DK201700031A1 - Short Gasket Reactor - Google Patents

Short Gasket Reactor Download PDF

Info

Publication number
DK201700031A1
DK201700031A1 DKPA201700031A DKPA201700031A DK201700031A1 DK 201700031 A1 DK201700031 A1 DK 201700031A1 DK PA201700031 A DKPA201700031 A DK PA201700031A DK PA201700031 A DKPA201700031 A DK PA201700031A DK 201700031 A1 DK201700031 A1 DK 201700031A1
Authority
DK
Denmark
Prior art keywords
enclosure
cooling medium
reaction
chemical reactor
reaction enclosure
Prior art date
Application number
DKPA201700031A
Inventor
Bjarke Thomas Dalslet
Jeremy Neil Burn
Original Assignee
Haldor Topsoe As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Haldor Topsoe As filed Critical Haldor Topsoe As
Publication of DK201700031A1 publication Critical patent/DK201700031A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0285Heating or cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0242Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical
    • B01J8/025Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical in a cylindrical shaped bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/067Heating or cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00115Controlling the temperature by indirect heat exchange with heat exchange elements inside the bed of solid particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00115Controlling the temperature by indirect heat exchange with heat exchange elements inside the bed of solid particles
    • B01J2208/00132Tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00176Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles outside the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00212Plates; Jackets; Cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/19Details relating to the geometry of the reactor
    • B01J2219/192Details relating to the geometry of the reactor polygonal
    • B01J2219/1928Details relating to the geometry of the reactor polygonal hexagonal

Abstract

The present disclosure relates to a chemical reactor with enhanced adaptation to operate with exothermal processes by means of only covering a portion of the reaction enclosure with a cooling medium enclosure and optionally insulating the remaining part of the reaction enclosure.

Description

Short gasket reactor
The invention relates to a fluid cooled chemical reactor comprising catalyst. More particular, the invention relates to a fluid cooled chemical reactor comprising catalyst for exothermal reactions, where only a part of the chemical reactors reaction enclosure is cooled by fluid (a "gasket") and the remaining part of the reaction enclosure is not cooled and may be thermally insulated.
In exothermal processes a fluid cooled reactor is often a relevant option since such a reactor can ensure optimum reaction conditions by providing a substantially constant cooling medium temperature. This is favorable where the process is limited by an exothermal reaction. The typical design of the reactor involves a cooling medium enclosure with pressurized cooling fluid such as water, oil or other cooling media with a boiling point appropriate for the catalytic process. The pressure in the cooling medium enclosure controls the boiling temperature of the cooling medium, which may act as a heat sink at substantially constant temperature when operating at the boiling point, to the extent that liquid cooling media is present in the reactor .
Known art as disclosed in US2004254402 describes a method for formaldehyde production through catalytic oxidation of methanol, comprising the steps of feeding to a first oxidation catalytic bed a gas flow comprising methanol and oxygen at a predetermined crossing linear flow rate, obtaining at the outlet of said first catalytic bed a flow of gaseous reaction products comprising unreacted methanol, and feeding the flow of gaseous products to a second oxidation catalytic bed is distinguished by the fact that the flow of gaseous reaction products comprising unreacted methanol is fed to the second catalytic bed with a crossing linear flow rate substantially egual to said predetermined first catalytic bed feeding flow rate.
The cooling of the catalyst in the reactor is crucial for exothermal reactions. If the temperature is not optimal, it may reduce performance, the life-time of the equipment and the lifetime of the catalyst. When the lifetime of the catalyst is reduced, not only the cost for catalyst is increased, but also the down-time of the reactor. It is therefore a problem with heavy impact on the process profitability and life-time of the catalyst and equipment to ensure the optimum cooling and suitable operation temperature of the catalyst in the reaction enclosure of the chemical reactor. This problem is solved by the invention as described in the following and according to the claims.
The chemical reactor according to the invention ensures efficient heat exchange in a fluid cooled reactor comprising catalyst in the up-stream part of the reaction enclosure, where the process is strongly exothermal, while keeping the down-stream part of the reaction chamber without cooling. This ensures that the reaction rate in the down-stream part of the reaction enclosure where a part of the process gas is reacted is kept at a reasonable level. According to the invention only a part of the outer surface of the reaction enclosure is in thermal contact with a cooling medium enclosure, i.e. the cooling medium enclosure "gasket" in contact with the reaction enclosure is shortened.
An embodiment of the invention comprises a chemical reactor for an exothermal reaction with at least one reaction enclosure. The reaction enclosure typically comprises a catalyst and though the following disclosure explains the invention with the basis in a single reaction disclosure, it is to be understood that the reactor may comprise a plurality of similar reaction enclosures and that the invention may also cover a number of reactors i.e. in serial or parallel connection.
To cope with the heat generated from the exothermal reaction, the chemical reactor further comprises at least one primary cooling medium enclosure. The cooling medium may be either liquid or gaseous or a combination of both. The cooling medium enclosure is configured to hold the fluid cooling medium under pressure at its boiling point for the given fluid. It is to be understood that the boiling point and thus to some extent the operating temperature for the chemical process can be modified by controlling the pressure and thus optimize the chemical process.
According to this embodiment, the primary cooling medium enclosure partly encompasses said reaction enclosure and the reaction enclosure comprises an outer surface configured to be in thermal contact with the cooling medium. Hence, a part of the outer surface of the reaction enclosure is in thermal contact with the cooling medium to provide heat exchange between the reaction enclosure and the cooling medium. The reaction enclosure comprises a reaction enclosure inlet and a reaction enclosure outlet to provide for a stream of process fluid through the reaction enclosure where it may react with the catalyst within the reaction enclosure. Furthermore, the primary cooling medium enclosure comprises a cooling medium inlet and a cooling medium outlet to facilitate a flow of cooling medium through the cooling medium enclosure for removal of the heat exchanged from the reaction to the cooling medium, to keep a constant operating temperature.
According to the invention, the reaction enclosure comprises a portion of its outer surface which is not in contact with the cooling medium enclosure. As described in the foregoing, the part of the reaction enclosure which is not cooled by thermal contact with the cooling medium may be the process gas down-stream part of the reaction enclosure, which may be the lower part of the reaction enclosure. The part of the reaction enclosure which is not in contact with the cooling medium enclosure may vary according to the process gas composition, the process parameters such as flow, pressure and temperature and according to the dimensions of the reactor components, to mention just some of the parameters .
In a further embodiment of the invention, the portion of the reaction enclosure which is not in contact with the cooling medium enclosure is thermally insulated, in order to lower the heat loss from said part of the reaction enclosure and therefore be able to keep a higher process temperature in this part of the reaction enclosure.
In an embodiment of the invention, the cooling medium enclosure comprises a cylindrical inner wall. This inner wall is at least partially in thermal contact with the reaction enclosure to provide an optimum balance between construction strength, material consumption, external dimensions and heat exchange of the reactor. However according to the invention, other shapes of cooling medium enclosures and reaction enclosure may be chosen if beneficial for instance for production of the equipment.
In a further embodiment, the cooling medium enclosure and the reaction enclosure are arranged concentric. Thus, the reaction enclosure is arranged in the middle of the reactor along the center line and can have a cylindrical shape and the cooling medium enclosure is arranged around the reaction enclosure for instance in a doughnut shape to create a large heat exchange area relative to the reaction enclosure volume. As mentioned, the reactor may operate with both gas and liquid or both as a cooling medium. In one embodiment the cooling medium is oil and the cooling medium enclosure is adapted to operate with oil.
In a further embodiment of the invention, the reaction enclosure is adapted to operate with a formaldehyde catalyst within the reaction enclosure. The present invention is especially advantageous for this application, since this reaction is highly exothermal and requires efficient heat exchange to remove the excess heat generated.
In a further embodiment of the invention, the portion of the reaction enclosures outer surface which is in contact with the cooling medium enclosure is at least 50% of the total reaction enclosure outer surface. As mentioned in the foregoing, the optimum part of the reaction enclosure which is cooled is dependent of various process parameters. In yet another embodiment of the invention, at least 80% of the total reaction enclosure outer surface is in contact with the cooling medium enclosure.
In an embodiment of the invention, the reaction enclosure comprises a catalytically active material in at least 50% to 80% of its volume and in a further embodiment, the chemical reactor of the invention is adapted to operate at a temperature of 250°C to 500°C.
Features of the invention 1. A chemical reactor for an exothermal reaction comprising at least one reaction enclosure and at least one cooling medium enclosure configured to hold a cooling medium under pressure at the boiling point of said cooling medium, the cooling medium enclosure at least partly encompasses said reaction enclosure, said reaction enclosure comprises an outer surface configured to be in thermal contact with the cooling medium, said reaction enclosure comprises a reaction enclosure inlet and a reaction enclosure outlet and said cooling medium enclosure comprises a cooling medium inlet and a cooling medium outlet, wherein said reaction enclosure comprises a portion of its outer surface which is not in contact with the cooling medium enclosure. 2. A chemical reactor according to feature 1, wherein said portion of the reaction enclosure which is not in contact with the cooling medium enclosure is thermally insulated. 3. A chemical reactor according to any of the preceding features, wherein the cooling medium enclosure is cylindrical . 4. A chemical reactor according to any of the preceding features, wherein the reaction enclosure is cylindrical. 5. A chemical reactor according to any of the preceding features, wherein the cooling medium enclosure and the reaction enclosure are concentric. 6. A chemical reactor according to any of the preceding features, wherein the cooling medium enclosure is adapted to operate with oil as cooling medium. 7. A chemical reactor according to any of the preceding features, wherein the reaction enclosure is adapted to operate with a formaldehyde catalyst. 8. A chemical reactor according to any of the preceding features, wherein the portion of the reaction enclosures outer surface which is in contact with the cooling medium enclosure is at least 50% of the total reaction enclosure outer surface 9. A chemical reactor according to any of the preceding features, wherein the portion of the reaction enclosures outer surface which is in contact with the cooling medium enclosure is at least 80% of the total reaction enclosure outer surface. 10. A chemical reactor according to any of the preceding features, further comprising a catalytically active material inside at least 50% or 80% of the volume of the reaction enclosure. 11. A chemical reactor according to any of the preceding features adapted to operate at a temperature of 250°C to 500 °C.
Brief description of the drawings
Embodiments of the present invention are explained, by way of example, and with reference to the accompanying drawing. It is to be noted that the appended drawings illustrate only an example of an embodiment of this invention and it is therefore not to be considered limiting of the scope of the invention, for the invention may admit to other effective embodiments.
Fig. 1 shows a cross sectional side view of a partly cooled reactor according to an embodiment of the invention.
Position numbers 01. Chemical reactor 02. Reaction enclosure 03. Cooling medium enclosure 04. Reaction enclosure outer surface 05. Cooling medium 06. Catalyst 07. Insulation 08. Cylindrical inner wall of the cooling medium en closure
Description of the drawings
An embodiment of the invention is seen on Fig. 1. where the chemical reactor 01 is seen in a schematic cross sectional side view. Within the reactor is a reaction enclosure 02 which serves to hold a catalyst 06. When process fluid is provided to the reaction enclosure at proper conditions such as temperature and pressure, the catalyst enhances the chemical reaction in the reaction chamber. The process fluid enters the reaction enclosure through a reaction enclosure inlet (not shown) and exits through a reaction enclosure outlet (not shown).
The reactor according to invention is well suited for exothermal reactions because of the effective cooling of the reaction enclosure. A cooling medium enclosure 03 encompasses the reaction enclosure in the main part of the reaction enclosure length. The cylindrical inner wall of the cooling medium enclosure 08 is also the reaction enclosure outer surface 04. Hence, the main part of the reaction enclosure is in thermal contact with the cooling medium 05 comprised in the cooling medium enclosure to provide an efficient heat exchange between the reaction enclosure and the primary cooling medium enclosure. The cooling medium enters the cooling medium enclosure via a cooling medium inlet (not shown) and exits the cooling medium enclosure via a cooling medium outlet (not shown).
According to the invention and as shown on Fig. 1, a portion of the outer surface of the reaction enclosure is not in contact with the cooling medium enclosure. In the embodiment shown, the lower portion, which is also the process gas down-stream portion of the reaction enclosure is not in contact with the cooling medium enclosure. On the contrary, this lower portion of the reaction enclosure is insulated 07 to ensure the operation temperature is kept at suitable high level in this down-stream part of the reaction enclosure where the process is less exothermal than in the upstream part of the reaction enclosure where less of the process gas has reacted.
The reactor is adapted to operate with a cooling medium under pressure. This involves selection of appropriate material, design of the shapes and material thickness among other parameters as known in the art. In an embodiment the cooling medium may be oil. In Fig. 1 a typical operation situation is shown where the cooling medium is boiling, bubbles of gas phase of the cooling medium is shown. As mentioned, the operating temperature may be controlled by varying the pressure of the cooling medium and by selecting a cooling medium with an appropriate boiling temperature. The ability to operate with a two-phase cooling medium enhances the stability of the operation temperature, since the phase shift from liquid to gas requires a surplus of energy in addition to the energy required to raise the temperature. Thus, the reactor according to the invention is well suited for even strongly exothermal reactions, such as reactions with a formaldehyde catalyst. The design and shape of the reaction and cooling medium enclosures may vary as best suited for a specific situation.
Example. A study has been made in which a the "gasket" length, i.e. the length of the cooling medium enclosure which encompasses the reaction enclosure has been reduced relative to the total length of the reaction enclosure, when seen in the process gas flow direction (downwards) in a process with an FK formaldehyde catalyst in the reaction enclosure.
As a reference this example includes two "standard" cases, case Ai and case A2 where the gasket, the oil cooling mantle (cooling medium enclosure) encompasses the reaction enclosure in its entire length as known in the art. In case Ai, the temperature of the cooling boiling oil bath is 265°C, in case A2 the cooling oil bath temperature is 250°C.
These two standard cases are compared with two cases according to the invention with shortened gaskets, both with a cooling boiling oil bath temperature of 250°C, but one with a gasket length of 60 cm and one with a gasket length of 80 cm. In all the cases, the inner diameter of the reaction enclosure is 22 mm and the outer diameter of the reaction enclosure is 26 mm.
In the above table, the yield, selectivities and conversion is tabulated for each case. The yield is slightly increased in case A2 relative to case Ai due to a substantial increase in selectivity.
The "Gasket length = 60 cm" -case has a higher yield than either of the A -cases due to a very high conversion rate.
The "Gasket length = 80 cm" -case has a higher yield than any of the other cases due to a nice compromise between conversion and selectivity.
Contour plots of the temperatures and gas concentrations through the reaction enclosure in the four cases show that case A2 with the cooling oil bath temperature of 265°C has a high temperature hot spot which ensures a high conversion early, up-stream in the reaction enclosure at the cost of a large production of CO.
The three other cases have a much lower temperature hot spot which limits CO production, while limiting also the conversion in the part of the reaction enclosure in contact with the cooling media (the part covered by the "gasket").
The "Gasket length = 60 cm" case has a temperature increase when leaving the oil cooled area which boosts its conversion at cost of producing extra CO. It manages to just outperform case A2 with oil cooling bath temperature of 250°C, while both stay ahead of case Ai with oil cooling bath temperature of 265°C in terms of yield.
The "Gasket length = 80 cm" case is a nice compromise. It manages to get a decent conversion increase, while not producing much extra CO.
The study shows that with a small decrease of the oil cooling bath temperature it is possible to get a large benefit from insulating the down-stream part of the reaction enclosure. The advantage comes from the possibility of compensating for a lower temperature in the hot spot by having a higher temperature downstream due to the insulation

Claims (11)

  1. Claims :
    1. A chemical reactor for an exothermal reaction comprising at least one reaction enclosure and at least one cooling medium enclosure configured to hold a cooling medium under pressure at the boiling point of said cooling medium, the cooling medium enclosure at least partly encompasses said reaction enclosure, said reaction enclosure comprises an outer surface configured to be in thermal contact with the cooling medium, said reaction enclosure comprises a reaction enclosure inlet and a reaction enclosure outlet and said cooling medium enclosure comprises a cooling medium inlet and a cooling medium outlet, wherein said reaction enclosure comprises a portion of its outer surface which is not in contact with the cooling medium enclosure.
  2. 2. A chemical reactor according to claim 1, wherein said portion of the reaction enclosure which is not in contact with the cooling medium enclosure is thermally insulated.
  3. 3. A chemical reactor according to any of the preceding claims, wherein the cooling medium enclosure is cylindrical .
  4. 4. A chemical reactor according to any of the preceding claims, wherein the reaction enclosure is cylindrical.
  5. 5. A chemical reactor according to any of the preceding claims, wherein the cooling medium enclosure and the reaction enclosure are concentric.
  6. 6. A chemical reactor according to any of the preceding claims, wherein the cooling medium enclosure is adapted to operate with oil as cooling medium.
  7. 7. A chemical reactor according to any of the preceding claims, wherein the reaction enclosure is adapted to operate with a formaldehyde catalyst.
  8. 8. A chemical reactor according to any of the preceding claims, wherein the portion of the reaction enclosures outer surface which is in contact with the cooling medium enclosure is at least 50% of the total reaction enclosure outer surface
  9. 9. A chemical reactor according to any of the preceding claims, wherein the portion of the reaction enclosures outer surface which is in contact with the cooling medium enclosure is at least 80% of the total reaction enclosure outer surface.
  10. 10. A chemical reactor according to any of the preceding claims, further comprising a catalytically active material inside at least 50% or 80% of the volume of the reaction enclosure .
  11. 11. A chemical reactor according to any of the preceding claims adapted to operate at a temperature of 250°C to 500 °C.
DKPA201700031A 2016-09-27 2017-01-13 Short Gasket Reactor DK201700031A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DKPA201600567 2016-09-27

Publications (1)

Publication Number Publication Date
DK201700031A1 true DK201700031A1 (en) 2017-11-13

Family

ID=60270076

Family Applications (1)

Application Number Title Priority Date Filing Date
DKPA201700031A DK201700031A1 (en) 2016-09-27 2017-01-13 Short Gasket Reactor

Country Status (2)

Country Link
DK (1) DK201700031A1 (en)
WO (1) WO2018059888A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5417938A (en) * 1988-09-02 1995-05-23 Sulzer Brothers Limited Device for carrying out catalyzed reactions
WO1998057741A2 (en) * 1997-06-18 1998-12-23 Arencibia Associates, Inc. Temperature controlled reaction vessel
WO2003078044A2 (en) * 2002-03-15 2003-09-25 H2Gen Innovations, Inc. Method and apparatus for minimizing adverse effects of thermal expansion in a heat exchange reactor
US7226567B1 (en) * 1999-03-16 2007-06-05 Basf Aktiengesellschaft Multi-tube fixed-bed reactor, especially for catalytic gas phase reactions
US20150367319A1 (en) * 2014-06-24 2015-12-24 Chevron Phillips Chemical Company Lp Heat Transfer in a Polymerization Reactor
WO2016008820A1 (en) * 2014-07-18 2016-01-21 Haldor Topsøe A/S A pseudo-isothermal reactor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5079267A (en) 1989-09-16 1992-01-07 Xytel Technologies Partnership Methanol production
DE29722926U1 (en) * 1997-12-19 1998-02-19 Mannesmann Ag Deep well reactor for the continuous implementation of chemical reactions
SK292001A3 (en) * 1998-07-09 2001-08-06 Washington Group Int Radial flow reactor
MY140160A (en) * 2004-01-28 2009-11-30 Shell Int Research Heat exchanger for carrying out an exothermic reaction
US9174192B2 (en) * 2009-01-21 2015-11-03 Basf Se Tube bundle reactor for uncatalyzed or homogeneously catalyzed reactions
JP6258313B2 (en) * 2012-07-11 2018-01-10 コベストロ、ドイチュラント、アクチエンゲゼルシャフトCovestro Deutschland Ag Apparatus and method for producing phosgene
WO2014145082A2 (en) * 2013-03-15 2014-09-18 Gi-Gasification International (Luxembourg), S.A. Systems, methods and apparatuses for use of organic ranking cycles
US20170021322A1 (en) * 2014-04-02 2017-01-26 Haldor Topsøes A/S Pseudo-isothermal reactor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5417938A (en) * 1988-09-02 1995-05-23 Sulzer Brothers Limited Device for carrying out catalyzed reactions
WO1998057741A2 (en) * 1997-06-18 1998-12-23 Arencibia Associates, Inc. Temperature controlled reaction vessel
US7226567B1 (en) * 1999-03-16 2007-06-05 Basf Aktiengesellschaft Multi-tube fixed-bed reactor, especially for catalytic gas phase reactions
WO2003078044A2 (en) * 2002-03-15 2003-09-25 H2Gen Innovations, Inc. Method and apparatus for minimizing adverse effects of thermal expansion in a heat exchange reactor
US20150367319A1 (en) * 2014-06-24 2015-12-24 Chevron Phillips Chemical Company Lp Heat Transfer in a Polymerization Reactor
WO2016008820A1 (en) * 2014-07-18 2016-01-21 Haldor Topsøe A/S A pseudo-isothermal reactor

Also Published As

Publication number Publication date
WO2018059888A1 (en) 2018-04-05

Similar Documents

Publication Publication Date Title
US20210113983A1 (en) Endothermic reactions heated by resistance heating
JP4554359B2 (en) Catalytic oxidative dehydrogenation process and microchannel reactor therefor
CA3014237C (en) A reactor for promotion of heat transfer
AU2012211334B2 (en) Monolithic reactor
US11148955B2 (en) Synthesis device and method for producing a product
EP2917673B1 (en) A fixed bed reactor heat transfer structure
TW201618857A (en) Apparatus and process
EP2249954B1 (en) Catalytic reactor
AU2008329267B2 (en) Chemical reactor with plate type heat exchange unit
CN106457187B (en) Process comprising two reaction zones and apparatus therefor
US11806707B2 (en) Method, tube bundle reactor and reactor system for carrying out catalytic gas phase reactions
CA2786519C (en) Apparatus and method for adiabatic methane conversion
DK201700031A1 (en) Short Gasket Reactor
KR101785484B1 (en) Catalyst reactor for hydrocarbon steam reforming with excellent reaction efficiency
JP2006502938A (en) Preferential oxidation reactor temperature control
CA3043453C (en) Reactor
KR101909990B1 (en) Method for carrying out exothermic catalytic reactions and a reactor for use in the method
EP2865440A1 (en) Process and reactor for exothermal reaction
CA3153229A1 (en) Synthesis gas on demand
CN107835713B (en) Catalytic reactor
AU2011204498B2 (en) Apparatus and method for adiabatic methane conversion

Legal Events

Date Code Title Description
PHB Application deemed withdrawn due to non-payment or other reasons

Effective date: 20180409