DK180528B1 - Retrofit method, its use, a power pack and an electric vehicle - Google Patents

Retrofit method, its use, a power pack and an electric vehicle Download PDF

Info

Publication number
DK180528B1
DK180528B1 DKPA201970654A DKPA201970654A DK180528B1 DK 180528 B1 DK180528 B1 DK 180528B1 DK PA201970654 A DKPA201970654 A DK PA201970654A DK PA201970654 A DKPA201970654 A DK PA201970654A DK 180528 B1 DK180528 B1 DK 180528B1
Authority
DK
Denmark
Prior art keywords
fuel cell
batteries
reformer
power supply
fuel
Prior art date
Application number
DKPA201970654A
Other languages
Danish (da)
Inventor
Bang Mads
Risum Korsgaard Anders
Leander Jensen Peter
Stenild Grøn Martin
Original Assignee
Blue World Technologies Holding ApS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Blue World Technologies Holding ApS filed Critical Blue World Technologies Holding ApS
Priority to DKPA201970654A priority Critical patent/DK180528B1/en
Priority to DKPA202001119A priority patent/DK202001119A1/en
Priority to US17/769,915 priority patent/US11654784B2/en
Priority to DE112020004489.0T priority patent/DE112020004489B4/en
Priority to CN202080071781.7A priority patent/CN114555408B/en
Priority to PCT/DK2020/050277 priority patent/WO2021078343A1/en
Application granted granted Critical
Publication of DK180528B1 publication Critical patent/DK180528B1/en
Publication of DK201970654A1 publication Critical patent/DK201970654A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/75Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using propulsion power supplied by both fuel cells and batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/40Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for controlling a combination of batteries and fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel Cell (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

An electric power pack in an electrically powered vehicle is provided for retrofit where part of the batteries are substituted by a fuel cell system in order to extend the travelling range of the vehicle.

Description

DK 180528 B1 1 Retrofit method, its use, a power pack and an electric vehicle Field of the Invention The present invention relates to a vehicle and a hybrid electric power pack for the vehi- cle, especially an automobile, and a method of retrofitting an electric power pack as well as its use.
Background of the Invention Batteries in automobiles imply a range that is limited to an extent which for long dis- tance driving often is insufficient. If there is a good infrastructure along highways or urban roads with respect to recharging, long distances merely imply frequent stopping for recharging, as typical ranges are currently in the order of 200-300 km. In case that a trip is extending into remote areas, electric vehicles driven on battery alone is not a proper solution. For this reason, hybrid vehicles are available in which there is provided a gasoline engine in addition to a battery pack. However, gasoline engines are increas- ingly criticized for pollution. Accordingly, there is a need for providing sustainable technical hybrid solutions for automobiles. US2013/0078486 discloses a hybrid energy pack with a battery and fuel cell system, including a fuel tank. The outer casing, inside which the battery and the fuel cell are provided, is insulated thermally against the environment. An air blower and a heat ex- changer are used for an air control system. Although, this system is a step in the right direction, it is not a sufficiently good solution because the heat from the fuel cell influences the heat of the battery, and the fact that the common air flow for cooling is used for battery and fuel cell makes temperature regulation of the battery relatively to the fuel cell difficult. This is especially so if the system would be used for fuel cells operating at high temperature. Hybrid power packs primarily for lifting trucks are disclosed in US2003/0070850, US2001/0052433 and US2007/008724 1, where the fuel tank is integrated in the power pack. US2017/0288239 discloses a power generator replacement and discusses the air flow for cooling as well as insulation against the environment. Cooling is also discussed for a power cabinet in US2009/0246566.
DK 180528 B1 2 US2004/0062955 discloses an automobile with a hybrid power pack containing batter- ies and a fuel cell system with an insulating wall in between. Coolant flow systems for batteries and fuel cell systems in automobiles are discussed in WO2017/102449 and EP3474368. US2005/0031912 discusses electrode details of a fuel cell system in a ve- hicle. US2018/0154996 discloses a boat comprising a two-compartment system with a fuel cell and tank in one compartment and batteries and electronics in the other com- partment.
It would be desirable to find better solutions, especially in view of a constant need for improvement of battery-driven cars with respect to range and technical optimization. In particular, it would be desirable to find an improved technical solution when using high temperature fuel cells in combination with batteries.
Description of the Invention It is an objective to provide an improvement in the art. In particular, it is an objective to provide an improved hybrid system based on batteries and fuel cells for vehicles, espe- cially automobiles. These and more objectives are achieved with a system and method as described in the claims and in more detail in the following.
For propulsion, the vehicle comprises batteries inside a casing that forms an enclosure around an electrical power pack power for providing power to the electrical motors that rotate the wheels. Typically, the power pack is dimensioned to provide power enough for electrically propelling the vehicle over a minimum range of distance of more than 100 km.
In some aspects of the invention, an electric power pack in an electrically powered ve- hicle is modified in that part of the batteries in the casing are substituted by a fuel cell system. For example, more than half of the batteries are removed from the casing, op- tionally at most 80% are removed, and the fuel cell system is installed inside the casing as a replacement for the removed batteries in the space of the removed batteries. Op- tionally, 20-45% of the batteries are maintained in the casing.
DK 180528 B1 3 An advantage of the retrofit into the already existing casing is that no dimensions have to be changed for the vehicle. The casing can be re-used. For example, the casing has a width in the range of 1 to 3 m. Optionally, the length is in the range of 1 to 4 m. A typical height of the casing is in the range of 0.1 to 0.4 m. As an alternative retrofit, the existing battery power pack of the vehicle is removed from the vehicle and substituted by a hybrid power pack in which batteries as well as a fuel cell system is used. For example, the existing casing is substituted by a casing that is dimensioned identically or similarly in order for the exchange power pack to fit into the same position and orientation as the battery pack prior to retrofit. For example, it is made sure that the new casing fits properly into the frame on the chassis for the power pack.
Thus, in some cases, the vehicle is propelled by power from the power pack during multiple discharge and charging cycles of the batteries prior to the retrofitting. In other words, in a pre-retrofit stage, the electrical motors of the vehicle are supplied with elec- trical energy only from the batteries, since the vehicle does not yet comprise the fuel cell system. Only after a while of operation, the system is changed by mounting the fuel cell into the casing, and the operation of the vehicle continues with the combination of the battery and the fuel cell system. For example, an objective for the retrofit is to extend the travelling range of the vehicle.
For the retrofit power pack, fuel cell system is provided in addition to batteries inside the casing and electrically connected to the batteries in the casing for charging the bat- tery by the fuel cell system and for providing electrical power by the fuel cell for the electrical engines. After retrofit, the vehicle is propelled with a hybrid power system inside the casing, the hybrid power system comprising the batteries inside the casing and the fuel cell system inside the casing.
The fuel cell system comprises a fuel cell, typically a fuel cell stack. Herein, the term fuel cell is used for a single fuel cell as well as for multiple fuel cells, typically a fuel cell stack. The fuel cell comprises an anode side and a cathode side and a proton
DK 180528 B1 4 exchange membrane therein between for transport of hydrogen ions from the anode side to the cathode side through the membrane during operation. The fuel cell is of the type that operates at a high temperature. The term “high temper- ature” is a commonly used and understood term in the technical field of fuel cells and refers to operation temperatures above 120°C in contrast to low temperature fuel cells operating at lower temperatures, for example at 70°C. Specifically, the fuel cell operates in the temperature range of 120-200°C.
In particular, the fuel cell in the fuel cell system is a high temperature polymer electro- lyte membrane fuel cell, (HT-PEM), which operates above 120 degrees centigrade, dif- ferentiating HT-PEM fuel cell from low temperature PEM fuel cells, the latter operating at temperatures below 100 degrees, for example at 70 degrees. The normal operating temperature of HT-PEM fuel cells is the range of 120 to 200 degrees centigrade, for example in the range of 160 to 170 degrees centigrade. The polymer electrolyte mem- brane PEM in the HT-PEM fuel cell is mineral acid based, typically a polymer film, for example polybenzimidazole doped with phosphoric acid. HT-PEM fuel cells are advan- tageous in being tolerant to relatively high CO concentration and are therefore not re- quiring PrOx reactors between the reformer and the fuel cell stack, why simple, light- weight and inexpensive reformers can be used, which minimizes the overall size and weight of the system in line with the purpose of providing compact fuel cell systems, for example for automobile industry.
During normal operation, the cooling circuit is taking up heat from the fuel cell in order to keep the temperature stable and in an optimized range. For example, the temperature of the fuel cell is 170 degrees, and the first coolant has a temperature of 160 degrees at the entrance of the fuel cell.
Especially for the case in which the fuel cell is a high temperature fuel cell, there is a risk of the temperature of the battery being difficult to control, as the heat produced by the fuel cell system inside the casing would be transferred to the batteries with the risk of damage.
DK 180528 B1
Therefore, in general, a hybrid electric power pack for an electrically driven vehicle is provided, for example for the above-mentioned retrofit, but also possible for a basic installation as a hybrid power pack, where the power pack comprises a casing inside which batteries are provided as well as a fuel cell as well as a cooling circuit for adjust- 5 ment of the temperature of the fuel cell.
When using a mix of alcohol and water as fuel, also a reformer system is provided for catalytic reaction of fuel into syngas for the fuel cell.
The batteries and the fuel cell system are electrically interconnected for recharging the batteries by the fuel cell system.
As a special feature, in particular when containing a high temperature fuel cell system, the casing comprises a first compartment that con- tains the batteries and at least one further compartment containing the fuel cell system, wherein a first thermally insulating wall is provided between the first compartment and the at least one further compartment, wherein the first thermally insulating wall is ther- mally separating the first compartment from the at least one further compartment.
For example, the first compartment with the batteries has a volume in the range 20-45% of the total volume of the casing.
Additionally, the at least one further compartment comprises at least two further com- partments, wherein one of the compartments contains the fuel cell and another compart- ment a power management system, which is an electronic control system for power management of the fuel cell, and the batteries, wherein further thermally insulating walls are provided and thermally separating the at least two compartments in the casing from each other.
By insulating the electronics as well as the battery from the high tem- perature fuel cell system, the temperature of the components in the various heat-insu- lated compartments can be precisely and individually controlled.
This is possible even when using a single cooling circuit, as the flow of the coolant, which is also a heating medium in certain circumstances, for example during startup, can be controlled individually with respect to flow rate through the various compart- ments.
Therefore, in a further embodiment, the cooling circuit is configured for adjust- ment of the temperature of the fuel cell and adjustment of the temperature of the batter- ies by control of flow of coolant from the cooling circuit through the fuel cell and by separate control of flow of coolant through the battery.
DK 180528 B1 6 For the HT-PEM fuel cell, alcohol is used as part of the fuel for the fuel cell, for example a mix of methanol and water. In a heated reformer, the fuel is catalytically reacted into syngas for the fuel cell for providing the necessary hydrogen gas to the anode side of the fuel cell. For the catalytic reaction in the reformer, the provided liquid fuel is evap- orated in an evaporator that is conduit-connected to the reformer. For heating the reformer to the proper catalytic conversion temperature, for example in the range of 250-300 degrees, a reformer burner is provided and in thermal contact with the reformer for transfer of heat to the catalyser inside the reformer. The reformer burner comprises a burner-chamber providing flue gas by burning anode waste gas or fuel or both. For example, the reformer burner provides flue gas at a temperature in the range of 350-400 degrees. The reformer comprises a catalyser inside a reformer housing, which has reformer walls. For example, the flue gas from the reformer burner is passing along the reformer walls and heats them. In such embodiment, the burner-chamber is in fluid-flow com- munication with the reformer walls for flow of the flue gas from the burner-chamber to and along the reformer walls for transfer of heat from the flue gas to the reformer walls. After the transfer of the thermal energy from the flue gas to the reformer walls, remain- ing thermal energy can be used for heating other components, for example heating the vehicle cabin. The reformer burner is configured for providing flue gas by burning an- ode waste gas or fuel or both. For example, the reformer and reformer burner are provided as a compact unit. Option- ally, in order to provide one way of a compact burner/reformer unit, the reformer walls are tubular and surround the burner walls. However, this is not strictly necessary, and a serial configuration, or a side-by-side configuration of the burner/reformer or a config- uration of a burner sandwiched between two sections of the reformer is also possible.
In order for insulating the other components thermally against the radiated heat from the reformer burner and the reformer, optionally a fourth compartment with the reformer and the reformer burner is provided, and also insulated and thermally separated from the other compartments by a further thermally insulating and thermally separating wall.
DK 180528 B1 7 As source for oxygen gas in the fuel cell, air is typically used and provided to the cath- ode side. In this case, an air supply is provided for supplying air to the cathode side. Optionally, prior to entering the fuel cell, the air is heated by an air heating system for increasing the temperature of the air. The air provides the oxygen for the fuel cell. Other gases of the air merely flow through the system and are discarded again. Typically, in fuel cell systems, coolant is glycol based. However, for automobiles in cold areas, glycol is not optimum for the start-up, why other liquids are preferred. Ex- amples of such other liquids include synthetic oils. In some useful embodiments, the system comprises a startup heater for heating the fuel cell system during startup conditions prior to normal power producing fuel cell opera- tion. During startup of the fuel cell system, the fuel cell has to be heated up for reaching a steady state electricity-producing state. Especially for use in vehicles, the start-up pro- cedure should be fast. Typically, this is done in practice by transferring the heat from the startup burner gas to the coolant in the cooling cycle which during start-up is used as heating fluid, instead, in order to heat up the fuel cell to a temperature suitable for normal power producing operation. Description of the Drawing Embodiments of the invention will be described in the figures, wherein: FIG. 1 illustrates a chassis of a vehicle with a hybrid energy pack, FIG. 2 illustrates the hybrid energy pack in greater detail. Detailed Description of the Invention FIG. 1 illustrates a chassis 1 of a vehicle with a fuel cell stack 6 and a battery 12. FIG 2 illustrates details of the power pack. The fuel cell system and the batteries 12 are contained in a casing 13 which is box-shaped and with walls 19 forming bottom and top and side to form an enclosure, preferably insulating enclosure. As best seen in FIG. 2, the casing 13 is held inside a frame 26.
The fuel cell system comprises a fuel cell stack 6, a combination 27 of the reformer 8 and corresponding reformer burner 28, and a temperature regulation system 11, includ- ing a cooling circuit 18. In addition, a power management system 10 is provided, which
DK 180528 B1 8 is an electronic control system for power management of the fuel cell. Fuel is provided from a fuel tank 9. For example, the fuel tank contains alcohol, optionally methanol, to which water is added prior to catalytic transformation in a reformer for providing it as hydrogen fuel to the fuel cell. However, it is also possible that the fuel tank 9 comprises hydrogen gas. The battery 12 changes temperature during charging and discharging relatively to an idle state. The reformer 8 has to be heated by the reformer burner 28 in order to convert the liquid fuel, for example methanol and water into syngas for providing hydrogen gas the fuel cell 6. This produces substantial amounts of heat.
As an example, in the reformer 8, the mix of methanol CH3OH and water HO is cata- lytically converted into hydrogen gas Hz and CO». Simplified, the methanol CHzOH is converted into 2H, and CO, and the water molecule splits into H, and O, where the oxygen is captures by the CO to produce CO». The mix of H, and CO, is then supplied as so-called syngas to the anode side of the fuel cell, typically fuel cell stack 6. Air from the environment is drawn in through an air filter 4 and through air intake pipe 7 and supplied to the cathode side of the fuel cell 6 in order to provide the necessary oxygen for the reaction with the hydrogen to produce water, after hydrogen ions H+ have passed the membrane from the anode side to the cathode side.
The fuel cell 6 is a high temperature polymer electrolyte membrane (HT-PEM) fuel cell. Typically, high temperature fuel cells operate in the temperature range of 120-200°C, and thus are producing heat as well. For example, the fuel cell 6 operates at a tempera- ture of 175°C. This operation temperature is held constant by a correspondingly ad- justed flow of first coolant in a cooling circuit 18 through the fuel cell 6. For example the temperature of the first coolant at the coolant inlet of the fuel cell 6 is in the range of 160°C to 170°C.
In order to control the temperature of the individual components, the components are separated into compartments of the casing 13 which is box shaped. In a first compart- ment 14, the batteries 12 are provided. A separate compartment 15 is provided for the combined reformer 8 and burner 28. A third compartment 16 is for the fuel cell stack 6
DK 180528 B1 9 and the temperature regulation system and the main components of the cooling circuit
18. A fourth compartment 17 houses the power management system 10.
Between the first compartments 14 with the battery 12 and the fuel cell system 6, 8, 11 a first insulating wall 21 is provided. This first insulating wall 21 insulates and thermally separates the battery 12 from the heat that is produced by the fuel cell system, including the fuel cell stack 6 and the reformer 8 and its burner 28. By thermally separating the compartments of the fuel cell system from the first compartment of the battery 12 by a first insulating wall 21, the temperature of the battery 12 and the fuel cell system 6, 8, 11 can be adjusted better and more precise than without the first insulating wall 21.
By regulating the flow from the cooling circuit 18 with respect to each of the heat- producing components 6, 8, 12, a thorough control is obtained for the system. Flow meters and valves as well as temperature gauges electronically, electrically and func- tionally connected to a controller allows a proper computerized management of the tem- perature of each of the components.
In order to even control the temperature of the fuel cell stack more precisely, a second insulating wall 22 is provided between the fuel cell stack and the reformer 8 with its burner 28. This is another advantageous feature, as it allows a precise adjustment and maintenance of the correct temperature of the fuel cell.
Electronics are influenced by high temperature and should be thermally protected. For this reason, a third insulating wall 23 is provided between the fourth compartment 17 with the electronic power management system 10 from the fuel cell system, including the third compartment 16 that houses the fuel cell stack 6 and the second compartment 15 that contains the reformer 8.
In order to remove heat from the fuel cell system, the coolant is flowing through a radi- ator 2, for example in the front of the vehicle, which is a common way of releasing thermal energy from the system. Some of the heat can be used for heating the cabin, which is regulated in a controller 5 for air condition and heating. However, the precise temperature of the fuel cell system 6, 8 and the battery 12 is controlled in a controller
DK 180528 B1 10 20 for the temperature management, which also controls the flow of the coolant through the various components. Advantageously, the fuel cell system comprises a startup heater 24 for providing ther- mal energy to raise the temperature of the fuel cell system to the correct temperature for power-producing operation. For connection to the radiator 2 and for receiving fuel from the fuel tank 9, as well as delivering electrical power, the power pack has corresponding connectors 25.
Reference numbers 1 Chassis 2 Radiator 3 Air exhaust 4 Air filter 5 Aircon and heat controller 6 Fuel cell stack 7 Air intake 8 Reformer 9 Fuel tank 10 Power management system 11 Temperature regulation system 12 Battery 13 casing which is box-shaped 14 first compartment for the batteries 12, 15 second compartment for the combined reformer and burner 8, 16 third compartment for the fuel cell stack 6 17 fourth compartment for the power management system 10 18 cooling circuit 19 walls of casing 13 20 controller for temperature management 21 first insulating wall 22 second insulating wall 23 third insulating wall
DK 180528 B1 11 24 startup heater 25 connectors 26 frame 27 combination of reformer 8 and reformer-burner 28 28 reformer-burner 29 Fuel pipe Power pack

Claims (10)

DK 180528 B1 12 CLAIMSDK 180528 B1 12 CLAIMS 1. En fremgangsmåde til at øge rækkevidden af en elektrisk drevet automobil, hvilken automobil omfatter en strømforsyning, hvor strømforsyningen inden forøgelse af ræk- kevidden omfatter et kabinet (13) og batterier (12) men ingen brændselscelle inden i kabinettet (13) til forsyning af strøm til de elektriske motorer, der roterer hjulene ved hjælp af batterierne, hvor fremgangsmåden omfatter eftermontering af strømforsyningen (30) ved enten at modificere automobilens strømforsyning eller ved at fjerne strømforsyningen fra auto- mobilen og installere en udskiftnings-strømforsyning (30) i automobilen; hvor frem- gangsmåden som en del af eftermonteringen omfatter at tilvejebringe et brændselscel- lesystem (6) inden i kabinettet (13) i den modificerede strømforsyning eller inden i ka- binettet på et tilsvarende dimensioneret eftermonterings-kabinet i udskiftnings-strøm- forsyningen, hvor brændselscellesystemet (6) tilvejebringes inden i kabinettet (13) for- uden batterier (12) og er elektrisk forbundet til batterierne (12) i kabinettet (13) til op- ladning af batterierne (12) ved hjælp af brændselscellesystemet og til forsyning af de elektriske motorer med elektricitet fra brændselscellen (6), hvor fremgangsmåden yderligere omfatter fremdrift af automobilen med et hybrid- strømsystem inden i kabinettet efter eftermonteringen, hvor hybridstrømsystemet om- fatter batterierne (12) inden i kabinettet (13) og brændselscellesystemet inden i kabinet- tet (13); hvor den eftermonterede strømforsyning har el-konnektorer (25) til levering af elektrisk strøm til de elektriske motorer, kølemiddel-konnektorer til forbindelse med en køler (2) af automobilen og til cirkulation af kølevæske gennem strømforsyningen, samt brænd- stof-konnektorer for at modtage brændstof til brændselscellen gennem en brændstofled- ning (29) fra en brændstoftank (9), kendetegnet ved, at - batterierne (12) af strømforsyningen er dimensioneret til at give strøm nok til elektrisk fremdrift af automobilen over en minimumsrækkevidde på en distance på mere end 100 km, - brændstoftanken (9) er tilvejebragt som en del af automobilen adskilt fra den efter- monterede strømforsyningspakke; - kabinettet (13) omfatter et første rum (14) indeholdende batterierne (12) og mindst ét yderligere rum (15, 16, 17) indeholdende brændselscellesystemet med en første termiskA method of increasing the range of an electrically powered automobile, the automobile comprising a power supply, the power supply before increasing the range comprising a housing (13) and batteries (12) but no fuel cell within the housing (13) for supply. of power to the electric motors rotating the wheels by means of the batteries, the method comprising retrofitting the power supply (30) by either modifying the power supply of the automobile or by removing the power supply from the automobile and installing a replacement power supply (30) in the automobile ; wherein the method as part of the retrofitting comprises providing a fuel cell system (6) inside the housing (13) of the modified power supply or inside the housing of a correspondingly dimensioned retrofitting housing in the replacement power supply, wherein the fuel cell system (6) is provided inside the housing (13) in addition to batteries (12) and is electrically connected to the batteries (12) in the housing (13) for charging the batteries (12) by means of the fuel cell system and for supplying the electric motors with electricity from the fuel cell (6), the method further comprising propelling the automobile with a hybrid power system inside the housing after retrofitting, the hybrid power system comprising the batteries (12) inside the housing (13) and the fuel cell system inside the housing; (13); wherein the retrofitted power supply has electrical connectors (25) for supplying electric power to the electric motors, coolant connectors for connecting to a radiator (2) of the automobile and for circulating coolant through the power supply, and fuel connectors for receive fuel for the fuel cell through a fuel line (29) from a fuel tank (9), characterized in that - the batteries (12) of the power supply are dimensioned to provide enough power for electric propulsion of the automobile over a minimum range of more than than 100 km, - the fuel tank (9) is provided as part of the automobile separate from the retrofitted power supply package; the housing (13) comprises a first compartment (14) containing the batteries (12) and at least one further compartment (15, 16, 17) containing the fuel cell system with a first thermal DK 180528 B1 13 isolerende væg (21) mellem det første rum (14) og det mindst ene yderligere rum (15, 16, 17) til termisk adskillelse af det første rum (14) fra det mindst ene yderligere rum (15, 16, 17) med brændselscellesystemet ved hjælp af den første termisk isolerende væg (21); hvor det mindst ene yderligere rum (15, 16, 17) omfatter mindst to yderligere rum (15, 16, 17), hvoraf ét (16) af de yderligere rum (15, 16, 17) indeholder brændselscellen (6) og et andet rum (17) et strømstyringssystem (10), der er et elektronisk styresystem til strømstyring af brændselscellen (6) og batterierne (12), med yderligere termisk iso- lerende vægge (22, 23) til termisk adskillelse af de mindst to yderligere rum (15, 16, 17) i kabinettet (13) fra hinanden ved hjælp af de yderligere termisk isolerende vægge (22, 23); - brændselscellesystemet (6) omfatter en højtemperatur polymerelektrolyt membran HT-PEM brændselscelle; - den eftermonterede strømforsyning indeholder en reformer (8) til katalytisk reaktion af alkohol og vand til syngas til brændselscellen (6); og hvor fremgangsmåden efter eftermontering omfatter - tilvejebringelse af alkohol i brændstoftanken (9), - anvendelse af reformeren (8) til katalytisk reaktion af en fordampet blanding af alko- holen og vandet til syngas og forsyning af syngassen til brændselscellen (6); - drift af brændselscellen (6) ved en temperatur i området 120-200 © C.180528 B1 13 insulating wall (21) between the first space (14) and the at least one further space (15, 16, 17) for thermal separation of the first space (14) from the at least one further space (15, 16, 17) with the fuel cell system by means of the first thermally insulating wall (21); wherein the at least one further space (15, 16, 17) comprises at least two further spaces (15, 16, 17), of which one (16) of the further spaces (15, 16, 17) contains the fuel cell (6) and another space (17) a current control system (10), which is an electronic control system for current control of the fuel cell (6) and the batteries (12), with further thermally insulating walls (22, 23) for thermal separation of the at least two further spaces ( 15, 16, 17) in the cabinet (13) apart by means of the further thermally insulating walls (22, 23); the fuel cell system (6) comprises a high temperature polymer electrolyte membrane HT-PEM fuel cell; the retrofitted power supply contains a reformer (8) for the catalytic reaction of alcohol and water into syngas for the fuel cell (6); and the method after retrofitting comprises - providing alcohol in the fuel tank (9), - using the reformer (8) for catalytic reaction of an evaporated mixture of the alcohol and the water for syngas and supplying the syngas to the fuel cell (6); - operation of the fuel cell (6) at a temperature in the range 120-200 © C. 2. Fremgangsmåde ifølge krav 1, hvor fremgangsmåden yderligere omfatter fremdrift af automobilen med strøm fra strømforsyningen under flere afladnings- og oplad- ningscyklusser af batterierne inden eftermontering.The method of claim 1, wherein the method further comprises propelling the automobile with power from the power supply during several discharge and charging cycles of the batteries prior to retrofitting. 3. Fremgangsmåde ifølge krav 2, hvor fremgangsmåden omfatter eftermontering af automobilens strømforsyning ved fjernelse af mere end halvdelen men ikke mere end 80% af batterierne (12) fra kabinettet (13) og installation af brændselscellesystemet inden i kabinettet (13) i rummet for de fjernede batterier som erstatning for de fjernede batterier.A method according to claim 2, wherein the method comprises retrofitting the automobile power supply by removing more than half but not more than 80% of the batteries (12) from the housing (13) and installing the fuel cell system inside the housing (13) in the space for the removed batteries to replace the removed batteries. 4. Fremgangsmåde ifølge et hvilket som helst af de foregående krav, hvor et køle- kredsløb (18) er tilvejebragt inden i kabinettet (13) og hvor fremgangsmåden omfatter justering af temperaturen på brændselscellen (6) og justering af temperaturen på batte- rierne (12) ved hjælp af det samme kølekredsløb ved at styre strømning af kølemiddelA method according to any one of the preceding claims, wherein a cooling circuit (18) is provided inside the housing (13) and wherein the method comprises adjusting the temperature of the fuel cell (6) and adjusting the temperature of the batteries ( 12) using the same refrigeration circuit by controlling the flow of refrigerant DK 180528 B1 14 fra kølekredsløbet (18) gennem brændselscellen (6) og separat at styre strømning af kølemiddel fra kølekredsen (18) gennem batterierne (12).DK 180528 B1 14 from the cooling circuit (18) through the fuel cell (6) and separately control the flow of coolant from the cooling circuit (18) through the batteries (12). 5. Fremgangsmåde ifølge et hvilket som helst af de foregående krav, hvor brændsels- cellesystemet omfatter en reformer-brænder (28) i termisk kontakt med reformeren (8) til overførsel af varme til en katalysator inde i reformeren (8), hvor reformer-brænde- ren (28) omfatter et brænderkammer, der tilvejebringer forbrændingsgas ved forbræn- ding af anode-gas eller brændstof eller begge dele, hvor der til termisk isolering af de andre komponenter inklusive strømstyresystemet (10) mod den udstrålede varme fra reformer-brænderen (28) og reformeren (8) er tilvejebragt et fjerde rum med reforme- ren (8) og reformer-brænderen (28) og ligeledes isoleret og termisk adskilt fra de an- dre rum ved hjælp af en yderligere termisk isolerende og termisk adskillende væg.A method according to any one of the preceding claims, wherein the fuel cell system comprises a reformer burner (28) in thermal contact with the reformer (8) for transferring heat to a catalyst inside the reformer (8), wherein the reformer the burner (28) comprises a burner chamber which provides combustion gas by burning anode gas or fuel or both, where for thermal insulation of the other components including the current control system (10) against the radiated heat from the reformer burner ( 28) and the reformer (8), a fourth compartment is provided with the reformer (8) and the reformer burner (28) and also insulated and thermally separated from the other compartments by means of a further thermally insulating and thermally separating wall. 6. Anvendelse af fremgangsmåden ifølge et hvilket som helst af de foregående krav til at øge rækkevidden for en elektrisk automobil.Use of the method according to any one of the preceding claims for increasing the range of an electric automobile. 7. En elektrisk drevet automobil omfattende en hybrid strømforsyning, hvor strømfor- syningen (30) omfatter et kabinet (13) inden i hvilket der er tilvejebragt batterier (12) såvel som et brændselscellesystem (6), hvor brændselscellesystemet i det mindste om- fatter en brændselscelle (6) og et væske-kølekredsløb (18) til justering af temperaturen i brændselscellen (6), hvor batterierne (12) og brændselscellesystemet er elektrisk for- bundet med hinanden til genopladning af batterierne (12) ved hjælp af brændselscelle- systemet; hvor kabinettet (13) består af et første rum (14) indeholdende batterierne (12) og mindst ét yderligere rum (15, 16, 17) indeholdende brændselscellesystemet, hvor en første termisk isolerende væg (21) er tilvejebragt mellem det første rum (14) og det mindst ene yderligere rum (15, 16, 17), hvor den første termisk isolerende væg (21) adskiller det første rum (14) termisk fra det mindst ene yderligere rum (15, 16, 17); hvor strømforsyningen har el-konnektorer (25) til levering af elektrisk strøm til de elektriske motorer, kølemiddel-konnektorer til forbindelse med en køler (2) af auto- mobilen og til cirkulation af kølevæske gennem strømforsyningen, samt brændstof- konnektorer for at modtage brændstof til brændselscellen gennem en brændstofled- ning (29) fra en brændstoftank (9), kendetegnet ved, atAn electrically powered automobile comprising a hybrid power supply, the power supply (30) comprising a housing (13) within which batteries (12) are provided as well as a fuel cell system (6), the fuel cell system at least comprising a fuel cell (6) and a liquid-cooling circuit (18) for adjusting the temperature of the fuel cell (6), the batteries (12) and the fuel cell system being electrically connected to each other for recharging the batteries (12) by means of the fuel cell system; ; wherein the housing (13) consists of a first compartment (14) containing the batteries (12) and at least one further compartment (15, 16, 17) containing the fuel cell system, wherein a first thermally insulating wall (21) is provided between the first compartment (14). ) and the at least one further space (15, 16, 17), the first thermally insulating wall (21) thermally separating the first space (14) from the at least one further space (15, 16, 17); wherein the power supply has electrical connectors (25) for supplying electric power to the electric motors, coolant connectors for connecting to a radiator (2) of the automobile and for circulating coolant through the power supply, and fuel connectors for receiving fuel to the fuel cell through a fuel line (29) from a fuel tank (9), characterized in that DK 180528 B1 15 - det mindst ene yderligere rum (15, 16, 17) omfatter mindst to yderligere rum (15, 16, 17), hvoraf det ene (16) af rummene indeholder brændselscellen (6) og et andet rum (17) et strømstyringssystem (10), som er et elektronisk styresystem til strømstyring af brændselscellen (6) og batterierne (12), hvor yderligere termisk isolerende vægge (22, 23) er tilvejebragt og termisk adskiller de mindst to yderligere rum (15, 16, 17) i kabi- nettet (13) fra hinanden, - automobilen omfatter en alkoholbrændstoftank (9) adskilt fra strømforsyningen; - strømforsyningen indeholder en reformer (8) til katalytisk reaktion af alkoholen og vandet til syngas til brændselscellen; - brændselscellen (6) er en højtemperatur polymerelektrolytmembran HT-PEM brænd- selscelle, konfigureret til at arbejde ved en temperatur i området 120-200? C.180528 B1 15 - the at least one further space (15, 16, 17) comprises at least two further spaces (15, 16, 17), of which one (16) of the spaces contains the fuel cell (6) and another space (17) a current control system (10), which is an electronic control system for current control of the fuel cell (6) and the batteries (12), wherein further thermally insulating walls (22, 23) are provided and thermally separate the at least two further spaces (15, 16, 17). ) in the cab (13) from each other, - the car comprises an alcohol fuel tank (9) separate from the power supply; the power supply contains a reformer (8) for catalytic reaction of the alcohol and the water for syngas to the fuel cell; - the fuel cell (6) is a high temperature polymer electrolyte membrane HT-PEM fuel cell, configured to operate at a temperature in the range 120-200? C. 8. Automobil ifølge krav 7, hvor kølekredsløbet (18) er konfigureret til justering af brændselscellens (6) temperatur og justering af temperaturen på batterierne (12) ved styring af strømning af kølemiddel fra kølekredsløbet (18) gennem brændselscellen (6) og ved separat styring af strømning af kølemiddel gennem batteriet (12).An automobile according to claim 7, wherein the cooling circuit (18) is configured to adjust the temperature of the fuel cell (6) and adjust the temperature of the batteries (12) by controlling the flow of coolant from the cooling circuit (18) through the fuel cell (6) and by separately controlling the flow of coolant through the battery (12). 9. Automobil ifølge krav 8, hvor kølemidlet er oliebaseret til opretholdelse af strøm- ningsegenskaber ved temperaturer under nul grader.An automobile according to claim 8, wherein the refrigerant is oil-based for maintaining flow properties at temperatures below zero degrees. 10. Automobil ifølge et hvilket som helst af kravene 7-9, hvor brændselscellesystemet omfatter en reformer-brænder (28) i termisk kontakt med reformeren (8) til overførsel af varme til en katalysator inden i reformeren (8), hvor reformer-brænderen (28) om- fatter et brænderkammer, der tilvejebringer forbrændingsgas ved forbrænding af anode-gas eller brændstof eller begge dele, hvor der til termisk isolering af de andre komponenter inklusiv strømstyresystemet (10) mod den udstrålede varme fra refor- mer-brænderen (28) og reformeren (8) er tilvejebragt et fjerde rum med reformeren (8) og formerbrænderen (28) og også isoleret og termisk adskilt fra de andre rum ved en yderligere termisk isolerende og termisk adskillende væg.An automobile according to any one of claims 7-9, wherein the fuel cell system comprises a reformer burner (28) in thermal contact with the reformer (8) for transferring heat to a catalyst within the reformer (8), wherein the reformer burner (28) comprises a burner chamber which provides combustion gas by combustion of anode gas or fuel or both, where for thermal insulation of the other components including the current control system (10) against the radiated heat from the reformer burner (28). ) and the reformer (8) is provided a fourth space with the reformer (8) and the mold burner (28) and also insulated and thermally separated from the other spaces by a further thermally insulating and thermally separating wall.
DKPA201970654A 2019-10-21 2019-10-21 Retrofit method, its use, a power pack and an electric vehicle DK180528B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DKPA201970654A DK180528B1 (en) 2019-10-21 2019-10-21 Retrofit method, its use, a power pack and an electric vehicle
DKPA202001119A DK202001119A1 (en) 2019-10-21 2020-09-28 Electrically driven automobile with a hybrid electric power pack
US17/769,915 US11654784B2 (en) 2019-10-21 2020-10-08 Electrically driven automobile with a power pack and retrofit thereof
DE112020004489.0T DE112020004489B4 (en) 2019-10-21 2020-10-08 Electrically driven motor vehicle with a unit and its retrofitting
CN202080071781.7A CN114555408B (en) 2019-10-21 2020-10-08 Method for expanding mileage of electric automobile, application of method and electric automobile
PCT/DK2020/050277 WO2021078343A1 (en) 2019-10-21 2020-10-08 An electrically driven automobile with a power pack and retrofit thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DKPA201970654A DK180528B1 (en) 2019-10-21 2019-10-21 Retrofit method, its use, a power pack and an electric vehicle

Publications (2)

Publication Number Publication Date
DK180528B1 true DK180528B1 (en) 2021-06-10
DK201970654A1 DK201970654A1 (en) 2021-06-10

Family

ID=76269400

Family Applications (2)

Application Number Title Priority Date Filing Date
DKPA201970654A DK180528B1 (en) 2019-10-21 2019-10-21 Retrofit method, its use, a power pack and an electric vehicle
DKPA202001119A DK202001119A1 (en) 2019-10-21 2020-09-28 Electrically driven automobile with a hybrid electric power pack

Family Applications After (1)

Application Number Title Priority Date Filing Date
DKPA202001119A DK202001119A1 (en) 2019-10-21 2020-09-28 Electrically driven automobile with a hybrid electric power pack

Country Status (1)

Country Link
DK (2) DK180528B1 (en)

Also Published As

Publication number Publication date
DK202001119A1 (en) 2021-09-30
DK201970654A1 (en) 2021-06-10

Similar Documents

Publication Publication Date Title
CN102255117B (en) Battery system for electric vehicle
JP3431604B2 (en) Thermal management of fuel cell powered vehicles
JP5763484B2 (en) Fuel cell system
US8449733B2 (en) Hydrogen supplemental system for on-demand hydrogen generation for internal combustion engines
US8784619B2 (en) Hydrogen supplemental system for on-demand hydrogen generation for internal combustion engines
US20090260905A1 (en) In-Vehicle Device Cooling Apparatus
KR102387308B1 (en) Electric generating air conditioning apparatus system
US11654784B2 (en) Electrically driven automobile with a power pack and retrofit thereof
JP2007280827A (en) Temperature control system for fuel cell
EP2751418A1 (en) Hydrogen supplemental system for on-demand hydrogen generation for internal combustion engines
US20180248206A1 (en) Cooling system for a fuel cell, and a fuel cell system
CN102725901A (en) Hybrid power plant system for vehicles
DK180528B1 (en) Retrofit method, its use, a power pack and an electric vehicle
KR20100046730A (en) Thermal management system for fuel cell vehicle
EP1231659A2 (en) Method and device for controlling temperature in several zones of a solid oxide fuel cell auxiliary power unit
JP5653869B2 (en) Fuel cell system
JP2014150055A (en) Combined battery system and electrically propelled vehicle
CN213583876U (en) High-power hydrogen fuel cell engine system
DK181231B1 (en) Electrical automobile with a fuel cell system and a method of fire-risk mitigation
Kiran et al. Thermal System Design for a Fuel Cell Electric Truck
CN112490470A (en) High-power hydrogen fuel cell engine system
Pandolfo Design of a PEMFC thermal management system in heavy-duty vehicle application
REDDY Effective Utilization of Waste Heat in Fuel Cell Stack
CN113097531A (en) Vehicle fuel cell waste heat recovery system for heating vehicle cabin and preheating reactant
KR20180089334A (en) Automotive system with preventing the cause of sudden acceleration

Legal Events

Date Code Title Description
PAT Application published

Effective date: 20210422

PME Patent granted

Effective date: 20210610