DK175114B1 - Pseudo-rabies virus protein - Google Patents

Pseudo-rabies virus protein Download PDF

Info

Publication number
DK175114B1
DK175114B1 DK199400356A DK35694A DK175114B1 DK 175114 B1 DK175114 B1 DK 175114B1 DK 199400356 A DK199400356 A DK 199400356A DK 35694 A DK35694 A DK 35694A DK 175114 B1 DK175114 B1 DK 175114B1
Authority
DK
Denmark
Prior art keywords
ccc
ccg
gcg
gac
gcc
Prior art date
Application number
DK199400356A
Other languages
Danish (da)
Other versions
DK35694A (en
Inventor
Erik A Petrovskis
Leonard E Post
James G Timmins
Original Assignee
Upjohn Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DK198702888A external-priority patent/DK175072B1/en
Application filed by Upjohn Co filed Critical Upjohn Co
Publication of DK35694A publication Critical patent/DK35694A/en
Application granted granted Critical
Publication of DK175114B1 publication Critical patent/DK175114B1/en

Links

Abstract

A novel recombinant DNA molecule comprises a DNA sequence coding for a polypeptide displaying pseudorabies virus (PRV) glycoprotein gp50, gp63 or gI immunogenicity, the DNA sequence being operatively linked to an expression control sequence. PRV genomic DNA derived from PRV Rice strain was isolated from the cytoplasm of PRV-infected Vero cells (ATCC CCL 81). The genomic DNA was fragmented by sonication and then cloned into lambda gt11 to produce lambda/PRV recombinant (lambda PRV) DNA library. Antisera for screening the lambda PRV library were produced by inoculating mice with proteins isolated from cells infected with PRV (infected cell proteins or ICP's) that had been segregated according to size on SDS gels and then isolating the antibodies. The lambda PRV phages to be screened were plated on a lawn of E.coli Foreign DNA's inserted into a unique cloning site in the 3' end of the lacZ gene in the proper orientation and reading frame produce, on expression, polypeptides fused to beta-galactosidase.

Description

i DK 175114 B1in DK 175114 B1

Den foreliggende opfindelse angår et rekombinant DNA-molekyle, en værtscelle transformeret dermed og en fremgangsmåde til fremstilling af et polypeptid ved anvendelse af det rekombinante DNA-molekyle. Polypeptidet er anvendeligtThe present invention relates to a recombinant DNA molecule, a host cell transformed therewith, and a method for producing a polypeptide using the recombinant DNA molecule. The polypeptide is useful

VV

5 til vaccinering af dyr mod PRV, og det rekombinante DNA-molekyle er egnet til eksprimering af PRV-glycoproteinerne, som kodes deraf.5 for vaccinating animals against PRV, and the recombinant DNA molecule is suitable for expression of the PRV glycoproteins encoded therefrom.

Pseudorabies-virus (PRV) er en sygdom, som angriber mange dyrearter over hele verden. PRV-infektioner 10 betegnes afvekslende paralysis bulbaris infectiosa,Pseudorabies virus (PRV) is a disease that attacks many animal species worldwide. PRV infections 10 are referred to as alternating paralysis bulbaris infectiosa,

Aujeszky's sygdom og "mad itch". Infektioner kendes hos 1 vigtige husdyr, såsom svin, kvæg, hunde, katte, får, rotter og mink. Værtsdyr-området er meget bredt og omfatter de fleste pattedyr og, i det mindste eksperimentelt, 15 mange fuglearter (vedrørende en detaljeret liste over værtsdyr, se D.P. Gustafson, "Pseudorabies", in Diseases of Swine, 5. udg., A.D. Leman et al.,eds., (1981)). For de fleste inficerede dyr er sygdomme dødelig. Voksne svin og muligvis rotter dør imidlertid ikke af sygdommen og er 20 derfor bærere.Aujeszky's disease and "food itch". Infections are known in 1 important domestic animals, such as pigs, cattle, dogs, cats, sheep, rats and mink. The host range is very wide and includes most mammals and, at least experimentally, 15 many bird species (for a detailed list of host animals, see DP Gustafson, "Pseudorabies", in Diseases of Swine, 5th ed., AD Leman et al. al., eds., (1981)). For most infected animals, diseases are fatal. However, adult pigs and possibly rats do not die from the disease and are therefore carriers.

Svinebesætninger er særlig udsatte for PRV. Selv om de voksne svin sjældent udviser symptomer eller dør af sygdommen, bliver smågrise akut ;syge, når de smittes, og de dør sædvanligvis i løbet af 24-48 timer, ofte uden spe-25 cifikke kliniske tegn (T.C. Jones og R.D. Hunt, Veterinary Pathology, 5. udg., Lea & Febiger (1983)).Pig herds are particularly vulnerable to PRV. Although adult pigs rarely exhibit symptoms or die of the disease, piglets become acute; ill when infected and usually die within 24-48 hours, often without specific clinical signs (TC Jones and RD Hunt, Veterinary Pathology, 5th ed., Lea & Febiger (1983)).

PRV-vacciner er blevet fremstillet ved forskellige metoder, og vaccination i endemiske områder af Europa er blevet praktiseret i mere end 15 år. Tabene er blevet ned-30 sat ved vaccinationen, men vaccinationen har bibeholdt virusset i miljøet. Der er ikke blevet fremstillet nogen vaccine, som vil forhindre infektion. Vaccinerede dyr, som udsættes for virulent virus, overlever infektionen og udskiller derefter mere virulent virus. Vaccinerede dyr 35 kan derfor huse en latent infektion, som kan blusse op igen (se D.P. Gustafson, ovenfor).PRV vaccines have been produced by various methods and vaccination in endemic areas of Europe has been practiced for more than 15 years. The losses have been reduced by the vaccination, but the vaccination has retained the virus in the environment. No vaccine has been produced that will prevent infection. Vaccinated animals exposed to virulent virus survive the infection and then secrete more virulent virus. Vaccinated animals 35 can therefore harbor a latent infection that can flare up again (see D.P. Gustafson, supra).

2 DK 175114 B12 DK 175114 B1

Levende svækkede og inaktiverede vacciner mod PRV er tilgængelige i handelen i USA og er blevet godkendt af USDA (Se C.E. Aronson, ed., Veterinary Pharmaceuticals & Biologicals, (1983)).Live attenuated and inactivated PRV vaccines are commercially available in the United States and have been approved by the USDA (See C.E. Aronson, ed., Veterinary Pharmaceuticals & Biologicals, (1983)).

5 PRV er et herpesvirus. Herpesvira er generelt blandt de mest komplekse af dyre-vira. Deres genomer koder mindst 50 virus-specifikke proteiner og indeholder over 150.000 nucleotider. Blandt de mest immunologisk reaktive proteiner af herpesvira findes glycoproteinerne 10 blandt andet i virion-membraner og membranerne af inficerede celler. Litteraturen vedrørende PRV-glycoproteiner refererer til mindstfire virale glycoproteiner (T. Ben--Porat og A.S. Kaplan, Virology £1, 265-73 (1970); A.S. Kaplan og T. Ben-Porat, Proc. Natl. Acad. Sci.5 PRV is a herpes virus. Herpes viruses are generally among the most complex of animal viruses. Their genomes encode at least 50 virus-specific proteins and contain over 150,000 nucleotides. Among the most immunologically reactive proteins of herpes viruses, the glycoproteins 10 are found, among others, in virion membranes and the membranes of infected cells. The literature on PRV glycoproteins refers to at least four viral glycoproteins (T. Ben - Porat and A.S. Kaplan, Virology £ 1, 265-73 (1970); A.S. Kaplan and T. Ben-Porat, Proc. Natl. Acad. Sci.

15 USA 66, 799-806 (1970)).USA 66, 799-806 (1970)).

M.W. Wathen og L.K. Wathen, J. Virol. 51, 57-62 (1984) refererer til et PRV, der indeholder en mutation i ét viralt glycoprotein (gp50), og en fremgangsmåde til selektering af mutanten under anvendelse 20 af neutraliserende monoclonalt antistof rettet mod gp50. Wathen og Wathen anfører også, at et monoclonalt antistof rettet mod gp50 er en stærk neutraliserende faktor for PRV, med eller uden hjælp af komplement, og at polyvalent immunserum er særdeles reaktivt mod gp50, 25 0g konkluderer derfor, at gp50 kan være et af de vigtige PRV-immunogener. På den anden side er det blevet rapporteret, at monoclonale antistoffer, som reagerer med kappe-glycoproteinet med en molekylvægt på 98.000, neutraliserer PRV-infektionsevnen, men at monoclonale an-30 tistoffer rettet mod nogle af de andre membran-glycoproteiner har meget lille neutraliserende aktivitet (H. Hampi et al., J. Virol. 52, 583-90 (1984); og T. Ben-Porat og A.S. Kaplan, "Molecular Biology of Pseudorabies Virus", i B. Roizman ed., The Herpesviruses, 35 3, s. 105-73 (1984)) .W., Wathen and L.K. Wathen, J. Virol. 51, 57-62 (1984) refer to a PRV containing a mutation in one viral glycoprotein (gp50) and a method of selecting the mutant using neutralizing monoclonal antibody directed against gp50. Wathen and Wathen also state that a monoclonal antibody directed against gp50 is a strong neutralizing factor for PRV, with or without the aid of complement, and that polyvalent immune serum is highly reactive to gp50, 25g therefore concludes that gp50 may be one of the important PRV immunogens. On the other hand, it has been reported that monoclonal antibodies that react with the coat glycoprotein with a molecular weight of 98,000 neutralize PRV infectivity, but that monoclonal antibodies directed against some of the other membrane glycoproteins have very little neutralizing effect. activity (H. Hampi et al., J. Virol. 52, 583-90 (1984); and T. Ben-Porat and A. S. Kaplan, "Molecular Biology of Pseudorabies Virus", in B. Roizman ed., The Herpesviruses, 35, pp. 105-73 (1984)).

3 DK 175114 B1 L.M.K. Wathen et al., Virus Research 4, 19-29 (1985 beskriver fremstilling og karakterisering af mono-clonale antistoffer rettet mod PRV-glycoproteiner identificeret som gp50 og gp83 og deres anvendelse til pas-5 siv immunisering af mus mod PRV-infektion.3 DK 175114 B1 L.M.K. Wathen et al., Virus Research 4, 19-29 (1985) describe the preparation and characterization of monoclonal antibodies directed against PRV glycoproteins identified as gp50 and gp83 and their use for passive immunization of mice against PRV infection.

A.K. Robbins et al., "Localization of a Pseudorabies Virus Glycoprotein Gene Using an E. coli Expression Plasmid Library", i Herpesvirus, s. 551-61 (1984) beskriver konstruktion af et bibliotek af 10 E. coli-plasmider indeholdende PRV-DNA. De beskriver også identifikation af et PRV-gen som koder glycoproteiner med en molekylvægt på 74.000 og 92.000. De beskriver ikke glycoproteinerne fremstsillet ifølge den foreliggende opfindelse.A. K. Robbins et al., "Localization of a Pseudorabies Virus Glycoprotein Gene Using an E. coli Expression Plasmid Library", in Herpesvirus, pp. 551-61 (1984) describes the construction of a library of 10 E. coli plasmids containing PRV DNA . They also describe the identification of a PRV gene encoding glycoproteins having a molecular weight of 74,000 and 92,000. They do not describe the glycoproteins prepared according to the present invention.

15 A.K. Robbins et al., EP-patentansøgning nr.15 A.K. Robbins et al., EP patent application no.

85400704.4 (publikation nr. 162.738) beskriver isolering, cloning og eksprimering af PRV-glycoproteiner, der identificeres som gll og gill. De beskriver ikke PRV-glyco-proteinerne fremstillet ifølge den foreliggende opfindelse.85400704.4 (Publication No. 162,738) discloses the isolation, cloning and expression of PRV glycoproteins identified as gll and gill. They do not describe the PRV glyco proteins made in accordance with the present invention.

20 T.C. Mettenleiter et al., "Mapping of the Struc tural Gene of Pseudorabies Virus Glycoprotein A and Identification of Two Non-Glycosylated Precursor Polypeptides", J. Virol. 53, 52-57 (1985), beskriver kortlægning af det kodende område af glycoprotein gA 25 (som de ligestiller med gi) til BamHI-7-fragmentet af PRV-DNA. De anfører også, at BamHI-7-fragmentet koder for mindst tre andre virale proteiner med en molekylvægt på 65.000, 60.000 og 40.000. De beskriver eller antyder ikke DNA-sekvensen, som koder glycoproteinerne ifølge den fore-30 liggende opfindelse, eller fremstillingen af sådanne poly-peptider ved rekombiramte DNA-metoder.20 T.C. Mettenleiter et al., "Mapping of the Structural Gene of Pseudorabic Virus Glycoprotein A and Identification of Two Non-Glycosylated Precursor Polypeptides", J. Virol. 53, 52-57 (1985) describe mapping of the coding region of glycoprotein gA 25 (which they equate to gI) to the BamHI-7 fragment of PRV DNA. They also state that the BamHI-7 fragment encodes at least three other viral proteins with a molecular weight of 65,000, 60,000 and 40,000. They do not describe or imply the DNA sequence encoding the glycoproteins of the present invention, or the preparation of such polypeptides by recombined DNA methods.

B. Lomniczi et al., "Deletions in the Genomes of Pseudorabies Virus Vaccine Strains and Existence of Four Isomers of the Genomes", J. Virol. 4^, 970-79 5 (1984) beskriver PRV-vaccine-stammer, som har udeladelser i den særlige korte sekvens mellem 0,855 og 0,882 kort- 4 DK 175114 B1 -enheder. Dette er i nærheden af gi-genet. T.C. Metten-leiter et al., "Pseudorabies Virus Avirulent Strains Fail to Express a Major Glycoprotein", J. Virol. 56, 307-11 (1985), har demonstreret, at tre kommercielle PRV-5 -vaccine-stammer mangler glycoprotein gi. Det har også for nylig vist sig, at Bartha-vaccine-stammen indeholder en udeladelse af det meste af gp63-genet.B. Lomniczi et al., "Deletions in the Genomes of Pseudorabies Virus Vaccine Strains and the Existence of Four Isomers of the Genomes", J. Virol. 4, 970-79 5 (1984) discloses PRV vaccine strains which have omissions in the particular short sequence between 0.855 and 0.882 short units. This is near the gi gene. T. C. Metten-leiter et al., "Pseudorabic Virus Avirulent Strains Fail to Express a Major Glycoprotein", J. Virol. 56, 307-11 (1985), have demonstrated that three commercial PRV-5 vaccine strains lack glycoprotein gi. It has also recently been found that the Bartha vaccine strain contains an omission of most of the gp63 gene.

T.J. Rea et al., J. Virol. 5±, 21-29 (1985), beskriver kortlægning og sekvensbestemmelse af genet for 10 PRV-glycoproteinet, som akkumuleres i mediet af inficerede celler (gX). Blandt de flankerende sekvenser af gX-genet, som er vist deri, er en lille del af gp50-se-kvensen, der specifikt begynder ved base nummer 1682 i fig. 6 deri. Denne sekvens blev imidlertid ikke iden-15 tificeret som gp50-sekvensen. Endvidere er der fejl i sekvensen publiseret af Rea et al. Baserne 1586 og 1603 skal udelades. Baserne skal indføres mellem baserne 1708 og 1709, baserne 1737 og 1738, baserne 1743 og 1744 og baserne 1753 og 1754. Konsekvensen af disse fejl 2o i den publi serede delvise sekvens af gp50 er en læserammeforskydning. Translation af den åbne læseramme, der begynder ved AUG-startstedet, vil give en ukorrekt |_aminosyresekvens for gp50-glycoproteinet.T.J. Rea et al., J. Virol. 5 ±, 21-29 (1985), describes mapping and sequencing of the gene for the PRV glycoprotein, which accumulates in the medium of infected cells (gX). Among the flanking sequences of the gX gene shown therein is a small portion of the gp50 sequence that specifically begins at base number 1682 of FIG. 6 therein. However, this sequence was not identified as the gp50 sequence. Furthermore, errors in the sequence published by Rea et al. The bases 1586 and 1603 must be omitted. The bases must be inserted between bases 1708 and 1709, bases 1737 and 1738, bases 1743 and 1744 and bases 1753 and 1754. The consequence of these errors 2o in the published partial sequence of gp50 is a reading frame offset. Translation of the open reading frame beginning at the AUG start site will give an incorrect | amino acid sequence for the gp50 glycoprotein.

EP-patentpublikation nr. 133.200 beskriver en diag-25 nostisk antigen faktor, der skal anvendes sammen med visse lectin-bundne PRV-glycoprotein-underenheds-vacciner til at skelne mellem bærere af PRV og ikke-bærere af PRV.European Patent Publication No. 133,200 discloses a diagnostic antigenic factor to be used with certain lectin-bound PRV glycoprotein subunit vaccines to differentiate between carriers of PRV and non carriers of PRV.

Ifølge den foreliggende opfindelse tilvejebringes et rekombinant DNA-molekyle indeholdende en DNA-sekvens kodende 30 for et polypeptid, der udviser pseudorabiesvirus-(PRV)-glyco-protein-gp50-immunogenitet, hvor den nævnte DNA-sekvens er operativt forbundet med en ekspressionskontrolsekvens, hvorved DNA-sekvensen, der koder for polypeptidet, er valgt blandt sekvensen, der koder for gp50, og som er 35 5 DK 175114 B1According to the present invention, there is provided a recombinant DNA molecule containing a DNA sequence encoding a polypeptide exhibiting pseudorabies virus (PRV) glycoprotein gp50 immunogenicity, wherein said DNA sequence is operably linked to an expression control sequence. wherein the DNA sequence encoding the polypeptide is selected from the sequence encoding gp50 and which is 35

'AIG CTG CTC GCA GCG CIA TTG GCG GCG CTG GTC GCC CGG ACG ACG CTC OGT GCG'AIG CTG CTC GCA GCG CIA TTG GCG GCG CTG GTC GCC CGG ACG ACG CTC OGT GCG

GAC CTG GAC GCC GIG CCC GCG· CCG ACC TTC CCC CCG CCC GCG TAC CCG TAC ACCGAC CTG GAC GCC GIG CCC GCG · CCG ACC TTC CCC CCG CCC GCG TAC CCG TAC ACC

GAG TCG TGG CAG CTG ACG CTG ACG ACG GTC CCC TCG CCC TTC CTC GGC CCC GCGGAG TCG TGG CAG CTG ACG CTG ACG ACG GTC CCC TCG CCC TTC CTC GGC CCC GCG

GAC CTC TAC CAC ACG CGC CCG CTG GAG GAC CCG TGC GCG GTG CTG GCG CTG ATCGAC CTC TAC CAC ACG CGC CCG CTG GAG GAC CCG TGC GCG GTG CTG GCG CTG ATC

,TCC GAC CCG CAG GTG GAC CGG CTG CTG AAC GAG GCG GTG GCC CAC CGG CGG CCC, TCC GAC CCG CAG GTG GAC CGG CTG CTG AAC GAG GCG GTG GCC CAC CGG CGG CCC

ACG TAC CGC GCC CAC CTG GCC TGG TAC CGC ATC GCG GAC GGG TGC GCA CAC CTGACG TAC CGC GCC CAC CTG GCC TGG TAC CGC ATC GCG GAC GGG TGC GCA CAC CTG

CTG TAC TTT ATC GAG TAC GCC GAC TGC GAC CCC AGG CAG GTC TTT GGG CGC TGCCTG TAC TTT ATC GAG TAC GCC GAC TGC GAC CCC AGG CAG GTC TTT GGG CGC TGC

CGG CGC CGC ACC ACG CCG ATG TGG TGG ACC CCG TCC GCG GAC TAC ATG TTC CCCCGG CGC CGC ACC ACG CCG ATG TGG TGG ACC CCG TCC GCG GAC TAC ATG TTC CCC

1Q ACG GAG GAC GAG CTG GGG CTG CTC ATG CTG GCC CCG GGG CGG TTC AAC GAG GGC1Q ACG GAG GAC GAG CTG GGG CTG CTC ATG CTG GCC CCG GGG CGG TTC AAC GAG GGC

CAG TAC CGG CGC CTG GTG TCC CTC GAC GGC CTG AAC ATC CTC ACC GAC TTC ATGCAG TAC CGG CGC CTG GTG TCC CTC GAC GGC CTG AAC ATC CTC ACC GAC TTC ATG

CTG GCG CTC CCC GAG GGG CAA GAG TGC CCG TTC GCC CGC GTG GAC CAG CAC CGCCTG GCG CTC CCC GAG GGG CAA GAG TGC CCG TTC GCC CGC GTG GAC CAG CAC CGC

ACG TAC AAG TTC GGC GCG TGC TGG AGC GAC GAC AGC TTC AAG CGG GGC CTG GACACG TAC AAG TTC GGC GCG TGC TGG AGC GAC GAC AGC TTC AAG CGG GGC CTG GAC

CTG ATG CGA TTC CTG ACG CCG TTC TAC CAG CAG CCC CCG CAC CGC GAG GTG CTGCTG ATG CGA TTC CTG ACG CCG TTC TAC CAG CAG CCC CCG CAC CGC GAG GTG CTG

15 AAC TAC TGG TAC CGC AAG AAC GGC CGG ACG CTC CCG CGG GCC CAC GCC GCC GCC ·15 AAC TAC TGG TAC CGC AAG AAC GGC CGG ACG CTC CCG CGG GCC CAC GCC GCC GCC ·

ACG CCG TAC GCC ATC GAC CCC GCG CGG CCC TCG GCG GGC TCC CCG ACG CCC CGCACG CCG TAC GCC ATC GAC CCC GCG CGG CCC TCG GCG GGC TCC CCG ACG CCC CGC

CCC CGG CCC CCG CCC CGG CCC CGG CCG AAG CCC GAG CCC GCC CCG GCG ACG CCCCCC CGG CCC CCG CCC CGG CCC CGG CCG AAG CCC GAG CCC GCC CCG GCG ACG CCC

'GCG CCC CCC GAC OGC CTG CCC GAG CCG GCG ACG CGG GAC CAC GCC GCC GGG GGC'GCG CCC CCC GAC OGC CTG CCC GAG CCG GCG ACG CGG GAC CAC GCC GCC GGG GGC

CGC CCC ACG CCG CGA CCC CCG AGC CCC GAG ACG CCG CAC OGC CCC TTC GCC CCGCGC CCC ACG CCG CGA CCC CCG AGC CCC GAG ACG CCG CAC OGC CCC TTC GCC CCG

2 0 CCG GCC GTC GTG CCC AGC GGG TGG CCG CAG CCC GCG GAG CCG TTC CAG CCG CGG2 0 CCG GCC GTC GTG CCC AGC GGG TGG CCG CAG CCC GCG GAG CCG TTC CAG CCG CGG

ACC CCC GCC GCG CCG GGC GTC TCG CGC CAC CGC TCG GTG ATC CTC GGC ACG CGCACC CCC GCC GCG CCG GGC GTC TCG CGC CAC CGC TCG GTG ATC CTC GGC ACG CGC

ACC GCG ATG GGC GCG CTC CTG CTG GGC GTG TGC GTC TAC ATC TIC TTC CGC CTGACC GCG ATG GGC GCG CTC CTG CTG GGC GTG TGC GTC TAC ATC TIC TTC CGC CTG

AGG GGG GCG AAG GGG TAT CGC CTC CTG GGC GCT CCC GCG GAC GCC GAC GAG CIAAGG GGG GCG AAG GGG TAT CGC CTC CTG GGC GCT CCC GCG GAC GCC GAC GAG CIA

AAA GCG CAG CCC GGT CCG TAG, 25 og fragmenter deraf, som koder for polypeptider, der udviser PRV-antigenitet.AAA GCG CAG CCC GGT CCG TAG, 25 and fragments thereof encoding polypeptides exhibiting PRV antigenicity.

Desuden tilvejebringes der ifølge den foreliggende opfindelse en værtscelle transformeret med et rekombinant DNA-molekyle ifølge opfindelsen.In addition, according to the present invention, there is provided a host cell transformed with a recombinant DNA molecule of the invention.

30 Ifølge den foreliggende opfindelse tilvejebringes endvidere en fremgangsmåde til fremstilling af et polypeptid, der udviser PRV-gp50-antigenitet, omfattende: (a) fremstilling af et rekombinant DNA-molekyle, hvor molekylet indeholder en DNA-sekvens, der koder for et 35 polypeptid, som udviser PRV-gp50-antigenitet, hvor den nævnte DNA-sekvens er operativt forbundet med en ekspressionskon- 6 DK 175114 B1 trolsekvens, (b) transformering af en passende værtscelle med det nævnte rekombinante DNA-molekyle, (c) dyrkning af den nævnte værtscelle, og 5 (d) opsamling af polypeptidet, hvorved DNA-sekvensen er valgt blandt gp50-sekvensen, som erThe present invention further provides a method for producing a polypeptide exhibiting PRV-gp50 antigenicity, comprising: (a) producing a recombinant DNA molecule, wherein the molecule contains a DNA sequence encoding a polypeptide exhibiting PRV-gp50 antigenicity, wherein said DNA sequence is operably linked to an expression control sequence, (b) transforming an appropriate host cell with said recombinant DNA molecule, (c) culturing said said host cell, and 5 (d) collecting the polypeptide, wherein the DNA sequence is selected from the gp50 sequence which is

10 ATG CTG CTC GCA GCG CTA TTC GCC GCC CTC CTC GCC CGC ACG ACG CTC GCT GCC10 ATG CTG CTC GCA GCG CTA TTC GCC GCC CTC CTC GCC CGC ACG ACG CTC GCT GCC

GAC GTG GAC GCC GTG CCC GCG CCG ACC TTC CCC CCG CCC GCG XAC CCG TAC ACCGAC GTG GAC GCC GTG CCC GCG CCG ACC TTC CCC CCG CCC GCG XAC CCG TAC ACC

GAG TCG TGC CAG CTG ACG CTG ACG ACG GTC CCC TCG CCC TTC GTC GGC CCC GCGGAG TCG TGC CAG CTG ACG CTG ACG ACG GTC CCC TCG CCC TTC GTC GGC CCC GCG

GAC GTC TAC CAC ACG CGC CCG CTG GAG GAC CCG TGC GCG GTG GTG GCG CTG AICGAC GTC TAC CAC ACG CGC CCG CTG GAG GAC CCG TGC GCG GTG GTG GCG CTG AIC

TCC GAC CCG CAG GTG GAC CGG CTG CTG MC GAG GCG GTG GCC CAC CGC CCG CCCTCC GAC CCG CAG GTG GAC CGG CTG CTG MC GAG GCG GTG GCC CAC CGC CCG CCC

15 ACG TAC CGC GCC CAC GTG GCC TCG TAC CGC AIC GCG GAC GGG TCC GCA CAC CTG15 ACG TAC CGC GCC CAC GTG GCC TCG TAC CGC AIC GCG GAC GGG TCC GCA CAC CTG

CTG TAC TIT AIC GAG TAC GCC GAC TGC GAC CCC ACG CAG GTC ITT GGG CGC TGCCTG TAC TIT AIC GAG TAC GCC GAC TGC GAC CCC ACG CAG GTC ITT GGG CGC TGC

CGG CGC CGC ACC ACG CCG ATG TGG TCG ACC CCG TCC GCG GAC TAC ATG TTC CCCCGG CGC CGC ACC ACG CCG ATG TGG TCG ACC CCG TCC GCG GAC TAC ATG TTC CCC

ACG GAG GAC GAG CTG GGG CTG CTC ATG GTG GCC CCG GGG CGG TTC AAC GAG GGCACG GAG GAC GAG CTG GGG CTG CTC ATG GTG GCC CCG GGG CGG TTC AAC GAG GGC

CAG TAC CGG CGC CTG GTG TCC CTC GAC GGC CTG AAC AIC CTC ACC GAC TTC ATGCAG TAC CGG CGC CTG GTG TCC CTC GAC GGC CTG AAC AIC CTC ACC GAC TTC ATG

20 GTG CCG GTC CCC GAG GGG CAA GAG TGC CCG TTC GCC CGC GTG GAC CAG CAC CGC20 GTG CCG GTC CCC GAG GGG CAA GAG TGC CCG TTC GCC CGC GTG GAC CAG CAC CGC

ACG TAC AAG TTC GGC GCG TGC TGG AGC GAC GAC ACC TTC AAC CGG GGC GTG GACACG TAC AAG TTC GGC GCG TGC TGG AGC GAC GAC ACC TTC AAC CGG GGC GTG GAC

GTG ATG OGA TTC CTG ACG CCG TTC TAC CAG CAG CCC CCG CAC CGG GAG GTG GTGGTG ATG OGA TTC CTG ACG CCG TTC TAC CAG CAG CCC CCG CAC CGG GAG GTG GTG

AAC TAC TGG TAC CGC AAG AAC GGC CGG ACG CTC CCC CGG GCC CAC GCC GCC GCCAAC TAC TGG TAC CGC AAG AAC GGC CGG ACG CTC CCC CGG GCC CAC GCC GCC GCC

ACG CCG TAC GCC AIC GAC CCC GCG CGG CCC TCG GCG GGC TCG CCG AGG CCC CGGACG CCG TAC GCC AIC GAC CCC GCG CGG CCC TCG GCG GGC TCG CCG AGG CCC CGG

25 CCC CGG CCC CGG CCC CGG CCC OGG CCG AAG CCC GAG CCC GCC CCG GCG ACG CCC25 CCC CGG CCC CGG CCC CGG CCC OGG CCG AAG CCC GAG CCC GCC CCG GCG ACG CCC

GCG CCC CCC GAC CGC CTG CCC GAG CCG GCG ACC CGG GAC CAC GCC GCC GGG GGCGCG CCC CCC GAC CGC CTG CCC GAG CCG GCG ACC CGG GAC CAC GCC GCC GGG GGC

CGC CCC ACG CCG CGA CCC CCG AGG CCC GAG ACG CCG CAC CGC CCC TTC GCC CCGCGC CCC ACG CCG CGA CCC CCG AGG CCC GAG ACG CCG CAC CGC CCC TTC GCC CCG

CCG GCC GTC GTG CCC AGC GGG TGG CCG CAG CCC GCG GAG CCG TTC CAG CCG CGGCCG GCC GTC GTG CCC AGC GGG TGG CCG CAG CCC GCG GAG CCG TTC CAG CCG CGG

30 ACC CCC GCC GCG CCG GGC GTC TCG CGC CAC CGC TCG GTG ATC GTC GGC ACG GGC30 ACC CCC GCC GCG CCG GGC GTC TCG CGC CAC CGC TCG GTG ATC GTC GGC ACG GGC

ACC GCG ATG CGC GCG CTC CTG CTG GGC GIG TCC GTC TAC ATC TTC TTC CGC CTGACC GCG ATG CGC GCG CTC CTG CTG GGC GIG TCC GTC TAC ATC TTC TTC CGC CTG

AGG GGG GCG AAG GGG TAT CGC CTC CTG GGC GGT CCC GCG GAC GCC GAC GAG CTAAGG GGG GCG AAG GGG TAT CGC CTC CTG GGC GGT CCC GCG GAC GCC GAC GAG CTA

AAA GCG CAG CCC GGT CCG TAG, og fragmenter deraf, som koder for polypeptider, der udviser 35 pseudorabiesvirus-antigenitet.AAA GCG CAG CCC GGT CCG TAG, and fragments thereof encoding polypeptides exhibiting 35 pseudorabies virus antigenicity.

7 DK 175114 B1 Nærmere bestemt tilvejebringes der ifølge den foreliggende opfindelse polypeptider med formlerne, der er anført på blad A, B og C, immunogene fragmenter deraf og immunologisk funktionelle ækvivalenter deraf.More specifically, according to the present invention, polypeptides of the formulas listed on leaves A, B and C, immunogenic fragments thereof and immunologically functional equivalents thereof, are provided.

:5 Polypeptiderne fremstillet ifølge den foreliggende opfindelse koder for pseudorabies-virus-glycoproteinet gp50 eller immunogene fragmenter og er anvendeligt til at beskytte dyr mod PRV-infektion ved vaccinering af disse med disse polypeptider.The polypeptides prepared according to the present invention encode the pseudorabies virus glycoprotein gp50 or immunogenic fragments and are useful for protecting animals against PRV infection by vaccinating them with these polypeptides.

10 Med det omhandlede rekombinante DNA-molekyle, den omhandlede værtscelle og den omhandlede fremgangsmåde muliggøres for første gang fremstilling ved rekombinant DNA-teknik af gp50-polypeptid og fragmenter deraf, som er nyttige til fremstilling af vacciner, og der opnås de muligheder og 15 fordele, som er omtalt senere i beskrivelsen (side 9).The present recombinant DNA molecule, host cell and method disclose, for the first time, production by recombinant DNA technique of gp50 polypeptide and fragments thereof useful for the preparation of vaccines, and the possibilities and advantages are obtained. , which is discussed later in the description (page 9).

Eksistensen og placeringen af genet, der koder for glycoproteinet gp50 af PRV er demonstreret af M.W. Wathen og L.M. Wathen, se ovenfor.The existence and location of the gene encoding the glycoprotein gp50 of PRV has been demonstrated by M.W. Wathen and L.M. Wathen, see above.

Glycoproteinet, som kodes af genet, er defineret 20 som et glycoprotein, der reagerer med et bestemt mono- clonalt antistof. Dette glycoprotein svarer ikke til nogen , af de hidtil kendte PRV-glycoproteiner. Wathen og Wa-then <har kortlagt en mutation, som er resistent mod det mono-clonale antistof, som på basis af fortilfælde i herpes 25 simplex-virus (f.eks. T.C. Holland et al., J. Virol 52, 566-74 (1984)), kortlægger placeringen af det strukturelle gen for gp50. Wathen og Wathen har kortlagt gp50--genet til det mindre Sall/BamHI-fragment inden i BamHI-7-fragmentet af PRV. Rea et al., se ovenfor, har 30 kortlagt PRV-glycoprotein-gX-genet til det samme område.The glycoprotein encoded by the gene is defined as a glycoprotein that reacts with a particular monoclonal antibody. This glycoprotein does not match any of the known PRV glycoproteins. Wathen and Wa-then <have mapped a mutation that is resistant to the monoclonal antibody, which, on the basis of precedents, in the herpes simplex virus (e.g., TC Holland et al., J. Virol 52, 566- 74 (1984)), map the location of the gp50 structural gene. Wathen and Wathen have mapped the gp50 gene to the smaller SalI / BamHI fragment within the BamHI-7 fragment of PRV. Rea et al., Supra, have mapped the PRV glycoprotein gX gene to the same region.

Som ovenfor nævnt placeres genet, der koder for gp50, i BamHI-7-fragmentet af PRV-DNA. BamHI-7-fragmentet af PRV kan afledes af plasmidet pPRXhl (også kendt som pUC1129), og fragmenter, der er bekvemme til DNA-sekvensanalyse, kan 35 fås ved standard-subcloningsprocedurer. Plasmidet pUC1129 kan fås fra E. coli HB101, NRRL B-15772. Denne kultur er 8 DK 175114 B1 tilgængelig fra den permanente samling hos Nothern Regional Research Center Fermentation Laboratory (NRRL), U.S. Department of Agriculture, Peoria, Illinois, U.S.A.As mentioned above, the gene encoding gp50 is placed in the BamHI-7 fragment of PRV DNA. The Bam HI-7 fragment of PRV can be derived from the plasmid pPRXhl (also known as pUC1129), and fragments convenient for DNA sequence analysis can be obtained by standard subcloning procedures. Plasmid pUC1129 is available from E. coli HB101, NRRL B-15772. This culture is available from the permanent collection at the Nothern Regional Research Center Fermentation Laboratory (NRRL), U.S. Department of Agriculture, Peoria, Illinois, U.S.A.

E. coli HB101 indeholdende pUC1129 kan dyrkes i 5 L-næringsmedium ved velkendte procedurer. Typisk dyrkes kulturer til en optisk tæthed på 0,6, hvorefter der tilsættes chloramphenicol, og kulturen henstilles under omrystning natten over. Kulturen lyseres derefter f.eks. ved anvendelse af SDS med høj saltkoncentration, og 10 den ovenstående væske underkastes en casiumchlorid/-ethidiumbromid-ligevægtsdensitetsgradientcentrifugering, hvorved plasmiderne fås.E. coli HB101 containing pUC1129 can be grown in 5 L nutrient medium by well known procedures. Typically, cultures are grown to an optical density of 0.6, then chloramphenicol is added and the culture is left to shake overnight. The culture is then lysed e.g. using high salt concentration SDS, and the above liquid is subjected to a casium chloride / ethidium bromide equilibrium density gradient centrifugation to obtain the plasmids.

• Tilgængeligheden af denne gensekvens muliggør direkte manipulering af genet og gensekvensen, hvilket tillader 15 modifikationer af reguleringen af ekspressionen og/eller strukturen af proteinet kodet af genet eller et fragment deraf. Kendskabet til denne gensekvens gør det også muligt at clone det tilsvarende gen eller fragment deraf fra enhver stamme af PRV under anvendelse af den kendte sekvens som 20 hybridiseringssonde og at eksprimere hele proteinet eller et fragment deraf ved rekombinante metoder, der er almindeligt kendte.The availability of this gene sequence allows for direct manipulation of the gene and gene sequence, allowing 15 modifications to the regulation of the expression and / or structure of the protein encoded by the gene or a fragment thereof. Knowledge of this gene sequence also allows cloning of the corresponding gene or fragment thereof from any strain of PRV using the known sequence as a hybridization probe and to express the entire protein or fragment thereof by recombinant methods known in the art.

Kendskabet til denne gensekvens har gjort det muligt at udlede aminosyresekvensen af det tilsvarende polypeptid 25 (kort A). Som resultat heraf kan fragmenter af disse poly- peptider med PRV-imunogenitet fremstilles ved standardmetoder til proteinsyntese eller rekombinante DNA-metoder. Som anvendt i den foreliggende beskrivelse anvendes udtrykkene immunogenitet og antigenitet afvekslende om evnen til at 30 stimulere enhver type af adaptiv immunreaktion, dvs. udtrykkene antigen og antigenitet er ikke i betydning begrænset til stoffer, der stimulerer produktionen af antistoffer.Knowledge of this gene sequence has allowed the amino acid sequence of the corresponding polypeptide 25 (map A) to be deduced. As a result, fragments of these polypeptides having PRV immunogenicity can be prepared by standard methods for protein synthesis or recombinant DNA methods. As used in the present specification, the terms immunogenicity and antigenicity are used interchangeably for the ability to stimulate any type of adaptive immune response, ie. the terms antigen and antigenicity are not limited to substances that stimulate the production of antibodies.

Den primære struktur (sekvens) af genet, der koder for gp50, er også anført i kort A.The primary structure (sequence) of the gene encoding gp50 is also listed in map A.

35 Genet eller fragmenterne deraf kan udvindes fra pUC1129 ved nedbrydning af plasmid-DNA'et fra en kultur af 9 DK 175114 B1 NRRL B-15772 med passende endonuclease-restriktionsenzymer.The gene or fragments thereof can be recovered from pUC1129 by digestion of the plasmid DNA from a culture of appropriate endonuclease restriction enzymes.

F.eks. kan BamHI-7-fragmentet isoleres ved nedbrydning af et præparat af pUC1129 med BamHI og isoleres ved gelelektro-forese.Eg. For example, the BamHI-7 fragment can be isolated by digestion of a preparation of pUC1129 with BamHI and isolated by gel electrophoresis.

5 . Alle restriktions-endonucleaserne, som er omtalt i den foreliggende beskrivelse, er kommercielt tilgængelig, og deres anvendelse er velkendt. Brugsanvisninger gives i almindelighed af de kommercielle leverandører af restriktionsenzymerne.5. All of the restriction endonucleases disclosed in the present specification are commercially available and their use is well known. Instructions for use are generally provided by the commercial suppliers of the restriction enzymes.

10 Det udskårne gen eller fragmenter deraf kan li geres til forskellige cloningsbærere eller vektorer til , anvendelse ved transformering af en værtscelle. Vekto- rerne indeholder fortrinsvis DNA-sekvenser til at starte, kontrollere og afslutte transcription og translation 15 (som tilsammen udgør ekspression) af PRV-glycoprotein--generne og er derfor operativt forbundet dermed. Disse "ekspressionskontrolsekvenser" er fortrinsvis forenelige med værtscellen, der skal transformeres. Når værtcellen er en celle af et højere dyr, f.eks. en pattedyrcelle, 20 kan de naturligt forekommende ekspressionskontrolsekvenser af glycoprotein-generne anvendes alene eller sammen med heterologe ekspressionskontrolsekvenser. Heterologe sekvenser kan også anvendes alene. Vektorerne indeholder yderligere fortrinsvis et markørgen (f.eks. antibioti-25 kumresistens), således at der fås et fænotypisk træk til selektion af transformerede værtsceller. Desuden vil en replikerende vektor indeholde et replicon.The cut gene or fragments thereof can be read into various cloning carriers or vectors for use in transforming a host cell. The vectors preferably contain DNA sequences to initiate, control, and complete transcription and translation (which together constitute expression) of the PRV glycoprotein genes and are therefore operably linked therewith. These "expression control sequences" are preferably compatible with the host cell to be transformed. When the host cell is a cell of a higher animal, e.g. a mammalian cell, the naturally occurring expression control sequences of the glycoprotein genes can be used alone or together with heterologous expression control sequences. Heterologous sequences can also be used alone. The vectors further preferably contain a marker gene (e.g., antibiotic resistance) to provide a phenotypic trait for selection of transformed host cells. In addition, a replicating vector will contain a replicon.

Typiske vektorer er plasmider, fager og vira, der inficerer dyreceller. Der kan i det væsentlige an-30 vendes enhver DNA-sekvens, som er i stand til at transformere en værtscelle.Typical vectors are plasmids, phages and viruses that infect animal cells. Essentially, any DNA sequence capable of transforming a host cell can be used.

Ved udtrykket "værtscelle" som anvendt i den foreliggende beskrivelse menes en celle, der er i stand til at blive transformeret med DNA-sekvensen, der koder for et 35 polypeptid, som udviser PRV-glycoprotein-antigenitet.By the term "host cell" as used herein is meant a cell capable of being transformed with the DNA sequence encoding a polypeptide exhibiting PRV glycoprotein antigenicity.

Fortrinsvis er værtscellen i stand til at eksprimere PRV-polypeptidet eller fragmenter deraf. Værtscellen kan være prokaryotisk eller eukaryotisk. Illustrerende pro-Preferably, the host cell is capable of expressing the PRV polypeptide or fragments thereof. The host cell may be prokaryotic or eukaryotic. Illustrative pro-

DK 175114 B1 IDK 175114 B1 I

io Iio I

karyotiske celler er bakterier, såsom E. coli, B. sub- Ikaryotic cells are bacteria such as E. coli, B. sub-I

tilis, pseudomonas og B. stearothermofilus. Illustre- Itilis, pseudomonas and B. stearothermophilus. Illustrations- I

rende eukaryotiske celler er gærceller eller celler af Ieukaryotic cells are yeast cells or cells of I

højere dyr, såsom celler fra insekter, planter eller pat- Ihigher animals, such as cells from insects, plants or pathogens

5 tedyr. Pattedyr-cellesystemer vil ofte foreligge i form I5 ted animals. Mammalian cell systems will often be in Form I

af monolag af celler, selv om pattedyrcelle-suspensioner Iof monolayers of cells, although mammalian cell suspensions I

også kan anvendes. Pattedyr-cellelinier omfatter f.eks. Ican also be used. Mammalian cell lines include e.g. IN

I Vero og HeLa-celler, kinesisk hamster-ovarie-cellelinier IIn Vero and HeLa cells, Chinese hamster ovary cell lines I

I (ChO-cellelinier), WI38-, BHK-, C0S-7- eller MDCK- II (ChO cell lines), WI38, BHK, COS-7 or MDCK-I

I 10 -cellelinier. Insekt-cellelinier omfatter Sf9-linien af IIn 10 cell lines. Insect cell lines include the Sf9 line of I

I Spodoptera frugiperda (ATCC CRL1711). En sammenfatning IIn Spodoptera frugiperda (ATCC CRL1711). A summary I

I af nogle tilgængelige eukaryotiske plasmider, værts- II of some available eukaryotic plasmids, host I

I celler og metoder til anvendelse af disse til cloning IIn cells and methods for using them for cloning I

I og ekspression af PRV-glycoproteiner kan findes i II and expression of PRV glycoproteins can be found in I

I 15 K. Esser et al., Plasmids of Eukaryotes (Fundamentals IIn 15 K. Esser et al., Plasmids of Eukaryotes (Fundamentals I

I and Applications), Springer-Verlag (1986) . II and Applications), Springer-Verlag (1986). IN

I Som ovenfor anført indeholder vektoren, f.eks. IAs noted above, the vector, e.g. IN

I et plasmid, som anvendes til at transformere værtscellen, IIn a plasmid used to transform the host cell, I

I fortrinsvis forenelige ekspressionskontrolsekvenser til IPreferably, expression control sequences for I

I 20 II 20 I

I ekspression af PRV-glycoprotein-genet eller fragmenter der- IIn expression of the PRV glycoprotein gene or fragments thereof- I

I af. Ekspressionskontrolsekvenserne er derfor operativt II af. Therefore, the expression control sequences are operative I

I forbundet med genet eller fragmentet. Når værtscellerne IIn association with the gene or fragment. When the host cells I

I er bakterier, omfatter illustrerende anvendelige eks- IYou are bacteria, including illustratively useful excipients

I pressionskontrolsekvenser trp-promotoren og -operatoren IIn the pressure control sequences, the trp promoter and operator I

I (Goeddel et al., Nucl. Acids Res. 8, 4057 (1980)); lac- II (Goeddel et al., Nucl. Acids Res. 8, 4057 (1980)); lac- I

I -promotor og -operator (Chang et al., Nature 275, 615 II promoter and operator (Chang et al., Nature 275, 615 I)

I (1978)) ; ydre membran protein promotor (EMBO J. 1, II (1978)); outer membrane protein promoter (EMBO J. 1, I

I 771-775 (1982)); bakteriofag /1 -promotorer og -ope- II 771-775 (1982)); bacteriophage / 1 promoters and op I

I ratorer (Nucl. Acids Res. 11, 4677-4688 (1983)); α-amy- IIn rators (Nucl. Acids Res. 11, 4677-4688 (1983)); α-amy- I

I 2 0 II 2 0 I

I lase (B. subtilis) promotor og -operator. Terminerings- IIn lase (B. subtilis) promoter and operator. Termination I

I sekvenser og andre ekspressionsfremmende og -kontrolle- IIn sequences and other expression promotion and control I

I rende sekvenser, som er forenelige med den valgte værts- IIn running sequences that are compatible with the selected host I

I celle. Når værtscellen er gær, omfatter illustrerende IIn cell. When the host cell is yeast, illustrative I

I anvendelige ekspressionskontrolsekvenser f.eks. α-mating IIn useful expression control sequences, e.g. α-feed I

I 35 II 35 I

11 DK 175114 B1 faktor. Til insektceller kan polyhedrin-promotoren af baculovira anvendes (Mol. Cell. Biol. 3^, s. 2156-65 (1983)) . Når værtscellen stammer fra insekter eller pattedyr, omfatter illustrerende anvendelige ekspres-5 sionskontrolsekvenser f.eks. SV-40 promotor (Science 222, 524-527 (1983)) eller f.eks. metallothionein--promotor (Nature 296, 39-42 (1982)) eller en varme-chok-promotor (Voellmy et al., Proc. Natl. Acad. Sci.11 DK 175114 B1 factor. For insect cells, the polyhedrin promoter of baculoviruses can be used (Mol. Cell. Biol. 3, pp. 2156-65 (1983)). When the host cell originates from insects or mammals, illustratively useful expression control sequences include e.g. SV-40 promoter (Science 222, 524-527 (1983)) or e.g. metallothionein promoter (Nature 296, 39-42 (1982)) or a heat shock promoter (Voellmy et al., Proc. Natl. Acad. Sci.

USA 8_2, s. 4949-53 (1985)). Som ovenfor anført kan man, 10 når værtscellen er en pattedyrcelle, anvende ekspressionskontrolsekvenserne for PRV-glycoprotein-genet, men fortrinsvis i kombination med heterologe ekspressionskontrolsekvenser .United States 8_2, pp. 4949-53 (1985)). As noted above, when the host cell is a mammalian cell, the expression control sequences of the PRV glycoprotein gene may be used, but preferably in combination with heterologous expression control sequences.

Plasmidet eller replikerende eller integrerende 15 DNA-materiale indeholdende ekspressionskontrolsekvenserne spaltes under anvendelse af restriktionsenzymer, størrelses-justeres i nødvendigt eller ønskeligt omfang og ligeres med PRV-glycoprotein-genet eller fragmenter deraf ved velkendte metoder. Når der anvendes gær-værtsceller 20 eller værtsceller af højere dyr, kan polyadenylerings- eller terminatorsekvenser fra kendte gær- eller pattedyrgener inkorporeres i vektoren. Der kan f.eks. anvendes kvæg-væksthormon-polyadenyleringssekvensen som anført i EP-patentpublikation nr. 93.619. Desuden kan gensekven-25 ser til kontrol af replikationen af værtscellen inkorporeres i vektoren.The plasmid or replicating or integrating DNA material containing the expression control sequences is cleaved using restriction enzymes, size-adjusted as necessary or desirable, and ligated to the PRV glycoprotein gene or fragments thereof by well known methods. When yeast host cells 20 or higher animal host cells are used, polyadenylation or terminator sequences from known yeast or mammalian genes can be incorporated into the vector. For example, For example, the bovine growth hormone polyadenylation sequence is used as set forth in European Patent Publication No. 93,619. In addition, gene sequences for controlling the replication of the host cell can be incorporated into the vector.

Værtscellerne er kompetente eller gøres kompetente til transformation på forskellig måde. Når bakterieceller er værtsceller, kan de gøres kompetente ved 20 behandling med salte, typisk et calciumsalt, som generelt beskrevet af Cohen, PNAS, 69, 2110 (1972). En gær--værtscelle gøres i almindelighed kompetent ved fjernelse af dens cellevæg eller på anden måde, f.eks. ved ionisk behandling (J. Bacteriol. 153, 163-168 (1983)).The host cells are competent or made competent for transformation in various ways. When bacterial cells are host cells, they can be made competent by treatment with salts, typically a calcium salt, as generally described by Cohen, PNAS, 69, 2110 (1972). A yeast host cell is generally rendered competent by removal of its cell wall or otherwise, e.g. by ionic treatment (J. Bacteriol. 153, 163-168 (1983)).

35 12 DK 175114 B135 12 DK 175114 B1

Der findes flere velkendte metoder til indføring af DNA i dyreceller, herunder f.eks. calciumphosphat-præci-pitation, fusion af de modtagende celler med bakterie--protoplaster indeholdende DNA'et, behandling af de 5 modtaqende celler med liposomer indeholdende DNA'et og mikroinjektion af DNA'et direkte i cellerne.There are several well-known methods for introducing DNA into animal cells, including e.g. calcium phosphate precipitation, fusion of the receiving cells with bacteria - protoplasts containing the DNA, treatment of the 5 receiving cells with liposomes containing the DNA, and microinjection of the DNA directly into the cells.

De transformerede celler opformeres ved velkendte metoder (Molecular Cloning, T. Maniatis et al.,The transformed cells are propagated by well known methods (Molecular Cloning, T. Maniatis et al.,

Cold Spring Harbor Laboratory, (1982); Biochemical 10 Methods In Cell Culture And Virology, R.J. Kuchler,Cold Spring Harbor Laboratory, (1982); Biochemical 10 Methods in Cell Culture And Virology, R.J. Kuchler,

Dowden, Hutchinson og Ross, Inc., (1977); Methods In Yeast Genetics, F. Sherman et al., Cold Spring Harbor Laboratory, (1982)) og det eksprimerende PRV-glyco-protein eller fragmentet deraf høstes fra cellemediet 15 i de systemer, hvor proteinet udskilles fra værtscellerne, eller fra cellesuspensionen efter brydning af værtscellesystemet ved f.eks. velkendte mekaniske eller enzymatiske metoder.Dowden, Hutchinson, and Ross, Inc., (1977); Methods In Yeast Genetics, F. Sherman et al., Cold Spring Harbor Laboratory, (1982)) and the expressing PRV glyco protein or fragment thereof are harvested from the cell medium 15 in the systems where the protein is secreted from the host cells or from the cell suspension after breaking the host cell system by e.g. well-known mechanical or enzymatic methods.

Som ovenfor anført er aminosyresekvensen af PRV-glyco-20 proteinet som afledt af genstrukturen anført i kort A. Poly-peptider, som udviser PRV-glycoprotein-antigenitet, omfatter sekvensen anført i kort A og enhver del af polypeptidsekven-sen, som er i stand til at fremkalde en immunreaktion hos et dyr, f.eks. et pattedyr, som har modtaget en injektion 25 af polypeptidsekvensen.As noted above, the amino acid sequence of the PRV glyco protein derived from the gene structure is listed in map A. Poly peptides exhibiting PRV glycoprotein antigen include the sequence listed in map A and any portion of the polypeptide sequence contained in capable of eliciting an immune response in an animal, e.g. a mammal that has received an injection of the polypeptide sequence.

Som ovenfor anført kan hele genet, der koder for PRV-glycoproteinet, anvendes til at konstruere vektorerne og transformere værtscellerne til ekspression af PRV-glycoproteinet, eller der kan anvendes fragmenter 30 af genet, som koder for PRV-glycoproteinet, hvorved den resulterende værtscelle vil eksprimere polypeptider, der udviser PRV-antigenitet. Ethvert fragment af PRV-glyco- 35 13 DK 175114 B1 protein-genet kan anvendes, hvilket resulterer i ekspression af et polypeptid, som er et immunogent fragment af PRV-glycoproteinet eller en analog deraf. Som dfet er velkendt, muliggør degenerationen af den genetiske kode let 5 substitution af basepar til dannelse af funktionelt ækvivalente gener eller fragmenter deraf, som koder polypeptider , der udviser PRV-glycoprotein-antigenitet. Disse funktionelle ækvivalenter er også omfattet af opfindelsen.As noted above, the entire gene encoding the PRV glycoprotein can be used to construct the vectors and transform the host cells to express the PRV glycoprotein, or fragments of the gene encoding the PRV glycoprotein can be used, whereby the resulting host cell will expressing polypeptides exhibiting PRV antigenicity. Any fragment of the PRV glycoprotein gene can be used, resulting in expression of a polypeptide which is an immunogenic fragment of the PRV glycoprotein or an analog thereof. As is well known in the art, the degeneration of the genetic code readily allows substitution of base pairs to form functionally equivalent genes or fragments thereof encoding polypeptides exhibiting PRV glycoprotein antigenicity. These functional equivalents are also encompassed by the invention.

Kort D-L er anført for at illustrere konstruk- 10 tionerne ifølge eksemplerne. Der anvendes bestemte konventioner til illustrering af plasmider og DNA-fragmenter på følgende måde: (1) Figurerne med en enkelt linie viser både cirkulært og lineært dobbeltstrenget DNA.Maps D-L are listed to illustrate the structures of the Examples. Certain conventions are used to illustrate plasmids and DNA fragments as follows: (1) The single-line figures show both circular and linear double-stranded DNA.

15 (2) Stjerner viser, at det viste molekyle er cirkulært.15 (2) Stars show that the molecule shown is circular.

Hvis der ikke er anført en stjerne, er molekylet lineært.If no star is listed, the molecule is linear.

(3) Endonuclease-restriktionssteder af interesse er anført over linien.(3) Endonuclease restriction sites of interest are listed above the line.

(4) Gener er anført under linien.(4) Genes are listed below the line.

20 (5) Afstandene mellem gener og restriktionssteder er ikke i korrekt målestok. Figurerne viser kun de relative positioner, medmindre andet er anført.(5) The distances between genes and restriction sites are not properly scaled. The figures show only the relative positions, unless otherwise stated.

De fleste af de rekombinante DNA-metoder, der anvendes ved udøvelsen af den foreliggende opfindelse, er 25 standardprocedurer, der er velkendte af fagmanden og f.eks. beskrevet detaljeret i Molecular Cloning, T.Most of the recombinant DNA methods used in the practice of the present invention are standard procedures well known to those skilled in the art and e.g. described in detail in Molecular Cloning, T.

Maniatis et al., Cold Spring Harbor Laboratory, (1982) og B. Perbal, A Practical Guide to Molecular Cloning,Maniatis et al., Cold Spring Harbor Laboratory, (1982) and B. Perbal, A Practical Guide to Molecular Cloning,

John Wiley & Sons (1984).John Wiley & Sons (1984).

30 35 DK 175114 B130 35 DK 175114 B1

Eksempel 1Example 1

OISLAND

14 I dette eksempel beskrives sekvensbestemmeIsen, cloningen og ekspressionen af PRV-glycoproteinet gp50.14 In this example, the sequencing, cloning and expression of the PRV glycoprotein gp50 is described.

5 1. Sekvensbestemmelse af gp50-genet.5 1. Sequencing of the gp50 gene.

BamHI-7-fragmentet af PRV-Rice-stamme-DNA (kort D), som koder gp50-genet, isoleres fra pPRXhl (NRRL B-15772), ovenfor, og subclones i BamHI-stedet af plasmid pBR322 (Maniatis et al., ovenfor).The BamHI-7 fragment of PRV-Rice strain DNA (map D) encoding the gp50 gene is isolated from pPRXhl (NRRL B-15772), above, and subcloned into the BamHI site of plasmid pBR322 (Maniatis et al. , above).

10 Idet der henvises til kort E, subclones frag mentet yderligere under anvendelse af standardprocedurer ved nedbrydning af BamHI-7 med PvuII, isolering af de to BamHI/PvuII-fragmenter (1,5 og 4,9 kb) og subcloning af disse mellem BamHl- og PvuII-stederne af pBR322 til 15 dannelse af plasmiderne pPR28-4 og pPR28-l, der henholdsvis indeholder 1/5 kb og 4,9 kb fragmenterne (se også Rea et al., ovenfor). Disse subcloner anvendes som kilder til DNA til DNA-sekvensbestemmelsesforsøg.Referring to Map E, the subclones are further fragmented using standard procedures for degrading BamHI-7 with PvuII, isolating the two BamHI / PvuII fragments (1.5 and 4.9 kb), and subcloning them between BamHl and the PvuII sites of pBR322 to form plasmids pPR28-4 and pPR28-1, containing the 1/5 kb and 4.9 kb fragments, respectively (see also Rea et al., supra). These subclones are used as sources of DNA for DNA sequencing experiments.

Kort F viser forskellige restriktionsenzym-spalt-20 ningssteder, som er placeret i gp50-genet og de flankerende områder. De ovenfor subclonede fragmenter på 1,5 og 4,9 kb nedbrydes nted disse restriktionsenzymer. Hver af enderne dannet af restriktionsenzymerne mærkes med 32 J- · P-ATP under anvendelse af polynucleotid-kinase 25 og underkastes sekvensbestemmelse ved metoden ifølgeMap F shows various restriction enzyme cleavage sites located in the gp50 gene and the flanking regions. The above subcloned fragments of 1.5 and 4.9 kb are broken down by these restriction enzymes. Each of the ends formed by the restriction enzymes is labeled with 32 J · P-ATP using polynucleotide kinase 25 and subjected to sequencing by the method of

Maxam og Gilbert, Methods Enzymol. 65^ 499-560 (1980).Maxam and Gilbert, Methods Enzymol. 65, 499-560 (1980).

Hele genet sekvensbestemmes mindst to gange på begge strenge. DNA-sekvensen af gp50 er anført i kort A. Dette DNA kan anvendes til påvisning af dyr, der er aktivt 30 inficeret med PRV. Man kan f.eks. tage en næse- eller hals-podepind og derefter gennemføre DNA/DNA-hybri-dis'ering ved standardmetoder til påvisning af tilstedeværelsen af PRV.The whole gene is sequenced at least twice on both strands. The DNA sequence of gp50 is listed in Map A. This DNA can be used to detect animals actively infected with PRV. One can, for example. take a nose or throat swab and then perform DNA / DNA hybridization by standard methods for detecting the presence of PRV.

3535

OISLAND

15 DK 175114 B1 2. Ekspression af gp50.15 DK 175114 B1 2. Expression of gp50.

Idet der henvises til kort G, er et Narl-spalt-ningssted placeret 35 basepar ovenfor gp50-gen-startcoctonet.Referring to map G, a Narl cleavage site is located 35 base pairs above the gp50 gene start cocoon.

Det første trin af ekspressionen er indføring af det be-5 kvemme BamHI-spaltningssted på stedet for NarI-spaltningsstedet. Plasmidet pPR28-4 ovenfor nedbrydes med restriktionsendonucleasen Narl til dannelse af DNA-frag-ment 3 indeholdende den N-terminus-kodende ende af gp50-genet og en del af gX-genet. BamHI-linkere tilføjes 10 til fragmentet 3, og fragmentet nedbrydes med BamHIThe first step of the expression is the insertion of the target BamHI cleavage site at the site of the NarI cleavage site. The above plasmid pPR28-4 is digested with the restriction endonuclease Narl to form DNA fragment 3 containing the N-terminus coding end of the gp50 gene and a portion of the gX gene. BamHI linkers are added to fragment 3 and the fragment is degraded with BamHI

til fjernelse af gX-sekvensen, hvorved der fås fragment 4. BamHI-enderne ligeres derefter til dannelse af plasmidet pPR28-4 Nar2.to remove the gX sequence to give fragment 4. The BamHI ends are then ligated to generate the plasmid pPR28-4 Nar2.

I kort H er der vist samlingen af det komplette 15 gp50-gen. pPR28-4 Nar2 nedbrydes med BamHI og PvuII til dannelse af fragment 5 (160 bp) indeholdende den N-terminale kodende del af gp50-genet. Plasmidet pPR28-l ovenfor nedbrydes også med PvuII og BamHI til dannelse af et 4,9 kb-fragment indeholdende den C-terminale kodende del 20 af gp50-genet (fragment 6). Plasmidet pPGXl (konstrueret som anført i US-patentansøgning nr. 760.130) eller, alternativt, plasmidet pBR322 nedbrydes med BamHI, behandles med bakteriel basisk phosphatase (BAP) og ligeres derefter med fragmenterne 5 og 6 til dannelse af 25 plasmidet pBGP50-23, som indeholder det komplette gp50- -gen.Map H shows the assembly of the complete 15 gp50 gene. pPR28-4 Nar2 is digested with BamHI and PvuII to form fragment 5 (160 bp) containing the N-terminal coding portion of the gp50 gene. Plasmid pPR28-1 above is also digested with PvuII and BamHI to form a 4.9 kb fragment containing the C-terminal coding portion 20 of the gp50 gene (fragment 6). Plasmid pPGX1 (constructed as disclosed in U.S. Patent Application No. 760,130) or, alternatively, plasmid pBR322 is digested with BamHI, treated with bacterial basic phosphatase (BAP) and then ligated with fragments 5 and 6 to form plasmid pBGP50-23, which contains the complete gp50 gene.

I kort I er der vist fremstillingen af plasmidet pD50. Plasmidet pBG50-23 spaltes med restriktionsenzymet Maelll (K. Schmid et al., Nucl. Acids Res., 12, 30 2619 (1984) til dannelse af en blanding af fragmenter.In Map I, the preparation of the plasmid pD50 is shown. The plasmid pBG50-23 is digested with the restriction enzyme Maelll (K. Schmid et al., Nucl. Acids Res., 12, 26,1919 (1984)) to form a mixture of fragments.

Maelll-enderne gøres stumpe med T4-DNA-polymerase, og der tilføjes EcoRI-linkere til de stumpe ender og gennemføres derefter en EcoRI-nedbrydning. De resulterende fragmenter spaltes med BamHI, og et 1,3 kb BamHI/EcoRI-frag-35The MaellI ends are blunted with T4 DNA polymerase and EcoRI linkers are added to the blunt ends and then an EcoRI degradation is performed. The resulting fragments are cleaved with BamHI and a 1.3 kb BamHI / EcoRI fragment

OISLAND

16 DK 175114 B1 ment indeholdende gp50-genet (fragment 7) isoleres. Plas-midet pSV2dhfr (fra American Type Culture Collection,16 DK 175114 B1 containing the gp50 gene (fragment 7) is isolated. The plasmid pSV2dhfr (from the American Type Culture Collection,

Bethesda Research Laboratories, eller syntetiseret ved metoden ifølge S, Subramani et al., Mol. Cell. Biol.Bethesda Research Laboratories, or synthesized by the method of S, Subramani et al., Mol. Cell. Biol.

5 2, s. 854-64 (1981)) nedbrydes med BamHI og EcoRI, og det store fragment (5,0 kb) isoleres til dannelse af fragment 8 indeholdende dihydrofolat-reductase-markøren (dhfr) . Fragmenterne 7 og 8 ligeres derefter til dannelse af plasmidet pD50 indeholdende gp50-genet og dhfr-10 -markøren.5 2, pp. 854-64 (1981)) is digested with BamHI and EcoRI, and the large fragment (5.0 kb) is isolated to form fragment 8 containing the dihydrofolate reductase marker (dhfr). Fragments 7 and 8 are then ligated to generate the plasmid pD50 containing the gp50 gene and the dhfr-10 marker.

Idet der henvises til kort J, tilføjes den umiddelbare tidlige promotor fra humant cytomegalovirus, Towne-stamme, ovenfor gp50-genet. pD50 nedbrydes med BamHI og behandles med bakteriel basisk phosphatase 15 til dannelse af fragment 9. Et 760 bp Sau3A-fragment indeholdende den umiddelbare tidlige promotor af humant cytomegalovirus (Towne) isoleres ved proceduren anført i US-patentansøgning nr. 758.517 til dannelse af fragmentet 10 (se også D.R. Thomsen et al., Proc. Natl.Referring to map J, the immediate early promoter of human cytomegalovirus, Towne strain, is added above the gp50 gene. pD50 is digested with BamHI and treated with bacterial basic phosphatase 15 to form fragment 9. A 760 bp Sau3A fragment containing the immediate early promoter of human cytomegalovirus (Towne) is isolated by the procedure disclosed in U.S. Patent Application No. 758,517 to generate the fragment 10 (see also DR Thomsen et al., Proc. Natl.

20 Acad. Sci. USA 83., s. 659-63 (1984)). Disse fragmenter ligeres derefter ved en BamHI/Sau3A-fusion til dannelse af plasmidet pDIE50. For at bekræfte, at promotoren er i korrekt orientering til transkriberinq af gp50-genet, nedbrydes plasmidet med SacI og PvuII, og der dannes et 25 185 bp fragment.20 Acad. Sci. USA 83, pp. 659-63 (1984)). These fragments are then ligated by a BamHI / Sau3A fusion to generate the plasmid pDIE50. To confirm that the promoter is in the correct orientation for transcription of the gp50 gene, the plasmid is digested with SacI and PvuII and a 185 bp fragment is generated.

Idet der henvises til kort K, isoleres 0,6 kb PvuII/EcoRI-f ragmente t indeholdende kvæg-vask s thormon --polyadenyleringssignalet fra plasmidet pGH2R2 (R.P.Referring to map K, 0.6 kb of PvuII / EcoRI fragments containing bovine wash's thormone polyadenylation signal from the plasmid pGH2R2 (R.P.) are isolated.

Woychik et al., Nucl. Acids Res. .10, s. 7197-7210 30 (1982) ved nedbrydning med PvuII og EcoRI eller fra pSVCOW7 (se ovenfor) til dannelse af fragment 11.Woychik et al., Nucl. Acids Res. .10, pp. 7197-7210 30 (1982) by digestion with PvuII and EcoRI or from pSVCOW7 (see above) to form fragment 11.

Fragment 11 dones mellem EcoRI- og Smal-spalt- ningsstederne af pUC9 (fra Pharmacia/PL eller ATCC) til dannelse af pCOWTl. pCOWTl spaltes med Sall, enderne 35 17 DK 175114 B1 o gøres stumpe med T4-DNA-polymerase, der tilføjes EcoRI-linkere, DNA'et spaltes med EcoRI, og 0,6 kb fragmentet (fragment 12) isoleres. Dette er det samme som fragment 11, bortset fra at det har to EcoRI-ender og en 5 polylinker-sekvens ved en ende.Fragment 11 is donated between the Eco RI and SmaI cleavage sites of pUC9 (from Pharmacia / PL or ATCC) to form pCOWT1. pCOWT1 is cleaved with SalI, the ends are blunted with T4 DNA polymerase added to EcoRI linkers, the DNA is cleaved with EcoRI and the 0.6 kb fragment (fragment 12) is isolated. This is the same as fragment 11 except that it has two Eco RI ends and a 5 polylinker sequence at one end.

Plasmid pDIE50 spaltes med EcoRI, og fragment 12 klones deri til dannelse af plasmid pDlB50PA. Nedbrydning med BamHI og PvuII giver et fragment på 1,1 kb, når polyadenylerings-signalet har korrekt orientering.Plasmid pDIE50 is digested with Eco RI and fragment 12 is cloned therein to form plasmid pD1B50PA. Degradation with BamHI and PvuII yields a 1.1 kb fragment when the polyadenylation signal has the correct orientation.

10 Plasmidet kan også konstrueres ved kloning i polyade-nyleringssekvensen før promotoren.The plasmid can also be constructed by cloning into the polyadenylation sequence before the promoter.

Plasmidet pDIE50PA anvendes til transfektion af ChO dhfr -celler (DXB-11, G. Urlaub og L.A. Chasin,The plasmid pDIE50PA is used for transfection of ChO dhfr cells (DXB-11, G. Urlaub and L.A. Chasin,

Proc. Natl. Acad. Sci. USA TJ_, s. 4216-20 (1980)) ved 15 calciumphosphat-co-præcipitation med laksemælk-bærer- -DNA (F.L. Graham og A.J. Van Der Eb, Virol. 52, s. 456-67 (1973)). De dihydrofolat-reduktase-positive (dhfr+) transficerede celler selekteres i Dulbecco's modificerede Eagle's medium plus Eagle's ikke-essen-20 tielle aminosyrer plus 10% kalvefosterserum. Selekterede dhfr+-CHO-celler danner gp50 som påvist ved im- munofluorescens med- anti-gp50-monoklonalt antistof 14 3A-4 eller ved mærkning med C-glucosamin og immuno-præcipitation med 3A-4. Det monoklonale antistof 3A-4 25 fremstilles som beskrevet i U&—patentansøgning nr.Proc. Natl. Acad. Sci. United States TJ_, pp. 4216-20 (1980)) by calcium phosphate co-precipitation with salmon milk carrier DNA (F.L. Graham and A.J. Van Der Eb, Virol. 52, pp. 456-67 (1973)). The dihydrofolate reductase-positive (dhfr +) transfected cells are selected in Dulbecco's modified Eagle's medium plus Eagle's non-essential amino acids plus 10% fetal calf serum. Selected dhfr + CHO cells generate gp50 as detected by immunofluorescence with anti-gp50 monoclonal antibody 14 3A-4 or by labeling with C-glucosamine and immunoprecipitation with 3A-4. The monoclonal antibody 3A-4 is prepared as described in U.S. Patent Application no.

817.429 (indleveret 9. januar 1985). Immunopræcipita-tionsreaktionerne gennemføres som tidligere beskrevet (T.J. Rea et al., ovenfor), bortset fra følgende:817,429 (filed January 9, 1985). Immunoprecipitation reactions are performed as previously described (T.J. Rea et al., Supra), except for the following:

Ekstrakterne inkuberes først med normalt museserum, 30 efterfulgt af vaskede staphylococcus aureiis-celler, og centrifugeres i 30 minutter i en Beckman SW50.1--rotor med 40.000 o/W Efter at ekstrakterne er inkuberet med monoklonalt eller polyklonalt antiserum plus S. aureus-celler, vaskes cellerne tre gange i 10 mM 35 18 DK 175114 B1The extracts are first incubated with normal mouse serum, followed by washed staphylococcus aureiis cells, and centrifuged for 30 minutes in a Beckman SW50.1 rotor at 40,000 rpm after incubating the extracts with monoclonal or polyclonal antiserum plus S. aureus. cells, the cells are washed three times in 10 mM DK 175114 B1

OISLAND

Tris-HCl, pH-værdi 7,0, 1 mM EDTA, 0,1 M NaCl, 1% NP40 og 0,5% deoxycholat. Analysen af proteinerne gennemføres på 11%'s SDS-polyacrylamidgeler (L. Morse et al., J. ViroL 26.» s· 389-410 (1984)). Ved indledende immuno- 5 fluorescensbestemmelser viser det sig, at 3A-4 reagerer med de pDIE50PA-transficerede CHO-celler, men ikke med ikke-transficerede CHO-celler. Når de transficerede CHO- 14 -celler mærkes med C-glucosamin, immunopræcipiterer 3A-4 et mærket protein fra celler indeholdende pDIE50PA, 10 men ikke fra kontrolceller, der danner humant renin.Tris-HCl, pH 7.0, 1 mM EDTA, 0.1 M NaCl, 1% NP40 and 0.5% deoxycholate. The analysis of the proteins is carried out on 11% SDS-polyacrylamide gels (L. Morse et al., J. ViroL 26, pp. 389-410 (1984)). Initial immunofluorescence assays, it is found that 3A-4 reacts with the pDIE50PA-transfected CHO cells but not with non-transfected CHO cells. When the transfected CHO-14 cells are labeled with C-glucosamine, 3A-4 immunoprecipitates a labeled protein from cells containing pDIE50PA, 10 but not from human renin-producing control cells.

Det udfældede protein vandrer på SDS-polyacrylamid-geler sammen med proteinet udfældet af 3A-4 fra PRV--inficerede celler.The precipitated protein migrates on SDS-polyacrylamide gels together with the protein precipitated by 3A-4 from PRV-infected cells.

En klon af disse transficerede CHO-celler, der 15 producerer gp50, kan dyrkes i rullekolber, høstes i phosphatpufret saltvand plus 1 mM EDTA og blandes med komplet Freund's adjuvans til anvendelse som vaccine.A clone of these transfected CHO cells producing gp50 can be grown in roller flasks, harvested in phosphate buffered saline plus 1 mM EDTA and mixed with complete Freund's adjuvant for use as a vaccine.

gp5O-Genet kan også eksprimeres i en Vaccinia--vektor. Ved denne udførelsesform, efter at pBG50-23 20 er nedbrudt med Maelll, og enderne er gjort stumpe med T4-DNA-polymerase, nedbrydes DNA'et med BamHI.The gp5O gene can also be expressed in a Vaccinia vector. In this embodiment, after pBG50-23 20 is digested with Maelll and the ends blunted with T4 DNA polymerase, the DNA is digested with BamHI.

Det stumpendede BamHI-fragment på 1,3 kp indeholdende gp50-genet isoleres. Plasmidet pGS20 (Mackett et al., J. Virol £9, s. 857-64 (1984)) spaltes med BamHI og 25 Smal, og det større 6,5 kb fragment isoleres ved gel- elektroforese. Disse to fragmenter ligeres til dannelse af pW50. Plasmidet pW50 transficeres i CV-l-celler (ATCC CCL 70) inficeret med WR-stammen af Vaccinia--virus (ATCC VR-119) og selekteres for thymidinkinase-30 -negative rekombinanter ved udpladning på 143 celler (ATCC CRL 8303) i 5-bromdeoxyuridin (BUdR) ved metoderne beskrevet af Mackett et al. i DNA Cloning, Volume II: A Practical Approach, D.M. Glover, ed., IRL Press,The 1.3 kp blunt-ended BamHI fragment containing the gp50 gene is isolated. The plasmid pGS20 (Mackett et al., J. Virol 9, pp. 857-64 (1984)) is digested with BamHI and 25 SmaI, and the larger 6.5 kb fragment is isolated by gel electrophoresis. These two fragments are ligated to form pW50. Plasmid pW50 is transfected into CV-1 cells (ATCC CCL 70) infected with the WR strain of Vaccinia virus (ATCC VR-119) and selected for thymidine kinase-30 negative recombinants by plating on 143 cells (ATCC CRL 8303). 5-Bromodeoxyuridine (BUdR) by the methods described by Mackett et al. in DNA Cloning, Volume II: A Practical Approach, D.M. Glover, ed., IRL Press,

Oxford (1985). Det resulterende virus, vaccinia-gp50, 35 19 DK 175114 B1Oxford (1985). The resulting virus, vaccinia-gp50, B1

OISLAND

eksprimerer gp50 i inficerede celler som bestemt ved mærkning af proteinerne af den inficerede celle med 14 C-glucosamin og immunopræcipitation med monoklonalt antistof 3A-4.expresses gp50 in infected cells as determined by labeling the proteins of the infected cell with 14 C-glucosamine and immunoprecipitation with monoclonal antibody 3A-4.

55

Eksempel 2 I dette eksempel beskrives beskyttelse af mus og svin mod udsættelse for PRV ved anvendelse af gp50 ifølge 10 eksempel 1 som immunogent middel.Example 2 This example describes the protection of mice and pigs from exposure to PRV using gp50 of Example 10 as an immunogenic agent.

I tabel I-III nedenfor gennemføres mikroneutra-lisationsbestemmelsen på følgende måde: Serielle to ganges fortyndinger af serumprøver foretages i mikrotiterplader (Costar) under anvendelse af basalt Eagle-medium (BME) 15 suppleret med 3% kalvefosterserum og antibiotika. Ca.In Tables I-III below, the microneutralization assay is carried out as follows: Serial two-fold dilutions of serum samples are made in microtiter plates (Costar) using basal Eagle medium (BME) supplemented with 3% fetal calf serum and antibiotics. Ca.

1000 pfu (50^ul) af PRV sættes til 50^.ul af hver fortynding. Kanin-komplement inkluderes i virusportionen i en fortynding på 1:5 for museserum-bestemmelserne, men ikke i svineserum-bestemmelserne. Prøverne inkuberes i enten 20 1 time (svineserum) eller 3 timer {museserum) ved 37°C.1000 pfu (50 µl) of PRV is added to 50 µl of each dilution. Rabbit complement is included in the viral portion at a 1: 5 dilution for mouse serum assays, but not in pig serum assays. The samples are incubated for either 20 hours (pig serum) or 3 hours (mouse serum) at 37 ° C.

Efter inkuberingsperioden sættes en portion (50^ul) af svinenyre-15-celler (PK-15) (300.000 celler/ml) i Eagle's minimale essentielle medium til hvert serum pr. PRV--prøve. Prøverne inkuberes derefter ved 37°C i 2 dage.After the incubation period, a portion (50 µl) of pig kidney-15 cells (PK-15) (300,000 cells / ml) in Eagle's minimal essential medium is added to each serum per ml. PRV - try. The samples are then incubated at 37 ° C for 2 days.

25 De neutraliserende titere repræsenterer de reciprokke værdier af de højeste fortyndinger, der beskytter 50% af cellerne mod cytopatiske effekter.The neutralizing titers represent the reciprocal values of the highest dilutions that protect 50% of the cells from cytopathic effects.

Tabel I viser beskyttelsen af mus mod udsættelse for virulent PRV ved immunisering med gp50 produceret 30 i Vaccinia-virus. Musene immuniseres ved hale-ridsning med 25^ul eller ved indgivelse via trædepuderne med 50^ul. Musene immuniseres 28 dage før udsættelsen for virus (idet mus, som har modtaget PR-Vac, immuniseres 14 dage før udsættelsen for virus).Table I shows the protection of mice from exposure to virulent PRV by immunization with gp50 produced in Vaccinia virus. The mice are immunized by tail scratching with 25 µl or by administration via the 50 µl step pads. The mice are immunized 28 days prior to virus exposure (mice that have received PR-Vac are immunized 14 days prior to virus exposure).

3535

Tabel ITable I

20 DK 175114 B120 DK 175114 B1

OISLAND

Immunise- Indgi- Neutrali- rende Dosis velsesvej serende % middel (PFU) _ titera) Overlevelse0 5 gp50 3fOxlO7 hale 1024 93 gp50 6,OxlO7 trædepude 1024 100 gp50 7,5xl06 hale 512 93 vacci- 7,5xl06 hale <8 27 nia°) 10 BMEd) - hale <8 20Immunization-Neutralizing Dose Vessel Wetting% Agent (PFU) _ titera) Survival0 5 gp50 3fOxlO7 tail 1024 93 gp50 6, OxlO7 treadmill 1024 100 gp50 7.5xl06 tail 512 93 vacci- 7.5xl06 tail <8 27 nia 10 BMEd) - tail <8 20

Pr-Vace^ - trædepude 512 90Pr-Vace ^ - step cushion 512 90

Neutraliserende titer mod PRV på dagen på udsættelsen (+ komplement).Neutralizing titer against PRV on day of exposure (+ complement).

15 b) Udsat for 10 x LD^q af PRV-Rice-stamme indgivet intra- peritonealt.B) Exposed to 10 x LD 2 q of PRV-Rice strain administered intraperitoneally.

c) Kontrolvirus.c) Control virus.

d) Basalt Eagle-medium, negativ kontrol.d) Basal Eagle medium, negative control.

e) Norden Laboratories, Lincoln, NE, vaccine af inakti- 2Q veret PRV, positiv kontrol.e) Norden Laboratories, Lincoln, NE, vaccine of inactivated PRV, positive control.

Tabel II viser beskyttelsen af mus mod udsættelse for virulent PRV ved immunisering med gp50 produceret i CHO-celler. Musene immuniseres 28 dage, 18 dage og 7 dage 25 før udsættelsen for virus. Musene modtager præparater med adjuvanser subcutant ved første dosis og præparater i saltvand intraperitonealt ved anden og tredje dosis. Hver mus modtager 10^ brudte celler/dosis.Table II shows the protection of mice from exposure to virulent PRV by immunization with gp50 produced in CHO cells. The mice are immunized 28 days, 18 days and 7 days 25 before virus exposure. The mice receive preparations with adjuvants subcutaneously at the first dose and saline intraperitoneally at the second and third doses. Each mouse receives 10 6 broken cells / dose.

30 35 21 DK 175114 B130 35 21 DK 175114 B1

OISLAND

Tabel IITable II

Immuniserende Neutraliserende % . .Immunizing Neutralizing%. .

middel/adjuvans titera)_ overlevelsePJagent / adjuvant titera) _ survivalPJ

gp50/CFAc) 512 100 (10/10) 5 gp50/CFA (2 doser) ikke bestemt 80 (4/5) gp50/IFAd) 1024 90 (9/10) gp50/saltvand 256 100 (3/3) CHO-renine)/CFA <8 10 (1/10)gp50 / CFAc) 512 100 (10/10) 5 gp50 / CFA (2 doses) not determined 80 (4/5) gp50 / IFAd) 1024 90 (9/10) gp50 / saline 256 100 (3/3) CHO- renin) / CFA <8 10 (1/10)

Ikke behandlet <8 0 (0/10) PR-Vacf) 4096 90 (9/10) a) Neutraliserende titer mod PRV på dagen for udsættelse for virus (+ komplement).Not treated <8 0 (0/10) PR-Vacf) 4096 90 (9/10) a) Neutralizing titer against PRV on day of exposure to virus (+ complement).

b) Udsat for 30 gange LDcn af PRV-Rice-stamme ved ind- 15 50 givelse via trædepuden.b) Exposed to 30 times LDCn of PRV-Rice strain by administration via the cushion.

c) Komplet Freund's adjuvans.c) Complete Freund's adjuvant.

d) Ukomplet Freund's adjuvans.d) Incomplete Freund's adjuvant.

e) Kontrolceller, som éksprimerer renin.e) Control cells expressing renin.

f) Norden Laboratories, Lincoln, NE, vaccine af inakti- 20 veret PRV, positiv kontrol.f) Norden Laboratories, Lincoln, NE, vaccine of inactivated PRV, positive control.

Tabel III viser beskyttelsen af svin mod udsættelse for virulent PRV ved immunisering med gp50 produceret i CHO-celler. Svin immuniseres 21 og 7 dage før udsættelsen 25 η for virus. Svinene modtager 2 x 10 brudte celler pr. dosis.Table III shows the protection of pigs from exposure to virulent PRV by immunization with gp50 produced in CHO cells. Pigs are immunized 21 and 7 days prior to exposure of 25 η to virus. The pigs receive 2 x 10 broken cells per dosage.

Den første dosis blandes med komplet Freund's adjuvans, medens den anden dosis suspenderes i saltvand. Begge doser indgives intramuskulært.The first dose is mixed with complete Freund's adjuvant, while the second dose is suspended in saline. Both doses are administered intramuscularly.

30 3530 35

Tabel IIITable III

22 DK 175114 B122 DK 175114 B1

OISLAND

Immuniserende Geometrisk middelværdi % . x middel/ad j uvans titer'_ overlevelse 5 gp50/CFA 25 100 CHO-renin/CFA <8 0 a) Neutraliserende titer mod PRV på dagen for udsættelse for virus.Immunizing Geometric Mean%. x mean / adjuvant titer survival survival 5 gp50 / CFA 25 100 CHO renin / CFA <8 0 a) Neutralizing titer against PRV on day of virus exposure.

10 b) Udsættelse for PRV-Rice-stamme, 1 x 10^ pfu/svin ved intranasal indgivelse.B) Exposure to PRV-Rice strain, 1 x 10 5 pfu / pig by intranasal administration.

Disse tre tabeller viser, at gp50 kan fremkalde neutraliserende antistoffer og beskytte mus og svin mod udsættelse for en dødelig dosis PRV.These three tables show that gp50 can induce neutralizing antibodies and protect mice and pigs from exposure to a lethal dose of PRV.

15 I et andet aspekt af den foreliggende opfindelse fremstilles et fragment af glycoprotein gp50 ved at fjerne DNA, som koder for den C-terminale ende af gp50.In another aspect of the present invention, a fragment of glycoprotein gp50 is prepared by removing DNA encoding the C-terminal end of gp50.

Det resulterende polypeptid har en udeladelse for amino-syresekvensen, der er·nødvendig for at forankre gp50 i 20 cellemembranen. Når det eksprimeres i pattedyrceller, ud skilles dette gp50-derivat i mediet. Rensningen af dette gp50-derivat fra mediet til anvendelse som en underenheds--vaccine er meget mere simpel end fraktionering af hele celler. Fjernelsen af forankringssekvensen til omdannelse 25 af et membranprotein til et udskilt protein blev først demonstreret for influenza-haanagglutinin-genet (M.J.The resulting polypeptide has a deletion for the amino acid sequence necessary to anchor gp50 in the cell membrane. When expressed in mammalian cells, this gp50 derivative is excreted in the medium. The purification of this gp50 derivative from the medium for use as a subunit vaccine is much simpler than whole cell fractionation. The removal of the anchor sequence for conversion of a membrane protein to a secreted protein was first demonstrated for the influenza rooster agglutinin gene (M.J.

Gething og J. Sambrook, Nature 300. s. 598-603 (1982)).Gething and J. Sambrook, Nature 300. pp. 598-603 (1982)).

Idet der henvises til kort L, nedbrydes plasmidet pDIE50 ovenfor med Sall og EcoRI. Fragmenterne på 5,0 30 og 0,7 kb isoleres. 0,7 kb fragmentet, der koder en del af gp50, nedbrydes med Sau3A, og der isoleres et 0,5 kb SalI/Sau3A-fragment. Til indføring af et stoocodon efter det afstumpede gp50-gen syntetiseres følgende oligonucleotider: 35 23 DK 175114 B1 5' GATCGTCGGCTAGTGAGTAGGTAGG 3' 3' CAGCCGATCACTCATCCATCCTTAA 5' 5,0 kb EcoRI/SaII-fragmentet, 0,5 kb SalI/Sau3A-5 -fragmentet og de kondenserede oligonucleotider ligeres til dannelse af plasmidet pDIE50T. Nedbrydning med EcoRI og Sall giver et 580 bp-fragment. pDIE50T spaltes med EcoRI, og 0,6 kb EcoRI-fragmentet indeholdende bGH-polyA-stedet (fraoment 12) indklones til dannelse af 10 plasmidet pDIE50TPA. Nedbrydning af pDIE50TPA med BamHI og PvuII giver et 970 bp fragment med polyadenylerings-signalet med den rette orientering.Referring to map L, the plasmid pDIE50 above is digested with SalI and EcoRI. The 5.0 30 and 0.7 kb fragments are isolated. The 0.7 kb fragment encoding a portion of gp50 is digested with Sau3A and a 0.5 kb SalI / Sau3A fragment is isolated. For introduction of a stoocodon after the blunted gp50 gene, the following oligonucleotides are synthesized: the fragment and the condensed oligonucleotides are ligated to form the plasmid pDIE50T. Degradation with EcoRI and SalI gives a 580 bp fragment. pDIE50T is cleaved with EcoRI and the 0.6 kb EcoRI fragment containing the bGH-polyA site (from step 12) is cloned to form the plasmid pDIE50TPA. Degradation of pDIE50TPA with BamHI and PvuII yields a 970 bp fragment with the proper orientation polyadenylation signal.

pDIE50TPA anvendes til transfektion af CHO- -dhfr -celler. Selekterede dhfr+-CHO-celler producerer 15 en afstumpet form af gp50, som udskilles i mediet som 35 påvist ved mærkning med S-methionin og immunopræcipi-tation.pDIE50TPA is used for transfection of CHO- dhfr cells. Selected dhfr + -CHO cells produce a blunted form of gp50 which is secreted into the medium as detected by S-methionine labeling and immunoprecipitation.

Polypeptiderne ifølge den foreliggende opfindelse kan også eksprimeres i insektceller på følgende måde: Ved 20 anbringelse af en BamHI-linker på EcoRI-stedet af pD50 og nedbrydning med BamHI fås BaHI-fragmenter indeholdende gp50-gener. Disse BamHI-fragmenter kan dones i et BamHI-sted nedenfor en polyhedrin-promotor i pAC373 (Mol. Cell. Biol.The polypeptides of the present invention can also be expressed in insect cells as follows: By placing a BamHI linker on the EcoRI site of pD50 and degrading with BamHI, BaHI fragments containing gp50 genes are obtained. These BamHI fragments can be donated at a BamHI site below a polyhedrin promoter in pAC373 (Mol. Cell. Biol.

5, s. 2860-65 (1985)). De således fremstillede plasmider 25 kan sammen med DNA fra baculovirus Autographa californica co-transficeres i Sf9-celler, og rekombinante vira kan isoleres ved metoderne anført i den nævnte artikel. Disse rekombinante vira producerer gp50 efter inficering af Sf9-celler.5, pp. 2860-65 (1985)). The plasmids 25 thus produced can be co-transfected with DNA from the baculovirus Autographa californica into Sf9 cells, and recombinant viruses can be isolated by the methods set forth in said article. These recombinant viruses produce gp50 after infection of Sf9 cells.

30 En vaccine fremstillet under anvendelse af et glycoprotein ifølge den foreliggende opfindelse eller et immunogent fragment deraf kan bestå af fikserede værtsceller, en værtcelleekstrakt eller ét delvis eller fuldstændig renset PRV-glycoproteinpræpa-35 rat fra værtscellerne eller produceret ved kemisk 24 DK 175114 B1 syntese. PRV-glycoprotein-immunogenet fremstillet ifølge den foreliggende opfindelse er fortrinsvis frit for PRV-virus. Vaccine-immunogenet ifølge opfindelsen er således i det væsentlige udelukkende sammensat af 5 det ønskede immunogene PRV-polypeptid og/eller andre PRV-polypeptider, som udviser PRV-antigenitet.A vaccine prepared using a glycoprotein of the present invention or an immunogenic fragment thereof may consist of fixed host cells, a host cell extract, or one partially or fully purified PRV glycoprotein preparation from the host cells or produced by chemical synthesis. The PRV glycoprotein immunogen prepared according to the present invention is preferably free of PRV virus. Thus, the vaccine immunogen of the invention is composed essentially solely of the desired immunogenic PRV polypeptide and / or other PRV polypeptides exhibiting PRV antigenicity.

Immunogenet kan fremstilles i vaccinedosisform ved velkendte procedurer. Vaccinen kan indgives intra-muskulært, subcutant eller intranasalt. Til parenteral 10 indgivelse, såsom intramuskulær injektion, kan immunogenet kombineres med en egnet bærer. Det kan f.eks. indgives i vand, saltvand eller pufrede bærestoffer med eller uden forskellige hjælpestoffer eller immunomodulerende midler, herunder aluminiumhydroxid, 15 aluminiumphosphat, aluminiumkaliumsulfat (alun), berylliumsulfat, siliciumdioxid, kaolin, carbon, vand-i-olie-emulsioner, olie-i-vand-emulsioner, muramyl-dipeptid, bakterielt endotoxin, lipid X, Corynebacterium parvum (Propionobacterium aenes), Bordetella pertussis, 20 polyribonucleotider, natriumalginat, lanolin, lysoleci-thin, vitamin A, saponin, liposomer, levamisol, DEAE--dextran, blokerede copolymere eller andre syntetiske hjælpestoffer. Sådanne hjælpestoffer er tilgængelige kommercielt fra forskellige kilder, f.eks.The immunogen can be prepared in vaccine dosage form by well known procedures. The vaccine may be administered intramuscularly, subcutaneously or intranasally. For parenteral administration, such as intramuscular injection, the immunogen can be combined with a suitable carrier. It can for example. administered in water, saline or buffered carriers with or without various excipients or immunomodulatory agents including aluminum hydroxide, aluminum phosphate, aluminum potassium sulphate (alum), beryllium sulphate, silica, kaolin, carbon, water-in-oil emulsions, oil-in-water emulsions, muramyl dipeptide, bacterial endotoxin, lipid X, Corynebacterium parvum (Propionobacterium aenes), Bordetella pertussis, polyribonucleotides, sodium alginate, lanolin, lysolecidine, vitamin A, saponin, liposomes, levanisol, levanisol, DEAE other synthetic auxiliaries. Such adjuvants are available commercially from various sources, e.g.

25 "Merck Adjuvant 65" (Merck and Company, Inc., Rahway, N.J.)."Merck Adjuvant 65" (Merck and Company, Inc., Rahway, N.J.).

Et andet egnet hjælpestof er Freund's ukomplette adjuvans (Difco Laboratories, Detroit, Michigan).Another suitable adjuvant is Freund's incomplete adjuvant (Difco Laboratories, Detroit, Michigan).

Forholdet mellem immunogen og adjuvans kan varieres indenfor et stort område, sålænge begge er 30 til stede i effektive mængder. F.eks. kan aluminiumhydroxid være til stede i en mængde på ca. 0,5% af vaccineblandingen (beregnet på aluminiumoxid). På enkelt-dosisbasis kan koncentrationen af immunogenet være fra ca. 1,0 Mg til ca. 100 mg pr. svin. Et foretrukket område 35 er fra ca. 100 Mg til ca. 3,0 mg pr. svin. En pas- 25 DK 175114 B1 sende dosisstørrelse er ca. 1-10 ml, fortrinsvis ca.The ratio of immunogen to adjuvant can be varied within a wide range, as long as both are present in effective amounts. Eg. For example, aluminum hydroxide may be present in an amount of approx. 0.5% of the vaccine mixture (based on alumina). On a single-dose basis, the concentration of the immunogen may be from ca. 1.0 Mg to approx. 100 mg per pig. A preferred range 35 is from ca. 100 mg to approx. 3.0 mg per pig. A suitable dose size is approx. 1-10 ml, preferably approx.

1.0 ml. I overensstemmelse hermed vil en dosis til intra-muskulær injektion f.eks. omfatte 1 ml indeholdende 1.0 mg immunogen i blanding med 0,5% aluminiumoxid.1.0 ml. Accordingly, a dose for intra-muscular injection, e.g. comprise 1 ml containing 1.0 mg of immunogen in admixture with 0.5% alumina.

5 Sammenlignelige dosisformer kan også fremstilles til parenteral indgivelse til smågrise, men mængden af immunogen pr. dosis vil være mindre, f.eks. ca. 0,25 til ca. 1,0 mg pr. dosis.Comparable dosage forms can also be prepared for parenteral administration to piglets, but the amount of immunogen per the dose will be smaller, e.g. ca. 0.25 to approx. 1.0 mg per dosage.

Til vaccinering af søer kan der anvendes et 10 system med to doser. Den første dosis kan gives fra flere måneder til ca. 5-7 uger før søerne får grise.For vaccination of sows a 10 dose system can be used. The first dose can be given from several months to approx. 5-7 weeks before the pigs get pigs.

Den anden dosis af vaccinen bør derefter indgives nogle uger efter den første dosis, f.eks. ca.The second dose of the vaccine should then be administered a few weeks after the first dose, e.g. ca.

2 til 4 uger senere, og vaccinen kan derefter ind-15 gives op til, men før søerne får grise. Alternativt kan vaccinen indgives som f.eks. en enkelt 2 ml's dosis ca. 5 til 7 uger før søerne får grise. Imidlertid anses et system med to doser at være at foretrække til den mest effektive immunisering af smågrisene. Halvårlig 20 revaccinering anbefales til avlsdyr. Orner kan revaccineres på ethvert tidspunkt. Desuden kan søer revaccineres før avl. Smågrise født af ikke-vaccinerede søer kan vaccineres når de er ca. 3-10 dage gamle, igen når de er 4-6 måneder gamle og derefter årligt eller fortrinsvis 25 halvårligt.2 to 4 weeks later and the vaccine can then be given up to 15, but before the sows get pigs. Alternatively, the vaccine may be administered e.g. a single dose of 2 ml approx. 5 to 7 weeks before the pigs get pigs. However, a two-dose system is considered to be preferred for the most effective immunization of the piglets. Semi-annual revaccination is recommended for breeding animals. Orns can be revaccinated at any time. In addition, sows can be revaccinated before breeding. Pigs born of non-vaccinated sows can be vaccinated when they are approx. 3-10 days old, again when 4-6 months old and then annually or preferably 25 semi-annually.

Vaccinen kan også kombineres med andre vacciner mod andre sygdomme, således at der fås kombinationsvacciner. Den kan også kombineres med andre lægemidler, f.eks. antibiotika. En farmaceutisk effektiv 20 mængde af vaccinen kan anvendes sammen med et farmaceutisk acceptabelt bærestof eller fortyndingsmiddel til vaccinering af dyr, såsom svin, kvæg, får, geder og andre pattedyr.The vaccine can also be combined with other vaccines against other diseases, so that combination vaccines are available. It can also be combined with other medicines, e.g. antibiotics. A pharmaceutically effective amount of the vaccine may be used with a pharmaceutically acceptable carrier or diluent for vaccinating animals such as pigs, cattle, sheep, goats and other mammals.

Andre vacciner kan fremstilles ifølge metoder, der 25 er velkendte af fagmanden og f.eks. er beskrevet i 1. Tizard, An Introduction to Veterinary Immunology, 2. ed. (1982).Other vaccines may be prepared according to methods well known to those skilled in the art and e.g. is described in 1st Tizard, An Introduction to Veterinary Immunology, 2nd ed. (1982).

26 DK 175114 B126 DK 175114 B1

OISLAND

SKEMA ASCHEME A

27 54 ATG CTG CTC GCA GCG CIA TTG GCG GCG CTG GTC GCC OGG ACG ACG CTC GGT GCG 5 Me C Leu Leu Ala Ala Leu Leu Ala Ala Leu Val Ala Arg Thr Thr Leu Gly Ala 81 108 GAC GTG GAC GCC CTG GCC GGG GCG ACC TTC GCC GCG CCC GCG TAC GOG IAC ACC Asp Val Asp Ala Val Pro Ala Pro Thr Rie Pro Pro Pro Ala Tyr Pro Tyr Thr 135 162 10 GAG TCG TGG CAG CTG ACG CTG ACG AGG GTC CCC TCG CCC TTC GTC GGC CCC GCG Glu Ser Trp Gin Leu Thr Leu Thr Thr Val Pro Ser Pro Rie Val Gly Pro Ala 189 216 GAC GTC TAC CAC ACG CGC CCG CTG GAG GAC CCG TGC GCG GTG GTG GCG CTG AIC Asp Val Tyr His Thr Arg Pro Leu Glu Asp Pro Cys Gly Val Val Ala Leu Ile 15 243 270 TCC GAC CCG CAG GTG GAC OGG CTG CTG AAC GAG GCG GTG GCC CAC CGG CGG CCC Ser Asp Pro Gin Val Asp Arg Leu Leu Asn Glu Ala Val Ala His Arg Arg Pro 297 32427 54 ATG CTG CTC GCA GCG CIA TTG GCG GCG CTG GTC GCC OGG ACG ACG CTC GGT GCG 5 Me C Leu Leu Ala Ala Leu Leu Ala Ala Leu Val Ala Arg Thr Thr Leu Gly Ala 81 108 GAC GTG GAC GCC CTG GCC GGG GCG ACC TTC GCC GCG CCC GCG TAC GOG IAC ACC Asp Val Asp Ala Val Pro Ala Pro Thr Rie Pro Pro Pro Ala Tyr Pro Tyr Thr 135 162 10 GAG TCG TGG CAG CTG ACG CTG ACG AGG GTC CCC TCG CCC TTC GTC GGC CCC GCG Glu Ser Trp Gin Leu Thr Leu Thr Thr Val Pro Ser Pro Rie Val Gly Pro Ala 189 216 GAC GTC TAC CAC ACG CGC CCG CTG GAG GAC CCG TGC GCG GTG GTG GCG CTG AIC Asp Val Tyr His Thr Arg Pro Leu Glu Asp Pro Cys Gly Val Val Ala Leu Ile 15 243 270 TCC GAC CCG CAG GTG GAC OGG CTG CTG AAC GAG GCG GTG GCC CAC CGG CGG CCC Ser Asp Pro Gin Val Asp Arg Leu Leu Asn Glu Ala Val Ala His Arg Arg Pro 297 324

ACG TAC OGC GCC CAC GTG GCC TGG TAC OGC ATC GCG GAC GGG TGC GCA CAC CTGACG TAC OGC GCC CAC GTG GCC TGG TAC OGC ATC GCG GAC GGG TGC GCA CAC CTG

2020

Thr Tyr Arg Ala His Val Ala Trp Tyr Arg Ile Ala Asp Gly Cys Ala His Leu 351 378 CTG TAC ITT ATC GAG TAC GCC GAC TGC GAC CCC AGG CAG GTC ΤΓΤ GGG CGC TGC Leu Tyr Rie Ile Glu Tyr Ala Asp Cys Asp Pro Arg Gin Val Rie Gly Arg Cys 405 432 25 CGG CGC CGC ACC ACG CCG ATG TGG TGG ACC CCG TCC GCG GAC TAC ATG TTC CCC Arg Arg Arg Thr Thr Pro Met Trp Trp Thr Pro Ser Ala Asp Tyr Met Rie Pro 459 486Thr Tyr Arg Ala His Val Ala Trp Tyr Arg Ile Ala Asp Gly Cys Ala His Leu 351 378 CTG TAC ITT ATC GAG TAC GCC GAC TGC GAC CCC AGG CAG GTC ΤΓΤ GGG CGC TGC Leu Tyr Rie Ile Glu Tyr Ala Asp Cys Asp Pro Arg Gin Val Rie Gly Arg Cys 405 432 25 CGG CGC CGC ACC ACG CCG ATG TGG TGG ACC CCG TCC GCG GAC TAC ATG TTC CCC Arg Arg Arg Thr Thr Pro With Trp Trp Thr Pro Ser Ala Asp Tyr With Rie Pro 459 486

ACG GAG GAC GAG CTG GGG CFG CTC ATG GTG GCC CCG GGG OGG TTC AAC GAG GGCACG GAG GAC GAG CTG GGG CFG CTC ATG GTG GCC CCG GGG OGG TTC AAC GAG GGC

Thr Glu Asp Glu Leu Gly Leu Leu Met Val Ala Pro Gly Arg Rie Asn Glu Gly 30 513 540 CAG TAC OGG CGC CTG GTG TCC GTC GAC GGC GTG AAC ATC CTC ACC GAC TTC ATG Gin Tyr Arg Arg Leu Val Ser Val Asp Gly Val Asn Ile Leu Thr Asp Rie Met 567 594Thr Glu Asp Glu Leu Gly Leu Leu With Val Ala Pro Gly Arg Rie Asn Glu Gly 30 513 540 CAG TAC OGG CGC CTG GTG TCC GTC GAC GGC GTG AAC ATC CTC ACC GAC TTC ATG Gin Tyr Arg Arg Leu Val Ser Val Gly Val Asn Ile Leu Thr Asp Rie Met 567 594

35 GTG GCG CTC 0CC GAG GGG GAA GAG TCC CGG TTC GCC OGC GTG GAC CAG CAC CGC35 GTG GCG CTC 0CC GAG GGG GAA GAG TCC CGG TTC GCC OGC GTG GAC CAG CAC CGC

Val Ala Leu Pro Glu Gly Gin Glu Cys Pro Rie Ala Arg Val Asp Gin His Arg 621 648 ACG TAC AAG TTC GGC GCG TGC TGG AGC GAC GAC AGC TTC AAG CGG GGC GIG GAC Thr Tyr Lys Rie Gly Ala Cys Trp Ser Asp Asp Ser Rie Lys Arg Gly Val AspVal Ala Leu Pro Glu Gly Gin Glu Cys Pro Rie Ala Arg Val Asp Gin His Arg 621 648 ACG TAC AAG TTC GGC GCG TGC TGG AGC GAC GAC AGC TTC AAG CGG GGC GIG GAC Thr Tyr List Rie Gly Ala Cys Trp Ser Asp Asp Ser Rie List Arg Gly Val Asp

OISLAND

27 DK 175114 B1 SKEMA A (fortsat) 675 702 GTG ATG OGA TIC CTG ACG CCG TIC TAC CAG CAG CCC CCG CAC OGG GAG GTG GTG 5 Val Met Arg Rie Leu Thr Pro Rie Tyr Gin Gin Pro Pro His Arg Glu Val Val 729 75627 DK 175114 B1 SCHEDULE A (continued) 675 702 GTG ATG OGA TIC CTG ACG CCG TIC TAC CAG CAG CCC CCG CAC OGG GAG GTG GTG 5 Val With Arg Rie Leu Thr Pro Rie Tyr Gin Gin Pro His Arg Glu Val Val 729 756

AAC TAC TGG TAC OGC AAG AAC GGC OGG ACG CTC CCG CGG GCC CAC GCC GCC GCCAAC TAC TGG TAC OGC AAG AAC GGC OGG ACG CTC CCG CGG GCC CAC GCC GCC GCC

Asn Tyr Trp Tyr Arg Lys Asn Gly Arg Thr Leu Pro Arg Ala His Ala Ala Ala 783 810 10Asn Tyr Trp Tyr Arg List Asn Gly Arg Thr Leu Pro Arg Ala His Ala Ala Ala 783 810 10

ACG CCG TAC GCC ATC GAC CCC GCG CGG CCC TCG GCG GGC TCG CCG AGG CCC CGGACG CCG TAC GCC ATC GAC CCC GCG CGG CCC TCG GCG GGC TCG CCG AGG CCC CGG

Thr Pro Tyr Ala Ile Asp Pro' Ala Arg Pro Ser Ala Gly Ser Pro Arg Pro Arg . 837 864Thr Pro Tyr Ala Ile Asp Pro 'Ala Arg Pro Ser Ala Gly Ser Pro Arg Pro Arg. 837 864

CCC CGG CCC CGG CCC CGG CCC CGG OCG AAG CCC GAG CCC GCC CCG GCG ACG CCCCCC CGG CCC CGG CCC CGG CCC CGG OCG AAG CCC GAG CCC GCC CCG GCG ACG CCC

Pro Arg Pro Arg Pro Arg Pro Arg Pro Lys Pro Glu Pro Ala Pro Ala Thr Pro 15 891 918Pro Arg Pro Arg Pro Arg Pro Arg Pro List Pro Glu Pro Ala Pro Ala Thr Pro 15 891 918

GCG CCC CCC GAC CGC CTG CCC GAG CCG GCG ACG CGG GAC CAC GCC CCC GCG GGCGCG CCC CCC GAC CGC CTG CCC GAG CCG GCG ACG CGG GAC CAC GCC CCC GCG GGC

Ala Pro Pro Asp Arg Leu Pro Glu Pro Ala Thr Arg Asp His Ala Ala Gly Gly 945 972Ala Pro Pro Asp Arg Leu Pro Glu Pro Ala Thr Arg Asp His Ala Ala Gly Gly 945 972

20 OGC CCC ACG CCG OGA CCC CCG AGG OCC GAG ACG CCG CAC OGC CCC TTC GCC CCG20 OGC CCC ACG CCG OGA CCC CCG AGG OCC GAG ACG CCG CAC OGC CCC TTC GCC CCG

Arg Pro Thr Pro Arg Pro Pro Arg Pro Glu Thr Pro His Arg Pro Rie Ala Pro 999 1026Arg Pro Thr Pro Arg Pro Pro Arg Pro Glu Thr Pro His Arg Pro Rie Ala Pro 999 1026

CCG GCC GTC GTG CCC AGC GGG TGG CCG CAG CCC GCG GAG CCG TTC CAG CCG CGGCCG GCC GTC GTG CCC AGC GGG TGG CCG CAG CCC GCG GAG CCG TTC CAG CCG CGG

Pro Ala Val Val Pro Ser Gly Trp Pro Gin Pro Ala Glu Pro Rie Gin Pro Arg 25 1053 1080Pro Ala Val Val Pro Ser Gly Trp Pro Gin Pro Ala Glu Pro Rie Gin Pro Arg 25 1053 1080

ACC CCC GCC GCG CCG GGC GTC TCG CGC CAC CGC TCG CTG ATC GTC GGC ACG GGCACC CCC GCC GCG CCG GGC GTC TCG CGC CAC CGC TCG CTG ATC GTC GGC ACG GGC

Thr Pro Ala Ala Pro Gly Val Ser Arg His Arg Ser Val Ile Val Gly Thr Gly 1107 1134 ACC GCG ATG GGC GCG CTC CTG GTG GGC GTG TGC GTC TAC ATC TTC TTC CGC CTG 30 Thr Ala Met Gly Ala Leu Leu Val Gly Val Cys Val Tyr Ile Rie Phe Arg Leu 1161 1188Thr Pro Ala Ala Pro Gly Val Ser Arg His Arg Ser Val Ile Val Gly Thr Gly 1107 1134 ACC GCG ATG GGC GCG CTC CTG GTG GGC GTG TGC GTC TAC ATC TTC TTC CGC CTG 30 Thr Ala With Gly Ala Leu Leu Val Gly Val Cys Val Tyr Ile Rie Phe Arg Leu 1161 1188

AGG GGG GCG AAG GGG TAT CGC CTC CTG GGC GGT CCC GCG GAC GCC GAC GAG CTAAGG GGG GCG AAG GGG TAT CGC CTC CTG GGC GGT CCC GCG GAC GCC GAC GAG CTA

Arg Gly Ala Lys Gly Tyr Arg Leu Leu Gly Gly Pro Ala Asp Ala Asp Glu Leu 1215Arg Gly Ala Lys Gly Tyr Arg Leu Leu Gly Gly Pro Ala Asp Ala Asp Glu Leu 1215

35 AAA GCG CAG CCC GGT CCG TAG35 AAA GCG CAG CCC GGT CCG TAG

Lys Ala Gin Pro Gly Pro DK 175114 B1List Ala Gin Pro Gly Pro DK 175114 B1

OISLAND

2828

SKEMA D BamHI-7-Fragment af PRV BanHI BstEII PvuII Kpnl Sall Kpnl Stu Dral BstElI Sphl Bsml BanHISCHEME D BamHI-7 Fragment of PRV BanHI BstEII PvuII Kpnl Sall Kpnl Stu Dral BstElI Sphl Bsml BanHI

J_I_I_l—I_I_I_I_I_I_I_LJ_I_I_l-I_I_I_I_I_I_I_L

5 XXXXXXXXX 5050505050505050 63636363636363 IIIIIIIIIIIIIIIII5 XXXXXXXXX 5050505050505050 63636363636363 IIIIIIIIIIIIIIIII

X - glycoprotein X (gX) 50 - glycoprotein 50 (gp50) 63 - glycoprotein 63 (gp63) ΊΟ I - glycoprotein I (gi) 15 20 25 30 35 SKEMA E. Konstruktion af pPR28-4 og pPR28-l.X - glycoprotein X (gX) 50 - glycoprotein 50 (gp50) 63 - glycoprotein 63 (gp63) ΊΟ I - glycoprotein I (gi) 15 20 25 30 35 SCHEME E. Construction of pPR28-4 and pPR28-l.

OISLAND

29 DK 175114 B1 (a) BamHl-7 nedbrydes med BamHI og PvuII til dannelse af fragment 1 (1,5 kb) og 2 (4,9 kb).B1 (a) BamHl-7 is degraded with BamHI and PvuII to form fragments 1 (1.5 kb) and 2 (4.9 kb).

55

BamHI PvuIIBamHI PvuII

J_l XXXXXXXXXX 5050 -fragment 1 10J_l XXXXXXXXXX 5050 fragment 1 10

PvuII Sall BamHIPvuII Salall BamHI

J_I_:_i 50505050505050 fragment 2 15 (b) Fragmenterne 1 og 2 indføjes separat mellem BamHI-og PvuII-stederne af pBR322 til dannelse af(B) Fragments 1 and 2 are inserted separately between the BamHI and PvuII sites of pBR322 to form

20 BamHI Narl Narl Narl PvuII20 BamHI Narl Narl Narl PvuII

* -1-1_!_I . I_ * XXXXXXXXXXXXXXXXXXXX 5050 pPR28-4* -1-1 _! _ I. I_ * XXXXXXXXXXXXXXXXXXXX 5050 pPR28-4

25 PvuII Sall Mae III BamHI25 PvuII Sall Mae III BamHI

* -1-1_1_I_ * 50505050505050 pPR28-l 1 35* -1-1_1_I_ * 50505050505050 pPR28-l 1 35

OISLAND

30 DK 175114 B1 SKEMA F. Restriktionsenzym-spaltningssteder anvendt til pg50-sekvensbestemmelse.30 DK 175114 B1 SCHEME F. Restriction enzyme cleavage sites used for pg50 sequence determination.

55

Ndel Narl PvuII Kpnl Sall Kpnl Sau3A Maelll J-1-1_I_I_I_I_l 50505050505050505050505050305050505050505050505050505050 10 gp50-gen 15 20 25 30 35 SKEMA G. Konstruktion af pPR28-4 Nar2.Ndel Narl PvuII Kpnl Sall Kpnl Sau3A Maelll J-1-1_I_I_I_I_l 505050505050505050505050505050505050505050505050505050 10 gp50 gene 15 20 25 30 35 SCHEME G. Construction of pPR28-4 Nar2.

OISLAND

31 DK 175114 B1 (a) pPR28-4 nedbrydes med Narl til dannelse af fragment 3.311 175114 B1 (a) pPR28-4 is digested with Narl to form fragment 3.

5 Narl PvuII BanHI Narl5 Narl PvuII BanHI Narl

J_1-1--LJ_1-1 - L

soso xxxxxmxxx · (b) BamHl-linkere tilføjes til fragmentet, og det behandles 10 derefter med BamHI til dannelse af fragment 4.soso xxxxxmxxx · (b) BamH1 linkers are added to the fragment and it is then treated with BamHI to form fragment 4.

BanHI PvuII BamHIBanHI PvuII BamHI

•i-1-1 5050 15 (c) Fragment 4 cirkulariseres med DNA-ligase til dannelse af pPR28-4 Nar2.(I) 1-15050 (c) Fragment 4 is circularized with DNA ligase to form pPR28-4 Nar2.

BamHI PvuIIBamHI PvuII

20 *_I_I__* 5050 25 1 35 SKEMA H. Samling af det komplette gp50-gen.20 * _I_I __ * 5050 25 1 35 SCHEME H. Collection of the complete gp50 gene.

OISLAND

32 DK 175114 B1 (a) pPR28-4-Nar2 nedbrydes med BamHI og PvuRII til dannelse af fragment 5 {160 bp).321 175114 B1 (a) pPR28-4-Nar2 is digested with BamHI and PvuRII to form fragment 5 {160 bp).

55

Banttl PvuIIBanttl PvuII

J-LJ-L

5050 10 (b) pPR28-l nedbrydes med BamHi og PvuII til dannelse af fragment 6 (4,9 kb).(B) pPR28-1 is digested with BamHi and PvuII to form fragment 6 (4.9 kb).

PvuII Maelll BanHIPvuII Maelll BanHI

15 J-!-L15 J -! - L

50505050505050 (c) pPGXl nedbrydes med BamHi, behandles med BAP og 20 ligeres derefter med fragment 5 og 6 til dannelse af PBGP50-23.50505050505050 (c) pPGX1 is digested with BamHi, treated with BAP and then ligated with fragments 5 and 6 to form PBGP50-23.

BamHi PvuII Maelll BamHi 25 *-1-1-1-’' 505050505050505050 1 35 SKEMA I. Fremstilling af plasmidet pD50.BamHi PvuII Maelll BamHi 25 * -1-1-1- '' 505050505050505050 1 35 Scheme I. Preparation of the plasmid pD50.

OISLAND

33 DK 175114 B1 (a) pBGP50-23 spaltes med Maelll, forsynes med stumpe ender med T4-DNA-polymerase, der tilføjes EcoRI-linkere 5 0g nedbrydes med EcoRI og spaltes derefter med BamHI til dannelse af fragment 7 (1,3 kb).331 175114 B1 (a) pBGP50-23 is digested with Maelll, provided with blunt ends with T4 DNA polymerase, added to EcoRI linkers 5g and digested with EcoRI, and then digested with BamHI to form fragment 7 (1.3 kb ).

BamHI PvuII EcoRIBamHI PvuII EcoRI

j__1-1 10 50505050505050505050 (b) Plasmidet pSV2dhfr spaltes med BamHI og EcoRI til dannelse af fragment 8 (5,0 kb).(b) The plasmid pSV2dhfr is digested with BamHI and EcoRI to form fragment 8 (5.0 kb).

15 BamHI Hindi 11 PvuII EcoRI15 BamHI Hindi 11 PvuII EcoRI

I -1-1-;-1I -1-1 -; - 1

1 1 1 R1 1 1 R

dhfr SV40 AmpKie SV40 AmpK

Ori 20 (c) Plasmidet pD50 fremstilles ved at ligere fragmenterne 7 og 8.Ori 20 (c) Plasmid pD50 is prepared by ligating fragments 7 and 8.

BamHI Hindi 11 PvuII EcoRI ' PvuIIBamHI Hindi 11 PvuII EcoRI 'PvuII

*_J_I_I_1_i_** _J_I_I_1_i_ *

25 IIIIII

dhfr SV40 AmpR 50505050505050ie SV40 AmpR 50505050505050

Ori dhfr = dihydrofolatreduktase-gen.Ori dhfr = dihydrofolate reductase gene.

30 SV40 Ori = SV40-promotor og -replikationsstart.SV40 Ori = SV40 promoter and replication start.

ββ

Amp = Ampicillinresistens-gen.Amp = Ampicillin resistance gene.

35 SKEMA J. Fremstilling af plasmidet pDIE50.Scheme J. Preparation of the plasmid pDIE50.

OISLAND

34 DK 175114 B1 (a) pD50 nedbrydes med BamHI og behandles med BAP til dannelse af fragment 9.B1 (a) pD50 is digested with BamHI and treated with BAP to form fragment 9.

55

BamHI Hindi 11 PvuII EcoRI PvuII BamHIBamHI Hindi 11 PvuII EcoRI PvuII BamHI

I -J_!_!-1—lI -J _! _! - 1 — l

IIIIII

dhfr SVAO AnrpR 5050505050505050 10 (b) Fragment 10 (760bp) indeholdende den umiddelbare tidlige promotor af humant cytomegalovirus (Towne) isoleres.i.e. SVAO AnrpR 5050505050505050 10 (b) Fragment 10 (760bp) containing the immediate early promoter of human cytomegalovirus (Towne) is isolated.

1515

Sau3A SacI Sau3ASau3A SacI Sau3A

J_L__LJ_L__L

PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

20 (c) Fragmenterne 9 og 10 ligeres til dannelse af plasmidet pDIE50.(C) Fragments 9 and 10 are ligated to form the plasmid pDIE50.

Hindlll PvuII EcoRI Sau3A Sall Sau3A Sau3AHindlll PvuII EcoRI Sau3A Salad Sau3A Sau3A

„ *-1_I_I_I_I_I_I—*"* -1_I_I_I_I_I_I— *

25 IIIIII

dhfr SVAO Amp11 50505050505050PPPPPPPPPie SVAO Amp11 50505050505050PPPPPPPPP

Ori 30 35 SKEMA K. Fremstilling af plasmid pDIE50PA.Ori Scheme K. Preparation of plasmid pDIE50PA.

OISLAND

35 DK 175114 B1 (a) Plasmidet pSVCOW7 spaltes med PvuII og EcoRI til dannelse af fragment 11.(A) The plasmid pSVCOW7 is digested with PvuII and EcoRI to form fragment 11.

5 pSVC0W75 pSVC0W7

EcoRI PvuII PstI BamHI Hindlll PvuIIEcoRI PvuII PstI BamHI Hindlll PvuII

*_I_!_!_I_I_t ** _I _! _! _ I_I_t *

I I II I I

AAAAGOGOGGGGGGGGGGG dhfr SV40 Amp* 10 - .AAAAGOGOGGGGGGGGGGG ie SV40 Amp * 10 -.

OriOri

fragment 11 EcoRI PvuIIfragment 11 EcoRI PvuII

J_LJ_L

AAAAGAAAAG

15 (b) Fragment 11 klones i pUC9 til dannelse af plasmidet pCOWTl.(B) Fragment 11 is cloned into pUC9 to generate the plasmid pCOWT1.

EcoRI PvuII/Sma fusion BamHI Sall * I_!_I_I_*EcoRI PvuII / Sma fusion BamHI Hall * I _! _ I_I_ *

2Q AAAAG2Q AAAAG

(c) pCOWTl spaltes med Sall, forsynes med stumpe ender ved hjælp af T4-DNA-polymerase, og der tilføjes EcoRI-linkere og nedbrydes derefter med EcoRI til dannelse af fragment 12 (0,6 kb).(c) pCOWT1 is digested with SalI, blunt-ended by T4 DNA polymerase, and EcoRI linkers are added and then digested with EcoRI to form fragment 12 (0.6 kb).

25 , , ·25,, ·

EcoRI BamHI EcoRI (på udfyldt Sall-sted)EcoRI BamHI EcoRI (at filled-in Sall location)

i--LIin - LI

AAAAGAAAAG

(d) Plasmidet pDIE50 spaltes med EcoRI, og fragmentet 12 30 klones deri til dannelse af plasmidet pDIE50PA.(d) The plasmid pDIE50 is cleaved with Eco RI and the fragment 12 is cloned therein to form the plasmid pDIE50PA.

Hindlll PvuII EcoRI Banffi EcoRI Sau3A Sau3AHindlll PvuII EcoRI Banffi EcoRI Sau3A Sau3A

* 1_I_I_U_I i_** 1_I_I_U_I i_ *

IIIIII

dhfr SV40 Amp* AAAAAG 5050505050PPPPPPie SV40 Amp * AAAAAG 5050505050PPPPPP

35 Ori A = Kvæg-væksthormon-polyadenyleringssignal.Ori A = Cattle growth hormone polyadenylation signal.

G = Genomisk kvæg-væksthormon.G = Genomic bovine growth hormone.

P = Umiddelbar tidlig promotor af humant cytomegalovirus (Towne).P = Immediate early promoter of human cytomegalovirus (Towne).

SKEMA L. Fremstilling af plasmid pDIE50T.Scheme L. Preparation of plasmid pDIE50T.

OISLAND

36 DK 175114 B1 (a) Plasmid pDIE50 nedbrydes med Sall og EcoRI til dannelse af et 5,0 kb fragment.36 DK 175114 B1 (a) Plasmid pDIE50 is digested with SalI and Eco RI to form a 5.0 kb fragment.

55

Sall Sau3A Sau3A HindiII PvuII EcoRISalad Sau3A Sau3A HindiII PvuII EcoRI

J-1-1_I_I_LJ-1-1_I_I_L

IIIIII

5050505050PPPPPPPP dhfr SV40 AmpR5050505050PPPPPPPP ie SV40 AmpR

10 og et 0,7 kb fragment.10 and a 0.7 kb fragment.

EcoRI Sau3A SallEcoRI Sau3A Salad

J_I_LJ_I_L

505050505050 15 (b) 0,7 kb fragmentet nedbrydes med Sau3AI, og der isoleres et 0,5 kb SalI/Sau3AI-fragment.505050505050 (b) The 0.7 kb fragment is digested with Sau3AI and a 0.5 kb SalI / Sau3AI fragment is isolated.

SauSA SallSauSA Salad

J_LJ_L

20 5050505050 (c) 5,0 kb EcoRI/Sall-fragmentet, 0,5 kb Sall/Sau3Al-fragmentet og de kondenserede oligonucleotider (se teksten) ligeres til dannelse af plasmidet pDIE50T.(C) The 5.0 kb EcoRI / SalI fragment, the 0.5 kb SalI / Sau3Al fragment and the condensed oligonucleotides (see text) are ligated to generate the plasmid pDIE50T.

2525

Sau3A Sall Sau3A Sau3A Hindi II PvuII EcoRISau3A Salad Sau3A Sau3A Hindi II PvuII EcoRI

*_!_I_I_:_I_I_I_!_** _! _ I_I _: _ I_I_I _! _ *

I I II I I

T505050505050505050PPPPPPPP dhfr SV40 Amp* 30 rT505050505050505050PPPPPPPP ie SV40 Amp * 30 r

Ori T = stop-kodon.Ori T = stop codon.

3535

Claims (11)

1. Rekombinant DNA-molekyle indeholdende en DNA-sekvens kodende for et polypeptid, der udviser pseudorabies-virus-(PRV)-glycoprotein-gp50-immunogenitet, hvor den nævnte 5 DNA-sekvens er operativt forbundet med en ekspressionskontrolsekvens, hvorved DNA-sekvensen, der koder for polypep-tidet, er valgt blandt sekvensen, der koder for gp50, og som er ATG CTC CTC GCA GCG CIA TTG GCG GCG CTG GTC GCC CGG ACG ACG CTC GGT GCGA recombinant DNA molecule containing a DNA sequence encoding a polypeptide exhibiting pseudorabies virus (PRV) glycoprotein gp50 immunogenicity, wherein said DNA sequence is operably linked to an expression control sequence, wherein the DNA sequence that encodes the polypeptide is selected from the sequence encoding gp50 and which is ATG CTC CTC GCA GCG CIA TTG GCG GCG CTG GTC GCC CGG ACG ACG CTC GGT GCG 2. Værtscelle, transformeret med et rekombinant DNA-35 -molekyle ifølge krav 1. DK 175114 B1A host cell transformed with a recombinant DNA-35 molecule according to claim 1. DK 175114 B1 2. ACG TAC AAC TTC CGC GCG TGC TGG ACC GAC GAC AGC TTC AAG CGG GGC GTG GAC GTG ATG CGA TTC CTG ACG CCG TTC TAC CAG CAG CCC CCG CAC CGC GAG GTG GTG AAC TAC TGG TAC CGC AAG AAC GGC CGG ACG CTC CCG CGG GCC CAC GCC GCC GCC ACG CCG TAC GCC ATC GAC CCC GCG CGG CCC TCG GCG GGC TCG CCG AGG CCC CGG CCC CGG CCC CGG CCC CGG CCC CGG CCG AAG CCC GAG CCC GCC CCG GCG ACG CCG2. ACG TAC AAC TTC CGC GCG TGC TGG ACC GAC GAC AGC TTC AAG CGG GGC GTG GAC GTG ATG CGA TTC CTG ACG CCG TTC TAC CAG CAG CCC CCG CAC CGC GAG GTG GTG AAC TAC TGG TAC CGC AAG AAC GGC CGG ACG CTC CCG CGG GCC CAC GCC GCC GCC ACG CCG TAC GCC ATC GAC CCC GCG CGG CCC TCG GCG GGC TCG CCG AGG CCC CGG CCC CGG CCC CGG CCC CGG CCC CGG CCG AAG CCC GAG CCC GCC CCG GCG ACG CCG 25 GCG CCC CCC GAC CGC CTG CCC GAG CCG GCG ACG CGG GAC CAC GCC GCC GGG GGC CGC CCC ACG CCG CGA CCC CCG AGG CCC GAG ACG CCG CAC CGC CCC TTC GCC CCG CCG GCC GTC GTG CCC AGC GGG TGG CCG CAG CCC GCG GAG CCG TTC CAG CCG CGG ACC CCC GCC GCG CCG GGC GTC TCG CGC CAC CGC TCG GTG ATC GTC GGC ACG GGC ACC GCG ATG GGC GCG CTC CTG GTG GGC CTG TGC GTC TAC ATC TTC TTC CGC CTG25 GCG CCC CCC GAC CGC CTG CCC GAG CCG GCG ACG CGG GAC CAC GCC GCC GGG GGC CGC CCC ACG CCG CGA CCC CCG AGG CCC GAG ACG CCG CAC CGC CCC TTC GCC CCG CCG GCC GTC GTG CCC AGC GGG TGG CCG CAG CCG CCG TTC CAG CCG CGG ACC CCC GCC GCG CCG GGC GTC TCG CGC CAC CGC TCG GTG ATC GTC GGC ACG GGC ACC GCG ATG GGC GCG CTC CTG GTG GGC CTG TGC GTC TAC ATC TTC TTC CGC CTG 30 AGG GGG GCG AAG GGG TAT CGC CTC CTG GGC GGT GCC GCG GAC GCC GAC GAG CTA AAA GCG CAG CCC GGT CCG TAG, og fragmenter deraf, som koder for polypeptider, der udviser PRV-antigenitet.30 AGG GGG GCG AAG GGG TAT CGC CTC CTG GGC GGT GCC GCG GAC GCC GAC GAG CTA AAA GCG CAG CCC GGT CCG TAG, and fragments thereof encoding polypeptides exhibiting PRV antigenicity. 3. Værtscelle ifølge krav 2, som hidrører fra bakterier, fungi, planter eller dyr.The host cell according to claim 2, which is derived from bacteria, fungi, plants or animals. 4. Værtscelle ifølge krav 3, som er E. coli.The host cell of claim 3, which is E. coli. 5. Værtscelle ifølge krav 3, som er en gærcelle. 5The host cell of claim 3, which is a yeast cell. 5 6. Værtscelle ifølge krav 3, som er en ovariecelle af kinesisk hamster (CHO-celle).The host cell of claim 3, which is a Chinese hamster ovary cell (CHO cell). 7. Fremgangsmåde til fremstilling af et polypeptid, der udviser PRV-gp50-antigenitet, omfattende: (a) fremstilling af et rekombinant DNA-molekyle, 10 hvor molekylet indeholder en DNA-sekvens, der koder for et polypeptid, som udviser PRV-gp50-antigenitet, hvor den nævnte DNA-sekvens er operativt forbundet med en ekspressionskontrolsekvens, (b) transformering af en passende værtscelle med det 15 nævnte rekombinante DNA-molekyle, (c) dyrkning af den nævnte værtscelle, og (d) opsamling af polypeptidet, hvorved DNA-sekvensen er valgt blandt gp50-sekvensen, som erA method of producing a polypeptide exhibiting PRV-gp50 antigenicity, comprising: (a) producing a recombinant DNA molecule, wherein the molecule contains a DNA sequence encoding a polypeptide exhibiting PRV-gp50 antigenicity, wherein said DNA sequence is operably linked to an expression control sequence, (b) transforming a suitable host cell with said recombinant DNA molecule, (c) culturing said host cell, and (d) collecting said polypeptide, wherein the DNA sequence is selected from the gp50 sequence which is 20 AJC CIC CTC GCA CCG CIA TIC GCC GCG CTG CTC GCC CGC ACG ACG CTC GCT GCG GAC GIG GAC GCC CIG CCC GCG CCG ACC TTC CCC CCG CCC GCG TAC CCC TAC ACC GAG TCG TGC CAG CTG ACG CTG ACG ACG GTC CCC TCG CCC TTC CTC GGC CCC GCG GAC GTC TAC CAC ACG CGC CCG CTG GAG GAC CCG TGC GCG GIG CTG GCG CTG ATC ICC GAC CCG CAG GTG GAC CGG CIG CIG AAC GAG GCG CTG GCC CAC CGG CGG CCC20 AJC CIC CTC GCA CCG CIA TIC GCC GCG CTG CTC GCC CGC ACG ACG CTC GCT GCG GAC GIG GAC GCC CIG CCC GCG CCG ACC TTC CCC CCG CCC GCG TAC CCC TAC ACC GAG TCG TGC CAG CTG ACG CTG ACG ACG GTC CCC TCG CCC TTC CTC GGC CCC GCG GAC GTC TAC CAC ACG CGC CCG CTG GAG GAC CCG TGC GCG GIG CTG GCG CTG ATC ICC GAC CCG CAG GTG GAC CGG CIG CIG AAC GAG GCG CTG GCC CAC CGG CGG CCC 25 ACG TAC CGC GCC CAC GTG GCC TGG TAC CGC AIC GCG GAC GGG TGC GCA CAC CTG CIG TAC TIT ATC GAG TAC GCC GAC TGC GAC CCC AGG CAG CTC ΤΓΓ GGG CGC TGC OGG CGC CGC ACC ACG CCG AIC TGG TGG ACC CCG ICC GCG GAC TAC AIG TTC CCC ACG GAG GAC GAG CIG GGG CIG CTC A1G GTG GCC CCG GGG CGG TTC AAC GAG GGC CAG TAC GGG CGC CTG GIG TCC GTC GAC GGC GTG AAC AIC CTC ACC GAC TTC AIG25 ACG TAC CGC GCC CAC GTG GCC TGG TAC CGC AIC GCG GAC GGG TGC GCA CAC CTG CIG TAC TIT ATC GAG TAC GCC GAC TGC GAC CCC AGG CAG CTC ΤΓΓ GGG CGC TGC OGG CGC CGC ACC ACG CCG AIC TGG TGG ACC CCG ICC GAC TAC AIG TTC CCC ACG GAG GAC GAG CIG GGG CIG CTC A1G GTG GCC CCG GGG CGG TTC AAC GAG GGC CAG TAC GGG CGC CTG GIG TCC GTC GAC GGC GTG AAC AIC CTC ACC GAC TTC AIG 30 GTG GCG GTC CCC GAG GGG CAA GAG TGC CCG TIC GCC CGC GIG GAC CAG CAC CGC ACG TAC AAG TTC GGC GCG TGC TGG AGC GAC GAC AGC TTC AAG CGG GGC GTG GAC GTG ATG CGA TTC CTG ACG CCG TTC TAC CAG CAG CCC CCG CAC CGG GAG GTG GTG AAC TAC TGG TAC CGC AAG AAC GGC CGG ACG CIC CCG CGG GCC CAC GCC GCC GCC ACG CCG TAC GCC AIC GAC CCC GCG CGG CCC TCG GCG GGC TCG CCG ACG CCC CGG CCC CGG CCC OGG CCC CGG CCC OGG CCG AAG CCC GAG CCC GCC CCG GCG ACG CCC GCG CCC CCC GAC OGC CTG CCC GAG CCG GCG ACG OGG GAC CAC GCC GCC GGG GGC 35 DK 175114 B1 CGC CCC ACG CCG CGA CKCO^AGGCCCGAGACGCCGCACOGCCCCTTCGCCCCG 5 CCG GCC CTC GIG CCC AGC GGG TGG CCG CAG CCC CCC GAG CCG TTC CAG CCG GGG ACCCCCGCCGCCCCGGGCCrCTCGCGCCACCGCTCGGTGATCCTCGGCACGGGC ACC GCC AIC GCC GCC CTC CIG CTC CGC CTC ICC CTC TAC ATC TTC TTC CGC CTG AGG GGG GCG AAG GGCIATOGCCTCCICGGCGGTCCCGCGGACGCCGAC GAG CIA AAA GCG CAG CCC GGT CCG TAG, 10 og fragmenter deraf, som koder for polypeptider, der udviser pseudorabiesvirus-antigenitet.30 GTG GCG GTC CCC GAG GGG CAA GAG TGC CCG TIC GCC CGC GIG GAC CAG CAC CGC ACG TAC AAG TTC GGC GCG TGC TGG AGC GAC GAC AGC TTC AAG CGG GGC GTG GAC GTG ATG CGA TTC CTG ACG CCG TTC TAC CAG CAG CC CAC CGG GAG GTG GTG AAC TAC TGG TAC CGC AAG AAC GGC CGG ACG CIC CCG CGG GCC CAC GCC GCC GCC ACG CCG TAC GCC AIC GAC CCC GCG CGG TCG GCG GGC TCG CCG ACG CCC CGG CCC CGG CCC OGG CCC CCG CCG AND AAG CCC GAG CCC GCC CCG GCG ACG CCC GCG CCC CCC GAC OGC CTG CCC GAG CCG GCG ACG OGG GAC CAC GCC GCC GGG GGC 35 DK 175114 B1 CGC CCC ACG CCG CGA CKCO ^ AGGCCCGAGACGCCGCACOGCCCCTTCGCCCCG 5 CCG GCC CTC GIG CCC AGC GGG TGG CCG CAG CCC CCC GAG CCG TTC CAG CCG GGG ACCCCCGCCGCCCCGGGCCrCTCGCGCCACCGCTCGGTGATCCTCGGCACGGGC ACC GCC AIC GCC GCC CTC CIG CTC CGC CTC ICC CTC TAC ATC TTC TTC CGC CTG AGG GGG GCG AAG GGCIATOGCCTCCICGGCGGTCCCGCGGACGCCGAC GAG CIA AAA GCG CAG CCC GGT CCG TAG, 10, and fragments thereof, which encode polypeptides exhibiting pseudorabies virus antigenicity. 8. Fremgangsmåde ifølge krav 7, hvorved værtscellen er valgt blandt bakterier, fungi, planteceller og dyreceller.The method of claim 7, wherein the host cell is selected from bacteria, fungi, plant cells and animal cells. 9. Fremgangsmåde ifølge krav 7, hvorved værtscellen 15 er E. coli.The method of claim 7, wherein the host cell 15 is E. coli. 10. Fremgangsmåde ifølge krav 7, hvorved værtscellen er gær.The method of claim 7, wherein the host cell is yeast. 10 GAC GTC GAC GCC GTG CCC GCG CCC ACC TTC CCC CCG CCC GCG TAC CCG TAC ACC GAG TCG TGG CAG CTG ACG CTG ACG ACG GTC CCC TCG CCC TTC GTC CGC CCC GCG GAC GTC TAC CAC ACG CGC CCG CTG GAG GAC CCG TGC GCG GTG GTG GCG CTG ATC TCC GAC CCG CAG GTG GAC CGG CTG CTG AAC GAG GCG GTG GCC CAC CGG CGG CCC ACG TAC CGC GCC CAC GTG GCC TGG TAC CGC ATC GCG GAC GGG TGC GCA CAC CTG10 GAC GTC GAC GCC GTG CCC GCG CCC ACC TTC CCC CCG CCC GCG TAC CCG TAC ACC GAG TCG TGG CAG CTG ACG CTG ACG ACG GTC CCC TCG CCC TTC GTC CGC CCC GCG GAC GTC TAC CAC ACG CGC CCG CTG GAG GAC CCG TGC GCG GTG GTG GCG CTG ATC TCC GAC CCG CAG GTG GAC CGG CTG CTG AAC GAG GCG GTG GCC CAC CGG CGG CCC ACG TAC CGC GCC CAC GTG GCC TGG TAC CGC ATC GCG GAC GGG TGC GCA CAC CTG 15 CTG TAC ITT ATC GAG TAC GCC GAC TGC GAC CCC AGG CAG GTC ΤΠ GGG CGC TGC CGG CGC CGC ACC ACG CCG ATG TGG TGG ACC CCG TCC GCG GAC TAC ATG TTC CCC ACG GAG GAC GAG CTG GGG CTG CTC ATG GTG GCC CCG GGG CGG TTC AAC GAG GGC CAG TAC CGG CGC CTG GTG TCC GTC GAC GGC GTG AAC ATC CTC ACC GAC TTC ATG CTG GCG CTC CCC GAG GGG CAA GAG TGC CCG TTC GCC CGC GTG GAC CAG CAC CGC15 CTG TAC ITT ATC GAG TAC GCC GAC TGC GAC CCC AGG CAG GTC ΤΠ GGG CGC TGC CGG CGC CGC ACC ACG CCG ATG TGG TGG ACC CCG TCC GCG GAC TAC ATG TTC CCC ACG GAG GAC GAG CTG GGG CTG CTC ATG GTG GCC CCG GGG CGG TTC AAC GAG GGC CAG TAC CGG CGC CTG GTG TCC GTC GAC GGC GTG AAC ATC CTC ACC GAC TTC ATG CTG GCG CTC CCC GAG GGG CAA GAG TGC CCG TTC GCC CGC GTG GAC CAG CAC CGC 11. Fremgangsmåde ifølge krav 7, hvorved værtscellen er CHO.The method of claim 7, wherein the host cell is CHO.
DK199400356A 1985-10-04 1994-03-29 Pseudo-rabies virus protein DK175114B1 (en)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
US78478785A 1985-10-04 1985-10-04
US78478785 1985-10-04
US80179985A 1985-11-26 1985-11-26
US80179985 1985-11-26
US84411386A 1986-03-26 1986-03-26
US84411386 1986-03-26
US88626086A 1986-07-16 1986-07-16
US88626086 1986-07-16
DK198702888A DK175072B1 (en) 1985-10-04 1987-06-04 Recombinant DNA molecule, host cell transformed therewith, method for producing a polypeptide using the recombinant DNA molecule, and diagnostic kit comprising such polypeptide
DK288887 1987-06-04

Publications (2)

Publication Number Publication Date
DK35694A DK35694A (en) 1994-03-29
DK175114B1 true DK175114B1 (en) 2004-06-07

Family

ID=32398303

Family Applications (1)

Application Number Title Priority Date Filing Date
DK199400356A DK175114B1 (en) 1985-10-04 1994-03-29 Pseudo-rabies virus protein

Country Status (1)

Country Link
DK (1) DK175114B1 (en)

Also Published As

Publication number Publication date
DK35694A (en) 1994-03-29

Similar Documents

Publication Publication Date Title
CA2088599A1 (en) Expression of human cmv glycoprotein-h using the baculovirus-insect cell expression system
JP4750024B2 (en) Vectors expressing SARS immunogens, compositions containing such vectors or expression products thereof, and methods and assays for their production and use
AU629381B2 (en) Feline calicivirus capsid protein and nucleotide sequence
JP2005333990A (en) Gp350/220 non-splicing variant
DK175072B1 (en) Recombinant DNA molecule, host cell transformed therewith, method for producing a polypeptide using the recombinant DNA molecule, and diagnostic kit comprising such polypeptide
US5716822A (en) Feline calicivirus capsid gene and protein
US5674709A (en) Pseudorabies virus protein
WO1989010965A2 (en) Glycoprotein h of herpes viruses
DK175114B1 (en) Pseudo-rabies virus protein
US6172186B1 (en) Pseudorabies virus protein
US6261563B1 (en) Pseudorabies virus protein
EP0364492A1 (en) Virus proteins having reduced o-linked glycosylation
JP2810364B2 (en) Pseudorabies virus protein

Legal Events

Date Code Title Description
PUP Patent expired