DK9300418U4 - Wastewater treatment plants - Google Patents
Wastewater treatment plants Download PDFInfo
- Publication number
- DK9300418U4 DK9300418U4 DK9300418U DK9300418U DK9300418U4 DK 9300418 U4 DK9300418 U4 DK 9300418U4 DK 9300418 U DK9300418 U DK 9300418U DK 9300418 U DK9300418 U DK 9300418U DK 9300418 U4 DK9300418 U4 DK 9300418U4
- Authority
- DK
- Denmark
- Prior art keywords
- tank
- oxic
- chamber
- new
- recirculation
- Prior art date
Links
- 238000004065 wastewater treatment Methods 0.000 title description 2
- 238000000034 method Methods 0.000 claims description 19
- 239000010802 sludge Substances 0.000 claims description 13
- 238000005273 aeration Methods 0.000 claims description 5
- 238000005352 clarification Methods 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 238000000746 purification Methods 0.000 claims description 5
- 238000010276 construction Methods 0.000 claims description 4
- 238000005265 energy consumption Methods 0.000 claims description 4
- 238000005192 partition Methods 0.000 claims description 4
- 238000004140 cleaning Methods 0.000 claims description 3
- 235000015097 nutrients Nutrition 0.000 claims description 3
- 150000003839 salts Chemical class 0.000 claims description 3
- 239000004576 sand Substances 0.000 claims description 3
- 238000003756 stirring Methods 0.000 claims description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims 2
- 238000005276 aerator Methods 0.000 claims 1
- 238000005086 pumping Methods 0.000 claims 1
- 238000009423 ventilation Methods 0.000 claims 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical class N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 16
- 239000002351 wastewater Substances 0.000 description 12
- 229910002651 NO3 Inorganic materials 0.000 description 11
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 11
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 10
- 229910052757 nitrogen Inorganic materials 0.000 description 9
- 229910021529 ammonia Inorganic materials 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 244000005700 microbiome Species 0.000 description 5
- 239000005416 organic matter Substances 0.000 description 5
- 238000004064 recycling Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000008213 purified water Substances 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical class [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052698 phosphorus Chemical class 0.000 description 2
- 239000011574 phosphorus Chemical class 0.000 description 2
- 230000031018 biological processes and functions Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000011086 high cleaning Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/12—Activated sludge processes
- C02F3/1236—Particular type of activated sludge installations
- C02F3/1242—Small compact installations for use in homes, apartment blocks, hotels or the like
- C02F3/1247—Small compact installations for use in homes, apartment blocks, hotels or the like comprising circular tanks with elements, e.g. decanters, aeration basins, in the form of segments, crowns or sectors
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/30—Aerobic and anaerobic processes
- C02F3/301—Aerobic and anaerobic treatment in the same reactor
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/30—Aerobic and anaerobic processes
- C02F3/302—Nitrification and denitrification treatment
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/20—Controlling water pollution; Waste water treatment
- Y02A20/208—Off-grid powered water treatment
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Biodiversity & Conservation Biology (AREA)
- Microbiology (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Description
BeskrivelseDescription
Benævnelse.Denominations.
Renseanlæg til fjernelse af næringssalte fra spildevand.Wastewater treatment plants.
Frembringelsens anvendelsesområde.Scope of production.
Denne frembringelse angår et biologisk renseanlæg af aktiv-slamtypen til rensning af spildevand fra såvel husholdninger som industrier eller blandinger heraf.This invention relates to an active-sludge biological treatment plant for the purification of wastewater from households as well as industries or mixtures thereof.
I et aktiv slamanlæg renses spildevandet ved hjælp af mikroorganismer,som holdes omrørt i en procestank under tilførsel af ilt/luft.Mikroorganismerne og det rensede spildevand ledes fra procestanken til en efterklaringstank,hvor mikroorganismerne sedimenterer,medens det rensede spildevand ledes til en recipient.In an active sludge plant, the wastewater is purified by microorganisms which are stirred in a process tank during the supply of oxygen / air. The microorganisms and the purified wastewater are fed from the process tank to a clarification tank where the microorganisms settle while the purified wastewater is led to a recipient.
Et aktivt slamanlæg kan udformes,således at det også renser næringssaltene kvælstof og fosfor.Kvælstof fjernes ved to biologiske processer kaldet nitrifikation og denitrifikation.Ved nitrifikation tilsættes ilt ofte i form af luft,hvorved særlige mikroorganismer ilter ammoniak til nitrat.Herefter reducerer andre mikroorganismer nitrat til frit kvælstof ved anvendelse af det organiske stof i spildevandet som reductor uden tilstedeværelse af ilt.An active sludge plant can be designed so that it also cleanses the nutrient salts of nitrogen and phosphorus. Nitrogen is removed by two biological processes called nitrification and denitrification. Nitrification often adds oxygen in the form of air, whereby special microorganisms oxygenate ammonia to nitrate. for free nitrogen by using the organic matter in the wastewater as a reductor without the presence of oxygen.
Fosfor fjernes enten biologisk eller kemisk eller både biologisk og kemisk. Kendt teknik.Phosphorus is removed either biologically or chemically or both biologically and chemically. Prior art.
Fjernelse af næringssalte i aktiv slamanlæg har været kendt i flere år.Removal of nutrient salts in active sludge plants has been known for several years.
Den kendte teknik til fjernelse af kvælstof består af følgende 4 hovedtyper: a. reci rkulationsanlæg b. alternerende anlæge c. l-tanks anlæg med tidslig skiften mellem luftede og ubeluftede perioder.The known technique for removing nitrogen consists of the following 4 main types: a. Recirculation plant b. Alternating plant c. L-tank plant with a temporary change between aerated and aerated periods.
d. l-tanks anlæg med luftede og ubeluftede zoner.d. L-tank systems with aerated and un aerated zones.
De eksisterende metoder har imidlertid en række ulemper: a. recirkulationsmetoden:Der kræves mindst 2 tanke,hvilket er kostbart, og recirkulationsforholdet skal være stort ved høje rensegrader,hvilket kræver store pumper,stort energiforbrug og medfører hydrauliske vanskeligheder.The existing methods, however, have a number of drawbacks: a. The recycling method: At least 2 tanks are required, which is expensive and the recirculation ratio must be high at high cleaning degrees, requiring large pumps, large energy consumption and causing hydraulic difficulties.
b. alternerende anlægrDer kræves mindst 2 tanke,hvilket er kostbart.Endvidere kræves der luftningsudstyr i begge tanke,hvilket også er kostbart.Endelig kræves kippe,venti ler eller lignende i afløbet,idet både afløb og tilløb alternerer.b. alternating systemsAt least 2 tanks are required, which is expensive. Furthermore, aeration equipment is required in both tanks, which is also expensive. Finally, chimneys, vents or the like are required in the drain, as both drains and inlets alternate.
c. l-tanks anlæg med tidslig skiften:Omkring halvdelen af det organiske stof i spildevandet bliver iltet af den tilførte luft fremfor af den nitrat som skal fjernes.pette giver dårlig rensning og for stort energiforbrug.c. Temporary change tank of l-tank: About half of the organic matter in the wastewater is oxygenated by the supplied air rather than by the nitrate to be removed. This gives poor purification and excessive energy consumption.
d. 1-tanksanlæg med luftede og ubeluftede zoner.Det kan være vanskeligt at holde zonerne adskilt ligesom det kan være vanskeligt at styre recirkulationen mellem zonerne samt zonernes størrelse.d. 1 tank system with aerated and un aerated zones. It can be difficult to keep the zones separate and it can be difficult to control the recirculation between the zones and the size of the zones.
De eksisterende anlægstyper som kommer nærmest på den her beskrevne frembringelse er dels recirkulationsanlægget a) og dels det såkaldte 0C0-anl ag. OCO-an lægget er et type d) anlæg i 1 cirkulær tank (se figur 3).Anlægget består af en oxisk zone,en anoxisk zone samt en blandingszone.Den oxiske og anoxiske zone er adskilt af en halvcirkelformet skillevæg.Blandingszonen udgøres af den ene halvdel af tanken.The existing plant types closest to the production described here are partly the recirculation plant a) and partly the so-called 0C0 plant. The OCO plant is a type d) plant in 1 circular tank (see Figure 3). The plant consists of an oxic zone, an anoxic zone and a mixing zone. The oxic and anoxic zone is separated by a semicircular partition. one half of the tank.
Det tekniske problem,der skal løses.The technical problem to be solved.
Det tekniske problem,der skal løses,er dels, at undgå de ulemper,som er nævnt ovenfor og dels at minimere anlægs-og driftsomkostningerne.The technical problem to be solved is partly to avoid the disadvantages mentioned above and partly to minimize the costs of construction and operation.
Der søges således udviklet et anlæg som: - Udnytter det organiske stof i spildevandet optimalt, - Har en høj udveksling af stof (recirkulation) mellem den beluftede og ubeluftede zone.A plant is thus sought to develop: - Utilizes the organic matter in the wastewater optimally, - Has a high exchange of substance (recirculation) between the aerated and un aerated zone.
- At recirkulationen og zonernes størrelse kan styres.- That the recycling and the size of the zones can be controlled.
- Kun består af 1 procestank.- Only consists of 1 process tank.
- Har små driftsomkostninger.- Has small operating costs.
- Har små anlægsudgifter.- Have small construction costs.
Den nye teknik.The new technique.
Dette opnås ved at udforme procestanken som en kombination af metoderne a),c) og d) i 1 tank udformet som en cirkel med to indvendige halvcirkler samt et cirkulært midterbygværk og ved at erstatte efterklaringstanken med en seperator som anbringes i det oxiske kammer (se figur 1).This is accomplished by designing the process tank as a combination of methods a), c) and d) in 1 tank designed as a circle with two inner semicircles as well as a circular center structure and by replacing the clarification tank with a separator placed in the oxy chamber (see figure 1).
Cirklen er netop den geometriske form,som har det største areal ved den mindste omkreds.Herved fås det største procesvolumen ved den mindst mulige anvendelse af beton til opbygning af tankvæggen.The circle is precisely the geometric shape, which has the largest area at the smallest circumference. This gives the largest process volume with the least possible use of concrete for the construction of the tank wall.
Midterbygværket har dels den funktion at sikre en cirkulær kanalstrømning i det oxiske kammer og dels at fungere procesmæssigt som en af følgende dele (se figur 2): -efterklaringstank, -koncentreringstank, -Bio-P-tank, -selektor, -kombineret efterklaringstank og koncentreringstank -sandfang -kombineret rist og sandfangThe mid-structure has the function of ensuring a circular channel flow in the oxyic chamber and in part to function process-wise as one of the following parts (see figure 2): -explaining tank, -concentration tank, -Bio-P-tank, -selector, -combined clarification tank and concentration tank - sand trap - combined grate and sand trap
Mellem midterbygværket og de to halvcirkler dannes et proceskammer,som er ubeluftet (anoxisk).I dette kammer sker reduktionen af nitrat til frit kvælstof (denitrifikationen) ved anvendelse af spildevandets indhold af organisk stof.Det rå spildevand ledes enten direkte til dette kammer eller indirekte efter først at have passeret midterbygværket.Mikroorganismerne (det aktive slam) holdes omrørt af en eller flere omrørere f.eks udformet som en propel .Energiforbruget til omrøring er minimalt,på grund af at dette anoxiske kammer er udformet som en cirkulær kanalstrømning uden hydrauliske enkelttab. Da det anoxiske kammer altid er ubeluftet vil det organiske stof i spildevandet blive maximalt anvendt til denitrifikation.Between the center structure and the two semicircles, a process chamber is formed which is un-aerated (anoxic). In this chamber, the reduction of nitrate to free nitrogen (denitrification) takes place using the organic matter's wastewater content. The raw wastewater is either directed directly to this chamber or indirectly. after first passing through the center structure. The microorganisms (the active sludge) are kept agitated by one or more agitators, for example, designed as a propeller. The energy consumption for stirring is minimal, because this anoxic chamber is designed as a circular channel flow without hydraulic single losses. . Since the anoxic chamber is always non-aerated, the organic matter in the wastewater will be maximally used for denitrification.
Fra det anoxiske kammer løber spildevandet gennem de to åbninger mellem halvcirklerne til det beluftde (oxiske) kammer,som udgøres af hele den cirkulære kanal mellem ydervæggen og de to halvcirkler.I det oxiske kammer luftes spildevandet,hvorved ammoniak iltes til nitrat.Lufferne kan enten være overfladeluftere eller dykkede luftere.Lufterne kan eventuelt være fordelt i begge halvdele af kanalen eller blot i den ene kanalhalvdel.Det aktive slam er omrørt af en eller flere omrørere.From the anoxic chamber, the wastewater flows through the two openings between the semicircles to the aerated (oxic) chamber, which is the entire circular channel between the outer wall and the two semicircles. The wastewater is vented into the oxic chamber, whereby ammonia is oxygenated to nitrate. may be distributed in either half of the channel or simply in one half of the channel. The active sludge is stirred by one or more agitators.
Fra det anoxiske kammer recirkuleres den dannede nitrat til det oxiske kammer gennem de to åbninger mellem halvcirklerne.Den dannede nitrat løber således til den anoxiske zone,hvor nitraten reduceres til frit kvælstof,som afgasser til atmosfæren og herefter indgår i atmosfærens kvælstof.From the anoxic chamber, the formed nitrate is recirculated to the oxic chamber through the two openings between the semicircles. The nitrate thus formed runs to the anoxic zone, where the nitrate is reduced to free nitrogen, which gases to the atmosphere and is then included in the atmosphere's nitrogen.
Hvert kvælstofatom går således et utal af gange (mere end 50) gennem de to åbninger ind og ud af det oxiske og anoxiske kammer.Heved sker skiftevis oxidation af ammoniak og reduktion af nitrat indtil al ammoniak er næsten totalt omdannet til frit kvælstof.Der er på denne måde opnået en meget høj recirkulationsgrad og dermed en meget vidtgående rensning.Thus, each nitrogen atom passes a number of times (more than 50) through the two apertures in and out of the oxic and anoxic chamber. This alternates the oxidation of ammonia and the reduction of nitrate until all ammonia is almost completely converted to free nitrogen. in this way achieved a very high degree of recycling and thus a very extensive cleaning.
Transporten (recirkuleringen) mellem det oxiske og anoxiske kammer gennem de to åbninger sker ved to mekanismer: 1) Ved turbulent opblanding i grænselaget mellem den oxiske og anoxiske kanalstrømning, således at nitraten transporteres naturligt fra vædskedele med høj nitratkoncentration (oxisk kammer) til vædske med lav nitratkoncentration (anoxisk kammer) og således at ammoniak transporteres fra vædskedele med høj koncentration (anoxisk kammer) til vædske med lav koncentration (oxisk kammer).The transport (recirculation) between the oxic and anoxic chamber through the two openings is effected by two mechanisms: 1) By turbulent mixing in the boundary layer between the oxic and anoxic channel flow, so that the nitrate is naturally transported from high nitrate liquid (oxic chamber) liquids to liquid with low nitrate concentration (anoxic chamber) and so that ammonia is transported from high concentration liquid parts (anoxic chamber) to low concentration liquid (oxic chamber).
2) Ved en overstyring dannet af de drejelige og hastighedsvariable omrørere som kan "skyde"vædskevolumen fra det ene kammer til det andet.2) By an override formed by the rotatable and speed variable agitators which can "shoot" fluid volume from one chamber to another.
Mekanisme 1) er hovedmekanismen.Mechanism 1) is the main mechanism.
Fra det oxiske kammer løber blandingen af renset vand og aktivt slam til en eller flere seperatorer,hvori det rensede vand og det aktive slam adskilles,således at det aktive slam føres tilbage til procestanken og det rensede vand løber til recipienten.Seperatoren er anbragt i det oxiske kammer inden i procestanken.From the oxic chamber, the mixture of purified water and active sludge runs to one or more separators, in which the purified water and active sludge are separated so that the active sludge is returned to the process tank and the purified water flows to the recipient. oxic chamber within the process tank.
Det nye ved frembringelsen udgøres af : at placere en seperator til adskillelse af vand og slam i det oxiske kammer i et aktivt slamanlæg,hvor anlægget er udformet med to halvcirkler med to åbninger til adskillelse af den oxiske og anoxiske tank på den i figur 1 viste måde med et midterbygværk i en cirkulær tank og,hvor recirkulationen foregår uden recirkulationspumper og med en meget høj recirkulation i kun 1 procestank,hvor recirkuleringen sker ved naturlig opblanding i grænselaget.The new part of the production consists of: placing a separator for separating water and sludge in the oxic chamber in an active sludge plant, the plant having two semicircles with two openings for separating the oxic and anoxic tank on the one shown in Figure 1 way with a center structure in a circular tank and where the recirculation takes place without recirculation pumps and with a very high recirculation in only 1 process tank, where the recirculation takes place by natural mixing in the boundary layer.
I frembringelsen sker recirkulationen ved turbulent stofudveksling over en hydraulisk grænseflade mellem to kamre i 1 tank.In the generation, the recycling is effected by turbulent exchange of material over a hydraulic interface between two chambers in one tank.
Frembringelsen adskiller sig således fra øvrige aktive slamanlæg ved kun at bestå af en' cirkulær tank med en seperator anbragt i det oxiske kammer.The production thus differs from other active sludge plants by only consisting of a circular tank with a separator placed in the oxic chamber.
Frembringelsen adskiller sig fra recirkulationsanlægget a) ved kun at bestå af 1 tank,ved ikke at have recirkulationspumper og ved at have et meget højt recirkulationsforhold.Frembringelsen adskiller sig fra OCO-anlægget ved ikke at have nogen blandingszone,ved at have adskilt oxisk og anoxisk kammer,vedThe generation differs from the recirculation plant a) by consisting of only 1 tank, by not having recirculation pumps and by having a very high recirculation ratio. The generation differs from the OCO plant by having no mixing zone, by separating oxic and anoxic chamber, by
Claims (7)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DK9300418U DK9300418U4 (en) | 1993-09-13 | 1993-09-13 | Wastewater treatment plants |
EP94918302A EP0668847A1 (en) | 1993-09-13 | 1994-05-09 | Purification plant for removing of nutrients from sewage |
PCT/DK1994/000185 WO1995007861A1 (en) | 1993-09-13 | 1994-05-09 | Purification plant for removing of nutrients from sewage |
AU69685/94A AU6968594A (en) | 1993-09-13 | 1994-05-09 | Purification plant for removing of nutrients from sewage |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DK9300418 | 1993-09-13 | ||
DK9300418U DK9300418U4 (en) | 1993-09-13 | 1993-09-13 | Wastewater treatment plants |
Publications (1)
Publication Number | Publication Date |
---|---|
DK9300418U4 true DK9300418U4 (en) | 1994-02-25 |
Family
ID=8154432
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DK9300418U DK9300418U4 (en) | 1993-09-13 | 1993-09-13 | Wastewater treatment plants |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0668847A1 (en) |
AU (1) | AU6968594A (en) |
DK (1) | DK9300418U4 (en) |
WO (1) | WO1995007861A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009128765A1 (en) * | 2008-04-17 | 2009-10-22 | Phytotechnology Europe Ab | A phytosystem for treatment of sewage |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE29508347U1 (en) * | 1995-05-23 | 1995-08-03 | Diering, Andreas, Dipl.-Ing., 52072 Aachen | Plant for the biological treatment of waste water |
FR2748742B1 (en) * | 1996-05-15 | 1998-08-14 | Gtb Bouyer Duchemin | PURIFICATION STATION FOR POLLUTED LIQUIDS AND MORE PARTICULARLY AERATION / ANOXIS BASIN OF SUCH A STATION |
GB9720787D0 (en) * | 1997-09-30 | 1997-12-03 | Aw Creative Technologies Ltd | Activated sludge plant |
NL1009590C2 (en) * | 1998-07-08 | 2000-01-11 | Sirius B V | Sewage treatment plant, comprising interlinked concentric ring shaped reservoirs acting as anaerobic, contact, anoxic and oxic reactors |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2913132A1 (en) * | 1979-04-02 | 1980-10-09 | Menzel Gmbh & Co | METHOD FOR IMPLEMENTING AND CONTROLLING CHEMICAL OR ORGANIC CHEMICAL PROCESSES IN TWO OR SEVERAL SERIES OF REACTIONS OR POOLS |
DK168989B1 (en) * | 1990-01-31 | 1994-07-25 | Cowiconsult A S | Biological removal of nitrogen from waste water - involves using series-connected tanks, 1st tank operated anaerobically and successive tank aerobically |
IT1240837B (en) * | 1990-05-18 | 1993-12-17 | Fosflex | PROCEDURE AND PLANT FOR BIOLOGICAL WASTEWATER TREATMENT |
NL9001974A (en) * | 1990-09-07 | 1992-04-01 | Dhv Raadgevend Ing | DEVICE FOR CLEANING WASTE WATER. |
US5160043A (en) * | 1991-09-09 | 1992-11-03 | I. Kruger, Inc. | Method of exhausting dissolved oxygen in a nitrogen removal wastewater treatment process |
US5234595A (en) * | 1992-07-21 | 1993-08-10 | Baker Hughes Incorporated | Two-phase orbital-type wastewater treatment system and method |
-
1993
- 1993-09-13 DK DK9300418U patent/DK9300418U4/en not_active IP Right Cessation
-
1994
- 1994-05-09 WO PCT/DK1994/000185 patent/WO1995007861A1/en not_active Application Discontinuation
- 1994-05-09 EP EP94918302A patent/EP0668847A1/en not_active Withdrawn
- 1994-05-09 AU AU69685/94A patent/AU6968594A/en not_active Abandoned
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009128765A1 (en) * | 2008-04-17 | 2009-10-22 | Phytotechnology Europe Ab | A phytosystem for treatment of sewage |
CN102007076B (en) * | 2008-04-17 | 2013-06-12 | 奥纳普净水技术公司 | A phytosystem for treatment of sewage |
Also Published As
Publication number | Publication date |
---|---|
WO1995007861A1 (en) | 1995-03-23 |
EP0668847A1 (en) | 1995-08-30 |
AU6968594A (en) | 1995-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3725258A (en) | Activated sludge sewage treatment process and system | |
JP4780552B2 (en) | Biological wastewater treatment method | |
CN1810681B (en) | Degradation treatment process and system for organics in organically-polluted water | |
KR101240541B1 (en) | Treatment System for High Concentration Wastewater | |
US4898672A (en) | Oxygen controlling wastewater treatment method | |
US4421648A (en) | Apparatus and a method for biological treatment of waste waters | |
DK9300418U4 (en) | Wastewater treatment plants | |
CN110482801A (en) | Integrated wastewater biological simultaneous denitrification calcium-removing device and its method | |
JP4409532B2 (en) | Apparatus for treating wastewater containing high-concentration nitrogen such as livestock wastewater and manure, and its treatment method | |
CN109987699A (en) | A method of strengthening air lift pulling flow type oxidation ditch effect with suspending carrier | |
FI127756B (en) | Bioreactor | |
CN109354174A (en) | The quick start method of strengthened denitrification system based on CANON_MBBR | |
JP4594245B2 (en) | Decomposition treatment equipment for organic matter in organic polluted water | |
CN109264858B (en) | Sewage biological treatment device | |
JP7144999B2 (en) | Water treatment method and water treatment equipment | |
CN113045125A (en) | High standard combined sewage treatment device | |
CN205346965U (en) | Biological nitrogen removal reactor | |
CN110526397A (en) | (AO)2Precipitate integrated multi-stage recirculation reactor | |
CN110255813A (en) | The sewage-treatment plant of multi-functional multi-mode can be switched | |
RU229628U1 (en) | AEROTANK-DENITRIFIER FOR DEEP BIOLOGICAL WASTEWATER TREATMENT | |
RU91715U1 (en) | INSTALLATION FOR BIOLOGICAL WASTE WATER TREATMENT FROM ORGANIC POLLUTION AND AMMONIUM NITROGEN | |
CN109354170B (en) | Reinforced denitrification system based on CANON_MBBR and operation method | |
SU948896A1 (en) | Apparatus for biological purification of effluents | |
CN109354176B (en) | MBBR whole-course autotrophic denitrification system and operation method | |
CN209052444U (en) | A kind of micro-power biological reaction sewage treatment unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
UBP | Utility model lapsed |