DK179447B1 - A coupling mechanism and use of a coupling mechanism for damping oscillations between a tractor and an agricultural implement during transport thereof - Google Patents

A coupling mechanism and use of a coupling mechanism for damping oscillations between a tractor and an agricultural implement during transport thereof Download PDF

Info

Publication number
DK179447B1
DK179447B1 DKPA201500814A DKPA201500814A DK179447B1 DK 179447 B1 DK179447 B1 DK 179447B1 DK PA201500814 A DKPA201500814 A DK PA201500814A DK PA201500814 A DKPA201500814 A DK PA201500814A DK 179447 B1 DK179447 B1 DK 179447B1
Authority
DK
Denmark
Prior art keywords
hydraulic actuator
hydraulic
tractor
top link
rear end
Prior art date
Application number
DKPA201500814A
Other languages
Danish (da)
Inventor
Green Ole
Kirkegaard Nielsen Søren
Original Assignee
Agro Intelligence Aps
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agro Intelligence Aps filed Critical Agro Intelligence Aps
Priority to DKPA201500814A priority Critical patent/DK179447B1/en
Priority to CA3008044A priority patent/CA3008044A1/en
Priority to PCT/DK2016/050438 priority patent/WO2017101952A1/en
Priority to EP16822887.2A priority patent/EP3389352A1/en
Publication of DK201500814A1 publication Critical patent/DK201500814A1/en
Application granted granted Critical
Publication of DK179447B1 publication Critical patent/DK179447B1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B63/00Lifting or adjusting devices or arrangements for agricultural machines or implements
    • A01B63/02Lifting or adjusting devices or arrangements for agricultural machines or implements for implements mounted on tractors
    • A01B63/10Lifting or adjusting devices or arrangements for agricultural machines or implements for implements mounted on tractors operated by hydraulic or pneumatic means
    • A01B63/1006Lifting or adjusting devices or arrangements for agricultural machines or implements for implements mounted on tractors operated by hydraulic or pneumatic means the hydraulic or pneumatic means structurally belonging to the tractor
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B63/00Lifting or adjusting devices or arrangements for agricultural machines or implements
    • A01B63/02Lifting or adjusting devices or arrangements for agricultural machines or implements for implements mounted on tractors
    • A01B63/10Lifting or adjusting devices or arrangements for agricultural machines or implements for implements mounted on tractors operated by hydraulic or pneumatic means
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B59/00Devices specially adapted for connection between animals or tractors and agricultural machines or implements
    • A01B59/06Devices specially adapted for connection between animals or tractors and agricultural machines or implements for machines mounted on tractors
    • A01B59/066Devices specially adapted for connection between animals or tractors and agricultural machines or implements for machines mounted on tractors of the type comprising at least two lower arms and one upper arm generally arranged in a triangle (e.g. three-point hitches)

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Soil Sciences (AREA)
  • Environmental Sciences (AREA)
  • Zoology (AREA)
  • Lifting Devices For Agricultural Implements (AREA)
  • Agricultural Machines (AREA)

Abstract

The invention relates to a coupling mechanism (100) for damping oscillations between a tractor (300) and an agricultural implement during transport thereof; said coupling mechanism comprising: a top link, said top link is having a front end (4) configured to be pivotally mounted on a rear end (6) of a tractor; and said top link is having an opposite rear end (8) configured to be pivotally mounted on three point linkage (10) of an agricultural implement;wherein said top link is comprising a hydraulic actuator (38), said hydraulic actuator is having a front end (40) and a rear end (42); said hydraulic actuator is being arranged between the front end and the rear end of said top link so as to allow altering the effective distance between the front end and the rear end of said top link;a first lift arm (12) and a second lift arm (14); said first lift arm and said second lift arm (12,14) each having a front end (16) configured to be pivotally mounted on a rear side of a tractor and an opposite rear end (18) configured to be pivotally mounted on a three point linkage of an agricultural implement; said two rear ends of the first and second lift arm, at their points of mounting, are configured to share a common pivot axis (20);wherein said first and second lift arms (12,14) being adapted to be arranged below the top link (2);a transducer (44); said transducer being configured to sense the load exerted between the front end (40) and the rear end (42) of said hydraulic actuator;a hydraulic valve (46) comprising one or more outlets and being configured to supply pressurized hydraulic fluid to said hydraulic actuator in response to instructions (50) received by said hydraulic valve;a control unit (52) configured to receive a signal (54) provided by said transducer, and being configured to translate this signal into instructions (50) to be supplied to said hydraulic valve according to a predetermined protocol in order to suppress any oscillations encountered between a tractor and an agricultural implement during transport thereof.

Description

(19) DANMARK (10)
Figure DK179447B1_D0001
(12)
PATENTSKRIFT
Patent- og Varemærkestyrelsen (51) Int.CI.: A01B 63/10 (2006.01) (21) Ansøgningsnummer: PA 2015 00814 (22) Indleveringsdato: 2015-12-17 (24) Løbedag: 2015-12-17 (41) Aim. tilgængelig: 2017-06-18 (45) Patentets meddelelse bkg. og publiceret den: 2018-10-11 (73) Patenthaver:
Agro Intelligence ApS, Agro Food Park 13,8200 Århus N, Danmark (72) Opfinder:
Ole Green, Adelvej 19 Højmark, 6940 Lem St, Danmark
Søren Kirkegaard Nielsen, Trondheimsvej 42, 8600 Silkeborg, Danmark (74) Fuldmægtig:
Otello Advokatanpartsselskab, Skt. Clemens Torv 9,1. sal, 8000 Århus C, Danmark (54) Titel: A coupling mechanism and use of a coupling mechanism for damping oscillations between a tractor and an agricultural implement during transport thereof (56) Fremdragne publikationer:
US 5884204 A
US 2011202232A1
WO 2013053645 A1 FR 2659906 A1 DE 102005003065A1 (57) Sammendrag:
The invention relates to a coupling mechanism (100) for damping oscillations between a tractor (300) and an agricultural implement during transport thereof; said coupling mechanism comprising: a top link, said top link is having a front end (4) configured to be pivotally mounted on a rear end (6) of a tractor; and said top link is having an opposite rear end (8) configured to be pivotally mounted on three point linkage (10) of an agricultural implement;wherein said top link is comprising a hydraulic actuator (38), said hydraulic actuator is having a front end (40) and a rear end (42); said hydraulic actuator is being arranged between the front end and the rear end of said top link so as to allow altering the effective distance between the front end and the rear end of said top link;a first lift arm (12) and a second lift arm (14); said first lift arm and said second lift arm (12,14) each having a front end (16) configured to be pivotally mounted on a rear side of a tractor and an opposite rear end (18) configured to be pivotally mounted on a three point linkage of an agricultural implement; said two rear ends of the first and second lift arm, at their points of mounting, are configured to share a common pivot axis (20);wherein said first and second lift arms (12,14) being adapted to be arranged belowthe top link (2);a transducer (44); said transducer being configured to sense the load exerted between the front end (40) and the rear end (42) of said hydraulic actuator;a hydraulic valve (46) comprising one or more outlets and being configured to supply pressurized hydraulic fluid to said hydraulic actuator in response to instructions (50) received by said hydraulic valve;a control unit (52) configured to receive a signal (54) provided by said transducer, and being configured to translate this signal into instructions (50) to be supplied to said hydraulic valve according to a predetermined protocol in order to suppress any oscillations encountered between a tractor and an agricultural implement during transport thereof.
Fortsættes...
Figure DK179447B1_D0002
%o
CM
A coupling mechanism and use of a coupling mechanism for damping oscillations between a tractor and an agricultural implement during transport thereof
Field of the invention
The present invention relates to the field of agriculture. More specifically, the present invention relates in a first aspect to a coupling mechanism for damping oscillations between a tractor and an agricultural implement during transport thereof.
In a second aspect the present invention relates to a tractor comprising a coupling mechanism according to the first aspect of the present invention.
In a third aspect the present invention relates to a use of a coupling mechanism according to the first aspect or of a tractor according to the second aspect of the present invention for damping oscillations between a tractor and an agricultural implement during transport thereof.
In a fourth aspect the present invention relates to a kit for installation on a three point linkage for an agricultural implement for damping oscillations between a tractor and an agricultural implement during transport thereof.
Background of the invention
In the field of agriculture it has for centuries been acknowledged that in order to obtain a good yield of crops in terms of quantity and quality it will be necessary at regular intervals to provide a conditioning of the soil in which the crops are to be grown.
Such conditioning may relate to ploughing, cultivation, harrowing etc. The conditioning serves the purpose of aerating the soil, destroy the rooting of weed and to burry residues of last year’s crops.
Conditionings like ploughing, cultivation and harrowing are typically performed by lift mounting an agricultural tool or implement behind a tractor.
With an ever increasing focus on optimizing efficiency of modem farming such agricultural implements tend to be designed in ever increasing sizes.
The implements to be used with a tractor are in a working situation usually towed or pulled or carried behind the tractor. The implement is connected to the tractor via the front end three point linkage of the implement. This three point linkage is connected to a coupling mechanism in the form of a three point hitch on a rear end of the tractor.
A three point hitch comprises two lower lift arms attached to the tractor’s hydraulic system enabling hydraulic lift for elevating and lowering of these two lift arms. Additionally a three point hitch comprises normally an upper rigid top link, which length may be manually adjustable by turning a turnbuckle having two oppositely threaded inner threads connecting two oppositely threaded end bars.
In a non-working, transport situation, for example during transportation of the tractor the implement is usually lifted by the three point hitch in such a way that no part of the implement itself touches the ground. Accordingly, during transportation of an agricultural implement it is inevitably that oscillations of the implement being suspended on the three point hitch of the tractor will result. These oscillations will be induced by accelerations and decelerations of the tractor, by uneven road surfaces, by wind effects, by small or larger turns of the tractor and by the resilient nature of the inflated tires of the tractor, all of which may result in oscillations of the tractor in a downward/upward direction.
As most agricultural implements are having a significant weight, the lifting of an agricultural implement during a transport situation on public or private road may occasionally lead to vigorous oscillations which may be prone to positive feedback leading to oscillations with increasing amplitude during certain periods of time. The most extreme situation being in situations in which natural oscillations are obtained.
The oscillations may be directed in a forward-rear-direction or may be directed in a transverse direction, in a vertical direction or may be directed in a combination of a forward-reardirection and vertical direction in relation to the direction of movement of the tractor.
It is self-evident that oscillations may pose a hazard in relation to traffic safety, because transportation by a tractor of an oscillating implement may have the effect of making it difficult to control the tractor. Furthermore, in case the oscillation take place in a forward-rear direction a pulsating altering weight distribution on the four wheels of the tractor may be encountered, which may lead to an insufficient and/or pulsating weight distribution on the steering front wheels of the tractor during intervals of this pulsation.
Furthermore, carrying an oscillating implement in a tractor will impart great discomfort to the driver driving the tractor.
Finally, an oscillating implement may during transport thereof result in weakening and/or breaking of essential parts of the suspension system carrying the implement, thereby imparting further hazards in a transport situation on public roads.
WO 2013/053645 Al discloses a control system for controlling a hitch on a tractor. A hitch is disclosed which comprises a top link and two lower lift arms. A hydraulic cylinder is mounted between a fixed point on the tractor and a cam and that cam is pivotally connected, via a lift rod, to the lower lift arms. The hydraulic cylinder comprises a pressure sensor for sensing the pressure of the fluid within the cylinder. A control unit is configured for registering a change in fluid pressure within the hydraulic cylinder and for counteracting a movement causing such a change, thereby allowing damping of any oscillations in the lift arms.
As the pressure sensor in the system of WO 2013/053645 Al is arranged in such a way that it primarily senses movement of the lift arms in a vertical direction, a proper oscillation control is not provided.
Accordingly, there exists a need for improving transportation safety during transport of an agricultural implement.
It is an objective of the present invention to provide a solution to the above stated problem in order to better reduce oscillations between a tractor and an implement being carried thereby in a transport situation.
Brief description of the invention
This objective is attained with the present invention in its first, second, third, fourth, and fifth aspect, respectively.
Accordingly, the present invention relates in a first aspect to a coupling mechanism for damping oscillations between a tractor and an agricultural implement during transport thereof; said coupling mechanism comprising:
a top link, said top link is having a front end configured to be pivotally mounted on a rear end of a tractor; and said top link is having an opposite rear end configured to be pivotally mounted on a three point linkage of an agricultural implement;
wherein said top link is comprising a hydraulic actuator, said hydraulic actuator is having a front end and a rear end; said hydraulic actuator is being arranged between the front end and the rear end of said top link so as to allow altering the effective distance between the front end and the rear end of said top link;
a first lift arm and a second lift arm; said first lift arm and said second lift arm each having a front end configured to be pivotally mounted on a rear side of a tractor and an opposite rear end configured to be pivotally mounted on a three point linkage of an agricultural implement; said two rear ends of the first and second lift arm, at their points of mounting, are configured to share a common pivot axis;
wherein said first and second lift arms being adapted to be arranged below the top link;
characterized in that said coupling mechanism comprises a transducer; said transducer being configured to sense the load exerted between the front end and the rear end of said hydraulic actuator; and a hydraulic valve comprising one or more outlets and being configured to supply pressurized hydraulic fluid to said hydraulic actuator in response to instructions received by said hydraulic valve; and a control unit configured to receive a signal provided by said transducer and being configured to translate this signal into instructions to be supplied to said hydraulic valve according to a predetermined algorithm in order to suppress any oscillations encountered between a tractor and an agricultural implement during transport thereof.
In a second aspect the present invention relates to a tractor comprising a coupling mechanism according to the first aspect of the present invention.
In a third aspect the present invention relates to a use of a coupling mechanism according to the first aspect of the present invention or of a tractor according to the second aspect of the present invention for damping oscillations between a tractor and an agricultural implement during transport thereof.
In a fourth aspect the present invention relates to a kit for installation on a three point linkage for an agricultural implement for damping oscillations between a tractor and that agricultural implement during transport thereof, said kit comprising:
a top link, said top link configured to be mounted between a rear part of a tractor and a three point linkage of an agricultural implement; said top link is having a front end configured to be pivotally mounted on the rear end of said tractor; and said top link is having an opposite rear end configured to be pivotally mounted on an three point hitch of an agricultural implement;
wherein said top link is comprising a hydraulic actuator, said hydraulic actuator is having a front end and a rear end; said hydraulic actuator is being arranged between the front end and the rear end of said top link so as to allow altering of the effective distance between the front end and the rear end of said top link;
a transducer; said transducer being configured to sense the load exerted between the front end and the rear end of said hydraulic actuator;
a hydraulic valve comprising one or more outlets and being configured to supply pressurized hydraulic fluid to said hydraulic actuator in response to instructions received by said hydraulic valve;
a control unit configured to receive a signal provided by said transducer and being configured to translate this signal into instructions to be supplied to said hydraulic valve according to a predetermined algorithm in order to suppress any oscillations encountered between a tractor and an agricultural implement during transport thereof.
The present invention in its various aspects provides for improved comfort and safety in a transport situation in which an agricultural implement is transported by a tractor.
The improved safety is due to improved damping and control of any oscillations between a tractor and an agricultural implement during transport thereof.
Furthermore, the present invention allows minimizing unnecessary stress and wear of the mechanical and hydraulic system, and thereby minimizing the risk of material breakage.
Brief description of the figures
Fig.l illustrates schematically a prior art three point hitch for connecting a tractor to an agricultural implement.
Fig. 2 illustrates schematically coupling mechanism according to the present invention for damping oscillations between a tractor and an agricultural implement during transport thereof.
Fig. 3 illustrates schematically an embodiment of a control system for controlling the coupling mechanism of the present invention.
Detailed description of the invention
The present invention relates in a first aspect to a coupling mechanism for damping oscillations between a tractor and an agricultural implement during transport thereof; said coupling mechanism comprising:
a top link, said top link is having a front end configured to be pivotally mounted on a rear end of a tractor; and said top link is having an opposite rear end configured to be pivotally mounted on a three point linkage of an agricultural implement;
wherein said top link is comprising a hydraulic actuator, said hydraulic actuator is having a front end and a rear end; said hydraulic actuator is being arranged between the front end and the rear end of said top link so as to allow altering the effective distance between the front end and the rear end of said top link;
a first lift arm and a second lift arm; said first lift arm and said second lift arm each having a front end configured to be pivotally mounted on a rear side of a tractor and an opposite rear end configured to be pivotally mounted on a three point linkage of an agricultural implement; said two rear ends of the first and second lift arm, at their points of mounting, are configured to share a common pivot axis;
wherein said first and second lift arms being adapted to be arranged below the top link;
characterized in that said coupling mechanism comprises a transducer; said transducer being configured to sense the load exerted between the front end and the rear end of said hydraulic actuator; and a hydraulic valve comprising one or more outlets and being configured to supply pressurized hydraulic fluid to said hydraulic actuator in response to instructions received by said hydraulic valve; and a control unit configured to receive a signal provided by said transducer, and being configured to translate this signal into instructions to be supplied to said hydraulic valve according to a predetermined algorithm in order to suppress any oscillations encountered between a tractor and an agricultural implement during transport thereof.
In the present description the term “load” shall be construed to mean physical parameters encountered by the hydraulic actuator, selected from the group comprising: force or pressure acting between the actuator’s two ends, or displacement or stress taking place between the actuator’s two ends.
In one embodiment of the first aspect of the present invention, the coupling mechanism furthermore comprising one or more hydraulic hoses connecting the hydraulic valve to said hydraulic actuator.
In one embodiment of the first aspect of the present invention, the top link comprises length adjustment means, such as a turnbuckle for adjusting the effective length of said top link.
Such means allows for fine tuning the settings of the coupling mechanism.
In one embodiment of the first aspect of the present invention, the control unit comprises input means, such as an alphanumerical keyboard, for allowing a user to provide information of said predetermined algorithm to said control unit.
In one embodiment of the first aspect of the present invention the control unit comprises display means, such as a monitor or a user interface (UI), for displaying to a user the settings and/or status of the coupling mechanism or parts thereof.
In one embodiment of the first aspect of the present invention the input means and/or said display means is/are being in the form of a human machine interface (HMI).
Such means allows for controlling and communicating with the control unit.
In one embodiment of the first aspect of the present invention the hydraulic actuator is being a double acting hydraulic actuator.
In one embodiment of the first aspect of the present invention the hydraulic actuator comprises a pair of single acting hydraulic actuators.
In one embodiment of the first aspect of the present invention hydraulic actuator and said transducer are being an integral unit.
In one embodiment of the first aspect of the present invention the hydraulic actuator and said transducer are being separate units.
In one embodiment of the first aspect of the present invention the hydraulic actuator comprises a barrel, housing a hydraulic piston having a piston rod.
In one embodiment of the first aspect of the present invention, the coupling mechanism further comprises safety means for avoiding lowering of the coupling mechanism to more than a predefined extend in case of malfunction of the hydraulic system relating to the top link.
In one embodiment of this embodiment, the safety means comprise wires, chains or the like for connecting a rear end of the top link to the tractor itself; or said safety means comprise a maximum possible expansion of the hydraulic actuator of 300 mm or less, such as 250 mm or less, for example 200 mm or less, such as 150 mm or less, such as 100 mm or less or 50 mm or less; or said safety means comprise a hydraulic safety valve being integrated with said hydraulic actuator and being configured to block outlet of hydraulic liquid from said hydraulic actuator.
Such means add additional safety in a transport situation.
In one embodiment of the first aspect of the present invention, said algorithm comprises the following steps:
i) at time Ti, allow the transducer (44) to determine the degree of extension of the hydraulic actuator (38);
ii) at later time Ti,+ 6T allow the transducer (44) to determine the degree of extension of the hydraulic actuator (38);
iia) optionally repeat the steps i) and ii) a number N times until time T2;
iii) in a case the degree of extension of the hydraulic actuator (38) from time Ti to Τι,+ δΤ, or from time Tito T2, as the case may be, represents an expansion of the hydraulic actuator, instruct the hydraulic valve (46) to retract the hydraulic actuator (38) a distance Din;
iv) in a case the degree of extension of the hydraulic actuator (38) from time Ti to Τι,+ δΤ, or from time Tito T2, as the case may be, represents an retraction of the hydraulic actuator, instruct the hydraulic valve (46) to expand the hydraulic actuator (38) a distance Dex;
v) define a new time Ti and repeat steps i) - iv).
This algorithm allows control based on sensing of exact positions of the actuator.
In one embodiment of the first aspect of the present invention, said algorithm comprises the following steps:
i) at time T, allow the transducer (44) to determine the actual relative displacement between the front end (40) and the rear end (42) of the hydraulic actuator (38);
ii) in case the actual movement determined in step i) represents an expansion of the hydraulic actuator (38), instruct the hydraulic valve (46) to retract the hydraulic actuator a distance Din;
iii) in case the actual movement determined in step i) represents an retraction of the hydraulic actuator (38), instruct the hydraulic valve (46) to expand the hydraulic actuator a distance Dex;
iv) define a new time T;
v) repeat steps i) - iv).
This algorithm allows control based on sensing of exact movements of the actuator.
In one embodiment of the first aspect of the present invention, said algorithm comprises the following steps:
i) at time Ti, determine the direction and magnitude of the force or pressure sensed by the transducer (44);
ii) at later time Ti,+ 6T determine the direction and magnitude of the force or pressure sensed by the transducer (44);
iia) optionally repeat the steps i) and ii) a number N times until time T2;
iii) in a case the sum of direction and magnitude of the force or pressure sensed by the transducer (44) from time Ti to Τι+ δΤ, or from time Tito T2, as the case may be, represents an expansion of the hydraulic actuator, instruct the hydraulic valve (46) to retract the hydraulic actuator (38) a distance Din;
iv) in a case the sum of direction and magnitude of the force or pressure sensed by the transducer (44) from time Ti to Τι+ δΤ, or from time Tito T2, as the case may be, represents a retraction of the hydraulic actuator, instruct the hydraulic valve (46) to expand the hydraulic actuator (38) a distance Dex;
v) define a new time Ti and repeat steps i) - iv).
This algorithm allows control based on sensing of force or pressure by the transducer.
In one embodiment of the first aspect of the present invention, the time interval between repetition of the steps i) - v) is independently being selected from the ranges 0.001 - 5 sec; such as 0.005 - 4 sec, such as 0.01 - 2 sec, e.g. 0.05 - 1 sec, such as 0.1 - 0.5 sec.
In one embodiment of the first aspect of the present invention the distances Din and Dex independently being selected from the ranges 0.01 - 100 mm, such as 0.05 - 50 mm, for example 0.1-25 mm, such as 0.5 - 15 mm, for example 1.0-10 mm, such as 2 - 9 mm, for example 3-8 mm, such as 4 - 7 mm or 5 - 6 mm.
In one embodiment of the first aspect of the present invention the period of time δΤ, is being selected from the ranges 0.001 - 5 sec; such as 0.005 - 1 sec, such as 0.01 - 0.5 sec., for example 0.05 - 0.1 sec.
In one embodiment of the first aspect of the present invention the number N of repetition of steps of the algorithm is being selected from the range of 2 - 55, such as 5 - 50, for example 10 - 45, such as 15 - 40, e.g. 20 - 35 or 25 - 30.
The present invention relates in a second aspect to a tractor comprising a coupling mechanism according to the first aspect of the present invention.
The present invention relates in a third aspect to a use of a coupling mechanism according to the first aspect of the present invention or of a tractor according to the second aspect of the present invention for damping oscillations between a tractor and an agricultural implement during transport thereof.
In one embodiment of the third aspect of the present invention the agricultural implement being a plough, a harrow, a cultivator, a seeder, an irrigator or a spreader.
The present invention relates in a fourth aspect to a kit for installation on a three point linkage for an agricultural implement for damping oscillations between a tractor and that agricultural implement during transport thereof, said kit comprising:
a top link, said top link configured to be mounted between a rear part of a tractor and three point linkage of an agricultural implement; said top link is having a front end configured to be pivotally mounted on the rear end of said tractor; and said top link is having an opposite rear end configured to be pivotally mounted on an three point hitch of an agricultural implement;
wherein said top link is comprising a hydraulic actuator, said hydraulic actuator is having a front end and a rear end; said hydraulic actuator is being arranged between the front end and the rear end of said top link so as to allow altering of the effective distance between the front end and the rear end of said top link;
a transducer; said transducer being configured to sense the load exerted between the front end and the rear end of said hydraulic actuator;
a hydraulic valve comprising one or more outlets and being configured to supply pressurized hydraulic fluid to said hydraulic actuator in response to instructions received by said hydraulic valve;
a control unit configured to receive a signal provided by said transducer and being configured to translate this signal into instructions to be supplied to said hydraulic valve according to a predetermined algorithm in order to suppress any oscillations encountered between a tractor and an agricultural implement during transport thereof.
In one embodiment of the fourth aspect of the present invention, the kit further comprising one or more features as defined in respect of the first aspect.
Referring now in details to the drawings for the purpose of illustrating preferred embodiments of the present invention, Fig. 1 illustrates the principle of a conventional and traditional design of a lifting hitch on a tractor. The lifting hitch is arranged on a rear part of the tractor and allows lifting and lowering agricultural tools or agricultural implements to be liftmounted behind the tractor.
Fig. 1 is a plan view as seen sideways from between the rear wheels 26 of the tractor resting on the surface 32 of the soil 30. Fig. 1 shows a traditional and conventional coupling mechanism 24 in the form three point hitch of the rear end of a tractor. The hitch comprises a top link 2 having a front end 4 and a rear end 8. The front end 4 of the top link 2 is pivotally mounted at a point on the tractor itself. The opposite rear end 8 of the top link 2 is pivotally mounted on a three point linkage of an agricultural implement (not shown in fig. l).The implement may be an implement for cultivating soil or crops of for fertilizing or for irrigating the soil or may be any other type of agricultural implement.
Below the top link are arranged first lift arm 12 and a second lift arm 14. The front end 16 of the lift arm 12,14 is pivotally mounted on the tractor itself. The rear end 18 of the lift arm 12, 14 is pivotally mounted on the three point hitch of the agricultural implement.
The lift arms 12,14 are connected to a hydraulic actuator 28.
The top link 2 comprises a turnbuckle 22 for adjustment of the effective length thereof.
The height of the coupling mechanism may be adjusted in height by activating the hydraulic actuator 28 either upward or downward. The actuator of the hydraulic actuator 28 is brought about by using the hydraulic system of the tractor.
Hence, actuating the hydraulic actuator 28 affects movement of the lift arms 12,14. If an agricultural implement is connected to the three point hitch, the front end of the implement may be raised or lowered in this way.
As the prior art three point hitch provides a rather rigid suspension of an agricultural implement, the weight of such an implement during transport thereof, which takes place in a lifted configuration where no part of the implement touches the ground, will easily result in oscillation of the implement. Such an oscillation implies hazards in terms of traffic safety.
Fig. 2 illustrates schematically a coupling mechanism according to the first aspect of the present invention for damping oscillations between a tractor and an agricultural implement during transport thereof.
Fig. 2 is a plan view as seen sideways from between the rear wheels of the tractor. The coupling mechanism 100 of fig. 2 comprises a top link 2 having a front end 4 and a rear end 8. The front end 4 of the top link 2 is pivotally mounted at a point on the tractor itself. The opposite rear end 8 of the top link 2 is pivotally mounted on an three point linkage 10 of an agricultural implement (not shown in fig. 2).
Below the top link are arranged first lift arm 12 and a second lift arm 14. The front end 16 of the lift arm 12,14 is pivotally mounted on the tractor itself. The rear end 18 of the lift arm 12, 14 is pivotally mounted on the three point linkage 10 of an agricultural implement.
The lift arms 12,14 are connected to a hydraulic actuator 28
In addition to the prior art three point hitch illustrated in fig. 1, the coupling mechanism 100 illustrated in fig. 2 further comprises a hydraulic actuator 38 which is being part of the top link 2. The hydraulic actuator 38 is having a first (front) end 40 and a second (rear) end 42.
The hydraulic actuator 38 is being coupled to a transducer 44 which is configured to sense physical parameters of the hydraulic actuator 38, such as force or pressure or load acting between the actuator’s two ends, or such as displacement or stress taking place between the actuator’s two ends.
By sensing such physical parameters by the transducer 44, it will be possible to use the hydraulic actuator 38 for counteracting any oscillations taking part between the tractor and an implement being lift-mounted by said tractor in a transport situation thereof.
Accordingly, in the coupling mechanism according to the first aspect of the present invention, the transducer 44 and the actuator 38 will be configured in a feed-back mode.
This is further illustrated in fig. 3.
Fig. 3 schematically illustrates an embodiment of the means for controlling the coupling mechanism 100 of the coupling mechanism according to the present invention.
Fig. 3 shows the hydraulic valve 46 comprising an inlet 64 and outlet 64’ for pressurized hydraulic fluid from a hydraulic pump or reservoir 62. The hydraulic pump or reservoir may preferably be a hydraulic outlet of the hydraulic system of a tractor, i.e. the tractor’s hydraulic supply system. The hydraulic valve 46 comprises two outlets 48 for supplying pressurized hydraulic fluid to a hydraulic actuator 38 intended to be part of a top link for a coupling mechanism of the present invention for carrying an agricultural implement to be towed or pulled or carried by a tractor.
The hydraulic valve 46 in its interior comprises one or more individual valves for controlling the flow of hydraulic fluid from the inlet 64 for pressurized hydraulic fluid to the hydraulic actuator 38 via hoses 56.
These valves are controlled by instructions 50 being sent from the control unit 52.
The control unit in turn comprises means for receiving a signal 54 from a transducer 44. The transducer is configured to be able to sense various parameters of the hydraulic actuator 38. Such parameters may relate to pressure or force acting between the actuator’s two ends, or displacement or stress taking place between the actuator’s two ends.
The control unit 52 is connected to input means 58 in the form of an alphanumerical keyboard for allowing a user to provide instructions to the control unit with the view to control said hydraulic valve 46.
Furthermore, the control unit 52 is connected to display means 60, such as a monitor or a user interface (UI), for displaying to a user the settings and/or status of the coupling mechanism or parts thereof.
The input means 58 and/or the display means 60 may be in the form of an HMI (Human Machine Interface).
Hence, using the keyboard 58 and the monitor 60, optionally in the form of an HMI, it will be possible to control the working mode of hydraulic valve and the hydraulic actuator 26 on the basis of the signal 54 provided by the transducer.
The controlling of the control unit 32 may relate to loading and activating one or more algorithms which a user wishes the control unit to follow in the control of the hydraulic actuator.
The control valve 46, the hydraulic actuator 38, the transducer 44 and also the control unit 52 5 are per se individually available at manufacturers and suppliers of hydraulic equipment and control units.
The present invention relates in a fifth aspect also to a kit. This kit will accordingly be well suited as an add-on to existing coupling mechanisms of tractors.
List of reference numerals
2 Top link
4 Front end of top link
6 Rear end of tractor
8 Rear end of top link
10 Three point linkage of agricultural implement
12 First lift arm
14 Second lift arm
16 Front end of lift arm
18 Rear end of lift arm
20 Common pivot axis of two lift arms
22 Turnbuckle
24 Three point hitch of tractor
26 Rear wheel of tractor
28 Hydraulic lifting cylinder
30 Soil
32 Surface of soil
38 Hydraulic actuator
40 Front end of hydraulic actuator
42 Rear end of hydraulic actuator
44 Transducer
46 Hydraulic valve
48 Outlet for pressurized hydraulic fluid
50 Instruction to hydraulic valve
52 Control unit
54 Signal
56 Hydraulic hose
Input means
Display means
Hydraulic pump or reservoir for pressurized hydraulic fluid
Inlet for pressurized hydraulic fluid
64’ Outlet for pressurized hydraulic fluid
100 Coupling mechanism

Claims (25)

PatentkravPatent claims 1. Sammenkoblingsmekanisme (100) til dæmpning af svingninger mellem en traktor og et landbrugsmæssigt redskab under transport deraf, hvor sammenkoblingsmekanismen omfatter:A coupling mechanism (100) for damping oscillations between a tractor and an agricultural implement during its transport, the coupling mechanism comprising: et toplink (2), hvor toplinket omfatter en frontende (4), som er konfigureret til at blive drejeligt monteret ved en bagende (6) af en traktor; og idet toplinket omfatter en modsat, bageste ende (8), som er konfigureret til at blive drejeligt monteret på en trepunkskobling (10) på et landbrugsmæssigt redskab;a top link (2), the top link comprising a front end (4) configured to be rotatably mounted at a rear end (6) of a tractor; and the top link comprising an opposite, rear end (8) configured to be rotatably mounted on a three-point coupling (10) on an agricultural implement; hvor toplinket omfatter en hydraulisk aktuator (38), hvor den hydrauliske aktuator omfatter en forreste ende (40) og en bageste ende (42); hvor den hydrauliske aktuator er arrangeret mellem frontenden og den bageste ende af toplinket således, at det gøres muligt at ændre den effektive afstand mellem frontenden og den bageste ende af toplinket;the top link comprising a hydraulic actuator (38), the hydraulic actuator comprising a front end (40) and a rear end (42); wherein the hydraulic actuator is arranged between the front end and the rear end of the top link so as to make it possible to change the effective distance between the front end and the rear end of the top link; en første løftearm (12) og en anden løftearm (14); idet den første løftearm og den anden løftearm (12,14) hver omfatter en forende (16), som er konfigureret til at være drejeligt monteret ved en bagende af en traktor, og en modsat, bageste ende (18), som er konfigureret til at være drejeligt monteret på en trepunktskobling på et landbrugsmæssigt redskab; idet de to bageste ender af henholdsvis den første og den anden løftearm, ved deres monteringspunkt, er konfigureret til at have en fælles akse (20);a first lifting arm (12) and a second lifting arm (14); the first lifting arm and the second lifting arm (12, 14) each comprising a front end (16) configured to be rotatably mounted at a rear end of a tractor, and an opposite rear end (18) configured for to be rotatably mounted on a three-point coupling on an agricultural implement; the two rear ends of the first and second lifting arms, respectively, at their point of mounting, being configured to have a common axis (20); hvor den første og anden løftearm (12,14) er tilpasset at skulle arrangeres under toplinket (2) kendetegnet ved, at sammenkoblingsmekanismen omfatter en transducer (44); idet transduceren er konfigureret til at føle belastningen, som udøves mellem den forreste ende (40) og den bageste ende (42) af den hydrauliske aktuator; og en hydraulisk ventil (46) omfattende en eller flere udløb og som er konfigureret til at levere hydraulisk fluid under tryk til den hydrauliske aktuator som respons på instruktioner (50), der modtages af den hydrauliske ventil; og en styringsenhed (52), som er konfigureret til at modtage et signal (54), der tilvejebringes af transduceren, og som er konfigureret til at oversætte dette signal til instruktioner (50) til levering til den hydrauliske ventil ifølge en forudbestemt algoritme med henblik på at undertrykke svingninger, som forekommer mellem traktoren og det landbrugsmæssige redskab under transport deraf.wherein the first and second lifting arms (12, 14) are adapted to be arranged below the top link (2), characterized in that the coupling mechanism comprises a transducer (44); the transducer configured to sense the load exerted between the front end (40) and the rear end (42) of the hydraulic actuator; and a hydraulic valve (46) comprising one or more outlets and configured to supply hydraulic fluid under pressure to the hydraulic actuator in response to instructions (50) received by the hydraulic valve; and a control unit (52) configured to receive a signal (54) provided by the transducer and configured to translate this signal into instructions (50) for delivery to the hydraulic valve according to a predetermined algorithm for to suppress oscillations which occur between the tractor and the agricultural implement during its transport. 2. Sammenkoblingsmekanisme (100) ifølge krav 1 yderligere omfattende en eller flere hydrauliske slanger (56), som forbinder den hydrauliske ventil (46) med den hydrauliske aktuator (38).The coupling mechanism (100) of claim 1 further comprising one or more hydraulic hoses (56) connecting the hydraulic valve (46) to the hydraulic actuator (38). 3. Sammenkoblingsmekanisme (100) ifølge krav 1 eller 2, hvor toplinket omfatter længdeindstillingsmidler (22), såsom en strammeskrue til indstilling af den effektive længde af toplinket.A coupling mechanism (100) according to claim 1 or 2, wherein the top link comprises length adjusting means (22), such as a tightening screw for adjusting the effective length of the top link. 4. Sammenkoblingsmekanisme (100) ifølge et hvilket som helst af kravene 1-3, hvor styringsenheden (52) omfatter inputmidler (58), såsom et alfanumerisk tastatur, for at muliggøre at en bruger kan forsyne styringsenheden (52) med information angående den forudbestemte algoritme.An interconnection mechanism (100) according to any one of claims 1-3, wherein the control unit (52) comprises input means (58), such as an alphanumeric keyboard, for enabling a user to provide the control unit (52) with information regarding the predetermined algorithm. 5. Sammenkoblingsmekanisme (100) ifølge et hvilket som helst af kravene 1-4, hvor styringsenheden (52) omfatter displaymidler (60), såsom en monitor eller et brugerinterface (UI) til fremvisning af indstillinger og/eller status for sammenkoblingsmekanismen eller dele deraf for en bruger.An interconnection mechanism (100) according to any one of claims 1-4, wherein the control unit (52) comprises display means (60), such as a monitor or a user interface (UI) for displaying settings and / or status of the interconnection mechanism or parts thereof. for a user. 6. Sammenkoblingsmekanisme (100) ifølge krav 4 eller 5, hvor inputmidlerne (58) og/eller displaymidleme (60) er i form af et humant maskine-interface (HMI).The coupling mechanism (100) according to claim 4 or 5, wherein the input means (58) and / or the display means (60) are in the form of a human machine interface (HMI). 7. Sammenkoblingsmekanisme (100) ifølge et hvilket som helst af kravene 1-6, hvor den hydrauliske aktuator (38) er en dobbeltvirkende hydraulisk aktuator.A coupling mechanism (100) according to any one of claims 1-6, wherein the hydraulic actuator (38) is a double acting hydraulic actuator. 8. Sammenkoblingsmekanisme (100) ifølge et hvilket som helst af kravene 1-6, hvor den hydrauliske aktuator (38) omfatter et par af enkeltvirkende hydrauliske aktuatorer.A coupling mechanism (100) according to any one of claims 1-6, wherein the hydraulic actuator (38) comprises a pair of single acting hydraulic actuators. 9. Sammenkoblingsmekanisme (100) ifølge et hvilket som helst af kravene 1-8, hvor den hydrauliske aktuator (38) og transduceren (44) er en integreret enhed.An interconnection mechanism (100) according to any one of claims 1-8, wherein the hydraulic actuator (38) and the transducer (44) are an integrated unit. 10. Sammenkoblingsmekanisme (100) ifølge et hvilket som helst af kravene 1-8, hvor den hydrauliske aktuator (38) og transduceren (44) er separate enheder.An interconnection mechanism (100) according to any one of claims 1-8, wherein the hydraulic actuator (38) and the transducer (44) are separate units. 11. Sammenkoblingsmekanisme (100) ifølge et hvilket som helst af kravene 1 - 10, hvor den hydrauliske aktuator (38) omfatter et løb, som huser et stempel med en stempelstang.A coupling mechanism (100) according to any one of claims 1 to 10, wherein the hydraulic actuator (38) comprises a barrel which houses a piston with a piston rod. 12. Sammenkoblingsmekanisme (100) ifølge et hvilket som helst af kravene 1-11 yderligere omfattende sikkerhedsmidler til forhindring af sænkning af sammenkoblingsmekanismen til mere en forudbestemt grad i tilfælde af driftsfejl for det hydrauliske system vedrørende toplinket.A coupling mechanism (100) according to any one of claims 1-11 further comprising safety means for preventing lowering of the coupling mechanism to a more predetermined degree in the event of a malfunction of the hydraulic system relating to the top link. 13. Sammenkoblingsmekanisme (100) ifølge krav 12, hvor sikkerhedsmidlerne omfatter wirer, kæder eller lignende til forbindelse af en bageste ende af toplinket til selve traktoren; eller hvor sikkerhedsmidlerne omfatter en maksimal mulig udvidelse af den hydrauliske aktuator på 300 mm eller mindre, såsom 250 mm eller mindre, for eksempel 200 mm eller mindre, såsom 150 mm eller mindre, såsom 100 mm eller mindre, eller 50 mm eller mindre; eller hvor sikkerhedsmidlerne omfatter en hydraulisk sikkerhedsventil, som er integreret med den hydrauliske aktuator og som er konfigureret til at blokere udløb af hydraulisk væske fra den hydrauliske aktuator.The coupling mechanism (100) of claim 12, wherein the safety means comprises wires, chains or the like for connecting a rear end of the top link to the tractor itself; or wherein the safety means comprise a maximum possible extension of the hydraulic actuator of 300 mm or less, such as 250 mm or less, for example 200 mm or less, such as 150 mm or less, such as 100 mm or less, or 50 mm or less; or wherein the safety means comprises a hydraulic safety valve which is integrated with the hydraulic actuator and which is configured to block outflow of hydraulic fluid from the hydraulic actuator. 14. Sammenkoblingsmekanisme (100) ifølge et hvilket som helst af kravene 1 - 13, hvor algoritmen omfatter de følgende trin:An interconnection mechanism (100) according to any one of claims 1 to 13, wherein the algorithm comprises the following steps: i) på tidspunkt Ti, muliggør for transduceren (44) at bestemme graden af udstrækning af den hydrauliske aktuator (38);i) at time Ti, enables the transducer (44) to determine the degree of extension of the hydraulic actuator (38); ii) på senere tidspunkt T i + 6T, muliggør for transduceren (44) at bestemme graden af udstrækning af den hydrauliske aktuator (38);ii) at a later time T i + 6T, enables the transducer (44) to determine the degree of extension of the hydraulic actuator (38); iia) gentag eventuelt trinnene i) og ii) et antal N gange indtil tidspunkt T2;iia) if necessary, repeat steps i) and ii) a number of N times until time T2; iii) i tilfælde af, at graden af udstrækning af den hydrauliske aktuator (38) fra tid Ti til Ti+ δΤ, eller fra tid Ti til T2, som det nu er aktuelt, repræsenterer en udvidelse af den hydrauliske aktuator, instruer den hydrauliske ventil (46) at sammentrække den hydrauliske aktuator (38) en afstand Din;(iii) in the event that the degree of extension of the hydraulic actuator (38) from time Ti to Ti + δΤ, or from time Ti to T2, as is currently the case, represents an extension of the hydraulic actuator, instruct the hydraulic valve ( 46) contracting the hydraulic actuator (38) a distance Di n ; iv) i tilfælde af, at graden af udstrækning af den hydrauliske aktuator (38) fra tid Ti til Τι+ δΤ, eller fra tid Ti til T2, som det nu er aktuelt, repræsenterer en sammentrækning af den hydrauliske aktuator, instruer den hydrauliske ventil (46) at udvide den hydrauliske aktuator (38) en afstand Dex;(iv) in the event that the degree of extension of the hydraulic actuator (38) from time Ti to Τι + δΤ, or from time Ti to T2, as is currently the case, represents a contraction of the hydraulic actuator, instruct the hydraulic valve; (46) extending the hydraulic actuator (38) a distance D ex ; v) definer en ny tid Ti og gentag trin i) - iv).v) define a new time Ti and repeat steps i) - iv). 15.Sammenkoblingsmekanisme (100) ifølge et hvilket som helst af kravene 1 - 13, hvor algoritmen omfatter de følgende trin:An interconnection mechanism (100) according to any one of claims 1 to 13, wherein the algorithm comprises the following steps: i) på tidspunkt T, muliggør for transduceren (44) at bestemme den aktuelle relative forskydning mellem den forreste ende (40) og den bageste ende (42) f den hydrauliske aktuator (38);i) at time T, enables the transducer (44) to determine the actual relative displacement between the front end (40) and the rear end (42) of the hydraulic actuator (38); ii) i tilfælde af, at bevægelsen, som bestemmes i trin i), repræsenterer en udvidelse af den hydrauliske aktuator (38), instruer den hydrauliske ventil (46) at sammentrække den hydrauliske aktuator (38) en afstand Din;ii) in case the movement determined in step i) represents an extension of the hydraulic actuator (38), instruct the hydraulic valve (46) to contract the hydraulic actuator (38) a distance Di n ; iii) ) i tilfælde af, at bevægelsen, som bestemmes i trin i), repræsenterer en sammentrækning af den hydrauliske aktuator (38), instruer den hydrauliske ventil (46) at udvide den hydrauliske aktuator en afstand Dex;iii)) in the event that the movement determined in step i) represents a contraction of the hydraulic actuator (38), instruct the hydraulic valve (46) to extend the hydraulic actuator a distance D ex ; iv) definer en ny tid T;iv) define a new time T; v) gentag trin i) - iv).v) repeat steps i) - iv). 16. Sammenkoblingsmekanisme (100) ifølge et hvilket som helst af kravene 1 - 13, hvor algoritmen omfatter de følgende trin:An interconnection mechanism (100) according to any one of claims 1 to 13, wherein the algorithm comprises the following steps: i) på tidspunkt Ti, bestem retningen og størrelsen på kraften eller trykket, der føles af transduceren (44);i) at time Ti, determine the direction and magnitude of the force or pressure felt by the transducer (44); ii) på senere tidspunkt T i + 6T, bestem retningen og størrelsen af kraften eller trykket, der føles af transduceren (44);ii) at a later time T i + 6T, determine the direction and magnitude of the force or pressure felt by the transducer (44); iia) gentag eventuelt trin i) og ii) et antal N gange, indtil tidspunkt T2;iia) repeat steps i) and ii) if necessary a number of N times until time T2; iii) i tilfælde af, at summen af retningen og størrelsen af kraften og trykket, som føles af transduceren (44) fra tidspunkt Ti til Ti + δΤ, eller fra tidspunkt Ti til T2, som det nu er aktuelt, repræsenterer en udvidelse af den hydrauliske aktuator, instruer den hydrauliske ventil (46) at sammentrække den hydrauliske aktuator (38) en afstand Din;iii) in the case that the sum of the direction and magnitude of the force and pressure felt by the transducer (44) from time Ti to Ti + δΤ, or from time Ti to T2, as it is now, represents an extension of the hydraulic actuator, instruct the hydraulic valve (46) to contract the hydraulic actuator (38) a distance Di n ; iv) i tilfælde af, at summen af retningen og størrelsen af kraften og trykket, som føles af transduceren (44) fra tidspunkt Ti til Ti + δΤ, eller fra tidspunkt Ti til T2, som det nu er aktuelt, repræsenterer en sammentrækning af den hydrauliske aktuator, instruer den hydrauliske ventil (46) at udvide den hydrauliske aktuator (38) en afstand Dex;(iv) in the event that the sum of the direction and magnitude of the force and pressure felt by the transducer (44) from time Ti to Ti + δΤ, or from time Ti to T2, as is currently the case, represent a contraction of the hydraulic actuator, instruct the hydraulic valve (46) to extend the hydraulic actuator (38) a distance D ex ; v) definer et nyt tidspunkt Ti og gentag trin i) - iv).v) define a new time Ti and repeat steps i) - iv). 17. Sammenkoblingsmekanisme (100) ifølge et hvilket som helst af kravene 14 - 16, hvor tidsintervallet mellem gentagelse af trinnene i) - v) uafhængigt er valgt i intervallerne 0,001 5 sek.; såsom 0,005 - 4 sek., såsom 0,01 - 2 sek., f.eks. 0,05 - 1 sek., såsom 0,1 - 0,5 sek.An interconnection mechanism (100) according to any one of claims 14 - 16, wherein the time interval between repeating steps i) - v) is independently selected in the intervals 0.001 5 sec .; such as 0.005 - 4 sec., such as 0.01 - 2 sec., e.g. 0.05 - 1 sec., Such as 0.1 - 0.5 sec. 18. Sammenkoblingsmekanisme (100) ifølge et hvilket som helst af kravene 14 - 17, hvor afstandene Din og Dex uafhængigt er valgt i intervallerne 0,01 - 100 mm, såsom 0,05 - 50 mm, for eksempel 0,1-25 mm, såsom 0,5 - 15 mm, for eksempel 1,0 - 10 mm, såsom 2-9 mm, for eksempel 3-8 mm, såsom 4-7 mm eller 5-6 mm.Coupling mechanism (100) according to any one of claims 14 - 17, wherein the distances Din and D ex are independently selected in the intervals 0.01 - 100 mm, such as 0.05 - 50 mm, for example 0.1-25 mm, such as 0.5 - 15 mm, for example 1.0 - 10 mm, such as 2-9 mm, for example 3-8 mm, such as 4-7 mm or 5-6 mm. 19. Sammenkoblingsmekanisme (100) ifølge krav 14 eller 16, hvor tidsintervallet δΤ er valgt i intervallerne 0,001 - 5 sek., såsom 0,005 - 1 sek., såsom 0,01 - 0,5 sek., for eksempel 0,05 0,1 sek.An interconnection mechanism (100) according to claim 14 or 16, wherein the time interval δΤ is selected in the intervals 0.001 - 5 sec., Such as 0.005 - 1 sec., Such as 0.01 - 0.5 sec., For example 0.05 0, 1 sec. 20. Sammenkoblingsmekanisme (100) ifølge krav 14 eller 16, hvor N er valgt i intervallet fra 2 - 55, såsom 5 - 50, for eksempel 10 - 45, såsom 15 - 40, f.eks. 20 - 35 eller 25 - 30.The coupling mechanism (100) according to claim 14 or 16, wherein N is selected in the range of 2 - 55, such as 5 - 50, for example 10 - 45, such as 15 - 40, e.g. 20 - 35 or 25 - 30. 21. Traktor (300) omfattende en sammenkoblingsmekanisme (100) ifølge et hvilket som helst af kravene 1-13.A tractor (300) comprising a coupling mechanism (100) according to any one of claims 1-13. 22. Anvendelse af en sammenkoblingsmekanisme (100) ifølge et hvilket som helst af kravene 1-20 eller af en traktor (300) ifølge krav 21 til dæmpning af svingninger mellem en traktor og et landbrugsmæssigt redskab under transport deraf.Use of a coupling mechanism (100) according to any one of claims 1-20 or of a tractor (300) according to claim 21 for damping oscillations between a tractor and an agricultural implement during transport thereof. 23. Anvendelse ifølge krav 22, hvor det landbrugsmæssigt redskab er en plov, en harve, en kultivator, en såmaskine en sprinkler eller en spreder.Use according to claim 22, wherein the agricultural implement is a plow, a harrow, a cultivator, a seed drill, a sprinkler or a spreader. 24. Kit til installation på en trepunktskobling til et landbrugsmæssigt redskab (300) til dæmpning af svingninger mellem en traktor og et landbrugsmæssigt redskab under transport deraf, idet kittet omfatter:Kit for installation on a three-point coupling to an agricultural implement (300) for damping oscillations between a tractor and an agricultural implement during its transport, the kit comprising: et toplink (2), hvor toplinket er konfigureret til at blive monteret mellem en bagende (6) af en traktor og en trepunktskobling (10) af et landbrugsmæssigt redskab; idet toplinket omfatter en frontende (4), som er konfigureret til at blive drejeligt monteret ved en bagende af traktoren; og idet toplinket omfatter en modsat, bageste ende (8), som er konfigureret til at blive drejeligt monteret på en trepunkskobling (10) på et landbrugsmæssigt redskab;a top link (2), the top link being configured to be mounted between a rear end (6) of a tractor and a three-point coupling (10) of an agricultural implement; the top link comprising a front end (4) configured to be rotatably mounted at a rear end of the tractor; and the top link comprising an opposite, rear end (8) configured to be rotatably mounted on a three-point coupling (10) on an agricultural implement; hvor toplinket (2) omfatter en hydraulisk aktuator (38), hvor den hydrauliske aktuator omfatter en forreste ende (40) og en bageste ende (42); hvor den hydrauliske aktuator er arrangeret mellem frontenden (4) og den bageste ende (8) af toplinket således, at det gøres muligt at ændre den effektive afstand mellem frontenden og den bageste ende af toplinket;wherein the top link (2) comprises a hydraulic actuator (38), the hydraulic actuator comprising a front end (40) and a rear end (42); wherein the hydraulic actuator is arranged between the front end (4) and the rear end (8) of the top link so as to make it possible to change the effective distance between the front end and the rear end of the top link; en transducer (44); idet transduceren er konfigureret til at føle belastningen, som udøves mellem den forreste ende (40) og den bageste ende (42) af den hydrauliske aktuator (38); og en hydraulisk ventil (46) omfattende en eller flere udløb (48) og som er konfigureret til at levere hydraulisk fluid under tryk til den hydrauliske aktuator (38) som respons på instruktioner (50), der modtages af den hydrauliske ventil;a transducer (44); the transducer being configured to sense the load exerted between the front end (40) and the rear end (42) of the hydraulic actuator (38); and a hydraulic valve (46) comprising one or more outlets (48) and configured to supply hydraulic fluid under pressure to the hydraulic actuator (38) in response to instructions (50) received by the hydraulic valve; en styringsenhed (52), som er konfigureret til at modtage et signal (54), der tilvejebringes af transduceren (44), og som er konfigureret til at oversætte dette signal til instruktioner (50), som leveres til den hydrauliske ventil (46) ifølge en forudbestemt algoritme med henblik på at undertrykke svingninger, som forekommer mellem traktoren og det landbrugsmæssige redskab under transport deraf.a control unit (52) configured to receive a signal (54) provided by the transducer (44) and configured to translate this signal into instructions (50) provided to the hydraulic valve (46); according to a predetermined algorithm for suppressing oscillations which occur between the tractor and the agricultural implement during its transport. 25. Kit ifølge krav 24 yderligere omfattende en eller flere features som defineret i et hvilket som helst af kravene 1 - 20.The kit of claim 24 further comprising one or more features as defined in any one of claims 1 - 20.
Figure DK179447B1_C0001
Figure DK179447B1_C0001
Figure DK179447B1_C0002
Figure DK179447B1_C0002
Figure DK179447B1_C0003
Figure DK179447B1_C0003
CC eb pHCC eb pH
DKPA201500814A 2015-12-17 2015-12-17 A coupling mechanism and use of a coupling mechanism for damping oscillations between a tractor and an agricultural implement during transport thereof DK179447B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DKPA201500814A DK179447B1 (en) 2015-12-17 2015-12-17 A coupling mechanism and use of a coupling mechanism for damping oscillations between a tractor and an agricultural implement during transport thereof
CA3008044A CA3008044A1 (en) 2015-12-17 2016-12-16 A system for damping oscillations between a tractor and an agricultural implement during transport thereof
PCT/DK2016/050438 WO2017101952A1 (en) 2015-12-17 2016-12-16 A system for damping oscillations between a tractor and an agricultural implement during transport thereof
EP16822887.2A EP3389352A1 (en) 2015-12-17 2016-12-16 A system for damping oscillations between a tractor and an agricultural implement during transport thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DKPA201500814A DK179447B1 (en) 2015-12-17 2015-12-17 A coupling mechanism and use of a coupling mechanism for damping oscillations between a tractor and an agricultural implement during transport thereof

Publications (2)

Publication Number Publication Date
DK201500814A1 DK201500814A1 (en) 2017-07-03
DK179447B1 true DK179447B1 (en) 2018-10-11

Family

ID=59055849

Family Applications (1)

Application Number Title Priority Date Filing Date
DKPA201500814A DK179447B1 (en) 2015-12-17 2015-12-17 A coupling mechanism and use of a coupling mechanism for damping oscillations between a tractor and an agricultural implement during transport thereof

Country Status (4)

Country Link
EP (1) EP3389352A1 (en)
CA (1) CA3008044A1 (en)
DK (1) DK179447B1 (en)
WO (1) WO2017101952A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3709785B1 (en) * 2017-11-15 2022-09-14 Mita Oleodinamica S.P.A. Device for damping the inertial stresses
CN114793515A (en) * 2022-02-18 2022-07-29 潍柴雷沃重工股份有限公司 Vibration reduction method, device, system, equipment and medium of tractor and tractor

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2856583C2 (en) * 1978-12-22 1985-02-07 Alfred Dipl.-Ing. 1000 Berlin Ulrich Three-point hitch for a tractor with a rear and / or front attachment
DE3446811A1 (en) * 1984-12-21 1986-07-03 Robert Bosch Gmbh, 7000 Stuttgart Traction machine which can be used in agriculture and which has a coupled working appliance
DE3942057A1 (en) * 1989-12-20 1991-06-27 Bosch Gmbh Robert AGRICULTURAL TRACTOR WITH A SYSTEM FOR DYNAMIC STABILIZATION OF ITS MOVEMENTS
FR2659906A1 (en) * 1990-03-26 1991-09-27 Barrieu Christian Oleopnuematic system (replacing the upper link of a "three-point" hitch) which can be used on agricultural tractors
US5884204A (en) * 1996-04-16 1999-03-16 Case Corporation Active roadability control for work vehicles
DE19622762A1 (en) * 1996-06-07 1997-12-11 Rexroth Mannesmann Gmbh Commercial vehicle, especially for agriculture
DE102005003065A1 (en) * 2005-01-22 2006-08-03 Günter Till GmbH & Co. KG Vibration controller for agricultural and construction machines has electronically accessed hydraulic valve, which shifts towards vibrating assembly through repeated switching of oil flow
DE102007040345A1 (en) * 2007-07-18 2009-01-22 Robert Bosch Gmbh Method for controlling a hoist and hoist
DE102007048697A1 (en) * 2007-10-11 2009-04-16 Deere & Company, Moline Hydraulic lifting device
GB201117724D0 (en) * 2011-10-13 2011-11-23 Agco Int Gmbh Hitch control system
GB201322859D0 (en) * 2013-12-23 2014-02-12 Agco Int Gmbh Vehicle control system

Also Published As

Publication number Publication date
WO2017101952A1 (en) 2017-06-22
DK201500814A1 (en) 2017-07-03
CA3008044A1 (en) 2017-06-22
EP3389352A1 (en) 2018-10-24

Similar Documents

Publication Publication Date Title
US10813266B2 (en) System and method for leveling an agricultural implement
RU2739383C1 (en) Agricultural tool and single row seeders, including two-way systems, methods and devices
US10412878B2 (en) Down pressure compensation for tillage baskets traveling at varying speeds
US9775278B2 (en) Rolling basket down pressure adjustment system
US10412873B2 (en) Soil cultivation implement having a device for reconsolidation
US8662195B2 (en) Apparatus for adjusting tension and positioning of a harrowing chain
US20110284253A1 (en) Disc cultivator
US20180220574A1 (en) Gauge wheel and hitch force control
US11219153B2 (en) System and method for monitoring shank float
EP3707981B1 (en) Improvements in or relating to agricultural implements for cultivating agricultural work areas
US9253938B2 (en) Leveling and tillage implement
DK179447B1 (en) A coupling mechanism and use of a coupling mechanism for damping oscillations between a tractor and an agricultural implement during transport thereof
US4595064A (en) Drag attachment for a disk
US4002208A (en) Plowing and levee cutting device
CN207911270U (en) The laterally adjustable hoe of hillside
RU170938U1 (en) CULTIVATOR
RU93201U1 (en) CULTIVATOR
JP3529116B2 (en) Work machine that forms a uniform soil layer in paddy fields
US11357155B2 (en) Agricultural implement
AU2012200618B2 (en) Improved Seed Drill
EP3837939A1 (en) Method for controlling agricultural machinery
JP3769599B2 (en) Field formation method
US1977422A (en) Cultivator beam structure
RU90289U1 (en) TRAILED CULTIVATOR
JP2000139103A (en) Formation of farm field

Legal Events

Date Code Title Description
PME Patent granted

Effective date: 20181011