А
пептидного обмена: + = >10%; ++ = >20%;+++ = >50;
++++ = >75%.
- 53 041120
Таблица 16В
Показатели связывания с молекулами МНС I класса
SEQ ID Последовательность Пептидный обмен
1 VTAQIGIVAV ++++
2 SMLGEEIQL ++++
3 HLLEDIAHV ++++
4 ALLTFVWKL ++++
5 KIFSRLIYI +++
6 ALLESRVNL ++++
7 TLLQWGWSV ++
9 GMLNEAEGKAIKL +++
10 TLWRGPWV +++
11 YLEEECPAT ++
13 АМАР N HAW +++
14 KMDEASAQLL ++
15 KMDEASAQLLA +++
16 KMDEASAQL +++
20 SLLSHQVLL +++
21 YLNDSLRHV ++
22 SLYDSIAFI ++++
49 SLFHPEDTGQV +++
52 ALGDLVQSV +++
53 YLLKDKGEYTL +++
Связывание рестриктированных по молекулам HLA I класса пептидов с HLA-A*24 оценивали по выходу пептидного обмена: + = >10%; ++ = >20%;+++ = >50; ++++ = >75%.
Пример 6.
Абсолютное количественное определение опухолеассоциированных пептидов, презентируемых на поверхности клетки.
Получение связывающих компонентов, таких как антитела и/или ТКР, является лабораторным процессом, который может проводиться лишь для ряда выбранных мишеней. В случае опухолеассоциированных и -специфических пептидов критерии отбора включали, но не были ограничены, исключительностью презентации и плотностью пептида, презентируемого на поверхности клеток. В дополнение к выделению и относительному количественному определению пептидов, описанных в настоящем документе, заявители анализировали абсолютное число копий пептида на клетку в соответствии с описанием. Количественное определение копий TUMAP на клетку в образцах солидных опухолей требует абсолютного количественного определения выделенного пептида TUMAP, эффективности выделения TUMAP и числа клеток проанализированного образца ткани.
Количественное определение пептида с помощью нано-ЖХ-МС/МС.
Для точного количественного определения пептидов методом масс-спектрометрии проводили построение калибровочной кривой для каждого пептида при использовании метода внутреннего стандарта. Внутренний стандарт является вариантом каждого пептида с двойными изотопными метками, т.е. во время синтеза TUMAP были введены две аминокислоты с изотопными метками. От опухолеассоциированного пептида он отличается лишь по своей массе, но не имеет различий по другим физикохимическим свойствам (Anderson et al., 2012). Внутренний стандарт добавляли в известном количестве в каждый МС-образец, и все МС-сигналы были нормализованы относительно МС-сигнала внутреннего стандарта, чтобы сгладить потенциальные технические вариации МС-экспериментов.
Калибровочные кривые были построены по меньшей мере в трех разных матрицах, т.е. элюатах пептида HLA из природных образцов, подобных обычным образцам для МС, и каждый препарат прошел два цикла измерений на МС. В целях оценки проводили нормализацию МС-сигналов относительно сигнала внутреннего стандарта и расчет калибровочной кривой методом логистической регрессии.
Для количественного определения опухолеассоциированных пептидов из образцов тканей в соответствующие образцы также добавляли известное количество внутреннего стандарта; проводили нормализацию МС-сигналов относительно внутреннего стандарта и проводили количественное определение с помощью калибровочной кривой пептида.
- 54 041120
Эффективность выделения комплексов пептид/МНС.
Как в случае любого процесса очистки белков, выделение белков из образцов ткани связано с определенными потерями исследуемого белка. Для определения эффективности выделения пептида TUMAP для всех пептидов TUMAP, выбранных для абсолютного количественного определения, были получены комплексы пептид-МНС. Чтобы отличить комплексы пептид-МНС со стандартными добавками от комплексов с природным пептидом, использовали версии пептидов TUMAP с одной изотопной меткой, т.е. во время синтеза TUMAP вводили одну аминокислоту с изотопной меткой. Данные комплексы добавляли в качестве стандартной добавки в свежеприготовленные лизаты тканей, т.е. в самый ранний возможный момент процесса выделения пептида TUMAP, а затем проводили улавливание, как природных комплексов пептид-МНС в процессе последующей аффинной очистки. Таким образом, измерение степени извлечения однократно меченых пептидов TUMAP позволяет сделать заключения относительно эффективности выделения отдельных природных пептидов TUMAP.
Эффективность выделения анализировали на небольшом числе образцов, и она была сопоставимой среди этих образцов тканей. Напротив, эффективность выделения отдельных пептидов различна. Поэтому можно предположить, что эффективность выделения, хотя она определялась только для ограниченного числа образцов тканей, может быть экстраполирована на любой другой препарат ткани. Тем не менее необходимо проанализировать каждый пептид TUMAP в отдельности, поскольку эффективность выделения не может быть экстраполирована с одного пептида на другие.
Определение числа клеток в твердой замороженной ткани.
В целях определения числа клеток образцов тканей, подлежащих абсолютному количественному определению пептида, авторы изобретения применяли анализ содержания ДНК. Этот метод применим к широкому диапазону образцов различного происхождения и, что наиболее важно, к замороженным образцам (Alcoser et al., 2011; Forsey and Chaudhuri, 2009; Silva et al., 2013). Во время выполнения протокола выделения образец ткани обрабатывают до получения гомогенного лизата, из которого берут небольшую аликвоту лизата. Аликвоту делят на три части, из которых выделяют ДНК (набор QiaAmp DNA Mini Kit, Qiagen, Хильден, Германия). Общее содержание ДНК из каждой процедуры выделения ДНК подвергается количественному определению с помощью количественного анализа ДНК на основе флуоресценции (набор для количественного анализа Qubit dsDNA HS, Life Technologies, Дармштадт, Германия) по меньшей мере на двух повторных циклах.
В целях расчета числа клеток по аликвотам отдельных здоровых клеток крови строят стандартную кривую для ДНК с диапазоном заданных количеств клеток. Стандартная кривая используется для расчета общего содержания клеток из общего содержания ДНК для каждой процедуры выделения ДНК. Среднее общее число клеток образца ткани, используемого для выделения пептида, экстраполируют с учетом известного объема аликвот лизата и общего объема лизата.
Число копий пептида на одну клетку.
С помощью данных перечисленных ранее экспериментов авторы изобретения рассчитали число копий пептидов TUMAP на клетку, разделив общее количество пептида на общее число клеток в образце, а затем поделив на эффективность выделения. Число копий клеток для выбранных пептидов показано в табл. 17.
Таблица 17
Абсолютное число копий
SEQ ID No. Код пептида Число копий на клетку (медиана) Количество образцов
1 OR51E2-001 + 13
2 GREB-001 ++ 14
3 NEFH-001 ++ 11
4 TRPM8-002 +++ 6
5 TRPM8-003 ++ 6
6 PDE11-001 + 10
24 TRPM8-004 +++ 15
- 55 041120
26 RAB3B-001 ++ 15
27 KLK4-001 ++++ 16
28 TGFB3-001 +++ 16
42 FKBP10-002 ++ 19
49 KLK3-004 + 15
50 LRRC26-001 ++ 13
54 KLK2-001 +++ 16
55 ACPP-002 +++ 15
56 KLK3-005 +++ 16
57 FOLH1-005 +++ 16
В таблице указаны результаты абсолютного количественного определения пептидов в опухолевых образцах. Медианное число копий на клетку указано для каждого пептида: + = <100; ++ = 100; +++ = >1,000; ++++ >10,000. Указано число образцов, для которых имеются поддающиеся оценке, высококачественные данные МС.
Список цитируемой литературы
Adachi, Н. et al., Oncogene 23 (2004): 3495-3500
Allison, J. P. et al., Science 270 (1995): 932-933
American Cancer Society, (2015), www.cancer.org
Ammendola, M. et al., Biomed.Res.Int. 2014(2014): 154702
Andersen, R. S. et al., Nat.Protoc. 7 (2012): 891-902
Andres, S. A. et al., BMC.Cancer 13 (2013): 326
Аррау, V. et al., Eur.J Immunol. 36 (2006): 1805-1814
Arentz, G. et al., Clin Proteomics. 8(2011): 16
Banchereau, J. et al., Cell 106 (2001): 271-274
Bausch, D. et al., Clin Cancer Res. 17 (2011): 302-309
Beatty, G. et al., J Immunol 166 (2001): 2276-2282
Beggs, J. D., Nature 275 (1978): 104-109
Benjamini, Y. et al., Journal of the Royal Statistical Society.Sehes В (Methodological), Vol.57 (1995): 289-300
Bhosle, R. C. et al., Biochem.Biophys.Res.Commun. 346 (2006): 768-777
Bouameur, J. E. et al., J Invest Dermatol. 134 (2014): 885-894
Boulter, J. M. et al., Protein Eng 16 (2003): 707-711
Braumuller, H. et al., Nature (2013)
- 56 041120
Bresnick, E. H. etal., Nucleic Acids Res. 40 (2012): 5819-5831
Brossart, P. etal., Blood 90 (1997): 1594-1599
Bruckdorfer, T. etal., Curr.Pharm.Biotechnol. 5 (2004): 29-43
Card, K. F. et al., Cancer Immunol. Immunother. 53 (2004): 345-357
Chanock, S. J. etal., Hum.Immunol. 65 (2004): 1211-1223
Chen, L. et al., Med.Oncol 30 (2013): 498
Chong, I. W. et al., Oncol Rep. 16 (2006): 981-988
Clemen, C. S. etal., Acta Neuropathol. 129 (2015): 297-315
Cohen, C. J. et al., J Mol.Recognit. 16 (2003a): 324-332
Cohen, C. J. et al., J Immunol. 170 (2003b): 4349-4361
Cohen, S. N. etal., Proc.Natl.Acad.Sci.U.S.A69 (1972):2110-2114
Coligan, J. E. et al., Current Protocols in Protein Science (1995)
Colombetti, S. et al., J Immunol. 176 (2006): 2730-2738
Davidson, B. et al., Hum.Pathol. 45 (2014): 691-700
Deng, M. et al., Oncogene 32 (2013): 4273-4283
Dengjel, J. et al., Clin Cancer Res 12 (2006): 4163-4170
Denkberg, G. et al., J Immunol. 171 (2003): 2197-2207
Dubrowinskaja, N. et al., Cancer Med. (2014)
Falk, K. et al., Nature 351 (1991): 290-296
Faucz, F. R. et al., J Clin Endocrinol.Metab 96 (2011): E135-E140
Fawcett, L. etal., Proc.Natl.Acad.Sci.U.S.A 97 (2000): 3702-3707
Fong, L. etal., Proc.Natl.Acad.Sci.U.S.A98 (2001): 8809-8814
Forti, S. et al., Breast Cancer Res Treat. 73 (2002): 245-256
Frattini, V. et al., Nat Genet. 45 (2013): 1141-1149
Fu, C. A. et al., J Biol.Chem. 274 (1999): 30729-30737
Gabrilovich, D. I. et al., Nat.Med 2 (1996): 1096-1103
Gattinoni, L. et al., Nat.Rev.Immunol. 6 (2006): 383-393
Gnjatic, S. et al., Proc Natl.Acad.Sci.U.S.A 100 (2003): 8862-8867
- 57 041120
Godkin, A. et al., Int.Immunol 9 (1997): 905-911
Graddis, T. J. et al., Int.J Clin Exp.Pathol. 4 (2011): 295-306
Green, M. R. et al., Molecular Cloning, A Laboratory Manual 4th (2012)
Greene, Μ. H. et al., Endocr.Relat Cancer 17 (2010): R109-R121
Greenfield, E. A., Antibodies: A Laboratory Manual 2nd (2014)
Grunewald, T. G. et al., Biol.Cell 104 (2012): 641-657
Gutman, G. A. et al., Pharmacol.Rev. 57 (2005): 473-508
Haferlach, C. et al., Haematologica 96 (2011): 829-836
Hale, L. P. et al., Clinical Cancer Research 7 (2001): 846-853
Hallen, A. et al., J Neurochem. 118 (2011): 379-387
Halpain, S. et al., Genome Biol. 7 (2006): 224
Hanahan, D. et al., Cell 100 (2000): 57-70
Hassan, Μ. I. et al., Mol Cancer Res 6 (2008): 892-906
Higgins, G. et al., Proc.Natl.Acad.Sci.U.S.A 109 (2012): E3128-E3135
Ho, L. L. et al., Prostate 68 (2008): 1421-1429
Horvath, A. et al., Curr.Opin.Endocrinol.Diabetes Obes. 15 (2008): 227-233
Hu, J. C. et al., Gene 251 (2000): 1-8
Hwang, M. L. et al., J Immunol. 179 (2007): 5829-5838
Hyodo, T. et al., J Biol.Chem. 287 (2012): 25019-25029
Ito, S. et al., Head Neck 32 (2010a): 96-103
Ito, Y. et al., Proc.Natl.Acad.Sci.U.S.A 107 (2010b): 10538-10542
Jiao, X. et al., BMC.Genomics 14 (2013): 165
Jin, Y. et al., Proc.Natl.Acad.Sci.U.S.A 110 (2013): E2572-E2581
Jung, G. et al., Proc Natl Acad Sci U S A 84 (1987): 4611-4615
Kai, F. et al., Oncotarget. 6(2015): 11162-11174
Kandimalla, R. et al., Eur.Urol. 61 (2012): 1245-1256
Katada, K. et al., J Proteomics. 75 (2012): 1803-1815
Katoh, Y. et al., Cancer Biol.Ther. 4 (2005): 1050-1054
- 58 041120
Kibbe, A. H., Handbook of Pharmaceutical Excipients rd (2000)
Kibel, A. S. et al., Int.J Cancer 109 (2004): 668-672
Kinameri, E. et al., PLoS.ONE. 3 (2008): e3859
Klejnot, M. et al., Acta Crystallogr.D.Biol.Crystallogr. 68 (2012): 154-159
Krieg, A. M., Nat.Rev.Drug Discov. 5 (2006): 471-484
Lapointe, J. et al., Proc.Natl.Acad.Sci.U.S.A 101 (2004): 811-816
Laviolette, L. A. et al., Int.J Cancer 135 (2014): 1072-1084
Lee, K. Y. et al., J Med. 35 (2004): 141-149
Li, Y. W. et al., PLoS.ONE. 9 (2014): e87505
Li, Z. J. et al., Development 139 (2012): 4152-4161
Liddy, N. et al., Nat.Med. 18 (2012): 980-987
Liu, P. et al., Science 261 (1993): 1041-1044
Liu, Y. H. et al., Biochem.Biophys.Res Commun. 404 (2011): 488-493
Ljunggren, H. G. et al., J Exp.Med 162 (1985): 1745-1759
Longenecker, В. M. et al., Ann N.Y.Acad.Sci. 690 (1993): 276-291
Lue, H. W. et al., PLoS.ONE. 6 (2011): e27720
Lukas, T. J. et al., Proc.Natl.Acad.Sci.U.S.A 78 (1981): 2791-2795
Lundblad, R. L., Chemical Reagents for Protein Modification 3rd (2004)
Ma, Y. et al., Mol Cell Proteomics. 8 (2009): 1878-1890
Malinowska, K. et al., Prostate 69 (2009): 1109-1118
Matsumoto, F. et al., Hum.Pathol. 37 (2006): 1592-1600
Matsuoka, R. et al., Am.J Med.Genet. 46 (1993): 61-67
Meziere, C. et al., J Immunol 159 (1997): 3230-3237
Midorikawa, Y. et al., Jpn.J Cancer Res. 93 (2002): 636-643
Montani, M. et al., Virchows Arch. 462 (2013): 437-443
Morgan, R. A. et al., Science 314 (2006): 126-129
Mori, M. et al., Transplantation 64 (1997): 1017-1027
Mortara, L. et al., Clin Cancer Res. 12 (2006): 3435-3443
- 59 041120
Mueller, L. N. et al., J Proteome.Res. 7 (2008): 51-61
Mueller, L. N. et al., Proteomics. 7 (2007): 3470-3480
Mumberg, D. et al., Proc.Natl.Acad.Sci.U.S.A 96 (1999): 8633-8638
Nicke, B. et al., Mol.Cell 20 (2005): 673-685
Nishibe, R. et al., FEBS Lett. 587 (2013): 1529-1535
Nishidate, T. et al., Int.J Oncol 25 (2004): 797-819
Noetzel, E. et al., Oncogene 29 (2010): 4814-4825
Olesen, S. H. et al., Mol Cell Proteomics. 4 (2005): 534-544
Peters, I. et al., Target Oncol (2014)
Petrella, B. L. et al., Cancer Lett. 325 (2012): 220-226
Pinheiro, J. et al., nlme: Linear and Nonlinear Mixed Effects Models (http://CRAN.Rproiect.org/packe=nlme) (2015)
Piebanski, M. et al., Eur.J Immunol 25 (1995): 1783-1787
Porta, C. et al., Virology 202 (1994): 949-955
Prevarskaya, N. et al., Biochim.Biophys.Acta 1772 (2007): 937-946
Quinn, D. I. et al., Urol.Oncol 33 (2015): 245-260
Quinn, M. C. et al., Int.J Oncol 42 (2013): 912-920
Rae, J. M. et al., Prostate 66 (2006): 886-894
Rammensee, H. G. et al., Immunogenetics 50 (1999): 213-219
RefSeq, The NCBI handbook [Internet], Chapter 18, (2002), http://www.ncbi.nlm.nih.gov/books/NBK21091/
Rini, В. I. et al., Cancer 107 (2006): 67-74
Rizzardi, A. E. et al., BMC.Cancer 14 (2014): 244
Rock, K. L. et al., Science 249 (1990): 918-921
Rotondo, F. et al., Appl.lmmunohistochem.Mol.Morphol. 17 (2009): 185-188
Russel, F. G. et al., Trends Pharmacol.Sci. 29 (2008): 200-207
S3-Leitlinie Prostatakarzinom, 043/022OL, (2014)
Saiki, R. K. et al., Science 239 (1988): 487-491
Sakai, T. et al., J Pharmacol.Sci. 98 (2005): 41-48
- 60 041120
Schmitt, M. et al., Radiol.Oncol. 47 (2013): 319-329
Seeger, F. H. et al., Immunogenetics 49 (1999): 571-576
SEER Stat facts, (2014), http://seer.cancer.gov/
Seven, G. et al., Cancer Med. 3 (2014): 1266-1274
Shaheduzzaman, S. et al., Cancer Biol.Ther 6 (2007): 1088-1095
Sherman, F. et al., Laboratory Course Manual for Methods in Yeast Genetics (1986)
Shkoda, A. et al., PLoS.Biol. 10 (2012): e1001376
Singh-Jasuja, H. et al., Cancer Immunol.Immunother. 53 (2004): 187-195
Small, E. J. et al., J Clin Oncol. 24 (2006): 3089-3094
Sturm, M. et al., BMC.Bioinformatics. 9 (2008): 163
Sudhof, T. C., Neuron 75 (2012): 11-25
Sun, Z. et al., J Proteome.Res 13 (2014): 1593-1601
Tan, L. Z. et al., Am.J Pathol. 183 (2013): 831-840
Tan, P. Y. et al., Mol.Cell Biol. 32 (2012): 399-414
Teufel, R. et al., Cell Mol.Life Sci. 62 (2005): 1755-1762
Tran, E. et al., Science 344 (2014): 641-645
Tsavaler, L. et al., Cancer Research 61 (2001): 3760-3769
UniProt, (2015), http://www.uniprot.org/
Walter, S. et al., J.Immunol. 171 (2003): 4974-4978
Walter, S. et al., Nat Med. 18 (2012): 1254-1261
Wang, J. et al., Arch.Pharm.Res 34 (2011): 987-995
Wang, L. et al., Cancer Research 70 (2010): 5818-5828
Wang, R. J. et al., Asian Pac.J Cancer Prev. 15 (2014): 7223-7228
Wang, Y. et al., Hum.Mol.Genet. 21 (2012): 569-576
Wang, Z. et al., Med.Oncol 32 (2015): 87
Ward, P. P. et al., Cell Mol Life Sci. 62 (2005): 2540-2548
Weng, J. et al., Int.J Cancer 113 (2005): 811-818
Westdorp, H. et al., Front Immunol. 5 (2014): 191
-

Claims (16)

  1. Whiteland, H. et al., Clin Exp.Metastasis 31 (2014): 909-920
    Willcox, В. E. et al., Protein Sci. 8 (1999): 2418-2423
    Willoughby, V. et al., Appl.lmmunohistochem.Mol.Morphol. 16 (2008): 344-348
    Wilson, P. M. et al., J Neurosci. 30 (2010): 8529-8540
    World Cancer Report, (2014)
    Wu, J. P. et al., Asian J Androl 16 (2014): 710-714
    Yamamoto, G. L. et al., J Med.Genet. 52 (2015): 413-421
    Yang, Z. et al., J Virol. 81 (2007): 6294-6306
    Ye, Q. et al., PLoS.ONE. 9 (2014): e103298
    Yin, J. et al., Mol.Med.Rep. 8 (2013): 1630-1634
    Yu, Y. P. et al., Urology 68 (2006): 578-582
    Zaremba, S. et al., Cancer Res. 57 (1997): 4570-4577
    Zhang, G. et al., Oncol Rep. (2014)
    Zhao, X. et al., Onco.Targets.Ther 7 (2014): 343-351
    ФОРМУЛА ИЗОБРЕТЕНИЯ
    1. Пептид, который связывается с молекулой(ами) главного комплекса гистосовместимости (МНС), состоящий из аминокислотной последовательности в соответствии с SEQ ID NO: 4, или его фармацевтически приемлемая соль.
  2. 2. Пептид по п.1, где указанный пептид включает непептидные связи.
  3. 3. Пептид по п.1 или 2, где указанный пептид дополнительно включает N-терминальные аминокислоты антиген-ассоциированной инвариантной цепи (li) HLA-DR.
  4. 4. Т-клеточный рецептор, реагирующий с HLA-лигандом, состоящим из аминокислотной последовательности SEQ ID NO: 4.
  5. 5. Т-клеточный рецептор по п.4, где лиганд является частью комплекса пептид-МНС.
  6. 6. Антитело, которое специфически распознает пептид по любому из пп.1-3.
  7. 7. Антитело по п.6, характеризующееся тем, что указанный пептид по п.1 связан с молекулой МНС.
  8. 8. Нуклеиновая кислота, кодирующая пептид по п.1 или 2.
  9. 9. Рекомбинантная клетка-хозяин, включающая пептид по пп.1-3 или нуклеиновую кислоту по п.8.
  10. 10. Способ получения Т-клеточного рецептора по п.4, где способ включает культивирование клетки-хозяина, которая экспрессирует вектор экспрессии, кодирующий Т-клеточный рецептор по п.4, и выделение указанного ТКР из клетки-хозяина или его культуральной среды.
  11. 11. Способ получения активированных Т-лимфоцитов in vitro, включающий контактирование Т-клеток in vitro с нагруженными антигеном молекулами МНС человека I класса, экспрессированными на поверхности подходящей антигенпрезентирующей клетки или искусственной конструкции, имитирующей антигенпрезентирующую клетку, в течение периода времени, достаточного для активации указанных Т-клеток антигенспецифическим образом, где указанный антиген является пептидом по п.1.
  12. 12. Активированный Т-лимфоцит, полученный способом по п.11, который селективно распознает клетку, которая презентирует полипептид, включающий аминокислотную последовательность, указанную в п.1.
  13. 13. Фармацевтическая композиция для лечения рака, содержащая по меньшей мере один активный ингредиент, выбранный из группы, состоящей из пептида по любому из пп.1-3, Т-клеточного рецептора по п.4, антитела по п.6, нуклеиновой кислоты по п.8 или активированного Т-лимфоцита по п.12, и фармацевтически приемлемый носитель.
  14. 14. Применение пептида по любому из пп.1-3, Т-клеточного рецептора по п.4, антитела по п.6, нуклеиновой кислоты по п.8 или активированного Т-лимфоцита по п.12 в диагностике и/или лечении рака.
  15. 15. Применение по п.14, где указанный рак выбран из группы: рак головного мозга, рак предстательной железы и другие опухоли, которые демонстрируют избыточную экспрессию белка, из которого получен пептид в соответствии с SEQ ID NO: 4.
  16. 16. Набор для лечения рака, включающий:
    (а) контейнер, включающий фармацевтическую композицию, содержащую пептид по любому из пп.1-3, Т-клеточный рецептор по п.4, антитело по п.6, нуклеиновую кислоту по п.8 или активированный
    -
EA201890440 2015-08-05 2016-08-05 Новые пептиды и комбинации пептидов для применения в иммунотерапии рака предстательной железы и других видов рака EA041120B1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US62/201,289 2015-08-05
GB1513921.5 2015-08-06

Publications (1)

Publication Number Publication Date
EA041120B1 true EA041120B1 (ru) 2022-09-15

Family

ID=

Similar Documents

Publication Publication Date Title
US11065315B2 (en) Peptides and combination of peptides for use in immunotherapy against prostate cancer and other cancers
EA041120B1 (ru) Новые пептиды и комбинации пептидов для применения в иммунотерапии рака предстательной железы и других видов рака
TW202415673A (zh) 用於攝護腺癌和其他癌症免疫治療的新型肽和肽組合物
EA041713B1 (ru) Новые пептиды и комбинации пептидов для применения в иммунотерапии эпителиального рака яичника и других видов рака