DK175230B1 - Method for producing double-stranded DNA as well as oligonucleotide - Google Patents

Method for producing double-stranded DNA as well as oligonucleotide Download PDF

Info

Publication number
DK175230B1
DK175230B1 DK198802778A DK277888A DK175230B1 DK 175230 B1 DK175230 B1 DK 175230B1 DK 198802778 A DK198802778 A DK 198802778A DK 277888 A DK277888 A DK 277888A DK 175230 B1 DK175230 B1 DK 175230B1
Authority
DK
Denmark
Prior art keywords
dna
oligonucleotide
hairpin structure
double
strand
Prior art date
Application number
DK198802778A
Other languages
Danish (da)
Other versions
DK277888D0 (en
DK277888A (en
Inventor
Eugen Uhlmann
Friedrich Hein
Original Assignee
Hoechst Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst Ag filed Critical Hoechst Ag
Publication of DK277888D0 publication Critical patent/DK277888D0/en
Publication of DK277888A publication Critical patent/DK277888A/en
Application granted granted Critical
Publication of DK175230B1 publication Critical patent/DK175230B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6853Nucleic acid amplification reactions using modified primers or templates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/585Calcitonins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1096Processes for the isolation, preparation or purification of DNA or RNA cDNA Synthesis; Subtracted cDNA library construction, e.g. RT, RT-PCR
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/30Nucleotides
    • C12P19/34Polynucleotides, e.g. nucleic acids, oligoribonucleotides

Abstract

It is possible by synthesis of a DNA single strand with a hairpin structure at one or both ends, filling in to give the double strand and opening or elimination of the hairpin structure(s) to obtain even very long double-stranded DNA fragments or genes. It is also possible to attach mutagenic primers to the single strand and thus to carry out site-specific mutagenesis. Furthermore, the preparation of highly labelled DNA sequences is possible in the filling-in reaction. <IMAGE>

Description

i DK 175230 B1in DK 175230 B1

Opfindelsen angår en effektiv fremgangsmåde til fremstilling af dobbeltstrenget DNA samt et oligonucleotid (se tabel I). Opfindelsen angår specielt en effektiv fremgangsmåde til fremstilling af DNA-fragmenter og gener, der på 5 grund af den enkle og rationelle arbejdsmåde også tillader syntesen af meget lange DNA-sekvenser.The invention relates to an efficient method for producing double-stranded DNA as well as an oligonucleotide (see Table I). In particular, the invention relates to an efficient method for producing DNA fragments and genes which, due to the simple and rational method, also allow the synthesis of very long DNA sequences.

Den gængse metode til fremstilling af dobbelt-strenget DNA består i, at man kemisk fremstiller overlappende enkeltstrengede oligonucleotider, og på grund af den naturlige 10 baseparring omdannes disse ved hjælp af DNA-ligase til den dobbeltheliske form (H. G. Khorana (1979) Science 203, 614-625) . Et alternativ til Khorana-metoden er den såkaldte "fill-in"-fremgangsmåde, ved hvilken man drager nytte af DNA-polymerasens reparations-egenskaber. Herved anvendes to 15 kemisk fremstillede enkelt-strengede oligonucleotider, der i deres 3'-ende har et kort område med komplementære nucleo-tidsekvehser tilfælles (J.J. Rossi et al. (1982) J. Biol.The usual method for producing double-stranded DNA is to chemically prepare overlapping single-stranded oligonucleotides, and because of the natural base pairing, these are converted by DNA ligase to the double helical form (HG Khorana (1979) Science 203, 614-625). An alternative to the Khorana method is the so-called "fill-in" method, which utilizes the repair properties of the DNA polymerase. Hereby, two chemically produced single-stranded oligonucleotides having a short region of complementary nucleotide sequences in common are used (J. J. Rossi et al. (1982) J. Biol.

Chem. 257, 9226-9229). Den første metode har den ulempe, at man altid kemisk skal fremstille det dobbeltstrengede DNA's 20 to strenge, hvorved man kemisk skal fremstille og enzymatisk sammenknytte mindst tre oligonucleotider, i almindelighed dog et større antal oligonucleotider. Den syntetiske udfoldelse er ganske vist reduceret ved "fill-in"-fremgangsmåden i sammenligning med Khorana-metoden, men der kræves dog 25 mindst to oligonucleotider. Det er endvidere et stort problem, at de to oligonucleotider skal finde sammen til den ønskede definerede hybridstruktur. Jo længere de anvendte oligonucleotider er, desto større er risikoen for dannelse af falske hybrider.Chem. 257, 9226-9229). The first method has the disadvantage that one always has to chemically prepare the two strands of the double stranded DNA, thereby chemically producing and enzymatically linking at least three oligonucleotides, in general, however, a larger number of oligonucleotides. Although the synthetic unfolding is reduced by the "fill-in" method compared to the Khorana method, however, at least 25 oligonucleotides are required. Furthermore, it is a major problem that the two oligonucleotides must coincide with the desired defined hybrid structure. The longer the oligonucleotides used, the greater the risk of formation of false hybrids.

30 Europæisk offentliggørelsesskrift nr. 70.675 angår en fremgangsmåde til syntese af dsc-DNA, der koder for calcitonin, hvorved der spontant dannes hårnålestrukturer.European Patent Publication No. 70,675 relates to a method for synthesizing dsc DNA encoding calcitonin, thereby spontaneously forming hairpin structures.

Denne fremgangsmåde har således begrænset anvendelighed, da det er tilfældigt, om der dannes hårnålestrukturer, og om 35 en dannet hårnålestruktur er egnet til fremstiling af det ønskede dobbeltstrengede DNA.Thus, this method has limited utility as it is fortuitous whether hairpin structures are formed and whether a formed hairpin structure is suitable for producing the desired double-stranded DNA.

I DK 175230 B1 II DK 175230 B1 I

I II I

I Fremgangsmåden ifølge opfindelsen til fremstilling IIn the process of the invention for preparation I

I af dobbelt-strenget DNA har ikke disse ulemper. Ifølge op- II of double-stranded DNA does not have these drawbacks. According to op- I

I findelsen syntetiseres en DNA-enkeltstreng med en hårnåle- IIn the finding, a single strand of DNA is synthesized with a hairpin

I struktur i den ene ende eller i begge ender, de komplementære IIn structure at one end or at both ends, the complementary I

I 5 nucleotider udfyldes, og hårnåle-strukturen (-strukturerne) Γ IIn 5 nucleotides are filled in and the hairpin structure (s) Γ I

I åbnes eller fraspaltes. Fremgangsmåden ifølge opfindelsen IYou open or split. The process of the invention I

I muliggør således målrettet fremstilling af det ønskede dob- IThus, you enable targeted production of the desired double

I beltstrengede DNA. IIn belt-stranded DNA. IN

I Figuren illustrerer en speciel udførelsesform af IThe figure illustrates a particular embodiment of I

I 10 opfindelsen: IIn the invention:

I (1) betegner en DNA-enkeltstreng med en hårnålstruktur II (1) denotes a single DNA strand with a hairpin structure I

I i 3'-enden, hvorved der inden for området med de parrede IAt the 3 'end, whereby within the region of the paired I

I baser (antydet ved hjælp af lodrette streger) ligger et IIn bases (indicated by vertical lines) lies an I

I skæringssted for et restriktionsenzym (anført ved hjælp af IAt the intersection of a restriction enzyme (indicated by I

I 15 en lille pil). IIn 15 a small arrow). IN

I (2) betegner den efter skæring med restriktionsenzymet II (2) denotes after intersection with the restriction enzyme I

I opnåede DNA-streng, der i 3 '-enden har en kort sekvens med II obtained DNA strand which at the 3 'end has a short sequence of I

I parrede baser (lodrette streger) og den for restriktionsen- IIn paired bases (vertical dashes) and the one for restriction- I

I zymet karakteristiske "overstående"-ende. IIn the zymet characteristic "supernatural" ending. IN

20 (3) betegner en anden DNA-enkeltstreng med en hår- I20 (3) denotes another single DNA strand with a hair I

I nålestruktur i 3'-enden, der i 5'-enden har baser, der er IIn needle structure at the 3 'end, which at the 5' end has bases that are I

I komplementære med den "overstående"-endes baser fra (2). IIn complementary to the "above" end bases from (2). IN

I (4) betegner ligeringsproduktet af (2) og (3). IIn (4), the ligation product denotes (2) and (3). IN

I (5) betegner den ud fra (4) opnåede udfyldte dob- II (5) denotes the completed doublet obtained from (4)

I 25 beltstreng. IIn 25 belt string. IN

I Opfindelsen tillader en række udformninger, der il- IIn the invention, a number of embodiments which are suitable for use are provided

I lustreres nærmere i det følgende eller er defineret i pa- IYou are further elucidated below or defined in pa- I

I tentkravene. Når der altså i det følgende anføres enkelte IIn the tent requirements. Thus, in the following, individual I is stated

I udførelsesformer i en form, hvor der f.eks. kun er tale om IIn embodiments in a form in which e.g. only you are

I 30 en hårnåle-struktur, så skal denne udtryksmåde kun tjene til IIn a hairpin structure, this mode of expression should serve you only

I forenkling, og den må på ingen måde udelukke en variation IIn simplification, it must in no way rule out a variation

I eller kombination med andre udførelsesformer. IIn or in combination with other embodiments. IN

I I en foretrukken udformning ifølge opfindelsen syn- IIn a preferred embodiment of the invention,

I tetiseres først et oligonucleotid, der i 31-enden har en IYou first synthesize an oligonucleotide having at the 31-end an I

I 35 kort modsat gentagelse af sekvensen. Dette fører til, at IIn 35 cards opposite repeat of the sequence. This leads to you

I dette oligonucleotid falder bagud i 3'-enden, og således IIn this oligonucleotide, it falls backward at the 3 'end, and thus I

DK 175230 B1 3 antager en defineret sekundær struktur. F.eks. antager oli-gonucleotidet (1) i figuren den i tilslutning til tabel I viste hårnålestruktur. Den således hybridiserede 3'-ende tjener nu som "primer" til udfyldningen af den anden DNA-5 -streng. Det har vist sig, at disse hybrider med en hårnål--struktur er usædvanlige stabile,-og de dannes fortrukket. Opfindelsen tillader desuden syntese af dobbeltstrengede DNA-strukturer med praktisk taget vilkårlig længde, hvorved der kun skal syntetiseres en enkelt oligo- eller polynucleo-10 tid-enkeltstreng. Længden af dobbeltstrengen er praktisk taget kun begrænset af syntesemulighederne for enkeltstrengen, der løbende videre udvikles. Til syntesen af enkeltstrengen kommer alle kendte fremgangsmåder i betragtning, fordelagtig phosphorsyretriester- eller phosphitmetoden.DK 175230 B1 3 assumes a defined secondary structure. Eg. the oligonucleotide (1) in the figure assumes the hairpin structure shown in Table I. The thus hybridized 3 'end now serves as a "primer" for the filling of the second DNA-5 strand. It has been found that these hybrids with a hairpin structure are exceptionally stable and are formed preferentially. The invention additionally allows synthesis of practically arbitrary length double-stranded DNA structures, thereby only synthesizing a single oligo or polynucleo-10 single strand. The length of the double strand is practically limited only by the synthesis possibilities of the single strand that is being further developed. For the synthesis of the single strand all known methods are considered, the advantageous phosphoric acid triester or phosphite method.

15 Lange enkeltstrengede polynucleotider kan eventuelt dannes ved sammenknytning (ligering) af fragmenter. Oligo-eller polynucleotiderne kan afledes af en kodende eller ikke-kodende DNA-streng, og anvendes i 5'-hydroxy- eller phosphat-formen.Long single-stranded polynucleotides may optionally be formed by linking (ligating) fragments. The oligo or polynucleotides can be derived from a coding or non-coding DNA strand and used in the 5 'hydroxy or phosphate form.

20 Udfyldningen til en DNA-dobbeltstreng sker efter i og for sig kendte metoder. I en særlig udformning af opfindelsen kan der dog endvidere anvendes mutagene "primere", hvorved der, idet man går ud fra et enkelt syntetiseret oligonucleotid og den tilsvarende "primer", kan fremstilles 25 vilkårlige variationer af DNA-sekvensen. Man opnår således uden at det er nødvendigt med en kloning i enkeltstrengede fager ca. 50% mutanter. Efter denne metode kan vilkårlige mutationer - baseudskiftning, fjernelse eller indførelse -tilvejebringes. En oversigt over de kendte metoder findes 30 i M. Smith (1985), Annu. Rev. Genet. 19, 423-462.The filling into a DNA double strand takes place according to methods known per se. However, in a particular embodiment of the invention, mutagenic "primers" can also be used, whereby, based on a single synthesized oligonucleotide and the corresponding "primer", 25 variations of the DNA sequence can be produced. Thus, without cloning in single-stranded phages, it is necessary to obtain approx. 50% mutants. By this method, any mutations - base replacement, removal, or insertion - can be provided. An overview of the known methods can be found in M. Smith (1985), Annu. Rev. Genet. 19, 423-462.

Også "misincorporation"-mutagenese kan anvendes (M.Also "misincorporation" mutagenesis can be used (M.

Sing et al. (1986) Prot. Engin. 1, 75-76) og ligeledes "saturation"-mut agenesen (K. Derbyshire et al. (1986) Gene 46, 145-152).Sing et al. (1986) Prot. Engin. 1, 75-76) and likewise "saturation" mutant agenesis (K. Derbyshire et al. (1986) Gene 46, 145-152).

35 Da hårnåle-strukturen ikke er egnet til en sammen knytning med yderligere et DNA-fragment, f.eks. en vektor,Because the hairpin structure is not suitable for linking with another DNA fragment, e.g. a vector,

DK 175230 B1 IDK 175230 B1 I

4 I4 I

bliver denne struktur enten åbnet eller fraspaltet ved hjælp Ithis structure is either opened or decomposed by means of I

af et restriktionsenzym. Egnede genkendelsessteder anbringes Iof a restriction enzyme. Suitable recognition sites are provided

i dette tilfælde ved syntesen af enkeltstrengen. Selvfølgelig Iin this case, by the synthesis of the single strand. Of course you

kan også de ved fjernelsen af hårnåle-strukturen fremkomne IFor example, those resulting from the removal of the hairpin structure may also occur

5 ender modificeres på i og for sig kendt måde, f.eks. kan ' I5 ends are modified in a manner known per se, e.g. can you

de gøres stump-endet ved nedbrydning eller udfyldning, eller Ithey are blunt-ended by decomposition or filling, or I

de kan modificeres ved hjælp af adaptorer eller linkere. Ithey can be modified using adapters or linkers. IN

Også i denne forbindelse tillader fremgangsmåden ifølge IAlso in this connection, the method of I

opfindelsen en tilpasning til de til enhver tid forekommende Ithe invention is an adaptation to the present one

10 krav. F.eks. kan der også indbygges genkendelsessteder for I10 requirements. Eg. you can also include recognition sites for you

klassen IIS-restriktionsenzymer, såkaldte "shifters" (W. Iclass of IIS restriction enzymes, so-called "shifters" (W. I

Szybalski (19S5), Gene 40, 169-173). Ved at efterskære det ISzybalski (19S5), Gene 40, 169-173). By cutting it you

dobbeltstrengede DNA med disse enzymer fjernes genkendel- Idouble-stranded DNA with these enzymes is recognized

sesstederne igen, således at fragmenter kan kombineres på Isites, so that fragments can be combined on I

15 vilkårlige steder. Indbygningen af et eller flere genkendel- I15 anywhere. The incorporation of one or more recognisers

sessteder for et restriktionsenzym før den modsatte genta- Isites for a restriction enzyme before the opposite gene I

gelse tillader også en restriktionsanalyse til fastslåelse Idetermination also permits a restriction analysis for determination I

af, om den ønskede struktur er fremkommet. Iof whether the desired structure has emerged. IN

Er der ifølge opfindelsen i begge ender anbragt hår- IIn accordance with the invention, hair is arranged at both ends

20 nåle-strukturer, indbygges der hensigtsmæssigt forskellige I20 needle structures, suitably incorporate different I

genkendelsessteder for restriktionsenzymer, der herefter Irecognition sites for restriction enzymes, which I

kan tilvejebringe et genfragment, der i ønsket retning kan Ican provide a gene fragment capable of in the desired direction

anvendes i en vektorkonstruktion. Iused in a vector construct. IN

Modificeringen af hårnåle-strukturen kan også ske IThe modification of the hairpin structure may also occur

25 ved åbning ved hjælp af en enkeltstreng-specifik nuclease, I25 upon opening by a single strand specific nuclease, I

såsom "mungobønne"-nuclease eller nuclease SI. Isuch as "mung bean" nuclease or nuclease SI. IN

Længden af den modsatte gentagelse, der altså fører IThe length of the opposite repetition, thus leading I

til en dobbeltstreng, er variabel, og den omfatter fordel- Ito a double string, is variable and it comprises the advantage I

agtigt 8 til 60, især 12 til 32 baser, svarende til 4 til Ilike 8 to 60, especially 12 to 32 bases, corresponding to 4 to 1

30 30, fordelagtigt 6 til 16 baseparringer. Antallet af de I30, preferably 6 to 16 base pairings. The number of those I

ikke-parrede baser i "loop"-området af hårnåle-strukturen Iunpaired bases in the "loop" region of the hairpin structure I

er ligeledes variabel og udgør fortrinsvis 0 (direkte cova- Iis also variable and preferably represents 0 (direct cova- I

lent binding) til 6. Ilent bond) to 6. I

Konstruerer man en hårnåle-struktur med et gunstigt IConstructs a hairpin structure with a favorable I

35 beliggende restriktionsenzym-snitsted (1) fremkommer der I35 restriction enzyme cross-site (1) appears

således efter fraspaltning af hårnål-strukturen med dette Ithus, after cleavage of the hairpin structure with this I

DK 175230 B1 5 enzym overstående ender (2) , der kan anvendes til ligering med yderligere et oligonucleotid (3). En indenfor ligeringsområdet af det ovenfor opnåede lange polynucleotid (4) eventuelt resterende kort dobbeltstreng kan eventuelt fjernes 5 ved varmedenaturering, såfremt der i dette område skal udføres en mutagenese.Enzyme supernatant ends (2) which can be used for ligation with an additional oligonucleotide (3). Optionally, a residual short double strand residue obtained within the ligation region of the long polynucleotide (4) obtained above may be removed by heat denaturation if a mutagenesis is to be performed in this region.

En yderligere fordelagtig udformning af opfindelsen består deri, at man ved udfyldning til dobbeltstrengen udfører en mærkning. På denne måde bliver mange mærkede DNA-10 fragmenter meget fordelagtigt tilgængelige. På denne måde opnåede høj radioaktive mærkede DNA-fragmenter egner sig efter denaturering som hybridiserings- eller gensonder.A further advantageous embodiment of the invention consists in that a marking is performed upon filling in the double strand. In this way, many labeled DNA-10 fragments become very advantageously available. In this way, highly radiolabeled DNA fragments obtained are suitable after denaturation as hybridization or gene probes.

Det viser sig altså, at fremgangsmåden ifølge opfindelsen kan udformes overordentligt alsidigt, og tillader 15 syntese af meget lange dobbeltstrengede DNA-fragmenter med et minimum af reaktionstrin.Thus, it is found that the method of the invention can be extremely versatile and allows for the synthesis of very long double-stranded DNA fragments with a minimum of reaction steps.

I de følgende eksempler illustreres opfindelsen nærmere. Procentangivelser er baseret på vægten, såfremt andet ikke er anført.In the following examples, the invention is further illustrated. Percentages are based on the weight, unless otherwise stated.

2020

Eksempler 1Examples 1

Kemisk syntese af et enkeltstrenget oligonucleotidChemical synthesis of a single-stranded oligonucleotide

Ved eksemplet oligonucleotid 1 (tabel I) forklares 25 syntesen af DNA-byggestenene. Til fastfasesyntesen anvendes det på 3'-enden stående nucleotid, i dette tilfælde altså thymidin (nucleotid nr. 130), der via 3'-hydroxyfunktionen er covalent bundet til et bærestof. Bærematerialet er med langkædede aminoalkylgrupper funktionaliseret CPG ("Con-30 trolled Pore Glass").Example Oligonucleotide 1 (Table I) explains the synthesis of the DNA building blocks. For the solid phase synthesis, the 3 'end nucleotide is used, in this case thymidine (nucleotide no. 130) which is covalently linked to a carrier via the 3' hydroxy function. The carrier is functionalized CPG ("Controlled Pore Glass") with long chain aminoalkyl groups.

I de følgende syntesetrin anvendes basekomponenterne som 5 ' -0-dimethoxytritylnucleosid-3 ' -phosphorsyrling-6-cyano-ethyl-dialkylamin, hvorved adenin foreligger som N®-benzoyl--forbindelse, cytosin som N4-benzoyl-forbindelse, guanin 35 som N2-isobutyryl-forbindelse og thymin uden beskyttelsesgruppe .In the following synthesis steps, the base components are used as 5'-O-dimethoxytrityl nucleoside-3 '-phosphoric acid-6-cyano-ethyl-dialkylamine, whereby adenine is present as N®-benzoyl compound, N2-isobutyryl compound and thymine without protecting group.

I DK 175230 B1 II DK 175230 B1 I

I 6 II 6 I

I 25 mg af det polymere bærestof, hvortil der er bundet IIn 25 mg of the polymeric carrier to which I is attached

I 0,2 μη\ ol 5'-O-dimethoxytrityl-thymidin, behandles i ræk- IIn 0.2 μη / ol 5'-O-dimethoxytrityl-thymidine is treated in series.

I kefølge med følgende reagenser: IIn accordance with the following reagents:

I A) acetonitril, IIn A) acetonitrile, I

I 5 B) 3% trichloreddikesyre i dichlormethan, II 5 B) 3% trichloroacetic acid in dichloromethane, I

I C) acetonitril, II C) acetonitrile, I

I D) 5 μmol af det tilsvarende nucleosid-3'-O-phosphit, II D) 5 μmol of the corresponding nucleoside 3'-O-phosphite, I

I og 25 μιηοΐ tetrazol i 0,15 ml vandfrit acetonitril, II and 25 μιηοΐ tetrazole in 0.15 ml of anhydrous acetonitrile, I

I E) acetonitril, II E) acetonitrile, I

I 10 F) 20% eddikesyreanhydrid i tetrahydrofuran med 40% IIn 10 F) 20% acetic anhydride in tetrahydrofuran with 40% I

I lutidin og 10% dimethylaminopyridin, IIn lutidine and 10% dimethylaminopyridine, I

I G) acetonitril, II G) acetonitrile, I

I H) 3% iod i lutidin/vand/tetrahydrofuran i rumfangs- IIn H) 3% iodine in lutidine / water / tetrahydrofuran in volume I

I forholdet 10:1:40. IIn the ratio of 10: 1: 40. IN

I 15 Ved "phosphit" forstås her 21-deoxyribose-3'-mono- II "Phosphite" is understood herein to mean 21-deoxyribose-3'-mono-I

I phosphorsyrling-mono-S-cyanoethylesteren, hvorved den tredje IIn the phosphoric acid mono-S-cyanoethyl ester, whereby the third I

I valens er mættet med en diisopropylaminogruppe. Udbytterne IIn valence is saturated with a diisopropylamino group. The yields I

I af de enkelte reaktionstrin kan hver gang bestemmes spektro- II of the individual reaction steps can be determined each time spectro-I

I fotometrisk efter detrityleringsreaktionen B) ved måling af II photometrically after the detritylation reaction B) by measuring I

I 20 dimethoxytritylkationens absorption ved en bølgelængde påIn the absorption of the dimethoxytrityl cation at a wavelength of

I 496 nm. IAt 496 nm. IN

I Efter afsluttet syntese udføres fraspaltningen af IAfter completion of synthesis, the cleavage of I is performed

I dimethoxytritylgruppen ved metoder, der er fagmanden bekendt, IIn the dimethoxytrityl group by methods known to those skilled in the art, I

I med de i A) til C) nævnte reagenser. Ved behandling med II with the reagents mentioned in A) to C). When treated with I

I 25 ammoniak spaltes oligonucleotidet fra bærestoffet, og sam- IIn ammonia, the oligonucleotide is cleaved from the carrier, and co

I tidig elimineres β-cyanoethylgrupperne. Ved en 16-timers IEarly on, the β-cyanoethyl groups are eliminated. At a 16-hour I

I behandling af oligomeren med koncentreret ammoniak ved 50°C IIn treating the oligomer with concentrated ammonia at 50 ° C

I fraspaltes kvantitativt basernes aminobeskyttelsesgrupper. II quantitatively cleaved the amino protecting groups of the bases. IN

I Det således opnåede rå produkt oprenses ved hjælp af poly- IThe crude product thus obtained is purified by poly-I

I 30 acrylamid-gelelektroforese. IIn acrylamide gel electrophoresis. IN

DK 175230 B1 7 løsning opvarmes i 5 minutter til 95°C. Efter afkøling til 37°C tilsættes 2 μΐ EcORI (40 enheder) eller 2 μΐ Sau96I, og der inkuberes i 12 timer ved 37°C. Herefter overføres fordøjelsesblandingen til en analytisk 10% polyacrylamid/7M 5 urinstof-gel, og den adskilles ved hjælp af elektroforese.The solution is heated to 95 ° C for 5 minutes. After cooling to 37 ° C, add 2 μΐ EcORI (40 units) or 2 μΐ Sau96I and incubate for 12 hours at 37 ° C. Then the digestion mixture is transferred to an analytical 10% polyacrylamide / 7M 5 urea gel and separated by electrophoresis.

Det fremkomne oligonucleotid løber mod et mærke, såsom en 130-mer (oligonucleotid 1, ikke-skåret) , 103-mer (oligo nucleotid 1-EcoRI-skåret) og en 96-mer (oligonucleotid 1--Sau96I-skåret).The resulting oligonucleotide runs against a label such as a 130-mer (oligonucleotide 1, uncut), 103-mer (oligo nucleotide 1-EcoRI cut) and a 96-mer (oligonucleotide 1 - Sau96I cut).

10 3. Dannelse af en DNA-dobbeltstreng og tilvejebringelse af overhængende ender: fremstilling af DNA-sekvens I.10 3. Formation of a DNA double strand and provision of overhanging ends: preparation of DNA sequence I.

0,5 nmol af oligonucleotidet 1 optages i 23 μΐ vand og 5 μΐ 10 x Nick-Translations-puffer (0,5 M Tris-HCl, 15 pH 7,5; 0,1 M magnesiumchlorid, 0,1 M DTT, 500 /ig pr. ml BSA) , og der opvarmes i 5 minutter til 95°C. Efter at opløsningen er afkølet til stuetemperatur tilsættes 20 μΐ dNTP-opløsning (der indeholder hver 2,5 mM dATP, dTTP, dCTP og dGTP) samt 2 μΐ DNA-polymerase (Klenow-fragment, 10 en-20 heder) og der inkuberes i en time ved stuetemperatur. Efter 2, 5, 10, 20 og 60 minutter kan der udtages 1,5 μΐ-prøver for at følge reaktionsforløbet elektroforetisk ved hjælp af en 10%'s nativ polyacrylamidgel. Som mærke anvendes pBR322, der er skåret med Mspl. Til tilvejebringelse af de overhæn-25 gende ender opvarmes 25 μΐ af DNA-polymerase-reaktionsopløsningen i 5 minutter til 95°C, hvorefter der tempereres til 37°C, og der fortyndes med 15 μΐ 5 x EcoRI-puffer. Efter tilsætning af 12,5 μΐ 0,2 M NaCl, 37,5 μΐ vand, 5 μΐ EcoRI og 5 μΐ Hindlll (hver 100 enheder enzym) inkuberes der i 15 30 timer ved 37°c. Blandingen oprenses ved hjælp af elektro-forese på en 10%'s polyacrylamidgel (uden urinstof). Hovedbåndene, der løber mod pBR322-mærket som et 99 baseparfragment, skæres ud og elueres efter homogenisering med 0,2 M triethylammoniumbicarbonatpuffer. Ved at afsalte via en 35 "sephadex G50"-søjle fås det oprensede DNA-fragment, der svarer til DNA-sekvensen I (tabel II).0.5 nmol of the oligonucleotide 1 is taken up in 23 μΐ water and 5 μΐ 10 x Nick-Translations buffer (0.5 M Tris-HCl, pH 7.5; 0.1 M magnesium chloride, 0.1 M DTT, 500 / g per ml of BSA) and heated for 5 minutes to 95 ° C. After the solution is cooled to room temperature, 20 μΐ dNTP solution (containing 2.5 mM dATP, dTTP, dCTP and dGTP each) and 2 μΐ DNA polymerase (Klenow fragment, 10 units) are added and incubated one hour at room temperature. After 2, 5, 10, 20 and 60 minutes, 1.5 μΐ samples can be taken electrophoretically to follow the reaction process using a 10% native polyacrylamide gel. The mark used is pBR322 cut with Mspl. To provide the overhanging ends, 25 μΐ of the DNA polymerase reaction solution is heated to 95 ° C for 5 minutes, then tempered to 37 ° C and diluted with 15 μΐ of 5 x Eco RI buffer. After addition of 12.5 μΐ 0.2 M NaCl, 37.5 μΐ water, 5 μΐ Eco RI and 5 μΐ HindIII (each 100 units of enzyme), incubate for 15 30 hours at 37 ° C. The mixture is purified by electrophoresis on a 10% polyacrylamide gel (without urea). The head bands running toward the pBR322 tag as a 99 base pair fragment are cut and eluted after homogenization with 0.2 M triethylammonium bicarbonate buffer. By desalinating via a 35 "sephadex G50" column, the purified DNA fragment corresponding to the DNA sequence I (Table II) is obtained.

I DK 175230 B1 II DK 175230 B1 I

I II I

I 4. Fremstilling af et mutant DNA-fragment (DNA-sekvens II). IIn 4. Preparation of a mutant DNA fragment (DNA sequence II). IN

I Oligonucleotidet l's for cystein kodende triplet TGT IIn the oligonucleotide 1's for cysteine coding triplet TGT I

I (nucleotid nr. 58-60) kan omdannes ved hjælp af den mutagene II (nucleotide # 58-60) can be converted by the mutagenic I

I primer IIn primer I

I 5 5' CTTGTCA(3TAGAATAGTTAC 3' II 5 5 'CTTGTCA (3TAGAATAGTTAC 3' I

I til en for Ser kodende triplet TCT. II to one for Ser encoding triplet TCT. IN

I Hertil omdannes først 1 nmol primer ved omsætning IIn this, 1 nmol of primer is first converted by reaction I

I med kinase til det tilsvarende 5'-phosphat. 0,22 OD25q af II with kinase to the corresponding 5'-phosphate. 0.22 OD25q of I

I 10 primeren opløses i 15 μΐ HEPES-puffer, og opløsningen op- IIn the 10 primer, dissolve in 15 μΐ HEPES buffer and dissolve the solution

I varmes i 5 minutter til 95°C, hvorefter der afkøles på is. IYou are heated to 95 ° C for 5 minutes, then cooled on ice. IN

I Efter tilsætning af 9 μΐ 2,5 mM ATP (pH 7), 2 μΐ 0,1 M DTT, IAfter the addition of 9 μΐ 2.5 mM ATP (pH 7), 2 μΐ 0.1 M DTT, I

I 2 μΐ vand og 1 μΐ T4 polynucleotid-kinase (10 enheder) in- IIn 2 μΐ water and 1 μΐ T4 polynucleotide kinase (10 units) in- I

I kuberes der i 2 timer ved 37°C, hvorefter der afsaltes via IYou are cubed for 2 hours at 37 ° C, then desalted via I

I 15 en " Sephadex G 50"-søjle. IIn 15 a "Sephadex G 50" column. IN

I Til dannelse af dobbeltstrengen hybridiseres 0,2 ITo form the double strand, 0.2 L is hybridized

I nmol af oligonucletotid 1 med 1 nmol kinasebehandlet primer IIn nmol of oligonucletotide 1 with 1 nmol of kinase-treated primer I

I som beskrevet i eksempel 3, og det underkastes DNA-polyme- II as described in Example 3 and subjected to DNA polymer I

I rase-reaktion. Før efterskæring med restriktionsenzymerne IIn race reaction. Before cutting with restriction enzymes I

I 20 EcoRI og HindiII sammenknyttes ved hjælp af DNA-ligase den IIn 20 EcoRI and HindiII, DNA ligase links the I

I ny-dannede DNA-streng med den mutagene primer. Hertil sættes IIn newly formed DNA strand with the mutagenic primer. To this you are added

I 1 /il 10 gange ligase-puffer (660 mM Tris-HCl, pH 7,5; 50 mM IIn 1 µl 10 times ligase buffer (660 mM Tris-HCl, pH 7.5; 50 mM I

I magnesiumchlorid, 50 mM DTT og 10 mM ATP) samt 1 μΐ T4 DNA- IIn magnesium chloride, 50 mM DTT and 10 mM ATP) as well as 1 μΐ T4 DNA-I

I -ligase til polymerasereaktionen, og der inkuberes i 1,5 II ligase to the polymerase reaction and incubate for 1.5 L

25 timer ved 37°C. Den yderligere oparbejdning udføres som det I25 hours at 37 ° C. The additional reprocessing is carried out as it is

I er beskrevet i eksempel 3. Efter den gelelektroforetiske II is described in Example 3. Following the gel electrophoretic I

I oprensning klones DNA-fragmentet (som beskrevet i eksempel IIn purification, the DNA fragment (as described in Example I) is cloned

5). Da der ved mutagenesen ødelægges et Rsal-snitsted, kan I5). Since the mutagenesis destroys a Rsal incision site, you can

I der ved hjælp af restriktionsanalyse med Rsal skelnes mellem IIn which restriction analysis with Rsal distinguishes between I

I 30 mutanterne (Ser-kodende) og vildtype-plasmidet (Cys-kodende) . IIn the 30 mutants (Ser coding) and the wild type plasmid (Cys coding). IN

I Fra det muterede hybridplasmid fås ved EcoRI-HindIII-for- II From the mutated hybrid plasmid is obtained by EcoRI-HindIII form I

I døj else af DNA-f ragment, der svarer til DNA-sekvens II (tabel IIn addition, DNA fragment corresponding to DNA sequence II (Table I

I III). II III). IN

I 35 II 35 I

DK 175230 B1 9 5. Konstruktion af vektorer, der indeholder de syntetiske DNA-fragmenter samt transformation og amplifikation heraf.5. Construction of vectors containing the synthetic DNA fragments as well as their transformation and amplification.

Den handelsgængse vektor pIC18 åbnes på kendt måde med restriktionsenzymerne EcoRI og Hindlll efter fremstil-5 lerens angivelser. Fordøjelsesblandingen adskilles på kendt måde på en 1%'s agarosegel ved hjælp af elektroforese, og brudstykkerne gøres synlige ved hjælp af farvning med ethi-diumbromid. Vektorbåndene (ca. 2,6 kB) skæres ud af agarose-gelen, og de skilles fra agarosen ved elektroeluering, phe-10 nolekstrakion og ethanolfældning.The commercially available vector pIC18 is opened in known manner with the restriction enzymes Eco RI and HindIII according to the manufacturer's instructions. The digestion mixture is separated in a known manner on a 1% agarose gel by electrophoresis and the fragments are made visible by staining with ethidium bromide. The vector bands (about 2.6 kB) are cut out of the agarose gel and separated from the agarose by electroelution, phenol extraction and ethanol precipitation.

10 fmol af vektoren, der er EcoRI-HindiII-åbnet, ligeres med 100 fmol af det syntetiske DNA-fragment ifølge DNA-sekvens I eller det DNA-fragment fra eksempel 4, der indeholder overhængende ender, der svarer til restriktions-15 enzymerne EcoRI og Hindlll, i 20 μΐ ligase-puffer i nærværelse af T4 DNA-ligase natten over ved stuetemperatur.10 µmol of the EcoRI-HindiII-opened vector is ligated to 100 µmol of the synthetic DNA fragment of DNA sequence I or the DNA fragment of Example 4 containing overhanging ends corresponding to the restriction enzymes EcoRI and HindIII, in 20 μΐ ligase buffer in the presence of T4 DNA ligase overnight at room temperature.

Der fås et hybridplasmid, med hvilket E. coli transformeres. Hertil gøres stammen E. coli K12 kompetent ved behandling med calciumchlorid, og dertil sættes opløsningen af hybrid-20 plasmidet. Ved tilsætning af isopropyl-lS-D-thiogalacto-pyra-nosid (IPTG) , 5-brom-4-chlor-3-indolyl-&-D-galacto-pyranosid (Xgal) og ampicillin kan man efter udspredning på plader gøre de kolonier, der indeholder indføjningen i vektoren, opdagelige.. Efter amplifikationen oplukkes cellerne, og 25 hybridvektorerne isoleres efter kendte metoder. Ud fra disse kan de genfragmenter, der svarer til DNA-sekvens I eller DNA-sekvens II, isoleres ved fordøjelse med de oprindeligt benyttede enzymer EcoRI og Hindlll. Nucleotidsekvenserne verificeres ved hjælp af de almindelige kendte metoder til 30 DNA-sekvensbestemmelse.A hybrid plasmid is obtained with which E. coli is transformed. To this end, the strain E. coli K12 is made competent by treatment with calcium chloride, and to this is added the solution of the hybrid plasmid. By the addition of isopropyl-1S-D-thiogalacto-pyranoside (IPTG), 5-bromo-4-chloro-3-indolyl - & - D-galacto-pyranoside (Xgal) and ampicillin, after dispersing on plates, colonies containing the insert into the vector are detectable. After amplification, the cells are dissected and the hybrid vectors isolated by known methods. From these, the gene fragments corresponding to DNA sequence I or DNA sequence II can be isolated by digestion with the initially used enzymes EcoRI and HindIII. The nucleotide sequences are verified by the common known methods of DNA sequencing.

6. Syntese af et gen for Salm-calcitonin-Glv(33).6. Synthesis of a Salm calcitonin Glv gene (33).

DNA-sekvens Ill's oligonucleotid fremstilles som beskrevet i eksempel 1. 0,5 nmol af dette oligonucleotid hy-35 bridiseres herefter som beskrevet i eksempel 3, og ved hjælp af DNA-polymerase (Klenow-fragment) dannes DNA-dobbeltstren-DNA sequence III's oligonucleotide is prepared as described in Example 1. 0.5 nmol of this oligonucleotide is then hybridized as described in Example 3, and by DNA polymerase (Klenow fragment) DNA double strand

I DK 175230 B1 II DK 175230 B1 I

I 10 II 10 I

I gen. Efter denatureringen af enzymet ved varmebehandling IIn gen. After the denaturation of the enzyme by heat treatment I

I forhøjes NaCl-koncentrationen til 100 mM, og ved at skære IYou increase the NaCl concentration to 100 mM and cut I

I med restriktionsenzymerne Sphl og EcoRI (hver 100 enheder) II with the restriction enzymes Sphl and EcoRI (each 100 units) I

I tilvejebringes genet med de overstående ender. IIn, the gene is provided with the above ends. IN

I 5 Oprensningen og kloningen af calcitonin-genet kan IIn the purification and cloning of the calcitonin gene, you can

I udføres på i og for sig kendt måde (f.eks. som foreslået i IYou are performed in a manner known per se (eg, as suggested in I

I den tyske patentansøgning nr. P 3.632.037.4). IIn German Patent Application No. P 3,632,037.4). IN

DK 175230 B1 11DK 175230 B1 11

Tabel I: oligonucleotid 1 1 10 20 30 40 50 5' AGTAAGCTTCACGAGTATTTTCCGGAAATGCAGATTCTGGCTGTTAGTGG 51 60 70 80 90 100 TAACTATTGTACTGACAAGAAACCTGCTGCTATCAATTGGATTGAGGGCC 101 110 120 130 GTGAATTCGCTTTTGCGAATTCACGGCCCT 3’Table I: oligonucleotide 1 1 10 20 30 40 50 5 'AGTAAGCTTCACGAGTATTTTCCGGAAATGCAGATTCTGGCTGTTAGTGG 51 60 70 80 90 100 TAACTATTGTACTGACAAGAAACCTGCTGCTATCAATTGGATTGAGGGCC 101G

"Hårnåle"-struktur: Sau96I EcoRI"Hairpins" structure: Sau96I EcoRI

1 i 5' AGTAAGCTT.......................GAGGGCCGTGAATTCGCT-^1 in 5 'AGTAAGCTT ....................... GAGGGCCGTGAATTCGCT- ^

:::::::::::::::: T:::::::::::::::: T

:::::::::::::::: T:::::::::::::::: T

3' TCCCGGCACTTAAGCGT ^ ’ "Baseparring I Skæringssted3 "TCCCGGCACTTAAGCGT ^" "Base Pairing In Cutting Point

I DK 175230 B1 II DK 175230 B1 I

I 12 II 12 I

I Tabel II: DNA-sekvens I IIn Table II: DNA sequence I I

I LEO HIS GLO TYR PHE PRO GLO MET GLN ILE LEO II LEO HIS GLO TYR PHE PRO GLO WITH GLN ILE LEO I

ag CTT CAC GAG TAT TTT CCG GAA ATG CAG ATT CTG ’ Iag CTT CAC GAG TAT TTT CCG GAA ATG CAG ATT CTG 'I

A GTG CTC ATA AAA GGC CTT TAC GTC TAA GAC IA GTG CTC ATA AAA GGC CTT TAC GTC TAA GAC I

I ALA VAL SER GLY ASN TYR CYS THR ASP LYS LYS PRO " IIN ALA VAL SER GLY ASN TYR CYS THR ASP LIGHT LIGHT PRO “I

GCT GTT AGT GGT AAC TAT TGT ACT GAC AAG AAA CCT IGCT GTT AGT GGT AAC TAT TGT ACT GAC AAG AAA CCT I

CGA CAA TCA CCA TTG ATA ACA TGA CTG TTC TTT GGACGA CAA TCA CCA TTG ATA ACA TGA CTG TTC TTT GGA

I ALA ALA ILE ASN TRP ILE GLO GLY ARGI ALA ALA ILE ASN TRP ILE GLO GLY ARG

GCT GCT ATC AAT TGG ATT GAG GGC CGT GGCT GCT ATC AAT TGG ATT GAG GGC CGT G

CGA CGA TAG TTA ACC TAA CTC CCG GCA CTT AACGA CGA TAG TTA ACC TAA CTC CCG GCA CTT AA

I Tabel III: DNA-sekvens IIIn Table III: DNA sequence II

I LEO HIS GLO TYR PHE PRO GLU MET GLN ILE LEOI LEO HIS GLO TYR PHE PRO GLU WITH GLN ILE LEO

AG CTT CAC GAG TAT TTT CCG GAA ATG CAG ATT CTGAG CTT CAC GAG TAT TTT CCG GAA ATG CAG ATT CTG

A GTG CTC ΑΤΑ AAA GGC CTT TAC GTC TAA GACA GTG CTC ΑΤΑ AAA GGC CTT TAC GTC TAA GAC

I ALA VAL SER GLY ASN TYR SER THR ASP LYS LYS PROIN ALA VAL SER GLY ASN TYR SER THR ASP LIGHT LIGHT PRO

GCT GTT AGT GGT AAC TAT TCT ACT GAC AAG AAA CCTGCT GTT AGT GGT AAC TAT TCT ACT GAC AAG AAA CCT

CGA CAA TCA CCA TTG ATA AGA TGA CTG TTC TTT GGACGA CAA TCA CCA TTG ATA AGA TGA CTG TTC TTT GGA

I ALA ALA ILE ASN TRP ILE GLO GLY ARGI ALA ALA ILE ASN TRP ILE GLO GLY ARG

GCT GCT ATC AAT TGG ATT GAG GGC CGT GGCT GCT ATC AAT TGG ATT GAG GGC CGT G

CGA CGA TAG TTA ACC TAA CTC CCG GCA CTT AACGA CGA TAG TTA ACC TAA CTC CCG GCA CTT AA

DK 175230 B1 13DK 175230 B1 13

Tabel IV: DNA-sekvens IIITable IV: DNA sequence III

0 1 5 10 * Met Cys Ser Asn Leu Ser Thr Cys Val Leu Gly Lys0 1 5 10 * With Cys Ser Asn Leu Ser Thr Cys Val Leu Gly List

5' TTTGCATGC ATG TGC TCT AAC CTG TCG ACT TGC GTT CTT GGT AAG5 'TTTGCATGC ATG TGC TCT AAC CTG TCG ACT TGC GTT CTT GGT AAG

1 10 20 30 40 _ 15 20 251 10 20 30 40 _ 15 20 25

Leu Ser Gin Glu Leu H.is Lys Leu Gin Thr Tyr Pro Arg Thr AsnLeu Ser Gin Glu Leu H.is Lys Leu Gin Thr Tyr Pro Arg Thr Asn

CTT TCT C AG GAA CTT CAT AAA CTG CAG ACC TAT CCG CGC ACT AATCTT TCT C AG GAA CTT CAT AAA CTG CAG ACC TAT CCG CGC ACT AAT

50 60 70 80 90 3050 60 70 80 90 30

Thr Gly Ser Gly Thr P::o Gly Stp Stp ACC GGC TCT GGT ACC COT GGT TAA TAG AATTCGCTTTTGCGAATTCTATT 3' 100 110 120 130 140Thr Gly Ser Gly Thr P :: o Gly Stp Stp ACC GGC TCT GGT ACC COT GGT TAA TAG AATTCGCTTTTGCGAATTCTATT 3 '100 110 120 130 140

Claims (7)

1. Fremgangsmåde til fremstilling af dobbeltstrenget I I DNA, kendetegnet ved, at der syntetiseres en I I DNA-enkeltstreng med en hårnåle-struktur i den ene ende I I 5 eller i begge ender, de komplementære nucleotider udfyldes, · I I og hårnåle-strukturen (-strukturerne) åbnes eller fraspaltes. IA method for producing double-stranded II DNA, characterized in that a single single-stranded DNA DNA with a hairpin structure is synthesized at one end II or at both ends, the complementary nucleotides are filled in, II and the hairpin structure (- the structures) are opened or split. IN 2. Fremgangsmåde ifølge krav 1, kendete g- 'I I net ved, at man nær ved hårnålestrukturen anbringer et I I eller flere genkendelsessted(er) for et restriktionsenzym, I I 10 ved hjælp af hvilket hårnåle-strukturen kan fraspaltes. I2. A method according to claim 1, characterized in that one or more recognition site (s) of a restriction enzyme (I) 10 is applied by the hairpin structure by which the hairpin structure can be cleaved. IN 3. Fremgangsmåde ifølge krav 1, k e n d e t e g- I I net ved, at hårnåle-strukturen åbnes ved hjælp af en I I enkeltstrengspecifik nuclease. IThe method of claim 1, characterized in that the hairpin structure is opened by a single strand specific nuclease. IN 4. Fremgangsmåde ifølge et eller flere af de foreud- I I 15 gående krav, kendetegnet ved, at det enkeltstren- I I gede DNA hybridiseres med en mutagen "primer", og der gen- I I nemføres en stedsspecifik mutagenese. IMethod according to one or more of the preceding claims, characterized in that the single-stranded goat DNA is hybridized with a mutagenic "primer" and site-specific mutagenesis is performed. IN 5. Fremgangsmåde ifølge et eller flere af de forud- I I gående krav, kendetegnet ved, at man ved udfyld- I I 20 ningen til dobbeltstrengen anvender mærkede nucleotider. IProcess according to one or more of the preceding claims, characterized in that labeled nucleotides are used in the filling of the double strand. IN 6. Fremgangsmåde ifølge et eller flere af de forud- I I gående krav, kendetegnet ved, at der gås ud fra I I oligonucleotid 1 (tabel I). IMethod according to one or more of the preceding claims, characterized in that starting from I I oligonucleotide 1 (Table I). IN 7. Oligonucleotid 1 (tabel I). I7. Oligonucleotide 1 (Table I). IN
DK198802778A 1987-05-23 1988-05-20 Method for producing double-stranded DNA as well as oligonucleotide DK175230B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19873717436 DE3717436A1 (en) 1987-05-23 1987-05-23 METHOD FOR PRODUCING DOUBLE-STRANDED DNA
DE3717436 1987-05-23

Publications (3)

Publication Number Publication Date
DK277888D0 DK277888D0 (en) 1988-05-20
DK277888A DK277888A (en) 1988-11-24
DK175230B1 true DK175230B1 (en) 2004-07-19

Family

ID=6328271

Family Applications (1)

Application Number Title Priority Date Filing Date
DK198802778A DK175230B1 (en) 1987-05-23 1988-05-20 Method for producing double-stranded DNA as well as oligonucleotide

Country Status (7)

Country Link
EP (1) EP0292802B1 (en)
JP (1) JP2661959B2 (en)
AT (1) ATE95563T1 (en)
DE (2) DE3717436A1 (en)
DK (1) DK175230B1 (en)
ES (1) ES2059432T3 (en)
PT (1) PT87557B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5215899A (en) * 1989-11-09 1993-06-01 Miles Inc. Nucleic acid amplification employing ligatable hairpin probe and transcription
US5683985A (en) * 1991-04-18 1997-11-04 The Salk Institute For Biological Studies Oligonucleotide decoys and methods relating thereto
DE4213029A1 (en) * 1991-09-26 1993-04-01 Boehringer Mannheim Gmbh METHOD FOR THE SPECIFIC REPRODUCTION OF NUCLEIN'S SEQUENCES
WO1997004131A1 (en) * 1995-07-21 1997-02-06 Forsyth Dental Infirmary For Children Single primer amplification of polynucleotide hairpins
CA2344599C (en) * 2001-05-07 2011-07-12 Bioneer Corporation Selective polymerase chain reaction of dna of which base sequence is completely unknown
DE10133915A1 (en) * 2001-07-12 2003-02-06 Aventis Pharma Gmbh New oligoribonucleotide derivatives for targeted inhibition of gene expression
DE10133858A1 (en) * 2001-07-12 2003-02-06 Aventis Pharma Gmbh Synthetic double-stranded oligonucleotides for targeted inhibition of gene expression

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0070675A1 (en) * 1981-07-15 1983-01-26 Celltech Therapeutics Limited Human calcitonin precursor polyprotein structural gene

Also Published As

Publication number Publication date
DE3717436A1 (en) 1988-12-08
PT87557B (en) 1992-09-30
DK277888D0 (en) 1988-05-20
ES2059432T3 (en) 1994-11-16
PT87557A (en) 1989-05-31
ATE95563T1 (en) 1993-10-15
DE3884669D1 (en) 1993-11-11
DK277888A (en) 1988-11-24
EP0292802A2 (en) 1988-11-30
JP2661959B2 (en) 1997-10-08
EP0292802B1 (en) 1993-10-06
EP0292802A3 (en) 1989-09-13
JPS63304989A (en) 1988-12-13

Similar Documents

Publication Publication Date Title
JP3143475B2 (en) Induced transcription of double-stranded DNA by nucleic acid analogs
Wang et al. Construction of versatile low-copy-number vectors for cloning, sequencing and gene expression in Escherichia coli
AU2023200611A1 (en) A method for the site-specific enzymatic labelling of nucleic acids in vitro by incorporation of unnatural nucleotides
AU2001288356B2 (en) Methods and reagents for molecular cloning
CA2222744C (en) Thermostable dna polymerases
CA2879355C (en) Helicase construct and its use in characterising polynucleotides
US5958681A (en) Branch migration of nucleotides
US20130046084A1 (en) Oligonucleotide ligation
JPH02142472A (en) Method for preparation of double-stranded dna sequence
CN108699540A (en) Polymerase-template composite for nano-pore sequencing
JP2002320497A (en) Method for protein expression starting from stabilized linear short dna in cell-free in vitro transcription/ translation system with exonuclease-containing lysate or in cellular system containing exonuclease
AU2013262069B2 (en) Enzymatic synthesis of L-nucleic acids
Hanamura et al. Molecular mechanism of negative autoregulation of Escherichia coli crp gene
JP3893057B2 (en) Novel nucleic acid base pair
DK175230B1 (en) Method for producing double-stranded DNA as well as oligonucleotide
US6365350B1 (en) Method of DNA sequencing
US5434070A (en) Reverse transcriptases from Escherichia coli and Myxococcus xanthus
US5780269A (en) Hybrid molecules
JP3415995B2 (en) Method for producing high molecular micro gene polymer
US11473090B2 (en) Linear covalently closed vectors and related compositions and methods thereof
NISSAN et al. Alternative designs for construction of the class II transfer RNA tertiary core
Eckert New vectors for rapid sequencing of DNA fragments by chemical degradation
Amblar et al. Purification and properties of the 5′-3′ exonuclease D10A mutant of DNA polymerase I from Streptococcus pneumoniae: a new tool for DNA sequencing
CN116425816A (en) IsoTAT non-natural base triphosphate and preparation method and application thereof
KR910000456B1 (en) Vector por-high for human growth hormone

Legal Events

Date Code Title Description
PUP Patent expired