DK177037B1 - Cooling compressor with system for minimizing oil draft - Google Patents

Cooling compressor with system for minimizing oil draft Download PDF

Info

Publication number
DK177037B1
DK177037B1 DKPA200801425A DKPA200801425A DK177037B1 DK 177037 B1 DK177037 B1 DK 177037B1 DK PA200801425 A DKPA200801425 A DK PA200801425A DK PA200801425 A DKPA200801425 A DK PA200801425A DK 177037 B1 DK177037 B1 DK 177037B1
Authority
DK
Denmark
Prior art keywords
oil
compressor
gas
suction
pressure
Prior art date
Application number
DKPA200801425A
Other languages
Danish (da)
Inventor
Per Skaerbaek Nielsen
Original Assignee
Cooling Consult V Per Skaerbaek Nielsen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=41261392&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=DK177037(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Cooling Consult V Per Skaerbaek Nielsen filed Critical Cooling Consult V Per Skaerbaek Nielsen
Priority to DKPA200801425A priority Critical patent/DK177037B1/en
Priority to EP09736805A priority patent/EP2344766A1/en
Priority to PCT/DK2009/000219 priority patent/WO2010040355A1/en
Publication of DK200801425A publication Critical patent/DK200801425A/en
Application granted granted Critical
Publication of DK177037B1 publication Critical patent/DK177037B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/04Measures to avoid lubricant contaminating the pumped fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/16Filtration; Moisture separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication

Abstract

Ved opfindelsen tilvejebringes et system der udskiller oliedråber fra kompressorens trykudligningsgasstrem mellem kompressorens krumtaphus og sugeside, således at kompressorens olieudkast reduceres. Den derved udskilte olie drænes til kompressorens oliesurnp. I en foretrukken udførelsesform udmunder systemets drænledning under oliesumpens olieniveau, således at der ikke ad den vej suges trykudligningsgas ind i systemets væskeudskilnings område. Systemet er samtidig i stand til at dræne kølemiddel og olie, der transporteres med sugegassen til kompressorens sugeside, til kompressorens oliesuxnp.The invention provides a system that separates oil droplets from the compressor pressure equalizing gas stream between the compressor crankcase and suction side so that the compressor oil ejection is reduced. The oil thus separated is drained to the oil sump of the compressor. In a preferred embodiment, the drain line of the system empties below the oil level of the oil sump, so that in that way no pressure equalizing gas is sucked into the liquid separation area of the system. At the same time, the system is capable of draining refrigerant and oil transported with the suction gas to the suction side of the compressor to the oil suction of the compressor.

Description

DK 177037 B1 Kølekompressor med system til minimering af olieudkast.DK 177037 B1 Cooling compressor with system for minimizing oil draft.

Ved kompressorkøleanlæg er det et velkendt problem, at den olie, som er beregnet til smøring af kompressorens bevægelige 5 dele, forlader kompressoren i større eller mindre mængder.In compressor cooling systems, it is a well-known problem that the oil intended for lubricating the moving parts of the compressor leaves the compressor in greater or lesser amounts.

Dette fænomen omtales i det følgende som kompressorens olieudkast.This phenomenon is hereinafter referred to as the oil draft of the compressor.

Olieudkastet fra en kølekompressor er den mængde kompressor-10 smøreolie der utilsigtet forlader kompressoren sammen med kølemiddeltrykgassen på kompressorens afgangsside.The oil discharge from a refrigeration compressor is the amount of compressor lubricating oil that inadvertently leaves the compressor together with the refrigerant pressure gas on the outlet side of the compressor.

Olieudkast fra kompressorer til køleanlæg er generelt et stort problem, idet den udkastede olie forringer varmeovergangen i 15 køleanlæggets fordampere og kondensatorer. Det er derfor ønskeligt at begrænse olieudkastet mest muligt.Oil discharge from compressors to refrigeration plants is generally a major problem as the discharged oil impairs the heat transfer in the evaporators and condensers of the refrigeration system. It is therefore desirable to limit the oil draft as much as possible.

Når kompressorolien kastes ud i køleanlægget, giver dette forskellige uheldige indvirkninger på køleanlæggets drift, afhængigt af kølemiddeltype, anlægstype og -opbygning samt den 20 anvendte olietype.When the compressor oil is discharged into the refrigeration system, this has various adverse effects on the operation of the refrigeration plant, depending on the type of refrigerant, the type and structure of the refrigerant and the type of oil used.

På industrielle køleanlæg, hvor ammoniak anvendes som kølemiddel og olien ikke er opløselig i kølemidlet, giver olieudkast fra kompressoren særligt store problemer. Olien kan 25 ikke automatisk returneres til kompressoren sammen med kølemiddelgassen, men ophobes i køleanlæggets lavtryksdel, hvor den må aftappes, enten manuelt ved selve fordamperne eller ved hjælp af et omfattende og kostbart automatisk system til returnering af olien, der typisk er ophobet i bunden af 30 fordampere. Et sådant automatisk system er f.eks. kendt fra EP 0481988.In industrial refrigeration plants, where ammonia is used as a refrigerant and the oil is not soluble in the refrigerant, oil discharges from the compressor cause particular problems. The oil cannot be returned automatically to the compressor together with the refrigerant gas, but accumulates in the low-pressure section of the refrigeration system, where it must be drained, either manually by the evaporators themselves or by means of an extensive and expensive automatic system for returning the oil, which is typically accumulated at the bottom of the 30 evaporators. Such an automatic system is e.g. known from EP 0481988.

Det er kendt, at åbne og semihermetiske stempelkompressorer, som anvendes i industrielle køleanlæg er udstyret med en 35 trykudligningsforbindelse mellem kompressorens krumtaphus og kompressorens sugeside.It is known that open and semi-thermal piston compressors used in industrial refrigeration systems are equipped with a pressure equalizing connection between the compressor crankcase and the compressor suction side.

Denne trykudligningsforbindelse tjener to formål: 1. at udligne krumtaphusets tryk til sugetrykket.This pressure equalizing connection serves two purposes: 1. to equalize the crankcase pressure to the suction pressure.

40 Dermed undgås en trykopbygning i kompressorens krumtaphus, som ellers ville forekomme pga. utætheder ved stempelringe eller ved afkogning af kølemiddel fra krumtaphusets oliesump.40 This avoids a build-up of pressure in the compressor's crankcase, which would otherwise occur due to leaks in piston rings or when boiling refrigerant from the crankcase oil sump.

2. at forebygge væskeslag ved at fungere som drænkanal mellem 45 kompressorens sugeside og krumtaphus, således at væske (kølemiddel og olie), der rives med kølemiddelgassen fra køleanlæggets lavtryksside og kunne forårsage væskeslag, drænes gennem trykudligningskanalen til krumtaphuset.2. preventing fluid stroke by acting as a drainage channel between the compressor suction side and crankcase, so that liquid (coolant and oil) tearing with the refrigerant gas from the low-pressure side of the refrigeration system and causing fluid stroke is drained through the pressure relief channel to the crankcase.

Olie og kølemiddelvæske, der transporteres med sugegassen mod 50 kompressoren, vil dermed blande sig med olien i krumtaphusets DK 177037 B1 oliesump, hvor det meste af kølemiddelindholdet vil fordampe pga. den høje temperatur i krumtaphuset.Oil and coolant liquid transported with the suction gas towards the 50 compressor will thus mix with the oil in the crankcase's DK 177037 B1 oil sump, where most of the coolant content will evaporate due to the high temperature in the crankcase.

I forbindelse med denne afkogning af kølemiddel i krumtaphuset 5 og lækager ved stempelringene er det dog et problem, at strømmen af gasformigt kølemiddel fra kompressorens krumtaphus til sugesiden kan medrive oliedråber fra krumtaphuset, som dermed bliver suget ind gennem kompressorens sugeventiler. Jo større lækager, der er ved stempelringene, desto større vil 10 hastigheden være af den gas, der strømmer til kompressorens sugeside gennem disse kanaler. Dette vil forøge mængden af olie, der medrives af gassen.However, in connection with this decoction of refrigerant in the crankcase 5 and leaks at the piston rings, it is a problem that the flow of gaseous refrigerant from the compressor crankcase to the suction side can entrain oil drops from the crankcase, which is thus sucked in through the compressor suction valves. The greater the leaks at the piston rings, the greater will be the velocity of the gas flowing to the suction side of the compressor through these channels. This will increase the amount of oil entrained by the gas.

Den olie, som på denne måde kommer ind i kompressorens kompressionsrum, bliver ved den efterfølgende kompression 15 opvarmet til en høj temperatur, inden den forlader kompressoren sammen med trykgassen. Den høje temperatur bevirker, at en del af olien fordamper og dermed ikke efterfølgende kan udskilles fra kølemiddelgassen af en traditionel olieudskiller og derfor fortsætter på gasform ud i 20 køleanlægget.The oil thus entering the compressor's compression space is heated to a high temperature at the subsequent compression 15 before leaving the compressor together with the compressed gas. The high temperature means that part of the oil evaporates and thus cannot subsequently be separated from the refrigerant gas by a traditional oil separator and therefore continues in gaseous form into the cooling system.

Hermetiske kompressorer, som fortrinsvis anvendes i kommercielle køleanlæg, leder ofte sugegassen gennem elmotoren, som derved bliver kølet. Samtidig bliver den 25 eventuelle kølemiddelvæske, der følger med sugegassen, fordampet ved opvarmningen i elmotoren.Canned compressors, which are preferably used in commercial refrigeration plants, often pass the suction gas through the electric motor, which is thereby cooled. At the same time, the 25 coolant liquid supplied with the suction gas is evaporated by heating in the electric motor.

Olie, der ligeledes kommer med sugegassen, udfældes og ledes til kompressorens krumtaphus, som ofte har forbindelse med bunden af elmotoren.Oil, which also comes with the suction gas, is precipitated and fed to the compressor's crankcase, which is often connected to the bottom of the electric motor.

30 Disse hermetiske kompressorer har ofte det samme problem med, at olie kan suges med fra motor og krumtaphus ind i kompressorens sugeventiler og dermed bidrage til et øget olieudkast.30 These hermetic compressors often have the same problem that oil can be sucked from the engine and crankcase into the compressor suction valves, thus contributing to an increased oil discharge.

Dette problem er blevet særligt aktuelt efter, at hermetiske 35 kompressorer er blevet udviklet til anvendelse i køleanlæg med C02 som kølemiddel. C02 har væsentligt højere tryk og massefylde ved sugetrykket end andre, hidtil anvendte kølemidler. Det højere tryk og massefylde gør C02-gassen i stand til at transportere langt flere og større oliedråber med 40 sugegassen og dermed fra oliesumpområdet og ind i sugeventilerne. Dette medfører ofte et uacceptabelt stort olieudkast fra disse kompressorer.This problem has become particularly relevant after hermetic compressors have been developed for use in refrigeration systems with CO 2 as a refrigerant. CO2 has substantially higher pressure and density at suction pressure than other refrigerants used so far. The higher pressure and density enable the CO 2 gas to carry far more and larger oil droplets with the 40 suction gas and thus from the oil sump area and into the suction valves. This often results in an unacceptably large draft of oil from these compressors.

Den samme problemstilling gør sig gældende med de nyere syntetiske højtrykskølemidler f.eks. R404a, R410, R507, omend 45 i mindre grad end med C02.The same problem applies with the newer synthetic high-pressure refrigerants, e.g. R404a, R410, R507, albeit 45 to a lesser extent than with CO2.

Opfindelsen angår et system til udskilning af olie fra trykudligningsgassen, dvs. den gas, der strømmer gennem trykudligningsledningen fra en kølekompressors krumtaphus til 50 dens sugeside.The invention relates to a system for separating oil from the pressure equalizing gas, i.e. the gas flowing through the pressure equalizer line from the crankcase of a cooling compressor to its suction side.

2 DK 177037 B1 I systemet indgår en væskeudskiller, som kan omfatte et eller flere demisterelementer eller filtre.2 GB 177037 B1 The system includes a liquid separator which may comprise one or more demister elements or filters.

Den nævnte væskeudskiller kan være udformet til at benytte et 5 eller flere kendte væskeudskilningsprincipper f.eks. cyklonprincippet eller filtreringsprincippet.Said liquid separator may be designed to employ a 5 or more known liquid separation principles e.g. the cyclone principle or the filtering principle.

Væskeudskilleren kan tillige være forsynet med dræn, som i en foretrukken udførelsesform udmunder under olieoverfladen i 10 kompressorens oliesump, for at dræne den udskilte olie tilbage til oliesumpen.The liquid separator may also be provided with sinks which, in a preferred embodiment, open below the oil surface in the oil sump of the compressor, to drain the separated oil back to the oil sump.

En vigtig funktion ved denne opfindelse er, at væske, der med sugegassen transporteres til kompressorens sugeside, stadig 15 uhindret kan drænes til kompressorens oliesump gennem kompressorens trykudligningskanaler.An important feature of this invention is that liquid conveyed with the suction gas to the suction side of the compressor can still be drained unhindered to the oil sump of the compressor through the compressor pressure equalization channels.

Systemet kan indbygges i kompressoren, hvis pladsforholdene tillader det, eller alternativt monteres udenfor kompressoren.The system can be built into the compressor if space conditions allow, or alternatively be installed outside the compressor.

2020

Systemet kan også udføres med et separat dræn for kølemiddelvæske og olie fra kompressorens sugeside ved hjælp af en kanal, der udmunder under olieniveauet i kompressorens oliesump samt en separat gasudligningskanal til kompressorens 25 sugeside.The system may also be effected with a separate coolant fluid and oil drain from the compressor suction side by means of a channel which opens below the oil level in the compressor oil sump and a separate gas equalization channel to the suction side of the compressor 25.

På kendte åbne stempelkompressorer til køleanlæg er der mellem kompressorens sugeside og dens krumtaphus i det væsentlige en trykudligningskanal uden aktiv væskeudskilning.On known open piston compressors for refrigeration systems, between the suction side of the compressor and its crankcase, there is essentially a pressure equalization channel without active liquid separation.

3030

Dette virker tilfredsstillende, forudsat at gashastigheden i trykudligningskanalen er så lav, at der ikke medrives oliedråber til kompressorens sugeventiler.This works satisfactorily, provided that the gas velocity in the pressure equalization duct is so low that no oil drops are fed to the compressor suction valves.

35 Ved forhold, der medfører en højere gashastighed i trykudligningskanalen, kan oliedråber medrives af trykudligningsgassen til kompressorens sugeside og via sugeventilerne passere med gassen gennem kompressorens kompressionsrum.35 In conditions which result in a higher gas velocity in the pressure equalization duct, oil droplets can be entrained by the pressure equalizer gas to the suction side of the compressor and pass through the suction valves with the gas through the compression space of the compressor.

40 Disse forhold kan f.eks. være slidte stempelringe og cylindre, gas passage gennem olieudskillerens oliereturledning, eller opkog af kølemiddel i kompressorens oliesump.40 These conditions may e.g. be worn piston rings and cylinders, gas passage through the oil separator's oil return pipe, or boiling of refrigerant in the compressor's oil sump.

Et yderligere væsentligt forhold kan være anvendelse af højtrykskølemidler som C02, R410 etc. hvor det højere tryk og 45 kølemiddel gassens større massefylde gør trykudligningsgassen i stand til at bære flere og større oliedråber med sig og dermed forøge kompressorens olieforbrug.A further significant relationship may be the use of high pressure refrigerants such as CO 2, R 410 etc. where the higher pressure and the coolant gas greater density of the gas enable the pressure equalizing gas to carry more and larger oil droplets with it and thus increase the oil consumption of the compressor.

3 DK 177037 B13 DK 177037 B1

Ved forbrændingsmotorer kendes indretninger til udskilning af olie fra krumtaphusets udluftningskanal, som af miljøhensyn er ført til forbrændingsmotorens indsugnings system.In combustion engines, devices for separating oil from the crankcase vent channel are known, which for environmental reasons have been fed to the combustion engine's intake system.

Eksempler på sådanne systemer er beskrevet i DE 1978048, DE 5 4214324 og DE 19628812Examples of such systems are described in DE 1978048, DE 5 4214324 and DE 19628812

Disse indretninger angår udskilning af motorolie fra de gasser, der er lækket fra en forbrændingsmotors forbrændingskammer til dens krumtaphus og oliesump. De nævnte skrifter 10 forholder sig imidlertid ikke til stempelkompressorer, hvor der samtidig skal kunne ledes væske fra kompressorens sugeside til oliesumpen.These devices relate to the separation of engine oil from the gases leaked from an internal combustion engine's combustion chamber to its crankcase and oil sump. However, the aforementioned fonts 10 do not relate to piston compressors, where at the same time it must be possible to conduct liquid from the suction side of the compressor to the oil sump.

På stempelkompressorer til køleanlæg er dette forhold af afgørende betydning, da olie og kølemiddel på væskeform fra 15 sugesiden skal kunne drænes til oliesumpen, da disse inkompressible væsker ved indsugning i kompressorens kompressionsrum kan forårsage ødelæggende væskeslag i kompressoren.On piston compressors for refrigeration systems, this ratio is essential as oil and coolant in liquid form from the suction side must be able to be drained to the oil sump, as these incompressible liquids when sucked into the compressor's compression space can cause devastating fluid blows in the compressor.

I køleanlæg, hvor olien kan opløses i kølemidlet, er det 20 ligeledes normalt, at en mindre mængde olie kastes ud af kompressoren og kommer med sugegassen tilbage til kompressorens oliesump.In refrigeration plants where the oil can be dissolved in the refrigerant, it is also normal for a smaller amount of oil to be ejected from the compressor and return with the suction gas to the compressor oil sump.

2525

Opfindelsen forklares nærmere i det følgende med henvisning til skitserne.The invention is explained in more detail below with reference to the drawings.

30 Positionsnummer forklaring til figur 1.30 Position number explanation for Figure 1.

Positionsnummer 1. trykudligningskanal.Position number 1. pressure equalization channel.

Positionsnurrmer 2. gasindtag.Position Nozzles 2nd gas intake.

Positionsnummer 3. væskeseparationsområde.Position number 3. fluid separation area.

35 Positionsnummer 4. drænledning.35 Position number 4. drainage line.

Positionsnummer 5. oliesump.Position number 5. oil sump.

Positionsnurrmer 6. demisterelement.Position Nozzles 6. Demister element.

Figur 1 viser et system i følge opfindelsen til indbygning i 40 en kølekompressor, hvor forbindelsen 1 (trykudlignings kanal) føres til kompressorens sugeside.Figure 1 shows a system according to the invention for incorporating into a cooling compressor, where the connection 1 (pressure equalization channel) is fed to the suction side of the compressor.

Forbindelsen 1 kan udføres således, at olie og kølemiddelvæske drænes fra kompressorens sugeledning til oliesumpen gennem trykudligningsforbindelsen 1 imod trykudligningsgassens 45 strømningsretning videre til drænkanalen 4 hvor den ledes til oliesumpen.The connection 1 can be made so that oil and coolant fluid are drained from the suction line of the compressor to the oil sump through the pressure equalizing compound 1 against the flow direction of the pressure equalizing gas 45 on to the drainage channel 4 where it is fed to the oil sump.

Ved gasindtaget 2 suges trykudligningsgassen med sit indhold af olie ind i systemets væskeseparationsområde 3 gennem 50 demisterelementet 6, som samler olietågen til større dråber, som i den viste udførelsesform udskilles fra kølemiddelgassen 4 DK 177037 B1 i væskeseparationsområdet 3, hvorfra olien drænes til oliesumpen 5 gennem drænledningen 4.At gas inlet 2, the pressure equalizer gas with its oil content is sucked into the system liquid separation area 3 through the demister element 6 which collects the oil mist into larger droplets which in the illustrated embodiment are separated from the refrigerant gas 4 from the liquid separation area 3 from which the oil is drained to the oil sump 5 through drainage line 4.

I væskeseparationsområdet 3 er den lave hastighed opnået ved 5 et øget strømningstværsnit og i den viste udførelse tillige ved at fordele gasstrømmen på to kanaler.In the liquid separation region 3, the low velocity obtained at 5 is an increased flow cross-section and in the embodiment shown also by distributing the gas flow on two channels.

Drænledningen 4 udmunder under oliesumpens 5 olieniveau, som derved danner en væskelås, der forhindrer, at kølemiddelgas 10 suges ind i væskeseparationsområdet 3 gennem drænledningen 4.The drain line 4 opens below the oil level of the oil sump 5, thereby forming a fluid lock which prevents coolant gas 10 from being sucked into the liquid separation area 3 through the drain line 4.

Positionsnummer forklaring til figur 2.Position number explanation for Figure 2.

Positionsnummer 1. trykudligningskanal.Position number 1. pressure equalization channel.

15 Positionsnummer 2. gasindtag.15 Position number 2. gas intake.

Positionsnummer 3. væskeseparationsområde Positionsnummer 4. drænledning.Position number 3. fluid separation area Position number 4. drainage line.

Positionsnummer 5. oliesump.Position number 5. oil sump.

Positionsnummer 6. demisterelement.Position number 6. demister element.

20 Positionsnummer 7. forkammer.20 Position number 7. chamber.

Positionsnummer 8. kompressor.Position number 8. compressor.

Positionsnummer 9. sugeledning.Position number 9. suction line.

Positionsnummer 10. trykledning.Position number 10. pressure line.

25 Figur 2 viser et system i følge opfindelsen til påbygning eksternt på en kølekompressor, hvor trykudligningskanalen 1 er forbundet til kompressorens sugeside.Figure 2 shows a system according to the invention for mounting externally on a cooling compressor, where the pressure equalization channel 1 is connected to the suction side of the compressor.

Trykudligningskanalen 1 kan udføres således, at eventuel olie 30 og kølemiddelvæske drænes fra kompressorens sugeledning til oliesumpen gennem trykudligningskanalen 1 og drænkanalen 4.The pressure equalization channel 1 can be designed such that any oil 30 and coolant liquid are drained from the suction line of the compressor to the oil sump through the pressure equalization channel 1 and the drainage channel 4.

Ved gasindtaget 2 suges trykudlignings gassen med sit indhold af oliedråber ind i systemets væskeseparationsområde 3 gennem 35 forkammeret 7 og demisterelementet 6, som samler olietågen til større dråber, som i den viste udførelsesform udskilles fra kølemiddelgassen i væskeseparationsområdet 3, hvorfra olien drænes til oliesumpen 5 gennem drænledningen 4.At gas inlet 2, the pressure equalizer gas with its content of oil droplets is sucked into the system liquid separation area 3 through the 35 chamber 7 and the demister element 6 which collects the oil mist into larger droplets which in the illustrated embodiment are separated from the refrigerant gas in the liquid separation region 3 from which the oil is drained to the oil sump 5. drainage line 4.

40 I forkammeret 7 opnås den første grove olieudskillelse ved lav gashastighed, før trykudligningsgassen passerer gennem demisteren pos 6.40 In the chamber 7, the first coarse oil separation is achieved at low gas velocity before the pressure equalizing gas passes through the demister pos 6.

Drænledningen 4 udmunder under olie sumpens 5 olieniveau, som 45 derved danner en væskelås, der forhindrer, at gas suges ind i forkammeret 7 gennem drænet.The drain line 4 opens below the oil level of the sump 5, which 45 thereby forms a fluid lock which prevents gas from being sucked into the anterior chamber 7 through the drain.

55

Claims (1)

5 Stempelkompressor med en oliesump, som via en trykudligningsforbindelse er forbundet med den nævnte stempelkompressors sugeside, kendetegnet ved, at den nævnte trykudligningsforbindelse indeholder en væskeudskiller med en væskeafgangskanal, som udmunder i den nævnte oliesump. 10 2. Stempelkompressor i følge krav 1 kendetegnet ved, at den nævnte væskeafgangskanal udmunder under oliesumpens olie niveau. 15 3. Stempelkompressor i følge krav 1 eller 2 kendetegnet ved, at den nævnte væskeudskiller indeholder mindst et demisterelement. 20 4. Stempelkompressor i følge et eller flere af kravene 1-4 kendetegnet ved, at den nævnte væskeudskiller fungerer efter cyklonprincippet. 25 5. Stempelkompressor i følge et eller flere af kravene 1-2 kendetegnet ved, at den nævnte væskeudskiller fungerer efter filterprincippet. 6Piston compressor with an oil sump connected via a suction side to the suction side of said piston compressor, characterized in that said pressure equalizing compound contains a liquid separator with a liquid discharge channel which opens into said oil sump. 2. Piston compressor according to claim 1, characterized in that said liquid discharge channel opens below the oil sump oil level. Piston compressor according to claim 1 or 2, characterized in that said liquid separator contains at least one demister element. 4. Piston compressor according to one or more of claims 1-4, characterized in that said liquid separator operates according to the cyclone principle. 5. Piston compressor according to one or more of claims 1-2, characterized in that said liquid separator operates according to the filter principle. 6
DKPA200801425A 2008-10-10 2008-10-10 Cooling compressor with system for minimizing oil draft DK177037B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DKPA200801425A DK177037B1 (en) 2008-10-10 2008-10-10 Cooling compressor with system for minimizing oil draft
EP09736805A EP2344766A1 (en) 2008-10-10 2009-10-12 Cooling compressor with system for reducing oil outflow
PCT/DK2009/000219 WO2010040355A1 (en) 2008-10-10 2009-10-12 Cooling compressor with system for reducing oil outflow

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DK200801425 2008-10-10
DKPA200801425A DK177037B1 (en) 2008-10-10 2008-10-10 Cooling compressor with system for minimizing oil draft

Publications (2)

Publication Number Publication Date
DK200801425A DK200801425A (en) 2009-10-15
DK177037B1 true DK177037B1 (en) 2011-02-21

Family

ID=41261392

Family Applications (1)

Application Number Title Priority Date Filing Date
DKPA200801425A DK177037B1 (en) 2008-10-10 2008-10-10 Cooling compressor with system for minimizing oil draft

Country Status (3)

Country Link
EP (1) EP2344766A1 (en)
DK (1) DK177037B1 (en)
WO (1) WO2010040355A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011105742A1 (en) 2011-06-24 2012-12-27 Viessmann Werke Gmbh & Co Kg Periodic sorption device
US20200102943A1 (en) 2018-10-02 2020-04-02 Vilter Manufacturing Llc 3D-Printed Oil Separation for Reciprocating Compressors
WO2020072083A1 (en) * 2018-10-02 2020-04-09 Vilter Manufacturing Llc 3d-printed oil separation for reciprocating compressors

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE696906C (en) * 1938-09-03 1951-08-16 Willy Hirche Compression refrigeration machine
US2233168A (en) 1939-04-19 1941-02-25 Gen Electric Compressor
JPH07146035A (en) * 1993-11-19 1995-06-06 Mitsubishi Electric Corp Oil separator
DE19525461A1 (en) * 1995-07-14 1997-01-16 Knorr Bremse Systeme Piston compressor with air-outlet in crank housing - has housing outlet connected to suction wing of piston compressor via connecting pipe, and having lubricant separator with collection chamber for separated lubricants

Also Published As

Publication number Publication date
DK200801425A (en) 2009-10-15
WO2010040355A1 (en) 2010-04-15
EP2344766A1 (en) 2011-07-20

Similar Documents

Publication Publication Date Title
US1836318A (en) Refrigerating system
US2986894A (en) Purge recovery arrangement for refrigeration systems
KR101607509B1 (en) Chiller or heat pump with a falling film evaporator and horizontal oil separator
GB2158562A (en) Pressure regulating valve for the oil separation system of a refrigeration system
US4254637A (en) Refrigeration system with refrigerant cooling of compressor and its oil
DK177037B1 (en) Cooling compressor with system for minimizing oil draft
US10927729B1 (en) Pre-condensing PCV system
EP1886077A1 (en) Oil separation in a cooling circuit
JP2011038742A (en) Compression refrigerating machine and method of operating the same
US4551989A (en) Oil equalization system for refrigeration compressors
FR2988820A1 (en) RELAXATION RESERVOIR ELIMINATOR
US2074323A (en) Oil separator for compressors
US7231783B2 (en) Oil control system for a refrigeration system
CN207019348U (en) Compression refrigerating machine condenser
EP2732222B1 (en) Refrigeration circuit with oil compensation
US3274796A (en) Refrigeration system with lube oil separation means
KR20230119719A (en) gas cooler
US20230045874A1 (en) Steam trap
US20140165646A1 (en) Oil Compensation In A Refrigeration Circuit
CN204202262U (en) Three grades of separate type high efficient horizontals divide oily device
CN110530079A (en) Oil eliminator and water cooler with oily refrigerating function
WO2023177299A1 (en) A compressor assembly
US7219503B2 (en) Quick-change coalescent oil separator
US20240142141A1 (en) Oil separator and return for ejector-based direct expansion (dx) evaporator
US1500280A (en) Means for separating oil from the refrigerant in refrigerating systems

Legal Events

Date Code Title Description
PRA Request on administrative re-examination filed

Effective date: 20160225

PUG Patent revoked

Effective date: 20161114

PBP Patent lapsed

Effective date: 20161031