DK175800B1 - Resistance gene, gene structure containing the resistance gene, vector containing the resistance gene or gene structure, host cell containing the vector, plant cell, plants ............. - Google Patents

Resistance gene, gene structure containing the resistance gene, vector containing the resistance gene or gene structure, host cell containing the vector, plant cell, plants ............. Download PDF

Info

Publication number
DK175800B1
DK175800B1 DK198800239A DK23988A DK175800B1 DK 175800 B1 DK175800 B1 DK 175800B1 DK 198800239 A DK198800239 A DK 198800239A DK 23988 A DK23988 A DK 23988A DK 175800 B1 DK175800 B1 DK 175800B1
Authority
DK
Denmark
Prior art keywords
gene
plants
vector
resistance gene
resistance
Prior art date
Application number
DK198800239A
Other languages
Danish (da)
Other versions
DK23988D0 (en
DK23988A (en
Inventor
Eugen Uhlmann
Friedrich Wengenmayer
Peter Eckes
Guenter Donn
Wolfgang Wohlleben
Alfred Puehler
Eckhard Strauch
Walter Arnold
Renate Alijah
Friedrich Hein
Original Assignee
Hoechst Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25851724&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=DK175800(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from DE19873737918 external-priority patent/DE3737918A1/en
Application filed by Hoechst Ag filed Critical Hoechst Ag
Publication of DK23988D0 publication Critical patent/DK23988D0/en
Publication of DK23988A publication Critical patent/DK23988A/en
Application granted granted Critical
Publication of DK175800B1 publication Critical patent/DK175800B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8274Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for herbicide resistance
    • C12N15/8277Phosphinotricin

Description

i DK 175800 B1 tin DK 175800 B1 t

Den foreliggende opfindelse angår et phosphinothricin-resistens-gen, en genstruktur indeholdende resistensgenet, en vektor indeholdende resistensgenet eller genstrukturen, en værtscelle indeholdende vektoren, en plantecelle, planter, 5 dele heraf og frø indeholdende resistensgenet, samt anvendelsen af resistensgenet eller genstrukturen til tilvejebringelse af phosphinothricin-resistente planteceller, plantedele, planter og frø.The present invention relates to a phosphinothricin resistance gene, a gene structure containing the resistance gene, a vector containing the resistance gene or gene structure, a host cell containing the vector, a plant cell, plants, parts thereof and seeds containing the resistance gene, and the use of the resistance gene or gene structure to provide phosphinothricin-resistant plant cells, plant parts, plants and seeds.

I den vesttyske patentansøgning nr. P 3.628.747.4 20 foreslås et resistensgen mod phosphinothricin (PTC), der kan fås ud fra hele DNA'et fra for phosphinothricyl-ala-nyl-alanin (PTT)-resistens selekteret Strepcomyces viri-dochromogenes DSM 40736 (fra den almindelige samling) eller DSM 4112 (deponeret i henhold til Budapest-traktaten) ved 25 snit med BamHI, kloning af et 4,0 kb-stort fragment og selektion for PTT-resistensen, samt anvendelsen af dette ! gen til fremstilling af PTC-resistente planter, som PTT- j resistens-markør i bakterier og som PTC-resistens-markør I i planteceller. Det 4 kb-store BamHI-fragment, i hvilket 20 resistensgenet ligger, er nærmere defineret ved hjælp af et restriktionskort (figur 1).West German Patent Application No. 3,628,747.4 20 proposes a resistance gene against phosphinothricin (PTC) obtainable from the entire DNA from phosphinothricyl-alanyl-alanine (PTT) resistance selected by Strepcomyces virichochogenogenes DSM 40736 (from the regular collection) or DSM 4112 (deposited under the Budapest Treaty) at 25 sections with BamHI, cloning a 4.0 kb fragment and selection for PTT resistance, and its use! gene for producing PTC-resistant plants, as PTT-1 resistance marker in bacteria and as PTC-resistance marker I in plant cells. The 4 kb BamHI fragment, in which the 20 resistance gene is located, is more precisely defined by a restriction map (Figure 1).

Ved kloning af delområder af dette 4 kb-fragment blev beliggenheden af kodeområdet nærmere lokaliseret.By cloning subregions of this 4 kb fragment, the location of the code area was more closely located.

Herved viste det sig, at resistensgenet ligger i 1,6 25 kb Sstll-Sstl-fragmentet (positionerne 0,55 til 2,15 i figur... . 1 i hovedansøgningen). Ved fordøjelse med Bglll udvindes et 0,8 kb-stort fragment, der efter indbygning i et plasmid og transformation af S. lividans formidler PTT-re-sistens. Denne resistens er betinget af N-acetylering af 30 PTC. Resistensgenet koder dermed for en acetyltransferase.Hereby, the resistance gene was found to be in the 1.6 25 kb SstII-SstI fragment (positions 0.55 to 2.15 in Figure .... 1 in the main application). By digestion with BglII, a 0.8 kb fragment is recovered which, upon incorporation into a plasmid and transformation of S. lividans, mediates PTT resistance. This resistance is conditioned by N-acetylation of 30 PTC. Thus, the resistance gene encodes an acetyl transferase.

I den vesttyske patentansøgning nr. P 3.642.829.9 gengives DNA-sekvensen af det i det forestående nævnte 0,8 kb-fragment. Ud fra sekvensen kan startcodonnet og gensekvensens åbne læseramme bestemmes. Det sidste nucleo-35 tid er en del af stop-codonnet TGA.In West German Patent Application No. 3,642,829.9 the DNA sequence of the 0.8 kb fragment mentioned above is reproduced. From the sequence, the start codon and the gene sequence open reading frame can be determined. The last nucleo-35 time is part of the stop codon TGA.

I DK 175800 B1 II DK 175800 B1 I

I 2 II 2 I

Gener fra Streptomyceter har med et forhold mellem IStreptomyceter genes have a ratio of I

adenin (A) + thymin (T) : guanin (G) + cytosin (C) på Iadenine (A) + thymine (T): guanine (G) + cytosine (C) on I

ca. 30% : 70% en meget stor andel af G + C. GC-Andelen Ica. 30%: 70% a very large proportion of G + C. The GC proportion I

af plantegener ligger med ca. 50% langt lavere. Af disseof plant genes lies with approx. 50% far lower. Of these

H 5 grunde bliver resistensgenets DNA-sekvens optimeret i IFor five reasons, the DNA sequence of the resistance gene is optimized in I

yderligere udformning af opfindelsens ide ved nysyntese Ifurther embodying the idea of the invention in novel synthesis I

af et for den vegetabilske RNA-polymerase II gunstigt Iof one favorable for the vegetable RNA polymerase II

codonbrug. Icodon usage. IN

I Opfindelsen angår en modifikation af det resistens- IThe invention relates to a modification of the resistance I

I 10 9©n, der er foreslået i de tyske patentansøgninger nr. HIn 10 9 © n proposed in German patent applications No. H

I P 3.628.747.4 og P 3.642.829.9, nemlig en tilpasning til II P 3.628.747.4 and P 3.642.829.9, namely an adaptation to I

I codonbrugen i planter IIn codon use in plants I

Opfindelsen angår nærmere bestemt følgende: IMore particularly, the invention relates to the following:

I et resistensgen, der koder for proteinet med amino- IIn a resistance gene encoding the protein with amino-I

I 15 syresekvensen I (anført nedenfor), idet der som start- IIn the acid sequence I (listed below), starting as I

I codon anvendes ATG og som stopcodon TGA, og genets IIn codon, ATG is used and as stop codon TGA, and the gene I

I GC-andel er tilpasset GC-andelen i planter, IIn GC proportion is adjusted GC proportion in plants, I

- en genstruktur, som er kendetegnet ved, at DNA-sekven- I- a gene structure characterized in that the DNA sequence I

I sen I er koblet til i planter aktive regulations- og IIn late I are connected in plants active regulations and I

I 20 ekspressionssignaler, HIn 20 expression signals, H

I en vektor, som er kendetegnet ved resistens- HIn a vector characterized by resistance H

genet ifølge opfindelsen, Hthe gene of the invention, H

en vektor, som er kendetegnet ved en genstruk- Ia vector characterized by a gene structure

I tur ifølge opfindelsen, IIn turn according to the invention, I

I 25 vektorer indeholdende én eller flere DNA-sek- HIn 25 vectors containing one or more DNA sequences H

I venser valgt blandt: IIn friends selected from: I

I I (nucleotid nr. 1-152) II I (nucleotide # 1-152) I

I II (nucleotid nr. 153-312) II II (Nucleotide Nos. 153-312) I

I 30 III (nucleotid nr. 313-436) eller II III (nucleotide nos. 313-436) or I

I IV (nucleotid nr. 437-558), II IV (Nucleotide Nos. 437-558), I

I - en værtscelle, som er kendetegnet ved en vektor HI - a host cell characterized by a vector H

I ifølge opfindelsen, HIn accordance with the invention, H

I 35 - en plantecelle eller planter, dele heraf og HIn 35 - a plant cell or plants, parts thereof and H

I frø, som er kendetegnet ved et gen ifølge HIn seeds characterized by a gene according to H

3 DK 175800 B1 opfindelsen, og anvendelsen af genet eller genstrukturen ifølge opfindelsen til tilvejebringelse af phosphino-thricin-resistente planteceller, plantedele, 5 planter og frø.And the use of the gene or gene structure of the invention to provide phosphino-thricin-resistant plant cells, plant parts, plants and seeds.

Den genetiske kode er som bekendt således beskaffen, at en.enkelt triplet koder kun for 2 aminosyrer, -medens hver af de resterende 18 aminosyrer, som der kan kodes for 10 genetisk, er tilordnet 2-6 tripletter. Til syntesen af genet er der derfor teoretisk mulighed for en stor mangfoldighed af codonkombinationer. Da den nævnte relative andel af de enkelte nukleotider i hele DNA-sekvensen er af indflydelse, er dette lagt til grund for et af kri-^5 terierne ved sekvensoptimeringen.As is known, the genetic code is such that a single triplet encodes only 2 amino acids, while each of the remaining 18 amino acids which can be genetically coded for 10 are assigned 2-6 triplets. Therefore, for the synthesis of the gene, there is theoretically a great diversity of codon combinations. Since the said relative proportion of the individual nucleotides in the entire DNA sequence is of influence, this is the basis of one of the criteria in the sequence optimization.

Følgende ændringer er gennemført i det sekvenserede gen: 1. Streptomycetgen-startcodonnet GTG (position 258-260 i sekvensen fra den vesttyske patentansøgning) udskif-20 tes mec* det vegetabilsk RNA-polymerase II benyttede startcodon ATG.The following changes have been made to the sequenced gene: 1. The streptomycet gene start codon GTG (position 258-260 in the sequence of the West German patent application) is replaced by the mec * vegetable RNA polymerase II starting codon ATG.

2. Inden'for genet forandres Streptomycet-gencodonnerne således, at -det resulterer i i plantegener egnede codon-ner (G/C-forhold).2. Within the gene, the Streptomycet gene codons change so that it results in plant genes suitable codons (G / C ratio).

2£ 3. Til afslutning af translationsforløbet sættes TGA- stopcodonnet på sekvensens afslutning.2 £ 3. To end the translation process, put the TGA stop codon at the end of the sequence.

4. Gensekvensens begyndelse og afslutning forsynes med overhængende afslutninger af restriktionssteder for at kunne amplificere genet, og for at kunne ligere 30 genet mellem vegetabilske regulationssekvenser.4. The beginning and end of the gene sequence are provided with imminent termination of restriction sites to amplify the gene and to align the gene between vegetable regulatory sequences.

5. Palindromiske sekvenser reduceres til et mindstemål.5. Palindromic sequences are reduced to a minimum.

DNA-Sekvensen I ifølge opfindelsen (med den tilsvarende aminosyresekvens) er anført nedenfor.The DNA sequence I of the invention (with the corresponding amino acid sequence) is set out below.

Tre interne singulære skæringssteder for restrik-35 tionsenzymerne Xbal (position 152), BamHI (312) og Xmal (436) gør det muligt med subkloning af delsekvenser, der kan være indbygget i velundersøgte kloningsvektorer, såsom pUC18 eller PUC19. Endvidere er der inden for genet ΗThree internal singular intersection sites for the restriction enzymes XbaI (position 152), BamHI (312), and Xmal (436) allow subcloning of partial sequences that may be embedded in well-studied cloning vectors such as pUC18 or PUC19. Furthermore, there is within the gene Η

DK 175800 B1 IDK 175800 B1 I

I II I

indbygget en række yderligere singulære genkendelsessteder Iincorporated a number of additional singular recognition sites

for restriktionsenzymer, der på den ene side skaffer ad- Ifor restriction enzymes which, on the one hand, provide ad- I

gang til acetyltransferases delsekvenser og på den anden Ito the partial sequences of acetyltransferase and on the other I

H side tillader gennemførelse af variationer: IH side allows implementation of variations: I

I 5 iI 5 i

I Snit efter nucleotid-nr. IIn Section after nucleotide no. IN

I Restriktionsenzym_(kodende streng)_ IRestriction enzyme_ (coding string) _ I

I BspMII 11 II BspMII 11 I

I SacII 64 IIn SacII 64 I

I 10 EcoRV 74 II 10 EcoRV 74 I

I Hpal 80 II Hpal 80 I

Aatll 99 IAatll 99 I

BstXI 139 IBstXI 139 I

I I Apal 232 II I Apal 232 I

15 Seal 272 I15 Seal 272 I

I Avrll 308 II Avrll 308 I

AfIII 336 IAfIII 336 I

Stul 385 IChair 385 I

I BssHII 449 II BssHII 449 I

I 20 Fokl 487 II 20 Fokl 487 I

I Bgll 536 II Bgll 536 I

Bglll 550 IBglll 550 I

Opbygningen af delsekvenserne ved hjælp af kemisk IStructure of the partial sequences using chemical I

I 25 syntese og enzymatisk ligeringsreaktion udføres på i og IIn 25 synthesis and enzymatic ligation reaction, i and i are performed

H for sig kendt måde (de europæiske patentansøgninger nr. IH known per se (European Patent Application No. I

0.133.282, 0.136.472, 0.155.590, 0.161.504, 0.163.249, I0.133.282, 0.136.472, 0.155.590, 0.161.504, 0.163.249, I

I 0.171.024, 0.173.149 eller 0.177.827). Detaljer, såsom II 0.171.024, 0.173.149 or 0.177.827). Details such as I

I restriktionsanalyser, ligering af DNA-fragmenter og trans- IIn restriction assays, ligation of DNA fragments and trans I

30 formation af plasmider i E. coli, er udførligt beskrevet IThe formation of plasmids in E. coli is described in detail

i Maniatis' lærebog (Molecular Cloning, Maniatis et al., Iin Maniatis textbook (Molecular Cloning, Maniatis et al., i

Cold Spring Karbor, 1982). ICold Spring Karbor, 1982). IN

Den således klonede gensekvens, Indføjes herefter . IThe gene clone thus cloned is then inserted. IN

I under kontrol af vegetabilske regulationssignaler i plan- II under the control of vegetable regulation signals in plan I

I 35 ter, og den bringes til ekspression. Den europæiske pa- IFor 35 hours, it is expressed. The European pa- I

I tenansøgning nr. 0.122.791 giver en oversigt over kendte IIn application No. 0.122.791 gives an overview of known I

I metoder. Der fås således PTC-resistente planteceller (dvs. IIn methods. Thus, PTC-resistant plant cells (i.e., I) are obtained

DK 175800 B1 5 man har et selektionskendetegn for transformerede celler), planter eller plantedele og frø.You have a selection characteristic of transformed cells), plants or parts of plants and seeds.

I de følgende eksempler illustreres i enkeltheder nogle udformninger af opfindelsen. Procentangivelser er 5 baseret på vægten, når andet ikke er anført.In the following examples, some embodiments of the invention are illustrated in detail. Percentages are 5 based on weight unless otherwise stated.

Eksemplerexamples

De følgende medier anvendes: a) til bakterier: •jo YT-medium: 0,5% gærekstrakt, 0,8% ; bacto-trypton, 0,5%The following media are used: a) for bacteria: • YT medium: 0.5% yeast extract, 0.8%; bacto-tryptone, 0.5%

NaCl, LB-medium: 0,5% gærekstrakt, 1% bacto-trypton, 1% NaCl som fast medium: hver gang tilsætning af 1,5% agar, b) til planter: 15 M+S-medium: se Murashige og Skoog, PhysiologicaNaCl, LB medium: 0.5% yeast extract, 1% bacto-tryptone, 1% NaCl as solid medium: each time addition of 1.5% agar, b) for plants: 15 M + S medium: see Murashige and Skoog, Physiologica

Plantarum 15 (1962) 473, 2MS-medium: M+S-medium med 2% saccharose, MSCIO-medium: M+S-medium med 2% saccharose, 500 mg/1 cefotaxim, 0,1 mg/1 naphthyleddikesyre 20 (NAA), 1 mg/1 benzylaminopurin (BAP), 100 mg/1 kanamycin, MSCl5-medium: M+S-medium med 2% saccharose, 500 mg/1 cefotaxim, 100 mg/1 kanamycin.Plantarum 15 (1962) 473, 2MS medium: M + S medium with 2% sucrose, MSC10 medium: M + S medium with 2% sucrose, 500 mg / 1 cefotaxime, 0.1 mg / 1 naphthylacetic acid 20 ( NAA), 1 mg / 1 benzylaminopurine (BAP), 100 mg / 1 kanamycin, MSCl5 medium: M + S medium with 2% sucrose, 500 mg / 1 cefotaxime, 100 mg / 1 kanamycin.

25 1. Kemisk syntese af et enkeltstrenget oligonucleotid.1. Chemical synthesis of a single-stranded oligonucleotide.

Som udgangsmateriale til syntesen af fragmentet II, der er et af de fire delfragmenter I - IV, tjener det endestillede oligonucleotid Ile (nucleotiderne nr. 219 til 312 i DNA-sekvensen I's kodende streng). Til fast-30 fasesyntesen anvendes nucleosidet i 3'-enden, i det foreliggende tilfælde altså guanosin (nucleotid nr. 312), via 3'-hydroxyfunktionen kovalent bundet til et bærestof. Bærestofmaterialet er med langkædede aminoalkylgrupper funktionaliseret CPG ("Controlled Pore Glass"). I øvrigt 35 følger syntesen de kendte metoder (fra de på side 3, linje 27-28, nævnte europæiske patentansøgninger).As starting material for the synthesis of fragment II, which is one of the four sub-fragments I - IV, the terminated oligonucleotide Ile (nucleotides Nos. 219 to 312 in the coding strand of DNA sequence I) serves. For the solid phase synthesis, the nucleoside at the 3 'end, in the present case, ie guanosine (nucleotide # 312), is used covalently linked to a carrier via the 3' hydroxy function. The carrier material is functionalized CPG ("Controlled Pore Glass") with long chain amino groups. Moreover, the synthesis follows the known methods (from the European patent applications mentioned on page 3, lines 27-28).

Synteseplanen er indtegnet i DNA-sekvensen II, derThe synthesis scheme is plotted in the DNA sequence II which

I I DK 175800 B1 II I DK 175800 B1 I

I 6 II 6 I

i øvrigt svarer til DNA-sekvensen I. Iotherwise similar to the DNA sequence I. I

2. Enzymatisk binding af de enkeItstrengede oligonucleo- I2. Enzymatic binding of the single-stranded oligonucleotides

I tider til genfragmentet II. IIn times to the gene fragment II. IN

I Til phosphorylering af oligonucleotiderne i 5’- IFor phosphorylation of the oligonucleotides in 5'-I

5 terminalen behandles hvert 1 nmol af oligonucleotiderne IAt the terminal, each 1 nmol of oligonucleotides I is processed

I IIb og Ile med 5 nmol adenosintriphosphat og 4 enheder II IIb and Ile with 5 nmol adenosine triphosphate and 4 units I

I T4-polynucleotid-kinase i 20 pi 50 mM tris-HCl-puffer IIn T4 polynucleotide kinase in 20 µl of 50 mM Tris-HCl buffer I

(pH-værdi 7,6), 10 mM magnesiumchlorid og 10 mM dithio- I(pH 7.6), 10 mM magnesium chloride and 10 mM dithio-I

I threitol (DTT) i 30 minutter ved 37°C. Enzymet inaktive- IIn threitol (DTT) for 30 minutes at 37 ° C. The enzyme inactive- I

I to res ved fem minutters opvarmning til 95°C. Oligonucleo- IFor two minutes, heat at 95 ° C for five minutes. Oligonucleo- I

tiderne Ila og ild, der danner den "overhængende" sekvens Itimes Ila and fire forming the "imminent" sequence I

H i DNA-fragmentet II, phosphoryléres ikke. Dette forhindrer IH of the DNA fragment II is not phosphorylated. This will prevent you

I ! ved den efterfølgende ligering dannelse af større subfrag- II! by the subsequent ligation, formation of larger sub-frag- I

I menter end de, der svarer til DNA-fragmentet II. IIn gents other than those corresponding to the DNA fragment II. IN

I 15 Oligonucleotiderne II (a-d) ligeres som følger til IThe oligonucleotides II (a-d) are ligated as follows to I

I subfragmentet II: hvert 1 nmol af oligonucleotiderne IlaIn the sub-fragment II: every 1 nmol of the oligonucleotides IIa

I og Ild samt 5 '-phosphaterne af Ilb og Ile opløses sammen II and Ild as well as the 5 'phosphates of Ilb and Ile are dissolved together I

I i 45 pi puffer, der indeholder 50 mM tris-HCl {pH-værdi II in 45 µl buffer containing 50 mM tris-HCl {pH I

I 7,6), 20 mM magnesiumchlorid, 25 mM kaliumchlorid og 10I 7.6), 20 mM magnesium chloride, 25 mM potassium chloride and 10

20 mM DTT· Til annealing af oligonucleotiderne ifølge DNA- I20 mM DTT · For annealing the oligonucleotides of DNA-I

I fragmentet II opvarmes opløsningen af oligonucleotiderneIn fragment II, the solution of the oligonucleotides is heated

I i 2 minutter til 95°C, hvorefter der langsomt (2-3 timer) HFor 2 minutes to 95 ° C, then slowly (2-3 hours) H

afkøles til 20°C. Til enzymatisk binding sættes herefter Icool to 20 ° C. For enzymatic binding, I is then added

I 2 pi 0,1 M DTT, 8 pi 2,5 mM adenosintriphosphat (pH-værdi IIn 2 µl 0.1 M DTT, 8 µl 2.5 mM adenosine triphosphate (pH I

I 25 7) samt 5 ul T4-DNA-ligase (2000 Units) til blandingen, I7) and 5 µl of T4 DNA ligase (2000 Units) to the mixture, I

I og der inkuberes i 16 timer ved 22°C. IIncubate for 16 hours at 22 ° C. IN

I Oprensningen af genfragmentet II sker ved gelelek- II The purification of the gene fragment II occurs by gel leakage

I troforese på en 10%'s polyacrylamidgel (uden tilsætning IIn trophoresis on a 10% polyacrylamide gel (without addition I

af urinstof, 20*40 cm, 1 mm tyk), hvorved der som mærknings- Iof urea, 20 * 40 cm, 1 mm thick), thereby labeling I

I 30 substans anvendes ØX 174 DNA (Fa. BRL), der er skåret HIn substance 30, ØX 174 DNA (Fa. BRL) cut H is used

I med HinfI, eller pBR322, der er snittet med Haelll. IIn with HinfI, or pBR322, which is incised with Haelll. IN

I Fremstillingen af genfragmenterne I, III og IV IIn the preparation of the gene fragments I, III and IV I

sker analogt hermed, idet dog de "overhængende" sekvenser Ioccurs analogously thereto, however, the "imminent" sequences I

I omdannes til 5'-phosphaterne før annealingen, da det IYou are converted to the 5 'phosphates prior to annealing, since it I

I 35 ikke er nødvendigt med noget ligeringstrin. IIn 35 no ligation step is necessary. IN

7 DK 175800 B1 3. Fremstilling af hybridplasmider, der indeholder genfragmenterne 1, II, III og IV.7 GB 175800 B1 3. Preparation of hybrid plasmids containing the gene fragments 1, II, III and IV.

a) Indbygning af genfragmentet I i pUC18.a) Incorporation of gene fragment I into pUC18.

Det handelsgængse plasmid pUC18 åbnes på kendt måde 5 med restriktionsendonucleaserne Sall og Xbal som beskrevet af fremstilleren. Fordøjelsesblandingen adskilles på kendt måde på en 1%'s agarosegel ved elektroforese, og brudstykkerne gøres synlige ved farvning med ethidiumbromid.The commercially available plasmid pUC18 is opened in known manner 5 with the restriction endonucleases Sall and Xbal as described by the manufacturer. The digestion mixture is separated in a known manner on a 1% agarose gel by electrophoresis and the fragments are made visible by staining with ethidium bromide.

Plasmidbåndene (ca. 2,6 kb) udskæres derefter fra agarose-10 gelen og adskilles fra agarosen ved elektroelution.The plasmid bands (about 2.6 kb) are then excised from the agarose gel and separated from the agarose by electroelution.

1 pg Plasmid, der er åbnet med Xbal og Sall, ligeres herefter med 10 ng af DNA-fragmentet I natten over ved 16°C.1 µg of plasmid opened with XbaI and SalI is then ligated with 10 ng of the DNA fragment I overnight at 16 ° C.

b) Indbygning af genfragmentet II i pUCl8.b) Incorporation of the gene fragment II into pUC18.

15 Analogt med a) opskæres pUC18 med Xbal og BamHI, og det ligeres med genfragmentet II, der forud er phosphory-leret i den overhængende ende som beskrevet i eksempel 2.Analogously to a), pUC18 is excised with XbaI and BamHI, and it is ligated with the gene fragment II, previously phosphorylated at the imminent end, as described in Example 2.

c) Indbygning af genfragmentet III i pOC18. ! 20 Analogt med a) opskæres pOC18 med BamHI og Xmalll,- og de.t ligeres med genfragmentet III.c) Incorporation of the gene fragment III into pOC18. ! Analogously to a), pOC18 is cut with BamHI and Xmalll, and then ligated with the gene fragment III.

d) Indbygning af genfragmentet IV i pUC18.d) Incorporation of gene fragment IV into pUC18.

Analogt med a) skæres pUCl8 med. Xmalll. og Sall, og der ligeres med genfragmentet IV.Analogously to a), pUC18 is cut with. Xmalll. and Sall, and the gene fragment IV is ligated.

25 4. Opbygning af det komplette gen og kloning i et pUC- -plasmid.4. Construction of the complete gene and cloning into a pUC plasmid.

a) Transformation og amplifikation af genfragmenterne I - IV.(a) Transformation and amplification of the gene fragments I - IV.

De således opnåede hybridplasmider transformeres.i E. coli. Hertil gøres stammen E. coli K 12 kompetent ved 30 behandling med en 70 mM calciumchloridopløsning, og hertil sættes suspensionen af hybridplasmidet i 10 mM tris--HCl-puffer (pH-værdi 7,5), der er 70 mM med hensyn til calciumchlorid. De transformerede stammer selekteres på gængs måde under anvendelse af den plasmid-overførte 35 antibiotikaresistens eller -følsomhed, og hybridvektorerne amplificeres. Efter at have dræbt cellerne isoleres hybrid-plasmiderne, og de opskæres med de oprindeligt anvendteThe hybrid plasmids thus obtained are transformed into E. coli. To this, the strain E. coli K 12 is made competent by treatment with a 70 mM calcium chloride solution, and to this is added the suspension of the hybrid plasmid in 10 mM tris - HCl buffer (pH 7.5), which is 70 mM with respect to calcium chloride . The transformed strains are commonly selected using the plasmid-transmitted antibiotic resistance or sensitivity, and the hybrid vectors are amplified. After killing the cells, the hybrid plasmids are isolated and cut up with those originally used

I DK 175800 B1 II DK 175800 B1 I

I II I

restriktionsenzymer, hvorefter genfragmenterne I, II, III Irestriction enzymes, after which the gene fragments I, II, III I

I og IV isoleres ved genelektroforese. II and IV are isolated by gene electrophoresis. IN

I b) Binding af genfragmenterne I, II, III og IV til et II b) Binding of the gene fragments I, II, III and IV to an I

I helt gen. IIn all gen. IN

I 5 De ved amplifikation opnåede subfragmenter I og II II The sub-fragments I and II I obtained by amplification

forbindes som følger. Hver 100 ng af de isolerede fragmen- Iconnected as follows. Every 100 ng of the isolated fragments

I ter I og II opløses sammen i 10 pi puffer, der indeholder IIter I and II are dissolved together in 10 µl buffer containing I

I 50 mM tris-HCl (pH 7,6), 20 mM magnesiumchlorid og 10 IIn 50 mM Tris-HCl (pH 7.6), 20 mM magnesium chloride and 10 L

I mM DTT, og denne opløsning opvarmes i 5 minutter til 57°C. IIn mM DTT and this solution is heated for 5 minutes to 57 ° C. IN

I 10 Herefter afkøles opløsningen til stuetemperatur, hvor- IThe solution is then cooled to room temperature, where I

I efter man til blandingen sætter 1 pi 10 mM adenosintri- IAfter adding to the mixture, 1 µl of 10 mM adenosine triplet is added

phosphat (pH 7) samt 1 μΐ T4-DNA-ligase (400 enheder), og Iphosphate (pH 7) and 1 μ 1 T4 DNA ligase (400 units), and I

I der inkuberes i 16 timer ved stuetemperatur. Efter at have IIncubate for 16 hours at room temperature. After you

I efterklippet med restriktionsenzymerne Sall og BamHI oprenses IIn the post-cut with the restriction enzymes Sall and BamHI, I is purified

I 15 det ønskede 312-bp-fragment (nucleotiderne 1-312, Sall- IIn the desired 312-bp fragment (nucleotides 1-312, SalI-I

I -BamHI) ved gelelektroforese på en 8%’s polyacrylamidgel, II -BamHI) by gel electrophoresis on an 8% polyacrylamide gel, I

I hvorved der som mærkningssubstans anvendes ØX 174 RF DNA IIn which, as labeling substance, ØX 174 RF DNA I is used

I (Fa. BRL), der er skåret med restriktionsenzymet Haelll. II (Fa. BRL) cut with the restriction enzyme Haelll. IN

I På samme måde forbindes genfragmenterne III og IV IIn the same way, the gene fragments III and IV I are linked

I 20 med hinanden, hvorved man efter oprensning får et 246- IIn 20 with each other, whereupon, after purification, a 246-I

I -bp-fragment (nucleotiderne 313-558, BamHI-Sall). Som II -bp fragment (nucleotides 313-558, Bam HI-SalI). As in

I markør ved gelelektroforese anvendes pBR322, der er skå- IIn marker by gel electrophoresis, pBR322 is used, which is I

I ret med restriktionsenzymet Mspl. IIn court with the restriction enzyme Mspl. IN

I Til opbygning af hele genet.(DNA-sekvens I) ligeres II To construct the entire gene (DNA sequence I), I is ligated

I 25 15 ng af 312-bp-fragmentet og 12 ng af 246 bp-fragmentet IIn 25 15 ng of the 312-bp fragment and 12 ng of the 246 bp fragment I

I som ovenfor beskrevet med 1 jig af det handelsgængse plas- II as described above with 1 µg of the commercially available plasma

I mid pUCl8, der forud er udskåret med restriktionsenzymet IIn mid pUC18 pre-excised with the restriction enzyme I

I Sall, og som er dephosphoryleret i enderne. Efter trans- IIn Sal, which is dephosphorylated at the ends. After trans- I

I formationen og amplifikationen (som beskrevet i eksempel IIn the formation and amplification (as described in Example I)

I 30 4a) identificeres ved Sall-fordøjelse den rigtige klon IIn Sala 4a), by SalI digestion, the correct clone I is identified

I med 558 bp-fragmentet ifølge DNA-sekvensen I. II with the 558 bp fragment of the DNA sequence I. I

I 5. Transformation af hybridplasmiderne. IIn 5. Transformation of the hybrid plasmids. IN

I Kompetente E. coli-celler transformeres med 0,1-1 IIn Competent E. coli cells, 0.1-1 I are transformed

I pg af hybridplasmidet, der indeholder DNA-sekvensen I, IIn µg of the hybrid plasmid containing the DNA sequence I, I

I 35 og cellerne udspredes på agarplader, der indeholder ampi- II and the cells are spread on agar plates containing amp. I

I cillin. Dernæst kan kloner, der indeholder de korrekt IIn cillin. Next, clones containing the correct I

I integrerede sekvenser i plasmidet, identificeres ved IIn integrated sequences in the plasmid, I is identified

9 DK 175800 B1 DNA-hurtigoparbejdning (Maniatis i føromtalte bog).9 DK 175800 B1 DNA rapid reprocessing (Maniatis in the aforementioned book).

6. Fusion af det syntetiserede gen: til regulationssignaler, der genkendes i planter.6. Fusion of the synthesized gene: for regulatory signals recognized in plants.

Det med Sall-snitsteder i enderne forsynede optime-5 rede resistensgen ligeres til polylinkersekvensensThe optimized resistance gene provided with SalI sites at the ends is ligated to the polylinker sequence.

Sall-snitsted i plasmidet pDH51 (Pietrzak et al.. Nucleic Acids Res. 14 (1986) 5857). På dette plasmid er igangsætteren og afslutteren af 35S-transkriptet fra Cauliflower Mosaic Virus lokaliseret, der kan genkendes af det 10 vegetabilske transkriptionsapparat.SalI cross-section of plasmid pDH51 (Pietrzak et al. Nucleic Acids Res. 14 (1986) 5857). On this plasmid is located the initiator and terminator of the 35S transcript from the Cauliflower Mosaic Virus, which is recognizable by the 10 vegetable transcription apparatus.

Ved ligering af resistensgenet indføjes dette bagved igangsætteren og foran afslutteren af 35S-transkriptet.When ligating the resistance gene, this is inserted behind the initiator and in front of the terminator of the 35S transcript.

Den korrekte orientering af genet bekræftes ved restriktionsanalyser .The correct orientation of the gene is confirmed by restriction analysis.

15 Igangsætteren af ST-LSl-genet fra Solanum tuberosum (Eckes et al., Mol. Gen. Genet. 205 (1986) 14) anvendes ligeledes til ekspression af det optimerede acetyltrans-ferase-gen i planter.The initiator of the ST-LS1 gene from Solanum tuberosum (Eckes et al., Mol. Gen. Gen. 205 (1986) 14) is also used to express the optimized acetyltransferase gene in plants.

7. Indsætning af resistensgenet med regulationssekvenser- 20 ne i Agrobacterium tumefaciens.7. Insertion of the resistance gene with the regulatory sequences into Agrobacterium tumefaciens.

a) Kointegrat-metode.a) Cointegrate method.

Den samlede transkriptionsenhed for igangsætteren, optimeret resistensgen og afslutter (eksempel 6) udskæres med restriktionsenzymet EcoRI, og den ligeres i den inter-25 mediære E. coli-vektor'pMPKllO1 s EcoRI-snitsted (Peter Eckes, Dissertation, Univ. Koln, 1985, s. 91 f.). Denne intermediære vektor er nødvendig for at overføre resistensgenet med dets regulationssekvenser til Ti-plasmidet fra Agrobacterium tumefaciens. Denne såkaldte konjugation 30 gennemføres ifølge den af Van Haute et al. (ΕΜΒ0 J. 2 (1983) 411) beskrevne fremgangsmåde. Herved integreres genet med dets regulationssignaler ved homolog rekombination via de i pMPKUO-vektoren og i Ti-plasmidet pGV3850kanR (Jones et al., EMBO J. 4 (1985) 2411) indeholdte sekvenser 35 af standardvektoren pBR322 i Ti-plasmidet.The total transcription unit for the initiator, optimized resistance gene and terminator (Example 6) is excised with the restriction enzyme EcoRI, and ligated into the intermediate E. coli vector pMPK11011 EcoRI cut site (Peter Eckes, Dissertation, Univ. Koln, 1985 , p. 91 f.). This intermediate vector is required to transfer the resistance gene with its regulatory sequences to the Ti plasmid from Agrobacterium tumefaciens. This so-called conjugation 30 is performed according to that of Van Haute et al. (J.0 J. 2 (1983) 411). Hereby, the gene is integrated with its regulation signals by homologous recombination via the sequences 35 of the standard vector pBR322 contained in the Ti plasmid in the pMPKUO vector and in the Ti plasmid pGV3850kanR (Jones et al., EMBO J. 4 (1985) 2411).

Hertil sammenblandes hver 50 pi friske bouillonkulturer af E. coli-stammerne DH1 (pMPKUO-derivatetsTo this, every 50 µl of fresh broth cultures of E. coli strains DH1 (pMPKUO derivative

I I DK 175800 B1 II I DK 175800 B1 I

I II I

I II I

værtsstamme) og GJ23 (Van Haute et al., Nucleic Acids Res. Ihost strain) and GJ23 (Van Haute et al., Nucleic Acids Res. I

H 14 (1986) 5857) på en tør YT-agarplade, og der inkuberes IH 14 (1986) 5857) on a dry YT agar plate and incubate I

il time ved 37°C. Bakterierne suspenderes igen i 3 ml 10 Ifor 1 hour at 37 ° C. The bacteria are resuspended in 3 ml of 10 L

H mM MgS04, og de udspredes på antibiotika-agarplader IH mM MgSO 4 and they are spread on antibiotic agar plates I

5 (spectinomycin 50 pg/ml: selektion for pMPKUO, tetracy- I5 (spectinomycin 50 µg / ml: selection for pMPKUO, tetracycline I

clin 10 pg/ml: selektion for R64drdll, kanamycin pg/ml: Iclin 10 pg / ml: selection for R64drdll, kanamycin pg / ml: I

selektion for pGJ28). De bakterier, der vokser på de selek- Iselection for pGJ28). The bacteria that grow on the selec- I

tive agarplader, indeholder de tre plasmider, og de opfor- Itive agar plates, they contain the three plasmids and they are amplified

meres til konjugationen med Agrobacterium turoefaciens i Iare added to the conjugation with Agrobacterium turoefaciens in I

10 YT-bouillonmedium ved 37°C. Agrobakterierne dyrkes i I10 YT broth medium at 37 ° C. The agrobacteria are grown in I

H LB-medium ved 28°C. Hver 50 jil bakteriesuspension sammen- IH LB medium at 28 ° C. Every 50 µl of bacterial suspension together

blandes på en tør YT-agarplade, og der inkuberes i 12-16 Imix on a dry YT agar plate and incubate for 12-16 L

timer ved 28°C. Bakterierne suspenderes igen i 3 ml 10 mM Ihours at 28 ° C. The bacteria are resuspended in 3 ml of 10 mM I

MgSO^, og der udspredes på antibiotikaplader (erythromy- IMgSO4 and spread on antibiotic plates (erythromy- I

I 15 cin 0,05 g/1, chloramphenicol 0,025 g/l: selektion for IIn 15 cin 0.05 g / l, chloramphenicol 0.025 g / l: selection for I

agrobakteriestammen; streptomycin 0,3 g/l og spectinomycin IAgrobacterium strain; streptomycin 0.3 g / l and spectinomycin I

I 0,1 g/l: selektion for integrationen af pMPKUO i Ti-plas- IIn 0.1 g / l: selection for the integration of pMPKUO into Ti plasm I

midet). På disse selektive plader kan der nu kun vokse Ibromide). On these selective plates, only I can now grow

agrobakterier, ved hvilke pMPKUO-derivatet ved en homo- Iagrobacteria, wherein the pMPKUO derivative of a homo- I

20 log rekombination er integreret i det bakterielle Ti-plas- I20 log recombination is integrated into the bacterial Ti plasmid I

mid. Imid. IN

I Foruden det allerede forud eksisterende i planter IIn addition to the pre-existing plants

aktive resistensgen mod antibiotikumet kanamy.cin er også.. Iactive resistance gene against the antibiotic kanamy.cin is also .. I

resistensgenet mod PTC nu lokaliseret på Ti-plasmidet Ithe resistance gene against PTC now located on the Ti plasmid I

25 pGV3850kanR. Før disse agrobakteriekloner anvendes til I25 pGV3850canR. Before using these agrobacterial clones for I

H transformationen, undersøges det ved hjælp af en "Southern- IH transformation, it is investigated using a "Southern-I

I Blot"-undersøgelse, om den ønskede integration er sket. IIn the Blot study, check whether the desired integration has occurred

I b) Binær vektor-metode. .ilI b) Binary vector method. uL

I Der anvendes det binære vektorsystem, der er beskrevet IThe binary vector system described in I is used

I 30 af Koncz et al. i.Mol. Gen. Genet. 204 (1986) 383. Den af IIn 30 by Koncz et al. i.Mol. Gen. Genet. 204 (1986) 383. The one of I

I Koncz et al. (PNAS 84 (1987) 131) beskrevne vektor pPCV701 IIn Koncz et al. (PNAS 84 (1987) 131) described vector pPCV701 I

I forandres på følgende måde: ved hjælp af restriktionsen- IYou change as follows: by means of restriction- I

I zymerne BamHI og Hindlll fjernes et fragment, på hvilket IIn the BamHI and HindIII enzymes, a fragment is removed on which I

I igangsætterne TRI og TR2 bl.a. er lokaliseret, fra vektoren. IIn the initiations TRI and TR2 i.a. is located, from the vector. IN

I 35 Det fremkomne plasmid ringsluttes igen. I det tilstedeværen- IThe resulting plasmid is cyclized again. In the presence- I

I de EcoRI-snitsted på denne vektor indføjes et ca. 800In the EcoRI section of this vector, an approx. 800

basepar langt fragment fra vektoren pDH51, på hvilket igang- Ibase pair long fragment from the vector pDH51, on which I-

11 DK 175800 B1 sætteren og afslutteren af 35S-transkriptet fra Cauliflower Mosaic Virus ligger (Pietrzak et al., Nucleic Acids Res. 14 (1986) 5858). Det resulterende plasmid pPCV801 har et singulært Sall-snitsted mellem 35S-igang-5 sætteren og -afslutteren. I dette snitsted indføjes det optimerede PTC-resistensgen. Ekspressionen heraf står nu under 35S-transkript-regulationssekvensernes kontrol.11 DK 175800 B1 the putter and terminator of the 35S transcript from the Cauliflower Mosaic Virus is located (Pietrzak et al., Nucleic Acids Res. 14 (1986) 5858). The resulting plasmid pPCV801 has a singular SalI cut site between the 35S initiator and the terminator. In this section, the optimized PTC resistance gene is inserted. Its expression is now under the control of 35S transcript regulation sequences.

Dette plasmid (pPCV80lAc) transformeres i E. coli-stammen SM10 (Simon et al., Bio/Technology 1 (1983), 10 784). Til overførsel af plasmidet pPCV80lAc til Agro- bacterium tumefaciens sammenblandes hver 50 jxl af SM10--kulturen og en C58-agrobakteriekultur (GV3101, Van Lare-beke et al., Nature 252 (1974) 169) med Ti-plasmidet PMP90RK (Koncz et al., Mol. Gen. Genet. 204 (1986) 383) i ! 15 som hjælpeplasmid på en tør YT-agarplade, og der inkuberes i ca. 16 timer ved 28°C. Bakterierne resuspenderes derefter i 3 ml 1 mM MgSO^, og der udspredes på antibiotikaplader (rifampicin 0,1 g/1: selektion for GV3101, kana-mycin 0,025 g/1s selektion for pMP90RK, carbenicillin 20 0,1 g/1: selektion for pPCV80lAc). På disse plader kan kun vokse agrobakterier, der indeholder begge plasmider (pMP90RK og pPCV801Ac). Før disse agrobakterier anvendes til plantetransformationen, blev det ved hjælp af "Southern Blotting" undersøgt, om plasmidet pPCV801Ac er til stede 25 i dets korrekte form i agrobakterierne.This plasmid (pPCV801Ac) is transformed into E. coli strain SM10 (Simon et al., Bio / Technology 1 (1983), 10,784). To transfer the plasmid pPCV801Ac to Agrobacterium tumefaciens, each 50 µl of the SM10 culture and a C58 agrobacterial culture (GV3101, Van Larebeke et al., Nature 252 (1974) 169) are mixed with the Ti plasmid PMP90RK (Koncz et al., Mol. Gen. Genet. 204 (1986) 383) i! 15 as an auxiliary plasmid on a dry YT agar plate and incubated for ca. 16 hours at 28 ° C. The bacteria are then resuspended in 3 ml of 1 mM MgSO 4 and spread on antibiotic plates (rifampicin 0.1 g / 1: selection for GV3101, kanamycin 0.025 g / l, selection for pMP90RK, carbenicillin 20 0.1 g / 1: selection for pPCV80lAc). On these plates, only agrobacteria containing both plasmids (pMP90RK and pPCV801Ac) can grow. Before using these agrobacteria for the plant transformation, it was investigated by Southern Blotting whether the plasmid pPCV801Ac is present in its correct form in the agrobacteria.

8. Transformation af Nicotiana tabacum via Agrobacterium tumefaciens.8. Transformation of Nicotiana tabacum via Agrobacterium tumefaciens.

Det optimerede resistensgen overføres ved hjælp af den såkaldte "leaf disc"-transformationsmetode til tobaks- ; 30 planter.The optimized resistance gene is transmitted by the so-called "leaf disc" transformation method to tobacco; 30 plants.

Agrobakterierne fremdyrkes i 30 ml LB-medium med de tilsvarende antibiotika ved 28°C under stadig omrystning (ca. 5 dage). Herefter sedimenteres bakterierne ved en 10 minutters centrifugering ved 7000 opm i en Christ-35 centrifuge, og der vaskes én gang med 20 ml 10 mM MgSO^.The agrobacteria are cultured in 30 ml of LB medium with the corresponding antibiotics at 28 ° C with still shaking (about 5 days). The bacteria are then sedimented by a 10 minute centrifugation at 7000 rpm in a Christ-35 centrifuge and washed once with 20 ml of 10 mM MgSO4.

Efter yderligere en centrifugering suspenderes bakterierne i 20 ml 10 mM MgS04, og de overføres til en petriskål. TilAfter a further centrifugation, the bacteria are suspended in 20 ml of 10 mM MgSO 4 and transferred to a petri dish. To

I DK 175800 B1 II DK 175800 B1 I

I 12 II 12 I

bladskive-infektionen anvendes blade af i sterilkultur Ileaf disc infection leaves of sterile culture I are used

på 2MS-medium voksende Wisconsin 38-tobaksplanter. Alle Ion 2MS medium growing Wisconsin 38 tobacco plants. All I

I sterilkulturer holdes ved 25-27°C i en rytme med 16 timers IIn sterile cultures, maintained at 25-27 ° C in a rhythm of 16 hours I

hvidt lys/8 timers mørke. Iwhite light / 8 hours of darkness. IN

I 5 Blade fra tobaksplanten snittes af, 09 bladoverfladen II 5 Leaves from the tobacco plant are cut off, 09 leaf surface I

såres med sandpapir. Efter at have såret bladene snittes Iwound with sandpaper. After wounding the leaves you cut

I de i mindre stykker, og de dyppes i bakteriekulturen. Her- IIn those in smaller pieces, and they are dipped in the bacterial culture. Here

efter overføres bladstykkerne til M+S-medium, og de holdes Ithen the leaf pieces are transferred to M + S medium and kept

I i 2 dage under normale kulturbetingelser. Efter to. dages IFor 2 days under normal culture conditions. After two. days I

I 10 infektion med bakterierne vaskes bladstykkerne i et flyden- IIn infection with the bacteria, the leaves are washed in a float

I de M+'S-medium, og de overføres til MSCIO-agarplader. Trans- IIn the M + 'S medium, they are transferred to MSC10 agar plates. Trans- I

I formerede spirer selekteres på baggrund af den medoverførte IIn propagated sprouts are selected on the basis of the co-transferred I

I resistens mod antibiotikumet kanamycin. 3-6 Uger senere IIn resistance to the antibiotic kanamycin. 3-6 Weeks Later I

I bliver den første spire synlig. Enkelte spirer videredyrkes IYou will see the first sprout visible. Some sprouts are re-cultivated

I 15 på MSC15-medium i glasbeholdere. I de følgende uger danner IIn 15 on MSC15 medium in glass containers. In the following weeks you form

I nogle af de afskårne spirer rod på snitstedet. IIn some of the cut, the root of the cut site sprouts. IN

Transformerede planter kan også selekteres direkte ITransformed plants can also be selected directly I

på PTC-holdige plantemedier. Ved DNA-analyse ("Southern Ion PTC-containing plant media. By DNA analysis ("Southern I

Blotting") og RNA-analyse ("Northern Blotting") af de IBlotting ") and RNA analysis (" Northern Blotting ") of the I

20 transformerede planter påvises tilstedeværelsen og eks- I20 transformed plants detect the presence and ex

pressionen af PTC-resistensgenet. Ithe depression of the PTC resistance gene. IN

9. Påvisning af de transformerede planters PTC-resistens. I9. Detection of transformed plants PTC resistance. IN

Til undersøgelse af resistensgenets funktionalitet ITo study the functionality of the resistance gene I

i transformerede planter overføres bladfragmenter af Iin transformed plants, leaf fragments are transmitted by I

25 transformerede og ikke-transformerede planter til M+S- I25 transformed and non-transformed plants for M + S- I

-4 I-4 I

næringsmedier med 1·10 M L-PTC. Fragmenter af ikke-trans-nutritional media with 1 · 10 M L-PTC. Fragments of non-trans

formerede planter uddør, medens der på fragmenter af trans- Ipropagated plants die out, while on fragments of trans- I

formerede planter kan regenereres nye spirer. Transforme- Ipropagated plants can regenerate new sprouts. Transform I

rede spirer danner rod og vokser uden problemer på M+S- Inest sprouts form root and grow effortlessly on M + S- I

30 næringsmedier med 1·10-3 M L-PTC. Transformerede planter I30 nutrient media with 1 · 10-3 M L-PTC. Transformed plants I

plantes under sterile betingelser i jord, og de sprøjtes Iplanted under sterile conditions in soil and sprayed

med 2 kg/ha og 5 kg/ha PTC. Mens ikke-transformerede plan- Iat 2 kg / ha and 5 kg / ha PTC. While non-transformed plan- I

ter ikke overlever denne herbicidbehandling, viser de Ido not survive this herbicide treatment, they show

transformerede planter ingen af de skader, som herbicidet Itransformed plants none of the damage caused by the herbicide I

35 bevirker. Udseendet og vækstforholdet af de sprøjtede, I35 effects. The appearance and growth ratio of the sprayed, I

transformerede planter er mindst lige så godt som ved de Itransformed plants are at least as good as they are

usprøjtede kontrolplanter. Hunsprayed control plants. H

DK 175800 B1 13 10. Acetyltransferase-undersøgeIse til påvisning af PTC-acetyleringen i transgene, PTC-resistente planter.DK 175800 B1 13 10. Acetyltransferase assay to detect PTC acetylation in transgenic, PTC resistant plants.

Ca. 100 mg bladvæv fra transgene, PTC-resistente tobaksplanter eller fra ikke-transformerede tobaksplanter 5 homogeniseres i en puffer, der består af: 50 mM tris/HCl, pH 7,5; 2 mM EDTA; 0,1 mg/1 leupeptin; 0,3 mg/ml oksese rumalbumin; 0,3 mg/ml DTT; 0,15 mg/ml phenylmethylsul-fonylfluorid (PMSF).Ca. 100 mg of leaf tissue from transgenic, PTC resistant tobacco plants or from non-transformed tobacco plants 5 is homogenized in a buffer consisting of: 50 mM Tris / HCl, pH 7.5; 2 mM EDTA; 0.1 mg / l leupeptin; 0.3 mg / ml oxalic rum albumin; 0.3 mg / ml DTT; 0.15 mg / ml phenylmethylsulfonyl fluoride (PMSF).

Efter en efterfølgende centrifugering inkuberes 20 10 μΐ af den klare ovenstående væske med en 1 μΐ 10 mM radioaktivt mærket'D,L-PTC og 1 μΐ 100 mM acetyl-CoA i 20 minutter ved 37°C. Herefter sættes 25 ul 12%'s trichloreddikesyre til reaktionsblandingen, og der fracentxifugeres.After a subsequent centrifugation, 20 10 μΐ of the clear supernatant is incubated with a 1 μΐ 10 mM radiolabeled D, L-PTC and 1 μΐ 100 mM acetyl-CoA for 20 min at 37 ° C. Then, 25 µl of 12% trichloroacetic acid is added to the reaction mixture and frantaxifuged.

Fra den ovenstående væske overføres 7 μΐ til en tyndtlags-15 chromatografi-plade, og i en blanding af pyridin, n-buta-nol, eddikesyre og vand (50:75:15:60-rumfangsdele) fremkaldes opstigning to gange. PTC og acetyl-PTC adskilles således fra hinanden, og de kan påvises ved autoradiografi.From the above liquid, 7 µ 7 is transferred to a thin-layer chromatography plate, and in a mixture of pyridine, n-butanol, acetic acid and water (50: 75: 15: 60 volumes) rise twice. Thus, PTC and acetyl-PTC are separated from each other and can be detected by autoradiography.

Ikke-transformerede planter viser ingen omsætning af PTC 20 til acetyl-PTC, mens transgene, resistente planter er i stand dertil.Non-transformed plants show no conversion of PTC 20 to acetyl-PTC while transgenic resistant plants are capable of doing so.

25 30 3525 30 35

DK 175800 B1 IDK 175800 B1 I

5 ggg SSS 3S“ . 555 32¾ 1§8 · I5 ggg SSS 3S ”. 555 32¾ 1§8 · I

i~»-< eoo veu oeu Jh< <<(- ^Bi ~ »- <eoo veu oeu Jh <<< (- ^ B

tn i- < kus - J(-< *<(- «<(- ofc< Htn i- <kiss - J {- <* <(- «<(- ofc <H

ZOO (- (- < >00 DUO <-<<- >OU ^BZOO {- (- <> 00 DUO <- << -> OU ^ B

ZUO B<H £<h <00 >;K B<f·ZUO B <H £ <h <00>; K B <f ·

»<(- BOO XUS .300 JOO KOD ^B»<(- BOO XUS .300 JOO CODE ^ B

<<(- <<(- (-<(- <øl) DUU BUO H<< (- << (- (- <(- <beer) DUU BUO H

Jh< tu (- < W O O 300·. O O (3 POU HJh <tu (- <W O O 300 ·. O O (3 POU H

<h< tn<H sou j < i- «oo 5S0 H<h <tn <H sou j <i- «oo 5S0 H

> S3 O <(3U (-(-< DOO < (3 O <<(- H> S3 O <(3U {- {- <DOO <(3 O << {- H

MUO Z<H CU (- < HOO <UO ρ<(· IMUO Z <H CU {- <HOO <UO ρ <(· I

jh< -n < (- in < (- ui-< Juo soo Hjh <-n <(- in <(- ui- <Juo soo H

-<(- OOO <OU E < (- <00 S (3 O H- <(- OOO <OU E <(- <00 S (3 O H

10 CU t- < 300 HOO B(-< S<(- Of-< H10 CU t- <300 HOO B {- <S <(- Of- <H

tn < (- Wf-< >“<h UUO SUO KUO Htn <(- Wf- <> “<h UUO SUO KUO H

<00 -3(-< (-♦-< U3(-< (-<(- , O.UO ^B<00 -3 (- <(- ♦ - <U3) - <(- <(-, O.UO ^ B

m(-< . poo <(-< «ου kuo <(-<m (- <. poo <(- <«ου kuo <(- <

UK< <<(- <OU (-H< <Ot> MUK <<< (- <OU (-H <<Ot> M)

JH< 300 ZOO 3t*< >- < (- O < t-JH <300 ZOO 3t * <> - <(- O <t-

<(-< O < I- »<(- Ut-< -3(30 EUO ^B<(- <O <I- »<(- Ut- <-3 (30 EUO ^ B

>(30 (300 <<(- JOO (3(30 BUO ^B> (30 {300 << {- JOO {3 {30 BUO ^ B

<30 O < I- O t3 O 300 300 3CU<30 O <I- O t3 O 300 300 3CU

-30(3 U(-< KOU W(-< WH< W(-< H-30 {3 U {- <COLD W {- <WH <W {- <H

<oo οθ(3 <<(- ji-< -) (- < jk ^B<oo οθ (3 << (- ji- <-) {- <jk ^ B

<0(3 B(-< <<-< M(-< <(-< 300 H<0 (3 B (- <<< - <M (- <<(- <300 H

00(3 (0<l- -30(3 -*<(- >30(3 J < f- ^B00 {3 (0 <l- -30 {3 - * <{-> 30 {3 J <f- ^ B

<C30 <(30- <(3<-> =0(3 <(30 (3(3 0 H<C30 <(30- <(3 <-> = 0) 3 <(30 (3 (3 0 H)

^5 (-(SO B(-< (600 S<(- 3 (3 O !*)(-< H^ 5 (- (SO B) - <(600 S <(- 3 (3 O! *)) - - <H

b)t-< (0<(- X(- ZO(3 -3 < (- =f-< Hb) t- <(0 <(- X (- ZO) 3 -3 <(- = f- <H

3C<(- < O O -3 < t- (-<(· C3 (3 O CU (- < ^B3C <(- <O O -3 <t- (- <(· C3 (3 O CU (- <^ B

ru f- < bi(-< cu o o eoo «(-< B(-<ru f- <bi {- <cu o o eoo «{- <B {- <

tn<(- oh< eoo y <(- — < (- ui<e Mtn <(- oh <eoo y <(- - <(- ui <e M

<(30 — < t- (- (- < Ϊ- (- < =0(3 <(3 0 H<(30 - <t- (- (- <Ϊ- (- <= 0) 3 <(3 0 H

< ¢- < BOO 00(3 0(30 =(3 0 (3 0 0<¢ - <BOO 00 (3 0 (30 = (3 0 (3 0 0)

0 0(3 OCQO =0(3 Wt-< WH< Bt C3 O ^B0 0 (3 OCQO = 0 (3 Wt- <WH <Bt C3 O ^ B

<(3 0 (— (- < CU O O -3(-< -3 I- < <<(· ^B<(3 0 {- {- <CU O O -3 {- <-3 I- <<< {· ^ B

< < t- - »OO >-(30 B<(- 0(30 Z < H - 2 M<<t- - »OO> - (30 B <(- 0 (30 Z <H - 2 M

00(3 -3<(- -3(30 =0(3 CCC30 -3 < (- O ^B00 (3 -3 <(- -3) 30 = 0 (3 CCC30 -3 <(- O ^ B

<(30 (300 OOO l-<(- <<(- 00(3 >Λ B> ^B<(30 (300 OOO l - <(- << (- 00 (3> Λ B> ^ B

S < (— E<t- <f-< =0(3 OI-< CL O O φS <(- E <t- <f- <= 0 (3 OI- <CL O O φ

ZOO O < (- OOC3 100(3 < I-< KDU > ^BZOO O <(- OOC3 100 (3 <I- <KDU> ^ B

2Q (» < (- (30(3 <(30 O (- < > O O (-1- < χ H2Q (»<(- (30) 3 <(30 O (- <> O O (-1- <χ H

<«-< 0<(- BOO >-<i- B I-< Uh< Si<«- <0 <(- BOO> - <i- B I- <Uh <Si

o o o eoo 5-<t- ooo ωυο = (-< , Ho o o eoo 5- <t- ooo ωυο = (- <, H

<oo eoo (-(-< ooo «(-< 0 i>< ^ H<oo eoo {- {- <ooo «(- <0 i> <^ H

O < f- =<l- <t-< = <(- O <t- o >-(-< 2O <f- = <l- <t- <= <(- O <t- o> - {- <2

kuo zoo ooo ωμ< κυο -<« ooo α ^Bkuo zoo ooo ωμ <κυο - <«ooo α ^ B

tu O C3 *-<(- <(30 00(3 eoo (3(30 Htu O C3 * - <(- <(30 00) 3 eoo (3 (30 H

ooo z<t- *3t-< >- o o cu t- < uf-« o' SOO O < (- JK ooo (13 < H < I- <ooo z <t- * 3t- <> - o o cu t- <uf- «o 'SOO O <(- JK ooo (13 <H <I- <

<<(- (30(3 — < [- OOO <00 > O O I H<< (- (30 (3 - <[- OOO <00> O O I H

Ut-< 0<l- >-(-< »OO ZOO ΕΚ ® HUt- <0 <l-> - (- <»OO ZOO ΕΚ ® H

o*-< boo ooo uj>-< tn < t- tn < t- ^ Ho * - <boo ooo uj> - <tn <t- tn <t- ^ H

— <i- eoo ooo ox <<h <oo >> ^B- <i- eoo ooo ox << h <oo >> ^ B

300 S(3U <l-< OOO r-u 0<l·- ®h< O300 S (3U <l- <OOO r-u 0 <l · - ®h <O

rse O < h- *J<H JUO KUl; · = Οΐ U O ·- < H Crse O <h- * J <H JUO KUl; · = Οΐ U O · - <H C

25 O U L> ooo < C5 u i < I--^ β*ϋΙί xuo —<25 O U L> ooo <C5 u i <I - ^ β * ϋΙί xuo - <

O H < CU < H JUU X < Dh< &.QU J HO H <CU <H JUU X <Dh <& .QU J H

<h< x o ϋ <f-< j<é- ω h < ccc?o **·· >ϋϋ μ<Η > ϋ U ϋ ϋ U h-f^< 0<Η OOD α>(-< >ϋϋ >-<Η Η «ϋϋ coy <*~< «— < μ- Jou ο ο l> r Q.UC9 <<μ* >(9θ ΐϋϋ ΰΰϋ ϋϋ ϋ η U<f- UH< Οϋϋ >- f- < Η <<Η ϋϋϋ g <<t- -<Η ooo < Η ooo zoo »»»- in i- < oi-< in v- <<h <xo ϋ <f- <j <é- ω h <ccc? o ** ··> ϋϋ μ <Η> ϋ U ϋ ϋ U hf ^ <0 <Η OOD α> (- <> ϋϋ> - <Η Η «ϋϋ coy <* ~ <« - <μ- Your ο ο l> r Q.UC9 << μ *> (9θ ΐϋϋ ΰΰϋ ϋϋ ϋ η U <f- UH <Οϋϋ> - f- <Η < <Η ϋϋϋ g << t- - <Η ooo <Η ooo zoo »» »- in i- <oi- <in v- <

soo tn < t- J<>- — < (- <c< —<(- . - >. Hsoo tn <t- J <> - - <(- <c <- <(-. ->. H

<<(- <<(- OOO XOO >00 =0(3 ' < Q<< (- << (- OOO XOO> 00 = 0 (3 '<Q

OOO -300 -J < B<(- < (- < «ου (p< HOOO -300 -J <B <(- <(- <«ου (p <H

30 0<(- <(-< <(-< UOO -300 XH30 0 <(- <(- <<(- <UOO -300 XH

ooo >oo >(30 «(-< <oo U><(- wcj o Hooo> oo> (30 «(- <<oo U> <(- wcj o H

0C3O B<(- OOO 0(30 -3(-< BOO ^ H0C3O B <(- OOO 0) 30 -3 (- <BOO ^ H

ecpo (-<(- ooo >oo >oo (-(- < ζομ Hecpo (- <(- ooo> oo> oo) - - (- <ζομ H

E (— < Bt-< o <l-< gop -300 X(- S" HE {- <Bt- <o <l- <gop -300 X {- S „H

HOO eoo - O OOO >- < (- < H < 000 UUPHOO eoo - O OOO> - <(- <H <000 UUP

ΙΛ (-< «H< rH <00 »-(-< >00 OOO ^ -ΙΛ (- <«H <rH <00» - (- <> 00 OOO ^ -

1-00 BC30 -3(-< J(-< E(-< <(-< soy H1-00 BC30 -3 {- <J {- <E {- <<(- <soy H

<(- (-<(- >WO >0(3 tn (- < <00 ^ H<(- (- <(-> WO> 0) 3 tn (- <<00 ^ H

oo »oo ooo £►·< BOO <<(- £ S Hoo »oo ooo £ ► · <BOO << (- £ S H

< J<(- U(-< =(30 >- < (- JOC3 5Sg H<J <(- U (- <= (30> - <(- JOC3 5Sg H

o OOO >3(-< (- < (- -3 < (- <00 >0(3 Ho OOO> 3 {- <(- <(- -3 <(- <00> 0) 3 H

as ο ωχ eoo «»"< e (- < ooo Qrtfi Hif ο ωχ eoo «» "<e (- <ooo Qrtfi H

«33 t- T Jh< Boo wop = (- i EOO KOO H«33 t- T Jh <Boo wop = (- i EOO KOO H

— <(- (- (- < tn < (- ei-< <oo. euP ^B- <(- (- (- <tn <(- ei- <<oo. EuP ^ B

15 DK 175800 B115 DK 175800 B1

Eli Isf ilt Iff UV 111 . iss eh iga §*g . in i aga ill lig 1¾ 311 s S6|T Iff m ns m ug ufr sig 311 aiagg Ile 611 .f»8 Ibs ug §εγ eh ni m !ii •o m ug m gu in m 555 , 5S6-r SSt 2 355 ·α é§S lb§ 388 8S8 vS^H BBS 222 <DO ?<<H Jh< Μ 3fc-3 JH< S«σ £*-< <f< a>f-< <h< <ou <ou ^<ouo *uo < o u oou t-pu m coop h «<*- PDU ISfc5Eli Isf ilt Iff UV 111. iss eh iga § * g. in aga ill lig 1¾ 311 s S6 | T Iff m ns m ug ufr sig 311 aiagg Ile 611 .f »8 Ibs ug §εγ eh ni m! ii • om ug m gu in m 555, 5S6-r SSt 2 355 · Α é§S lb§ 388 8S8 vS ^ H BBS 222 <DO? << H Jh <Μ 3fc-3 JH <S «σ £ * - <<f> a> f- <<h <<ou <ou ^ <ouo * uo <ou oou t-pu m coop h «<* - PDU ISfc5

Uh< tt<h h>“5^ Sup J<h SH< £<«- <oo J <H h<(- ODU Ch< m- 15 t.i~< hou «ο» λη< a.*-< ^ so<h 3*-< Sou S* < P «<h to < *- <ou n<h Pk (· h < suo < u u wUh <tt <hh> “5 ^ Sup J <h SH <£ <« - <oo J <H h <(- ODU Ch <m- 15 ti ~ <hold «ο» λη <a. * - <^ so <h 3 * - <Sou S * <P «<h to <* - <ou n <h Pk (· h <suo <uuw

355 £88 888 B22 BB8 §88 S355 £ 88 888 B22 BB8 §88 S

<bu Fk Euo 3h< < < i- ®<bu Fk Euo 3h <<<i- ®

<<(-> soo >>ou s < t- eoo i<i- S<< (-> soo >> ou s <t- eoo i <i- S

H Jus J « l·- JUO xvp Sou J < l·· <OC X} BBO OBO P<P , <<H OUO 0) £55 55£ SSS β&8-£ it5 |S8 “ P<t- DUO «OO βί-4<1' >BU P«-< ^H Jus J «l · - JUO xvp Sou J <l · · <OC X} BBO OBO P <P, << H OUO 0) £ 55 55 £ SSS β & 8- £ it5 | S8“ P <t- DUO «OO βί-4 <1 '> BU P «- <^

555 855 es*£t i_5Sfe £5f sti I555 855 es * £ t i_5Sfe £ 5f path I

20 <eo kuo (·►<], O C O 03 t- < E t- < ‘-J20 <eo kuo (· ► <], O C O 03 t- <E t- <'-J

p<i- s < l·* <h< ' »<i- n) o <»- X) >-»-< ^p <i- s <l · * <h <'»<i- n) o <» - X)> - »- <^

Suo ZOO , JUS Hl<< H KUOH fl JDU ^Suo ZOO, JUS Hl << H KUOH fl JDU ^

kuo F<h < olo Sus H kuo μ - ij oou Okuo F <h <olo Sus H kuo μ - ij oou O

BBU X < l·- . ΙΐΗ< V· O P W H J(-<BBU X <l · -. ΙΐΗ <V · O P W H J {- <

Sou j2i- 3*-2 jqu tg<f- <·-< i < < H OUO ·-«<*- O O O Sou >συ φ SH< 0<f- >-H< OBO ZUB fc*«< 1-1 Ϊ-} Sup JDU EF« O < H «0 < l·- w, μ<». EoS ooo j i- 2 <<h <ou ·* OBU »OU _ ODU P<*- BH< n j < i- J < |- Λ jus ξου Suo «< i- 2Thus j2i- 3 * -2 jqu tg <f- <· - <i <<H OUO · - «<* - OOO Sou> συ φ SH <0 <f-> -H <OBO ZUB fc *« <1- 1 Ϊ-} Sup JDU EF «O <H« 0 <l · - w, µ <». EoS ooo j i- 2 << h <ou · * OBU »OU _ ODU P <* - BH <n j <i- J <| - Λ jus ξου Suo« <i- 2

oou <0 soUh <ou S<t> kuo zuo Coou <0 soUh <ou S <t> kuo zuo C

ji-< H k<*- j o o z<i- »i-< n, p u tiji- <H k <* - j o o z <i- »i- <n, p u ti

25 <μ< suo < h < 3<i- » Η < Ξου E25 <μ <suo <h <3 <i- »Η <Ξου E

>ou F<i~ »>oo ouo 3uo -Pi-< *$·> ou F <i ~ »> oo ouo 3uo -Pi- <* $ ·

f<l- OOU Jh< B3H< HOO >-<Wf <l- OOU Jh <B3H <HOO> - <W

oo Sou <F-2 «<«- j3u jouoo Would <F-2 «<« - j3u you

UO <<H O-OU SUO OOU OOUUO << H O-OU SUO OOU OOU

o<(- Ml·« »·»·< OOU M<l· ►- H <o <(- Ml · «» · »· <OOU M <l · ►- H <

Sou :l·« jpu SSu 3i-< jou f- k 5<t- kh3 ODU <<l- OOU O 'So: l · «jpu SSu 3i- <your f- k 5 <t- kh3 ODU << l- OOU O '

* BDU ZUO OOU «*-< j t* i »·-< O* BDU ZUO OOU «* - <j t * i» · - <O

Sou n«h J«l· »«i- <►-< M«h « <<(- <2l· oou . buo »-ou suo 1' ou »ou jpu to jk<xi o «««-τι <»-< mou < < *-So n «h J« l · »« i- <►- <M «h« << (- <2l · oou. Buo »-ou suo 1 'ou» ou jpu to jk <xi o «« «-τι <»- <sleeve <<* -

J<l·- <f-< H <k«H H "UP H JUO >-5»- 1 OUJ <l · - <f- <H <k «H H" UP H JUO> -5 "- 1 OU

oou > o u H >OU^| £ U3l·- < [_] <OU J < l·- lt-< 30 oou »ou Jpu Jl·« suo suo £8S 222 éS& 553 5§3 Είί B&S £55 355 £S2 2E2 5|5 5S2 „oou> o u H> OU ^ | £ U3l · - <[_] <OU J <l · - lt- <30 oou »ou Jpu Jl ·« suo suo £ 8S 222 éS & 553 5§3 Είί B&S £ 55 355 £ S2 2E2 5 | 5 5S2 „

Qh< «··< <OU hh< P U OOU OUOQh <«·· <<OU hh <P U OOU OUO

gu 111 iga iga in mgu 111 iga iga in m

i°+ Ilt §11 ISI sil 3§8 " itSi ° + Ilt §11 ISI will 3§8 "itS

35 1 s 311 111 ill 313 111 Ibs35 1 s 311 111 ill 313 111 Ibs

Claims (10)

1. Resistensgen, der koder for proteinet med amino- I syresekvensen I, idet der som startcodon anvendes ATG og I som stopcodon TGA, og genets GC-andel er tilpasset GC-andelen ^ I 5. planter. I1. The resistance gene encoding the protein with the amino acid sequence I, using as the start codon ATG and I as the stop codon TGA, and the GC proportion of the gene is matched to the GC proportion of 5 plants. IN 2. Resistensgen ifølge krav l,kendetegnet . I B ved DNA-sekvensen I (nucleotidposition 9-554). I2. A resistance gene according to claim 1, characterized. I B by DNA sequence I (nucleotide position 9-554). IN 3. Genstruktur, kendetegnet ved, at DNA- I B sekvensen I er koblet til i planter aktive regulations- og I 10. ekspressionssignaler. I3. Gene structure, characterized in that the DNA-I B sequence I is linked to plants active regulation and I10 expression signals. IN 4. Vektor, kendetegnet ved resistensgenet I B ifølge krav 1 eller 2. IA vector characterized by the resistance gene I B according to claim 1 or 2. I 5. Vektor, kendetegnet ved en genstruktur I B ifølge krav 3. I B 15The vector, characterized by a gene structure I B according to claim 3. I B 15 6. Vektorer indeholdende en eller flere DNA-sekvenser I B valgt blandt: I B I (nucleotid nr. 1-152) I fl I,I (nucleotid nr. 153-312) I B ' B III (nucleotid nr. 313-436) eller I I 20 IV (nucleotid nr. 437-558). I BVectors containing one or more DNA sequences IB selected from: IBI (nucleotide # 1-152) I fl I, I (nucleotide # 153-312) IB 'B III (nucleotide # 313-436) or II IV (nucleotide nos. 437-558). I B 7. Værtscelle, kendetegnet ved en vektor I B ifølge krav 4, 5 eller 6. IA host cell, characterized by a vector I B according to claims 4, 5 or 6. I 8. Plantecelle, kendetegnet ved et gen I B 25 ifølge krav 1, 2 eller 3. IPlant cell, characterized by a gene I B 25 according to claims 1, 2 or 3. I 9. Planter, dele heraf og frø, kendetegnet I B ved et gen ifølge krav 1, 2 eller 3. IPlants, parts thereof and seeds, characterized in B by a gene according to claims 1, 2 or 3. I 10. Anvendelse af genet ifølge krav l eller 2 eller * I B af genstrukturen ifølge krav 3 til tilvejebringelse af phos- I B 30 phinothricin-resistente planteceller, plantedele, planter I B og frø. IUse of the gene of claim 1 or 2 or * I B of the gene structure of claim 3 to provide phos- I B 30 phinothricin-resistant plant cells, plant parts, plants I B and seeds. IN
DK198800239A 1987-01-21 1988-01-20 Resistance gene, gene structure containing the resistance gene, vector containing the resistance gene or gene structure, host cell containing the vector, plant cell, plants ............. DK175800B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE3701624 1987-01-21
DE3701624 1987-01-21
DE19873737918 DE3737918A1 (en) 1986-08-23 1987-11-07 Phosphinothricin resistance gene to which is active in plants, and its use
DE3737918 1987-11-07

Publications (3)

Publication Number Publication Date
DK23988D0 DK23988D0 (en) 1988-01-20
DK23988A DK23988A (en) 1988-07-22
DK175800B1 true DK175800B1 (en) 2005-02-28

Family

ID=25851724

Family Applications (1)

Application Number Title Priority Date Filing Date
DK198800239A DK175800B1 (en) 1987-01-21 1988-01-20 Resistance gene, gene structure containing the resistance gene, vector containing the resistance gene or gene structure, host cell containing the vector, plant cell, plants .............

Country Status (13)

Country Link
EP (1) EP0275957B1 (en)
JP (3) JP2993964B2 (en)
CN (2) CN87100603A (en)
AU (1) AU609082B2 (en)
CA (1) CA1321364C (en)
DE (1) DE3878699D1 (en)
DK (1) DK175800B1 (en)
ES (1) ES2054708T3 (en)
FI (1) FI116067B (en)
GR (1) GR3007859T3 (en)
HU (1) HU215079B (en)
IL (1) IL85143A0 (en)
NZ (1) NZ223227A (en)

Families Citing this family (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3716309A1 (en) * 1987-05-15 1988-11-24 Hoechst Ag RESISTANCE TO PHOSPHINOTHRICIN
DE3732972A1 (en) * 1987-07-02 1989-01-12 Hoechst Ag RESISTANCE GENES TO PHOSPHINOTHRICIN AND ITS USE
BR9007159A (en) * 1989-02-24 1991-12-10 Monsanto Co SYNTHETIC GENES OF PLANTS AND PROCESS FOR THE PREPARATION OF THE SAME
US20010003849A1 (en) 1989-08-07 2001-06-14 Kenneth A. Barton Expression of genes in plants
US5550318A (en) * 1990-04-17 1996-08-27 Dekalb Genetics Corporation Methods and compositions for the production of stably transformed, fertile monocot plants and cells thereof
HUT65648A (en) * 1990-01-26 1994-07-28 Mta Biolog Kutato Intezete Transgenic plants expressing a prokaryotic ammonium dependent asparagine synthetase
US5739082A (en) * 1990-02-02 1998-04-14 Hoechst Schering Agrevo Gmbh Method of improving the yield of herbicide-resistant crop plants
DE4003045A1 (en) * 1990-02-02 1991-08-08 Hoechst Ag VIRUS / HERBICIDE RESISTANCE GENES, METHOD FOR THEIR PRODUCTION AND THEIR USE
DE4013099A1 (en) * 1990-04-25 1991-10-31 Hoechst Ag Transforming immature somatic plant, esp. maize, embryos - by treating, in dry state, with nucleic acid soln., esp. for introducing resistance to phosphinothricin
US5792936A (en) * 1990-06-23 1998-08-11 Hoechst Aktiengesellschaft Zea mays (L.) with capability of long term, highly efficient plant regeneration including fertile transgenic maize plants having a heterologous gene, and their preparation
US5767367A (en) * 1990-06-23 1998-06-16 Hoechst Aktiengesellschaft Zea mays (L.) with capability of long term, highly efficient plant regeneration including fertile transgenic maize plants having a heterologous gene, and their preparation
IL101119A0 (en) * 1992-03-03 1992-11-15 Univ Ramot Transgenic wheat
DE4222407C1 (en) * 1992-07-08 1993-10-07 Max Planck Gesellschaft Modular promoter construct
US6118047A (en) 1993-08-25 2000-09-12 Dekalb Genetic Corporation Anthranilate synthase gene and method of use thereof for conferring tryptophan overproduction
IL122270A0 (en) * 1997-11-20 1998-04-05 Yeda Res & Dev DNA molecules conferring to plants resistance to a herbicide and plants transformed thereby
DE19836659A1 (en) 1998-08-13 2000-02-17 Hoechst Schering Agrevo Gmbh Use of synergistic herbicide combination including glufosinate- or glyphosate-type, imidazolinone, protoporphyrinogen oxidase inhibitory azole or hydroxybenzonitrile herbicide, to control weeds in cotton
DE19836684A1 (en) 1998-08-13 2000-02-17 Hoechst Schering Agrevo Gmbh Use of a synergistic herbicidal combination including a glufosinate- or glyphosate-type, imidazolinone or protoporphyrinogen oxidase to control weeds in rice
PL217216B1 (en) * 1998-08-13 2014-06-30 Bayer Cropscience Ag Fungicides for using on tolerant or resistant maize crops
DE19836700A1 (en) 1998-08-13 2000-02-17 Hoechst Schering Agrevo Gmbh Use of a synergistic herbicide combination including a glufosinate- or glyphosate-type, imidazolinone or protoporphyrinogen oxidase inhibitory azole herbicide to control weeds in cereals
DE19836660A1 (en) 1998-08-13 2000-02-17 Hoechst Schering Agrevo Gmbh Use of a synergistic herbicide combination including a glufosinate- or glyphosate-type, imidazolinone or protoporphyrinogen oxidase inhibitory azole herbicide to control weeds in soya
US6333449B1 (en) 1998-11-03 2001-12-25 Plant Genetic Systems, N.V. Glufosinate tolerant rice
US6395485B1 (en) * 2000-01-11 2002-05-28 Aventis Cropscience N.V. Methods and kits for identifying elite event GAT-ZM1 in biological samples
US7517975B2 (en) 2000-09-26 2009-04-14 Pioneer Hi-Bred International, Inc. Nucleotide sequences mediating male fertility and method of using same
US7041877B2 (en) 2001-02-08 2006-05-09 Hexima, Ltd. Defensin-encoding nucleic acid molecules derived from nicotiana alata, uses therfor and transgenic plants comprising same
EP1279737A1 (en) 2001-07-27 2003-01-29 Coöperatieve Verkoop- en Productievereniging, van Aardappelmeel en Derivaten AVEBE B.A. Transformation method for obtaining marker-free plants
AU2003902253A0 (en) 2003-05-12 2003-05-29 The University Of Queensland Method for increasing product yield
CA2586241C (en) 2004-11-17 2013-07-30 Hokko Chemical Industry Co., Ltd. Herbicide-resistance gene and utilization thereof
US8993846B2 (en) 2005-09-06 2015-03-31 Monsanto Technology Llc Vectors and methods for improved plant transformation efficiency
CA2625031C (en) 2005-10-13 2016-07-19 Monsanto Technology Llc Methods for producing hybrid seed
MX2008014663A (en) 2006-05-16 2008-11-27 Monsanto Technology Llc Use of non-agrobacterium bacterial species for plant transformation.
US7939721B2 (en) 2006-10-25 2011-05-10 Monsanto Technology Llc Cropping systems for managing weeds
EP1949785A1 (en) 2007-01-26 2008-07-30 Coöperatie AVEBE U.A. Use of R-genes as a selection marker in plant transformation and use of cisgenes in plant transformation
BRPI0808665B1 (en) 2007-03-09 2022-05-10 Monsanto Technology Llc Methods and constructs for producing transgenic soybean, cotton or canola plants using spectinomycin selection
EP2173883A1 (en) 2007-08-03 2010-04-14 Pioneer Hi-Bred International Inc. Msca1 nucleotide sequences impacting plant male fertility and method of using same
EP2222855B1 (en) 2007-11-27 2018-08-01 Commonwealth Scientific and Industrial Research Organisation Plants with modified starch metabolism
EP2300617B1 (en) 2008-07-16 2016-03-23 Monsanto Technology LLC Methods and vectors for producing transgenic plants
ES2603530T3 (en) 2008-07-21 2017-02-28 Commonwealth Scientific And Industrial Research Organisation Improved cottonseed oil and uses
AU2009317860B2 (en) 2008-11-18 2014-03-27 Commonwealth Scientific And Industrial Research Organisation Enzymes and methods for producing omega-3 fatty acids
US9551007B2 (en) 2009-09-18 2017-01-24 Wageningen Universiteit Cloning and exploitation of a functional R-gene from Solanum chacoense
JP6046604B2 (en) 2010-04-09 2016-12-21 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングBayer Intellectual Property GmbH Use of derivatives of (1-cyanocyclopropyl) phenylphosphinic acid, their esters and / or their salts to enhance plant tolerance to abiotic stress
WO2011144683A1 (en) 2010-05-21 2011-11-24 Bayer Cropscience Ag Herbicidal agents for tolerant or resistant rape cultures
AR084387A1 (en) 2010-05-21 2013-05-15 Bayer Cropscience Ag HERBICIDE AGENTS FOR TOLERANT OR RESISTANT CORN CROPS
WO2011144685A1 (en) 2010-05-21 2011-11-24 Bayer Cropscience Ag Herbicidal agents for tolerant or resistant grain cultures
CN103025167A (en) 2010-05-21 2013-04-03 拜耳知识产权有限责任公司 Herbicidal agents for tolerant or resistant rice cultures
EP2390332A1 (en) 2010-05-31 2011-11-30 Coöperatie Avebe U.A. Cloning and exploitation of a functional R-gene from Solanum x edinense
RU2636344C2 (en) 2010-06-28 2017-11-22 Коммонуэлт Сайентифик энд Индастриал Рисерч Организейшн Methods for lipids obtaining
RU2611188C2 (en) * 2010-07-29 2017-02-21 ДАУ АГРОСАЙЕНСИЗ ЭлЭлСи Agrobacterium strains, modified for increased frequency of transformation of plants
NL2006378C2 (en) 2011-03-11 2012-09-12 Univ Wageningen Tyclv resistance.
EP2524602A1 (en) 2011-05-20 2012-11-21 Bayer CropScience AG Herbicide agent for tolerant or resistant soya cultures
MY188956A (en) 2011-12-27 2022-01-14 Commw Scient Ind Res Org Processes for producing lipids
EP2798063B1 (en) 2011-12-27 2022-03-30 Commonwealth Scientific and Industrial Research Organisation Production of dihydrosterculic acid and derivatives thereof
EP2798065B1 (en) 2011-12-27 2019-06-05 Commonwealth Scientific and Industrial Research Organisation Simultaneous gene silencing and supressing gene silencing in the same cell
WO2013176548A1 (en) 2012-05-25 2013-11-28 Wageningen Universiteit New plant resistance gene
PT2861059T (en) 2012-06-15 2017-08-08 Grains Res & Dev Corp Production of long chain polyunsaturated fatty acids in plant cells
UA117816C2 (en) 2012-11-06 2018-10-10 Байєр Кропсайєнс Акцієнгезелльшафт Herbicidal combinations for tolerant soybean cultures
WO2014112875A1 (en) 2013-01-17 2014-07-24 Wageningen Universiteit A new method to provide resistance to bacterial soft rot in plants
EP4001300A1 (en) 2013-08-21 2022-05-25 Commonwealth Scientific and Industrial Research Organisation Rust resistance gene
JP6726619B2 (en) 2013-12-18 2020-07-22 コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガナイゼーション Lipids containing long-chain polyunsaturated fatty acids
AU2015281791A1 (en) 2014-06-27 2017-01-12 Commonwealth Scientific And Industrial Research Organisation Lipid comprising docosapentaenoic acid
EP4303288A3 (en) 2014-07-07 2024-03-06 Nuseed Global Innovation Ltd Processes for producing industrial products from plant lipids
CN104721835A (en) * 2014-11-26 2015-06-24 浙江医药高等专科学校 Melanoma inhibiting DNA plasmid vaccine and preparation method thereof
NL2014107B1 (en) 2015-01-09 2016-09-29 Limgroup B V New methods and products for breeding of asparagus.
DK3341483T3 (en) 2015-08-28 2020-03-16 Pioneer Hi Bred Int OCHROBACTRUM-MEDIATED TRANSFORMATION OF PLANTS
US11732269B2 (en) 2015-10-02 2023-08-22 Monsanto Technology Llc Recombinant maize B chromosome sequence and uses thereof
SG11201804169QA (en) 2015-11-18 2018-06-28 Commw Scient Ind Res Org Rice grain with thickened aleurone
EP3475427A4 (en) 2016-06-28 2019-11-06 Monsanto Technology LLC Methods and compositions for use in genome modification in plants

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2018274T5 (en) * 1986-03-11 1996-12-16 Plant Genetic Systems Nv VEGETABLE CELLS RESISTANT TO GLUTAMINE SYNTHETASE INHIBITORS, PREPARED BY GENETIC ENGINEERING.
EP0257542B1 (en) * 1986-08-23 1992-05-06 Hoechst Aktiengesellschaft Phosphinotricine resistance gene and its use
DE3716309A1 (en) * 1987-05-15 1988-11-24 Hoechst Ag RESISTANCE TO PHOSPHINOTHRICIN
DE3732972A1 (en) * 1987-07-02 1989-01-12 Hoechst Ag RESISTANCE GENES TO PHOSPHINOTHRICIN AND ITS USE

Also Published As

Publication number Publication date
CN1057120C (en) 2000-10-04
JP3062125B2 (en) 2000-07-10
FI880216A (en) 1988-07-22
FI116067B (en) 2005-09-15
GR3007859T3 (en) 1993-08-31
DK23988D0 (en) 1988-01-20
IL85143A0 (en) 1988-06-30
CN88100322A (en) 1988-08-10
CA1321364C (en) 1993-08-17
JP3093686B2 (en) 2000-10-03
NZ223227A (en) 1989-06-28
DK23988A (en) 1988-07-22
JPH1080289A (en) 1998-03-31
HUT47636A (en) 1989-03-28
EP0275957B1 (en) 1993-03-03
EP0275957A3 (en) 1990-02-28
AU609082B2 (en) 1991-04-26
ES2054708T3 (en) 1994-08-16
CN87100603A (en) 1988-08-10
JP2993964B2 (en) 1999-12-27
DE3878699D1 (en) 1993-04-08
EP0275957A2 (en) 1988-07-27
FI880216A0 (en) 1988-01-19
JPS63273479A (en) 1988-11-10
AU1061988A (en) 1988-07-28
HU215079B (en) 1998-09-28
JPH1080278A (en) 1998-03-31

Similar Documents

Publication Publication Date Title
DK175800B1 (en) Resistance gene, gene structure containing the resistance gene, vector containing the resistance gene or gene structure, host cell containing the vector, plant cell, plants .............
US5276268A (en) Phosphinothricin-resistance gene, and its use
EP0242246B1 (en) Plant cells resistant to glutamine synthetase inhibitors, made by genetic engineering
US6100446A (en) Microorganisms and plasmids for 2,4-dichlorophenoxyacetic acid (2,4-D)monooxygenase formation and process for the production of these plasmids and strains
CN112143753A (en) Adenine base editor and related biological material and application thereof
CA2073412A1 (en) Selection-gene-free transgenic plants
CN108330116B (en) Herbicide tolerance protein, coding gene and application thereof
AU614727B2 (en) DNA molecules coding for proteins targeted to plant cell walls
US5492820A (en) Plasmids for the production of transgenic plants that are modified in habit and yield
US5073675A (en) Method of introducing spectinomycin resistance into plants
US5217902A (en) Method of introducing spectinomycin resistance into plants
Shinoyama et al. An Efficient Transformation System in Chrysanthemum [Dendranthema× grandiflorum (Ramat.) Kitamura] for Stable and Non-chimeric Expression of Foreign Genes.
US6187996B1 (en) Plant promoter comprising a G-box element, GCCACGTGCC or GCCACGTGAG, and an application thereof
EP0707070B1 (en) Method for enhancing disease and pest resistance of plants
CN112080513A (en) Rice artificial genome editing system with expanded editing range and application thereof
Sekine et al. Agrobacterium and Plant Genetic Engineering
WO2002012450A1 (en) Gossypium hirsutum tissue-specific promoters and their use
Hooykaas Tumorigenicity of Agrobacterium on plants
Rukavtsova et al. Production of marker-free plants expressing the gene of the hepatitis B virus surface antigen
IL85143A (en) Resistance gene against phosphinothricin
AU737600B2 (en) Early-maturing sugarcane with high sugar content
PEANT Motcut. AR Bology
JP2003334087A (en) Promoter originated from plant virus
DE3737918A1 (en) Phosphinothricin resistance gene to which is active in plants, and its use
AU5355399A (en) Early-maturing sugarcane with high sugar content

Legal Events

Date Code Title Description
PUP Patent expired