DK173597B1 - Process for the preparation of a membrane-free truncate from a membrane-bound polypeptide - Google Patents

Process for the preparation of a membrane-free truncate from a membrane-bound polypeptide Download PDF

Info

Publication number
DK173597B1
DK173597B1 DK199701244A DK124497A DK173597B1 DK 173597 B1 DK173597 B1 DK 173597B1 DK 199701244 A DK199701244 A DK 199701244A DK 124497 A DK124497 A DK 124497A DK 173597 B1 DK173597 B1 DK 173597B1
Authority
DK
Denmark
Prior art keywords
hsv1
hsv2
membrane
cells
sequence
Prior art date
Application number
DK199701244A
Other languages
Danish (da)
Other versions
DK124497A (en
Inventor
Phillip Wayne Berman
Laurence Allan Lasky
Original Assignee
Genentech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DK198404122A external-priority patent/DK172694B1/en
Application filed by Genentech Inc filed Critical Genentech Inc
Priority to DK199701244A priority Critical patent/DK173597B1/en
Publication of DK124497A publication Critical patent/DK124497A/en
Application granted granted Critical
Publication of DK173597B1 publication Critical patent/DK173597B1/en

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Description

l DK 173597 B1l DK 173597 B1

Opfindelsen angår en fremgangsmåde til fremstilling af et membranfrit trunkat af et membranbundet polypeptid, hvilket trunkat mangler membranbindende domæne, hvorved poly-peptidtrunkatet er fri for denne membran, og hvilket 5 trunkat har eksponerede antigene determinanter, som er i stand til at fremkalde neutraliserende antistoffer ved in vivo-udsættelse for et patogen, hvilken fremgangsmåde er kendetegnet ved, at der udtrykkes DNA, som koder for trunkatet, i en stabil eukaryot cellelinje, der er transit) ficeret med DNA'et.The invention relates to a method of producing a membrane-free truncate of a membrane-bound polypeptide, which truncate lacks membrane-binding domain, whereby the polypeptide truncate is free of this membrane, and which truncate has exposed antigenic determinants capable of inducing neutralizing antibodies. in vivo exposure to a pathogen, characterized in that DNA encoding the truncate is expressed in a stable eukaryotic cell line that is transiently infected with the DNA.

Analysen af*imrounreaktionen på en række forskellige infektiøse midler, har været bpgrænse.t af, at det ofte' „ har* vist sig vanskeligt at dyrke patogener i tilstrækkelige mængder til at muliggøre isoleringen af vigtige 15 celleoverfladeantigener. Fremkomsten af molekylær kloning har overvundet nogle af disse begrænsninger ved at tilvejebringe et middel, hvorved genprodukter fra patogene=midler kan udtrykkes 1 praktisk taget ubegrænsede mængder i en ikke-patogen form. Overflade antigener 20 fra sådanne virus som influenza (1), mund- og klovsyge · (2), hepatitis (3), vesicular stomatitis ¢4), rabies (5), og herpes simplex (6) virus, er nu blevet udtrykt i'E. coli og S. cerevisiae, og giver løfte om, i fremtiden at kunne tilvejebringe forbedrede underenhedsvaccine».The analysis of the * immune response to a variety of infectious agents has been limited by the fact that it has often been found difficult to grow pathogens in sufficient quantities to enable the isolation of important cell surface antigens. The advent of molecular cloning has overcome some of these limitations by providing an agent by which gene products from pathogenic agents can be expressed in virtually unlimited amounts in a non-pathogenic form. Surface antigens 20 from such viruses as influenza (1), foot-and-mouth disease (2), hepatitis (3), vesicular stomatitis (4), rabies (5), and herpes simplex (6) virus have now been expressed in 'E. coli and S. cerevisiae, and promises to provide improved subunit vaccine in the future. "

25 Det er imidlertid klart, at udtrykkeisen af overfladeantigener i lavere organismer ikke er helt tilfredsstil-'lende, fordi potentielt vigtige antigeniske determinanter kunne gå tabt på grund af ufuldstændig forarbejdning (f.eks. proteolyse, glycosylering) eller ved denaturering 5Q under rensningen af det klonede genprodukt.However, it is clear that the expression of surface antigens in lower organisms is not entirely satisfactory because potentially important antigenic determinants could be lost due to incomplete processing (e.g., proteolysis, glycosylation) or by denaturation 5Q during purification. the cloned gene product.

Oette er især tilfældet med membranproteiner, som på grund af hydrophobe transmembrandomæner har tendens til at aggregere og blive uopløselige, når de udtrykkes i E. coli. Klonede gener, som koder for membranproteiner, 35 kan udtrykkes i pattedyrceller, hvor værtscellen tilveje-bringer de faktorer, som er nødvendige for rigtig forarbejdning, polypeptidfoldning og inkorporering i cellemembranen (7, 8). Hedens disse undersøgelser viser, 2 DK 173597 B1 at membranproteiner kan udtrykkes på overfladen af en rekombinarit værtscelle, Og, f.eks. (8)*~ at et afkortet membranprotein, som mangler det hydrophobe carboxyterminale domæne, kan secerneres langsomt fra værtscellen 5 . fremfor at blive" bundet til den, er det ikke klart, at det således udtrykte. membranbu’ndne protein eller . . det således'secernerede afkortede protein faktisk vil være i stand til at fremkalde antistoffer, som er’ effektive over for. det patogen, hvorfra proteinet .er afledt.Oette is especially the case for membrane proteins which, due to hydrophobic transmembrane domains, tend to aggregate and become insoluble when expressed in E. coli. Cloned genes encoding membrane proteins can be expressed in mammalian cells, where the host cell provides the factors necessary for proper processing, polypeptide folding and incorporation into the cell membrane (7, 8). In these studies, membrane proteins can be expressed on the surface of a recombinant host cell, and, e.g. (8) * ~ that a truncated membrane protein lacking the hydrophobic carboxy terminal domain can be slowly secreted from the host cell 5. rather than being bound to it, it is not clear that the thus-expressed membrane-bound protein or ... the thus-truncated truncated protein will in fact be capable of inducing antibodies which are 'effective against. from which the protein is derived.

10 Herpes simpléx (HSV) er et ONA-virus, som forekommer i to beslægtede, men skelnelige, former i humane infektioner. Mindst fire af det store antal virus-indkodede proteiner har vist sig at være glycosyleret og til stede på overfladen af både virionet og de inficerede celler 15 (9). Disse glycoproteiner, betegnet gA/B, gC, gD og gE, findes i både HSV type 1 (HSV1) og HSV type 2 (HSV2), medens der i tilfalde af HSV2 er blevet rapporteret at være fundet et yderligere glycoprotein (gF). Selv om deres funktioner forbliver noget af et mysterium, 20 er disse glycoproteiner uden tvivl involveret i virue-tilknytning til celler, cellefusion og en rakke forskellige værtsimmunologiske reaktioner på virusinfektionen (11). Selv om HSV1 og HSV2 kun viser ca. 50 % DNA-sekvens-homologi (12), synes glycoproteiner for 25 størstedelen at være type-fælles. Således viser gA/B, gD og gE et stort antal type-fælles antigeniske determinanter (13 - 16), medens gC, som tidligere blev antaget for at være fuldstændigt type-specifik (17, 18), også har vist sig at have nogle type-fælles determinanter.10 Herpes simpléx (HSV) is an ONA virus that occurs in two related, but distinct, forms of human infections. At least four of the large number of virus-encoded proteins have been found to be glycosylated and present on the surface of both the virion and the infected cells 15 (9). These glycoproteins, designated gA / B, gC, gD and gE, are found in both HSV type 1 (HSV1) and HSV type 2 (HSV2), while in the case of HSV2 an additional glycoprotein (gF) has been reported. Although their functions remain somewhat of a mystery, these glycoproteins are undoubtedly involved in viral association with cells, cell fusion, and a host of different host immunological responses to the viral infection (11). Although HSV1 and HSV2 only show approx. 50% DNA sequence homology (12), glycoproteins for the majority appear to be type-common. Thus, gA / B, gD and gE display a large number of type-common antigenic determinants (13 - 16), while gC, previously believed to be completely type-specific (17, 18), has also been found to type-common determinants.

30 Type-specifikke antigeniske determinanter kan imidlertid påvises ved anvendelse af monoklonale antistoffer for nogle af glycoproteiner (10, 19), hvilket viser, at der er sket nogle aminosyreændringer, siden HSV1 og HSV2 skiltes ad.However, type-specific antigenic determinants can be detected using monoclonal antibodies for some of the glycoproteins (10, 19), showing that some amino acid changes have occurred since HSV1 and HSV2 were separated.

35 Et af de vigtigste glycoproteiner med hensyn til virusneu-tralisering er gD (11). Der er fremført et betydeligt materiale, som stærkt tyder på, at de respektive gD-pro- DK 173597 B1 teiner hos HSV1 og HSV2 ér beslægtede. Fweks. har rekombinationskortlægning· lokaliseret de respektive gener * til colineære områder i begge yirusgenomer. Aminosyreana-lyse viste,stor homolog! mellem de to proteiner. gD-pro-teinerne inducerer neutraliserende antistoffer for både type 1 og type 1i virus på en type-fælles, made. (19,-21). Desuden er de fleste monoklonalé antistoffer dannet over for disse glycoproteiner type-fælles, hvilket ogeå tyder på en høj grad af strukturelt slægtskab mellem 10 de to typer af glycoproteiner (20). Nogle monoklonalé antistoffer fandtes imidlertid at reagere type-specifikt, hvilket tyder på væsentlige forskelle mellem proteinerne (19). Peptidkort over proteinerne afslørede også med sikkerhed sådanne forskelle (22a). Selv om disse resulta-15 ter antyder, at disse polypeptider er beslægtede, er de dog utilstrækkelige til at indicere nøjagtigt hvor nært slægtskabet er.35 One of the most important glycoproteins in terms of virus neutralization is gD (11). Considerable material has been provided which strongly suggests that the respective gD proteins of HSV1 and HSV2 are related. Fweks. have recombination mapping · localized the respective genes * to the colinear regions of both viral genomes. Amino acid analysis showed great homologue! between the two proteins. The gD proteins induce neutralizing antibodies for both type 1 and type 1i virus in a type-common manner. (19, -21). In addition, most monoclonal antibodies to these glycoproteins are type-shared, also suggesting a high degree of structural kinship between the two types of glycoproteins (20). However, some monoclonal antibodies were found to respond type-specifically, suggesting significant differences between the proteins (19). Peptide maps of the proteins also confidently revealed such differences (22a). However, although these results suggest that these polypeptides are related, they are insufficient to indicate exactly how close the kinship is.

For at undersøge arten af type-fællesskabet hos HSV1-og HSV2-gD-proteiner, blev DNA-sekvenserne af gO-generne 20 fra HSV1 og HSV2 bestemt. De afledte aminosyresekvenser viste lighed. De resulterende afledte proteinsekvenser blev også analyseret for strukturforskelle ved anvendelse af et program beregnet til at bestemme hydrophobe og hydrophile områder af proteinet. Denne analyse viste 25 en høj grad af bevarelse på et groft strukturniveau·To investigate the nature of the type community of HSV1 and HSV2 gD proteins, the DNA sequences of the gO genes 20 from HSV1 and HSV2 were determined. The deduced amino acid sequences showed similarity. The resulting derived protein sequences were also analyzed for structural differences using a program designed to determine hydrophobic and hydrophilic regions of the protein. This analysis showed a high degree of conservation at a rough structure level ·

Selv om der fandtes flere aminosyreudskiftninger mellem de to glycoproteiner, var størstedelen af disse udskiftninger bevarende, hvilket antyder et vigtigt strukturkrav i dette glycoprotein for viruset.Although several amino acid substitutions existed between the two glycoproteins, the majority of these replacements were conservative, suggesting an important structural requirement in this glycoprotein for the virus.

30 I modsætning til HSV1 viser HSV2 sig at kode for endnu et glycoprotein, betegnet gF (22b, 10, 22c, 22d). Selv om HSV2-gF havde en elektroforetisk mobilitet, som var meget hurtigere end HSVl-gC, afslørede kortlægningsundersøgelser med rekombinante virus, at dette protein var 4 DK 173597 B1 indkodet i et område af HSV2-genomet, som var tilnærmelsesvis colineært. m'ed genet for HSVl-gC‘(22d, 22d). Desuden er det for nylig blevet påvista,t et monoklonalt antistof over for HSV2-gF vil. krydsreagere"svagt med 5 HSVl-gC (22f), og at et polyklonalt antiserum Fremstil let ov.er for HSVl-verion-hyisterproteine.r udfældede. gF (22d), hvilket antyder en mulig strukturel homoiogi mellem de to glycoproteiner. Således forekom det, at en mulig homolog til HSVl-gC var HSV/2-gF-proteinet.30 Unlike HSV1, HSV2 appears to encode yet another glycoprotein, designated gF (22b, 10, 22c, 22d). Although HSV2-gF had an electrophoretic mobility that was much faster than HSV1-gC, recombinant virus mapping studies revealed that this protein was encoded in a region of the approximately colinear HSV2 genome. with the gene for HSV1-gC '(22d, 22d). Furthermore, it has recently been demonstrated that a monoclonal antibody to HSV2-gF will. cross-react "weakly with 5 HSV1-gC (22f) and that a polyclonal antiserum Prepare lightly for HSV1-verion hyster proteins. gF (22d), suggesting a possible structural homogeneity between the two glycoproteins. Thus occurred that a possible homologue to HSV1-gC was the HSV / 2-gF protein.

10 Dette slægtskab blev undersøgt i overensstemmelse med den foreliggende opfindelse.This kinship was investigated in accordance with the present invention.

BIO/TECHNOLOGY, april 1983, side 146-147, beskriver initiale fremgangsmåder til fremstilling af vaccinekandidater, som vil kræve yderligere processering, testning og ^ modificering, før de kan blive til vacciner. Artiklen om taler arbejder udført af Gething, Sveda og Rose og nævner bl.a. på s. 146, første spalte, om Gethings fremgangsmåde, at den letter fremstillingen af enzymer, receptorer og virale antigener til vacciner.BIO / TECHNOLOGY, April 1983, pages 146-147, describes initial methods for preparing vaccine candidates which will require further processing, testing and modification before they can become vaccines. The article on speeches works by Gething, Sveda and Rose. on page 146, first column, about Gething's method of facilitating the preparation of enzymes, receptors and viral antigens for vaccines.

20 Om Svedas protein siges på s. 147, første spalte, at den udskilte form ikke var strukturelt identisk med den mem-branbundne form, måske fordi noget af det polypeptid, der var nødvendigt til korrekt processering, var blevet dele-teret.20 About Sveda's protein is said on page 147, first column, that the secreted form was not structurally identical to the membrane-bound form, perhaps because some of the polypeptide needed for proper processing had been deleted.

25 Rose angives længere nede i samme spalte at have lagt vægt på, at Gethings fortjeneste lå i, at hun havde opnået ekstremt høje udbytter af proteinet; der er ingen omtale af opnåelsen af et udskilt produkt, som i immunogen henseende svarer til den membranbundne form.25 Rose is stated further down the same column to have emphasized that Gething's merit lay in the fact that she had obtained extremely high yields of the protein; there is no mention of obtaining a secreted product which, in immunogenic terms, corresponds to the membrane bound form.

30 Om Gethings arbejde siges endvidere et par linjer længere nede, at måske den enkleste anvendelse af denne teknologi er fremstilling af virale antigener til subunit-vacciner; og der fortsættes nogle linjer senere, at ankerløse mutanter af sådanne proteiner kunne være en udmærket kilde 5 DK 173597 B1 til antigen til vacciner. Et teknisk problem med disse subunits er, at de er monoklonale og derfor mindre immunogene end de aggregater, som udgøres af isolerede molekyler, der indeholder membranankerpeptidet. Det fremhæves 5 af Dennis Kleid, at den lette isolering af antigen (det træk, som Gething og andre har fremhævet) har sekundær betydning i forhold til, hvorvidt proteinet er immuno-gent. Dr. Gething citeres for at have svaret herpå, at dette ville blive klaret ved at tværbinde dem eller måske 10 ved andre fremgangsmåder (som ikke specificeres) , og at man klart har behov for polyvalente komplekser for at opnå immunogenicitet, men at de ikke er vanskelige at fremstille, samt at simpel oprensning fra mediet er vigtigere end en eventuel ulempe ved at gøre proteinerne polyvalen- 15 te *30 Furthermore, Gething's work is said a few lines further down that perhaps the simplest application of this technology is the production of viral antigens for subunit vaccines; and some lines are continued later that anchorless mutants of such proteins could be an excellent source of vaccine antigen. A technical problem with these subunits is that they are monoclonal and therefore less immunogenic than the aggregates constituted by isolated molecules containing the membrane anchor peptide. Dennis Kleid emphasizes that the ease of isolation of antigen (the trait highlighted by Gething and others) is of secondary importance to whether the protein is immunogenic. Dr. Gething is quoted as having replied that this would be accomplished by cross-linking them or perhaps 10 by other methods (which are not specified) and that polyvalent complexes are clearly needed to achieve immunogenicity but are not difficult to and that simple purification from the medium is more important than a potential disadvantage of making the proteins polyvalent *

Alt det ovenstående peger væk fra det, der er beskrevet i forbindelse med den foreliggende opfindelse, idet en fagmand, som læser artiklen, alene vil se, at dette kunne 2o være en god måde, hvorpå man kunne gøre det lettere at oprense normalt membranbundne proteiner. De resulterende produkter kunne måske udgøre kildemateriale til forskellige typer af nyttige slutprodukter. Blandt sådanne mulige slutprodukter er vacciner, men det ville være usand-25 synligt, at de trunkerede proteiner ville være immunogene i sig selv. De ville snarere kræve yderligere processe-ring såsom tværbinding for at gøre dem til kandidater til en vaccine.All of the above points away from what is described in connection with the present invention, as one skilled in the art who reads the article alone will see that this could be a good way to facilitate the purification of normally membrane-bound proteins. . The resulting products might constitute source material for various types of useful end products. Among such possible end products are vaccines, but it would be unlikely that the truncated proteins would be immunogenic per se. Rather, they would require additional processing such as cross-linking to make them candidates for a vaccine.

30 Som det fremgår af ovenstående, var det således på basis af artiklen fra BIO/TECHNOLOGY overraskende, at der alene ved fremgangsmåden ifølge opfindelsen opnås membranfrie trunkater, som er i stand til at fremkalde neutraliserende antistoffer ved in vivo-udsættelse for et patogen.Thus, as can be seen from the above, on the basis of the article from BIO / TECHNOLOGY, it was surprising that only in the method of the invention are membrane-free truncates capable of inducing neutralizing antibodies by in vivo exposure to a pathogen.

35 Ved undersøgelse af beslægtetheden mellem HSV1 og HSV2 er det i denne beskrivelse blevet fastslået, at en DNA-sekvens på et 2,29 kb område i HSV2-genomet er colineær med HSVl-gC-genet. Translation af en stor åben aflæsnings 6 DK 173597 B1 ramme i dette område viser, at et protein, som har væsentlig homologi til HSVl-gC er indkodet i dette område.35 In examining the relationship between HSV1 and HSV2, in this specification it has been determined that a DNA sequence of a 2.29 kb region in the HSV2 genome is colinear with the HSV1-gC gene. Translation of a large open reading frame in this region shows that a protein that has substantial homology to HSV1-gC is encoded in this region.

Det antages, at dette område kpder for HSV2-gF-genet, og at gF-proteinet er den HSV2-homologe til HSVl-gC.It is believed that this region encodes the HSV2 gF gene and that the gF protein is the HSV2 homologous to HSV1 gC.

5 I lyset af denne information om strukturen af gD-proteinet, som beskrevet nærmere i det følgende, blev det besluttet at udtrykke gD-pro-téin-DNA i pattedyrceller for at se, om dette var muligt, og hvis det var muligt, om det udtrykte protein ville bindes til værtscellemembranen, og om en afkortet form af proteinet, som manglede membranbindingsdomænet ville secerneres fra værtscellen, og i hvert af de sidstnævnte tilfælde, om udtrykkelsesproduktproteinerne kunne fremkalde antistoffer, som var effektive over for HSV1 og/el-ler HSV2. Som resultaterne angivet i det følgende viser, er disse formål blevet opnået. Især gør opfindelsen det muligt at anvende disse proteiner opnået ved rekoro-nant-DNA-processer, som komponenter i en vaccine, der er effektiv over for HSV type 1 og HSV type 2. Således beskrives en beskyttende vaccine over for forekomsten 2Π af.’herpes-infek'tion og en reduktion i hyppigheden og aly.oren af genopstået herpes-infektion hos individer, s.om allerede er inficeret.In light of this information on the structure of the gD protein, as described in more detail below, it was decided to express gD pro-protein DNA in mammalian cells to see if this was possible and, if possible, whether the expressed protein would bind to the host cell membrane, and whether a truncated form of the protein lacking the membrane binding domain would be secreted from the host cell and, in each of the latter cases, whether the expression product proteins could induce antibodies effective against HSV1 and / or HSV2 . As the results set forth below show, these objectives have been achieved. In particular, the invention makes it possible to use these proteins obtained by recombinant DNA processes as components of a vaccine effective against HSV type 1 and HSV type 2. Thus, a protective vaccine against the presence of 2Π is described. herpes infection and a reduction in the incidence and frequency of recurrent herpes infection in individuals already infected.

Der beskrives også en anden klasse 25 af glycoproteiner opnået ved rekombinant-DNA-processer, der er nyttige som komponenter i en vaccine over for HSV type 1 og/eller HSV type 2. .Nærmere bestemt inkluderer denne klasse af glycoproteiner HSVl-gC (effektiv over for HSV1), HSV2-gF (mere korrekt betegnet som et HSV2-gC, effektiv over for HSV2) eller kombinationer af de to 30 proteiner (effektive over for begge virus). Andre sådanne glycoproteiner inkluderer gA, g8 og gE. Det antages, at en vaccine baseret på de kombinerede glycoproteiner, gC og gD, ville være væsentligt mere effektiv end en vaccine baseret på hvert glycoprotein alene.Also disclosed is another class 25 of glycoproteins obtained by recombinant DNA processes useful as components of a vaccine against HSV type 1 and / or HSV type 2. More specifically, this class of glycoproteins includes HSV1-gC (effective against HSV1), HSV2-gF (more correctly termed an HSV2-gC, effective against HSV2) or combinations of the two proteins (effective against both viruses). Other such glycoproteins include gA, g8 and gE. It is believed that a vaccine based on the combined glycoproteins, gC and gD, would be significantly more effective than a vaccine based on each glycoprotein alone.

7 DK 173597 B17 DK 173597 B1

En udførelsesform for opfindelsen angår en fremgangsmåde til fremstilling af et polypeptid med antigeniske determinanter, som er i stand til specifikt at fremkalde komplementært antistof over for Herpes simplex type 1 og 5 Herpes simplex type 2 virus, men som ikke er funktionelt forbundet med overflademembranen. Som anført mere detaljeret nedenfor er et sådant polypeptid et afkotftet*, membranfrit derivat af et membranbundet polypeptid. Derivatet dannes ved udeladelse af et mem-10 branbindende. .domæne, fra polypeptidet, hvilket tillader' det· at secerneres fra det, rekombinante værtscellesystem# hvori det er blevet produceret. I en anden 'udførelsesform dannes polypeptidet førs.t.i funktionel forbindelse med . en overflademembran, 6g derefter opløses polypeptidet, 15 fortrinsvis i' et ikke-ionisk overfladeaktivt middel, -for at frigøre det fra membranen.An embodiment of the invention relates to a method for producing a polypeptide with antigenic determinants capable of specifically eliciting complementary antibody to Herpes simplex type 1 and 5 Herpes simplex type 2 virus, but which is not functionally associated with the surface membrane. As explained in more detail below, such a polypeptide is a truncated *, membrane-free derivative of a membrane-bound polypeptide. The derivative is formed by omitting a membrane binding. domain, from the polypeptide, allowing it to be secreted from the recombinant host cell system # in which it has been produced. In another embodiment, the polypeptide forms a functional compound with. a surface membrane, 6g is then dissolved in the polypeptide, preferably in a nonionic surfactant, to release it from the membrane.

I denne beskrivelse henfører betegnelsen "rekombinant" til celler, som er blevet transficeret med vektorer 20 konstrueret under anvendelse af rekombinant-DNA-teknologi og således transformeret med evnen til at producere det her omhandlede polypeptid. ’’Funktionel forbindelse" betyder bundet til membranen, typisk ved at rage ud til begge sider af membranen, på en sådan måde, at antige-25 niske determinanter ligger blot foldet i en nativ konfor-mation, som kan genkendes af antistof udløst over for de.t native patogen. ’'Membranbundet” med henvisning til de her omhandlede polypeptider henfører til en klasse af polypeptider, som almindeligvis produceres i eukaryo-30 tiske celler og er karakteriseret ved at have en signalsekvens, som antages at hjælpe med til deres sekretion igennem forskellige cellemembraner såvel som et membranbindende domæne (sædvanligvis af hydrophob art og forekommende ved den C-terminale ende), som ntenes at ude-.In this specification, the term "recombinant" refers to cells that have been transfected with vectors 20 constructed using recombinant DNA technology and thus transformed with the ability to produce the polypeptide of this invention. "Functional compound" means bound to the membrane, typically by protruding to both sides of the membrane, in such a way that antigenic determinants lie merely folded into a native conformation which can be recognized by antibody triggered against The native pathogen. "Membrane-bound" with reference to the polypeptides of the present invention refers to a class of polypeptides commonly produced in eukaryotic cells and characterized by having a signal sequence believed to aid in their secretion. through various cell membranes as well as a membrane-binding domain (usually of a hydrophobic nature and occurring at the C-terminal end), which are thought to be extinct.

35 lukke deres fuldstændige sekretion igennem cellemembranen. Således forbliver polypeptidet funktionelt forbundet med eller bundet til membranen. Denne opfindelsen er særligt rettet mod udnyttelsen af de membranbundne polypeptider, som er forbundet med patogene organismer, f.eks. herpes-virus.35 close their complete secretion through the cell membrane. Thus, the polypeptide remains functionally associated with or bound to the membrane. This invention is particularly directed to the utilization of the membrane-bound polypeptides associated with pathogenic organisms, e.g. herpes virus.

3 DK 173597 B1 I denne beskrivelse anvendes betegnelserne "HSV2-gF", "HSV2-gCM og HgC-2" valgfrit for at betegne en glycopro-teindel af HSV2', soro er stærkt homolog med HSVl-gC, og som er i stand til. at fremkalde tilstrækkelige anti-5 stoffer til at være nyttige som vaccine.In this specification, the terms "HSV2-gF", "HSV2-gCM and HgC-2" are optionally used to designate a glycoprotin moiety of HSV2 ', soro is highly homologous to HSV1-gC and capable of to. to induce sufficient anti-5 drugs to be useful as a vaccine.

Når ferst de antigeniske .determinanter i polypeptiderne fremstillet ved fremgangsmåden ifølge opfindelsen er tilvejebragt ved funktionel forbin- delse med oVe’rflademembra’nen,’ kan membranen derefter 10 fjernes fra polypeptiderne uden ødelæggelse af de antigeniske egenskaber. Således kan det membranbundne poly-peptid f.eks. fjernes fra membranen ved solubilisering med en egnet opløsning, fortrinsvis en, der indeholder et ikke-ionisk overfladeaktivt middel, for at fjerne 15 polypeptidet .fra membranen. En fordel ved at gøre dette er at polypeptidet isoleres fra fremmed cellemateriale, hvilket forøger den potentielle styrke ved dets anvendelse i en vaccine. En teknik til fjernelse af membran nen fra polypeptidet er beskrevet nedenfor.When the antigenic determinants of the polypeptides prepared by the method of the invention are provided by functional connection to the surface membrane, the membrane can then be removed from the polypeptides without destroying the antigenic properties. Thus, the membrane-bound polypeptide, e.g. is removed from the membrane by solubilization with a suitable solution, preferably one containing a nonionic surfactant, to remove the polypeptide from the membrane. An advantage of doing this is that the polypeptide is isolated from foreign cell material, which increases the potential potency of its use in a vaccine. A technique for removing the membrane from the polypeptide is described below.

20 Der kan også opnås membranfrie præparater ved skabelse af et sekretionssystem. Som beskrevet mere detaljeret nedenfor har et sådant secerneret polypeptid mindst nogle af de antigeniske centre, som er nødvendige for antistofstimulering.20 Membrane-free preparations can also be obtained by creating a secretory system. As described in more detail below, such a secreted polypeptide has at least some of the antigenic centers necessary for antibody stimulation.

2 5' Kort forklaring af tegningerne2 5 'Brief explanation of the drawings

Fig. 1A og IB viser DNA-sekvensen og den afledte amino-syresekvens af HSV1- og HSV2-gD-generne og omgivende* flankerende områder.FIG. 1A and 1B show the DNA sequence and the deduced amino acid sequence of the HSV1 and HSV2 gD genes and surrounding * flanking regions.

Fig. 2 viser en hydropatianalyse af gD-proteinérne fra 50 HSV1- og HSV2-proteinerne.FIG. Figure 2 shows a hydropathy analysis of the gD proteins of the 50 HSV1 and HSV2 proteins.

Fig. 3 er et diagram over plasmidet p’gO-dhfr, konstrueret til udtrykkelse af en membranbundet form af HSVl-glycopro-tein D.FIG. 3 is a diagram of the plasmid p'gO-dhfr, constructed to express a membrane-bound form of HSV1 glycoprotein D.

9 DK 173597 B19 DK 173597 B1

Fig. 4 viser resultatet af mærkning af gDl2-celler med humane .anti'stoffer over for HSV,‘ idet (A) er en visualisering med fasekontrastoptikog (B) et fluorespensbillede af de samme celler* 5 Fig. 5.viser radioimmunofældninger af klonet gQ fra den her omhandlede gD12-cellelinie og nativt gD fra HSVl-inficere'de humane celler.FIG. 4 shows the result of labeling gDl2 cells with human antibodies to HSV, with (A) a phase contrast optics visualization (B) a fluorescence image of the same cells * 5. 5. shows radioimmunoprecipitations of cloned gQ from the present gD12 cell line and native gD from HSV1-infected human cells.

Fig. 6 viser bindingen af humane anti-HSV-antistoffer til gD12-celler og udgangs-CHO-cellelinien.FIG. Figure 6 shows the binding of human anti-HSV antibodies to gD12 cells and the starting CHO cell line.

10 Fig. 7 er en skematisk gengivelse af HSVl-gO-protein og belyser placeringerne af signalsekvens og membran-bindende domæne.FIG. Figure 7 is a schematic representation of HSV1-gO protein and illustrates the locations of signal sequence and membrane binding domain.

Fig. 8 er et diagram af udtrykkelsesplasmidet pgDtrunc-dhfr for eh secerneret form af HSVl-gO-protein.FIG. 8 is a diagram of the expression plasmid pgDtrunc-dhfr for a secreted form of HSV1-gO protein.

15 Fig. 9 viser radioimmunofældninger fra den her omhandlede gD10.2-cellelinie.FIG. 9 shows radioimmunoprecipitates from the gD10.2 cell line of the invention.

Fig. 10 viser radio immuno fældninger fra for forstærkede og forstærkede gD10.2-cellelinier.FIG. Figure 10 shows radio-immuno-precipitates from amplified and amplified gD10.2 cell lines.

Fig. 11 viser den grad af forstærkning, som opnås med 20 den Mtx-forstærkede gD10.2-cellelinie.FIG. Figure 11 shows the degree of enhancement achieved with the Mtx enhanced gD10.2 cell line.

Fig. 12 viser fragmenterne af pgL'2Sal2.9, som blev underkastet DNA-sekvensanalyse.FIG. 12 shows the fragments of pgL'2Sal2.9 which were subjected to DNA sequence analysis.

Fig. 13 viser DNA-sekvensen afledt fra pgC2SA12.9 sammenlignet med ONA-sekvensen af HSVl-gC-området.FIG. Figure 13 shows the DNA sequence derived from pgC2SA12.9 compared to the ONA sequence of the HSV1-gC region.

25 Fig. 14 belyser Southern-afdupningsanalyse aF HSV2-ge-nomisk DNA og pgC,,Sal2.9-DNA.FIG. 14 illustrates Southern immersion analysis of HSV2 genomic DNA and pgC1, Sal2.9 DNA.

DK 173597 Bl 10DK 173597 Pg 10

Fig. 15 belyser translationen af den store åbne HSV2-af-læsningsramme og sammenligning med HSVl-gC-aminosyre-sekvensen.FIG. 15 illustrates the translation of the large open HSV2 reading frame and comparison with the HSV1-gC amino acid sequence.

Fig. 16 belyser hydropatianalyse af HSVl-gC-proteinet og proteinet fra den store åbne HSV2-aflæsningsramme..FIG. 16 illustrates hydropathy analysis of the HSV1-gC protein and protein from the large open HSV2 reading frame.

Opfindelsen belyses nærmere ved de efterfølgende eksemp--ler.The invention is further illustrated by the following examples.

EKSEMPEL 1EXAMPLE 1

Dette eksempel omhandler gD-protein.This example deals with gD protein.

10 Virusvækst og isolering af viral DNA.10 Virus growth and isolation of viral DNA.

HSV1 (stamme Hzt) og HSV2 (stamme G) blev dyrket på Hep 2 celler ved henholdsvis 37 °C og 33 °C. Den virale DNA blev isoleret fra inficerede cellekulturer ved nedbrydning med proteinase K og dannelse af bånd med CsCl 15 (23).HSV1 (strain Hzt) and HSV2 (strain G) were grown on Hep 2 cells at 37 ° C and 33 ° C, respectively. The viral DNA was isolated from infected cell cultures by digestion with proteinase K and forming bands with CsCl 15 (23).

Kloning af gD-generne fra HSV1 og HSV2.Cloning of the gD genes from HSV1 and HSV2.

Forudgående kortlægnings- og kloningsundersogelser har lokaliseret HSVl-gD-genet til et ca. 6,6 kb BamHI-frag-ment (6,24). HSV1-DNA blev spaltet med BamHI, og 6 -20 7 kb området blev isoleret ved agarosegel-elektroforese.Prior mapping and cloning studies have located the HSV1 gD gene to a ca. 6.6 kb Bam HI fragment (6.24). HSV1 DNA was digested with BamHI and the 6-20 7 kb region was isolated by agarose gel electrophoresis.

Dette fragment blev ligeret ind i BamHI-nedbrudt pBR322, og den resulterende blanding blev anvendt til at transformere E. coli stamme 294 (ATCC nr.- 31446). De plas-mider fra de ampicillinresistente tetracyclinsensitive 25 kloner blev sigtet for det rigtige HSVl-fragment ved restriktionsenzymnedbrydning. Det korrekte gD-holdige SstI-fragment blev subklonet i Sstl-nedbrudt plasmid pFM3 (EP offentliggørelsesskrift nr. 0060693).This fragment was ligated into Bam HI-degraded pBR322 and the resulting mixture was used to transform E. coli strain 294 (ATCC No. 31446). The plasmids from the ampicillin-resistant tetracycline-sensitive clones were screened for the correct HSV1 fragment by restriction enzyme degradation. The correct gD-containing SstI fragment was subcloned into Sstl-degraded plasmid pFM3 (EP Publication No. 0060693).

• 11 DK 173597 B1• 11 DK 173597 B1

Selv om gD-genet fra H5V2 i Forvejen var kortlagt ved rekombination med HSV1, var den" nø j.agtige placering af dette gen ukendt. Derfor blev et ca. 10 kb Hindlll- fragment fra det. lille unikke område af .HSV2-'genomet .Although the H5V2 gD gene was previously mapped by recombination with HSV1, the "exact location of this gene was unknown. Therefore, an approximately 10 kb HindIII fragment from the small unique region of .HSV2- the genome.

5 (4) ligeret ind i HindHI-centret af bakteriofag-^-klo- ningsvektoren 590 (25). In vitro pakket, fag blev udpladet i lav tæthed og 'sigtet ved Benton-Davis-proceduren med en P-mærket subklon af gD-genet fra HSV1 (26). Positivt.5 (4) ligated into the HindHI center of the bacteriophage - ^ - cloning vector 590 (25). In vitro packed, phage were plated at low density and screened by the Benton-Davis procedure with a β-labeled subclone of the HSV1 gD gene (26). Positively.

hybridiserende pletter blev dyrket, DNA'en isoleret, 10 og gD-genet lokaliseret ved Southern-afdupning og hybri- 32 disering med det P-mærkede HSVl-gD-gen (27). De positivt hybridiserende, HSV2-gD-holdige fragmenter blev subklo-net i plasmidet pUC9 (28).hybridizing spots were grown, the DNA isolated, 10 and the gD gene localized by Southern blotting and hybridization with the P-labeled HSV1 gD gene (27). The positively hybridizing HSV2-gD-containing fragments were subcloned into plasmid pUC9 (28).

DNA-sekvensbestemmelse og datamatanalyse.DNA sequencing and data analysis.

15 Forskellige fragmenter fra HSV1- og HSV2-gD-generne blev subklonet i ml3-fag-vektor-mp9 (29) og blev sekvensbestemt ved dideoxynucleotidmetoden beskrevet af Sanger (30).15 Various fragments from the HSV1 and HSV2 gD genes were subcloned into ml3 phage vector mp9 (29) and sequenced by the dideoxynucleotide method described by Sanger (30).

Nucleotidsekvenserne blev analyseret under anvendelse 20 af HOM-programmet (31). Hydropatien af den afledte prote insekvens blev analyseret under anvendelse af en bredde på 12 og et spring på 1 (31a).;The nucleotide sequences were analyzed using the HOM program (31). The hydropathy of the derived protein sequence was analyzed using a width of 12 and a jump of 1 (31a);

Kloning af gD-områderne fra HSV1 og HSV2.Cloning of the gD regions from HSV1 and HSV2.

Andre undersøgelser havde lokaliseret HSVl-gD-genet 25 til 6,6 kb BamHI-J-fragmentet ifølge nomenklaturen angi vet af Roizman (6, 12, 24). Isolering og sekvensbestemmelse af en del af dette fragment viste, at dette fragment indeholdt HSVl-gD-genet. Da man kunne forvente, at DNA-se-kvenserne i HSVl-gD-genet ville være relativt homologe 30 med HSV2-gD-genet, anvendtes dette fragment som sonde til isolering af gD-genet fra HSV2-genomet.Other studies had located the HSV1 gD gene 25 to 6.6 kb Bam HI-J fragment according to the nomenclature given by Roizman (6, 12, 24). Isolation and sequencing of a portion of this fragment showed that this fragment contained the HSV1 gD gene. As one would expect that the DNA sequences of the HSV1 gD gene would be relatively homologous to the HSV2 gD gene, this fragment was used as a probe to isolate the gD gene from the HSV2 genome.

DK 173597 B1 1ÅDK 173597 B1 1Å

Da de fleste af generne fra HSV1- og HSV2-genomerne * · viser sig at ligge co.lineært på kortet (35), blev området fra det lille unikke område af H5V/2-genomet, som svarede til HSVl-gD-området (Hindlll-L-fragmente.t (12)), 5 klonet i .en ^V*fag-vektor. Sigtning af de resulterende pletter med en P-?mærket HSVl-gD-gen-subklon afslørede positivt hybridiserende pletter, hvilket antyder, at der virkelig var nucleinsyresekvenshomologi mellem de to virusgenomer i dette område. Isolering af fag-D'NA'en 10 og efterfølgende Southern-afdupningsanalyse afslørede det område af dette fragment, som svarede til gD-genet.Since most of the genes from the HSV1 and HSV2 genomes * · appear to be co-linear on the map (35), the region from the small unique region of the H5V / 2 genome corresponding to the HSV1 gD region ( HindIII-L fragments.t (12)), cloned into a ^ V * phage vector. Screening of the resulting spots with a P-labeled HSV1-gD gene subclone revealed positive hybridizing spots, suggesting that there really was nucleic acid sequence homology between the two viral genomes in this region. Isolation of the phage D'NA 10 and subsequent Southern blotting analysis revealed the region of this fragment corresponding to the gD gene.

Dette område blev subklonet til DNA-sekvensanalyse.This region was subcloned for DNA sequence analysis.

Kodningsområderne.Coding regions.

Fig. 1 belyser de to gD-DNA-sekvenser sammenlignet ved 15 HOM-programmet (31). Nucleotid nr. 1 vælges som A'et i ATG-startcodonen, der koder for methionin. Åbninger er blevet indført af HOM-datamatprogrammet for at maksimere sekvenshomologierne (31). Nucleotidforskelle er vist ved symbolet (*), medens aminosyreforskelle er 20 vist ved indramning. Aminosyreforskelle mellem den her rapporterede HSVl-gD-sekvens, bestemt for Hzt-stammen af H5V1, og den der er rapporteret af Watson et al.FIG. 1 illustrates the two gD DNA sequences compared with the HOM program (31). Nucleotide # 1 is selected as the A in the ATG start codon encoding methionine. Openings have been introduced by the HOM computer program to maximize the sequence homologies (31). Nucleotide differences are shown by the symbol (*), while amino acid differences are shown by framing. Amino acid differences between the HSV1 gD sequence reported here, determined for the Hzt strain of H5V1, and that reported by Watson et al.

(6) for Patton-stammen, er angivet ved symbolet (+).(6) for the Patton tribe, is indicated by the symbol (+).

Starten af HSVl-gD-gen-transcriptionen, vist ved en 25 pil, er fra Watson et al. (32). Mulige N-forbundne glyco- syleringscentre er vist gråtonet. To mulige MTATA"-sekven~ ser er vist 5' for starten af gO-transcriptionen, medens en tredje mulig "TATA"-sekvens er vist 5' for en anden åben aflæsningsramme ved 3'-enden af HSV2-sekvensen.The onset of the HSV1 gD gene transcription, shown by a 25 arrow, is from Watson et al. (32). Possible N-linked glycosylation centers are shown in grayscale. Two possible MTATA "sequences are shown 5 'for the start of the gO transcription, while a third possible" TATA "sequence is shown 5' for another open reading frame at the 3 'end of the HSV2 sequence.

30 To områder af ikke-kodningssekvens-homologi bør bemær kes 5' for gD-generne og 5' for den anden åbne aflæsningsramme fra HSV2-sekvensen.Two areas of non-coding sequence homology should be noted 5 'for the gD genes and 5' for the second open reading frame from the HSV2 sequence.

13 DK 173597 B113 DK 173597 B1

Hydropatien af gD-proteiner.The hydropathy of gD proteins.

Hydropétien af hvert glycoprotein blev analyseret under anvendelse af det program, der er udviklet af Hopp .et al. (51a). Som vist i fig. 2 vindes der et hydrophobt .5 transmembran-domæne ved. 3'-enden af. genet. Tolv aminosyrer, lange strækninger blev analyseret, og gennemsnitshydro-patien blev udregnet. Forskelle i rester mellem de to glycoproteiner er vist med bevarede ændringer markeret (*) og ikke-bevarende ændringer markeret (+). A) HSVl-gD-10 protein-hydropati, 8) HSV2-gD-protein-hydropati.The hydropathy of each glycoprotein was analyzed using the program developed by Hopp. Et al. (51a). As shown in FIG. 2, a hydrophobic .5 transmembrane domain is obtained. 3 'end of. gene. Twelve amino acids, long stretches were analyzed and the average hydropathy calculated. Differences in residues between the two glycoproteins are shown with conserved changes marked (*) and non-conserved changes marked (+). A) HSV1-gD-protein hydropathy, 8) HSV2-gD-protein hydropathy.

DNA-sekvensanalyse viser, at HSV1- og HSV2-gD-proteiner-ne er 80 % homologe. Hovedparten af de forskelle, der blev fundet mellem disse to proteiner, var i de amino-og carboxyl-terminale områder. Disse proteiners amino-ter-15 minale område indeholder et stærkt hydrophobt område, ' som indeholder en argininrest nær ved det amino-terminale methionin. Dette hydrophobe domæne er signalsekvensen, som er karakteristisk for secernerede og membranbundne proteiner, og som antageligvis har den funktion at diri-20 gere mindst en del af proteinet ind i rummet af det endoplasmiske reticulum (33). En sammenligning af de første 20 amino-terminale aminosyrer viste, at der var ialt 12 forskelle mellem type 1- og type 2-genet. Praktisk taget alle forskelle er imidlertid bevarende, da 25 de koder for andre hydrophobe aminosyrer. Undtagelserne er gly-arg-udskiftningen ved rest nr. 3 og arg-gly-ud-skiftningen ved rest nr. 7. Selv om disse udskiftninger ikke er bevarende, ændrer de dog ikke net tostrukturen af signaldomsnet. Begge gener bevarer en positivt ladet 30 rest i de første 10 aminosyrer.DNA sequence analysis shows that the HSV1 and HSV2 gD proteins are 80% homologous. Most of the differences found between these two proteins were in the amino and carboxyl-terminal regions. The amino-terminal region of these proteins contains a highly hydrophobic region which contains an arginine residue close to the amino-terminal methionine. This hydrophobic domain is the signal sequence that is characteristic of secreted and membrane-bound proteins and which presumably has the function of directing at least a portion of the protein into the space of the endoplasmic reticulum (33). A comparison of the first 20 amino-terminal amino acids showed that there were a total of 12 differences between the type 1 and type 2 gene. Virtually all differences, however, are conservative as they encode other hydrophobic amino acids. The exceptions are the gly-arg replacement at residue # 3 and the arg-gly replacement at residue # 7. Although these replacements are not conservative, they do not, however, alter the network structure of the signaling network. Both genes retain a positively charged residue in the first 10 amino acids.

Hydropatikurven i fig. 2 afslørede et hydrophilt carboxyl-» terminalt domæne efter et hydrophobt område. Denne struk tur er karakteristisk for membranbundne glycoproteiner 14 DK 173597 B1 og er tidligere blevet fundet i andre virale overfladeantigener (5, 34). Dens funktion er at forankre proteinet i de cellulære.og virale membraner, og den spilder som sådan en vigtig rolle for virusinfektion. Der blev fundet 5 12 aminosyreændringer i dette område af gD-proteinerne fra rest 333 til rest 362, hvoraf de fleste er bevarende.The hydropathy curve of FIG. 2 revealed a hydrophilic carboxyl terminal domain after a hydrophobic region. This structure is characteristic of membrane-bound glycoproteins and has previously been found in other viral surface antigens (5, 34). Its function is to anchor the protein in the cellular and viral membranes and as such it plays an important role in viral infection. 5 12 amino acid changes were found in this region of the gD proteins from residue 333 to residue 362, most of which are conservative.

Dette antyder, at det eneste kriterium for aminosyrerne i dette område er, at de er overvejende apolære for at spænde over lipid-dobbeltlaget. Desuden viser området 10 éfter membrandomænet (resterne 363 - 375), der hovedsa-' geligt tjener til at forankre proteinet i membranen (33),t;5 ændringer i dets første 13 aminosyrerester efterfulgt af en homolog strækning. Dette resultat antyder, at de første 10 - 15 rester i det carboxyl-terminale 15 hydrophile domæne kun har en forankrende funktion og derfor kun behøver at være ladet, medens de efterfølgende 23 rester kan have en anden funktion, som er specifikt vigtig for gD-proteinet.This suggests that the only criterion for the amino acids in this region is that they are predominantly apolar to span the lipid bilayer. In addition, the region 10 shows the membrane domain (residues 363 - 375), which mainly serves to anchor the protein in the membrane (33), to 5 changes in its first 13 amino acid residues followed by a homologous stretch. This result suggests that the first 10 to 15 residues in the carboxyl-terminal hydrophilic domain have only one anchoring function and therefore need only be charged, while the subsequent 23 residues may have another function which is specifically important for gD protein.

Selv om der findes mange andre aminosyreændringer igennem 20 disse to proteiner, er det store flertal af ændringerne bevarende. Dette understreges af den struktur, som er afsløret af det i fig. 2 viste hydropatiprogram. Som det kan ses ved denne sammenligning, viser de to glyco-proteiner meget ens kurver. De aminosyreændringer, som 25 ikke er bevarende, viser sig ikke at ændre proteinets hydropati. -Although many other amino acid changes exist through these two proteins, the vast majority of the changes are conservative. This is emphasized by the structure revealed by the one shown in FIG. 2 hydropathy program. As can be seen in this comparison, the two glyco proteins show very similar curves. The amino acid changes which are not conservative do not appear to alter the hydropathy of the protein. -

Udtrykkelse af HSVl-gD.Expression of HSV1-gD.

For at etablere en permanent cellelinie, som producerer membranbundet gD, blev det gD-holdige fragment ligeret 30 (fig. 3) ind i en pattedyr-udtrykkelsesvektor (36) inde«· holdende den selekterbare markør, dihydrofolatreductase (dhfr). Fig. 3 viser et diagram af plasmidet pgO-dhfr, konstrueret til udtrykkelse af HSVl-glycoprotein D.To establish a permanent cell line producing membrane-bound gD, the gD-containing fragment was ligated 30 (Fig. 3) into a mammalian expression vector (36) containing the selectable marker, dihydrofolate reductase (dhfr). FIG. Figure 3 shows a diagram of the plasmid pgO-dhfr constructed to express HSV1 glycoprotein D.

15 DK 173597 B115 DK 173597 B1

Udtrykkelsesplasmidet bestod af repliceringsoriginet og p-lactamase-genet (smpr) afledt fra E. coli plasmidet pBR322 (37), en cDNA-indsætning, der koder for muse-dhfr (36, 38) Under·styring af den tidlige, SV40~promotor 5 og et 4,6 kb Hindlll-BamHI-fragment indeholdende gD-genet også under styring af den tidlige SV40-promotor. Hindlll-enden af dette fragment ligger 74 bp til. 5*-siden for start-methionincodonen og inkluderer mRNA-cap-centret. Hindlll-centret ligger 250 bp til 3’-siden for Goldberg-10 Hogness-kassen i SV40-promotoren. Kodeområdet af det gD-kodende fragment er 1179 bp langt og slutter sig til et stort (1,9 kb) 3'-område, som indeholder mindst en del af gE-genet (24, 32), en translationsstop-codon og et polyadenyleringscenter.The expression plasmid consisted of the origin of replication and the β-lactamase gene (smpr) derived from the E. coli plasmid pBR322 (37), a cDNA insert encoding mouse dhfr (36, 38) Under the control of the early SV40 promoter 5 and a 4.6 kb HindIII-BamHI fragment containing the gD gene also under the control of the early SV40 promoter. The HindIII end of this fragment is 74 bp. 5 * side of the starting methionine codon and includes the mRNA cap center. The HindIII center is located 250 bp to the 3 'side of the Goldberg-10 Hogness box in the SV40 promoter. The coding region of the gD coding fragment is 1179 bp long and joins a large (1.9 kb) 3 'region containing at least a portion of the gE gene (24, 32), a translation stop codon and a polyadenylation center .

15 Plasmidet pgD-dhfr blev konstrueret som følger: 4,6 kb Hindlll-BamHI-fragmentet indeholdende hele gO-kode-sekvensen blev isoleret fra BamHI-fragmentet klonet fra HSVl-genomet (se ovenfor). 2,8 kb HindilI-Sall-frag-mentet indeholdende en SV40-origin/tidlig promotor og 20 pBR322-ampicillinresistens-genet og -originet for ØNA-re-plicering blev isoleret fra plasmidet pEHBal 14. 2,1 kb Sall-BamHI-fragmentet indeholdende en muse-dihydro-folatreductase-cDNA-klon under styring af en anden SV40-origin/tidlig promotor blev isoleret fra plasmidet 25 pE348HBV E400D22 (36). Disse 3 fragmenter blev ligeret sammen i en tredobbelt ligering under anvendelse af T4-DNA-ligase, og den resulterende blanding blev anvendt til at transformere E. coli stamme 294. De resulterende kolonier blev dyrket·, og plasmid-DNA1 en sigtet ved ned-30 brydning med Sac 2. Den korrekte DNA-konstruktion, pgD-dhfr (fig. 3), blev anvendt til yderligere transfektionsunder-søgelser.The plasmid pgD-dhfr was constructed as follows: The 4.6 kb HindIII-BamHI fragment containing the entire gO code sequence was isolated from the BamHI fragment cloned from the HSV1 genome (see above). The 2.8 kb HindilI-SalI fragment containing an SV40 origin / early promoter and the pBR322 ampicillin resistance gene and origin of the ENA replication was isolated from the plasmid pEHBal 14. 2.1 kb SalI-BamHI the fragment containing a mouse dihydro-folate reductase cDNA clone under the control of another SV40 origin / early promoter was isolated from plasmid 25 pE348HBV E400D22 (36). These 3 fragments were ligated together in triplicate ligation using T4 DNA ligase and the resulting mixture was used to transform E. coli strain 294. The resulting colonies were grown and plasmid DNA1 screened by The correct DNA construct, pgD-dhfr (Fig. 3), was used for further transfection studies.

Plasmidet blev indført i kinesisk-hamster-ovarieceller (CHO), som var deficiente med hensyn til produktion 16 DK 173597 B1 af dhfr (39), under anvendelse af calciumphosphatfældningsmetoden (40). Kolonier, som var i stand til at vokse i medier, der manglede hypoxanthin, glycin og thyroidin, blev opnået, og 9 dhfr+-kloner blev analyss-5 ret. Af disse kunne gD detekteres i 5 kolonier under anvendelse af anti-HSVl-antistoffer ved radioimmunofald-nings- og indirekte immunofluorescens-prøvninger. En af de fem linier (gD12) blev udpeget til yderligere undersøgelse. For at karakterisere det klonede gD-gen-10 produkt blev gD12-cellér metabolisk mærket med ’55S-methb- nin eller ^H-glucosamin og analyseret ved radioimmuno-fældning. Den anvendte procedure var som følger: celler blev dyrket i Ham's F12-medium (Gibco) suppleret med 7 % kommercielt dialyseret føtalt okseserum (Gibco), 15 penicillin (100 enh./ml) og streptomycin (100 enh./ml).The plasmid was introduced into Chinese hamster ovary (CHO) cells deficient in production of dhfr (39), using the calcium phosphate precipitation method (40). Colonies capable of growing in media lacking hypoxanthine, glycine and thyroidin were obtained and 9 dhfr + clones were assayed. Of these, gD could be detected in 5 colonies using anti-HSV1 antibodies in radioimmunoprecipitation and indirect immunofluorescence assays. One of the five lines (gD12) was designated for further study. To characterize the cloned gD gene product, gD12 cells were metabolically labeled with '55S-methbine or 3 H-glucosamine and analyzed by radioimmunoprecipitation. The procedure used was as follows: cells were grown in Ham's F12 medium (Gibco) supplemented with 7% commercially dialyzed fetal bovine serum (Gibco), penicillin (100 units / ml) and streptomycin (100 units / ml).

Da kulturerne var omkring 80 % konfluente, blev mediet fjernet, cellerne blev vasket to gange med phosphatpufret saltopløsning (PBS), og der tilsattes et mærkende medium (Dulbecco's modificerede Eagle's medium indeholdende 20 enten 1/10 af den normale koncentration af methionin 2 eller glucose) til en slutkoncentration på 0,064 ml/cm .When the cultures were about 80% confluent, the medium was removed, the cells were washed twice with phosphate-buffered saline (PBS), and a labeling medium was added (Dulbecco's modified Eagle's medium containing either 1/10 of the normal concentration of methionine 2 or glucose ) to a final concentration of 0.064 ml / cm.

Der tilsattes enten "^S-me thionin (SJ.204, Amersham Int.) (50 - 75 ^,uCi/ml) eller ^H-glucosamin (100 ^uCi/ml), og cellerne blev dyrket i yderligere 18 - 20 timer.Either S-me thionine (SJ.204, Amersham Int.) (50 - 75 µ, µCi / ml) or 3 H-glucosamine (100 µCi / ml) was added and the cells were grown for an additional 18-20 hours.

25 Efter mærkningen blev mediet indhøstet, og cellerne blev vasket to gange i PBS og fjernet fra kulturskålene ved behandling med PBS indeholdende 0,02 % EDTA. Cellerne blev derpå solubiliseret i lysepuffer bestående af: PBS, 3 % NP-40, 0,1 % okseserumalbumin, 5 x 10”^ M phenyl-30 methylsulfonylfluorid og 0,017 TIU/ml apoprotinin, og det resulterende lysat blev klaret ved centrifugering ved 12000 x G. Til immunofældningsreaktioner blev celle-lysaterne fortyndet tredobbelt med PBS, og aliquoter (typisk 180 ^ul) blev blandet med 2-5 ^ul antisera 35 og inkuberet ved 4 °C i 30 minutter. Immunkomplekser blev derpå adsorberet til fikserede S. aureus celler 17 DK 173597 B1 ved Kessler’s metode (40a) og blev genudfældet ved cen^ trifugering ved 12000 x G i 30 sekunder. S. aureus cellerne blev derpå vaskes 3 gange med vaskningspuffer (PBS, 1 % NP-40, 0,3 Sf natriumdodecylsulfat), og immunkomplek-5 serne blev elueret med 20 yul polyacrylamidgél-prøv'epuf- fer (62,5 mM "Tris"-HCl-puffer, pH 6,8, indeholdende 10 % glycerol, 5 % 2-mercaptoethanol, 0,01 % bromphenol-blåt) ved 90 °C i 3 minutter. Efter centrifugering i 30 s blev supernatanterne påført 10 % polyacrylamid-10 gelplader ifølge Laemmli's metode (45).After labeling, the medium was harvested and the cells were washed twice in PBS and removed from the culture dishes by treatment with PBS containing 0.02% EDTA. The cells were then solubilized in lysis buffer consisting of: PBS, 3% NP-40, 0.1% bovine serum albumin, 5 x 10 4 M phenyl-30-methylsulfonyl fluoride and 0.017 TIU / ml apoprotinin, and the resulting lysate was cleared by centrifugation at 12,000. x. For immunoprecipitation reactions, the cell lysates were diluted triple with PBS, and aliquots (typically 180 µl) were mixed with 2-5 µl of antisera 35 and incubated at 4 ° C for 30 minutes. Immune complexes were then adsorbed to fixed S. aureus cells by Kessler's method (40a) and re-precipitated by centrifugation at 12000 x G for 30 seconds. The S. aureus cells were then washed 3 times with wash buffer (PBS, 1% NP-40, 0.3 Sf sodium dodecyl sulfate), and the immune complexes were eluted with 20 µl polyacrylamide gel samples (62.5 mM). Tris "HCl buffer, pH 6.8 containing 10% glycerol, 5% 2-mercaptoethanol, 0.01% bromophenol blue) at 90 ° C for 3 minutes. After centrifugation for 30 s, the supernatants were applied to 10% polyacrylamide gel plates according to Laemmli's method (45).

Fig. 4a sammenligner autoradiografier opnået med g012-cel-lelinien og HSVl-inficerede celler: kontrolimmunofældning fra gD12-cellelysatet med normal kaninserum (bane l)j immunofældning af nativt gO dyrket i HEL-celler (bane 15 2) og A549-celler (bane 3) med det monoklonale anti-gD-an- tistof, 55-S (41); immunofældning af klonet gO fra gD12-cellelysatet med polyklonale kaninantistoffer (Dako *FIG. 4a compares autoradiographs obtained with the g012 cell line and HSV1-infected cells: control immunoprecipitation from the gD12 cell lysate with normal rabbit serum (lane 1) immun immunoprecipitation of native gO grown in HEL cells (lane 15 2) and A549 cells (lane 3 ) with the monoclonal anti-gD antibody, 55-S (41); immunoprecipitation of cloned gO from the gD12 cell lysate with polyclonal rabbit antibodies (Dako *

Corp.) for HSV1 (bane 4) og det monoklonale antistof, 55-S (bane 5); immunofældning af klonet gD fra gD12-cel-20 lerne, som var metabolisk mærket med ^H-glucosamin, med polyklonale kan.in-anti-HSVl-antistoffer (bane 6).Corp.) for HSV1 (lane 4) and the monoclonal antibody, 55-S (lane 5); immunoprecipitation of the cloned gD from the gD12 cells metabolically labeled with 1 H -glucosamine with polyclonal rabbit anti-HSV1 antibodies (lane 6).

Det ses (bane 4 og 5) at et diffust bånd på 59 - 60 kilodalton blev.specifikt fældet fra gD12-cellelinien under anvendelse af enten kanin-anti-HSVl-antistoffer 25 eller det monoklonale anti-gD-antistof, 55-S, som er specifikt for HSVl-proteinet (41). Denne molekylvægt stemmer godt overens med den, der er rapporteret for gD isoleret fra HSVl-inficerede KB-celler (42). Det ses, at det samme monoklonale antistof fældede prote-30 iner af lignende, men forskellige molekylvægte fra HSV1- inficerede humane cellelinier. Hovedproduktet, som blev fældet fra den humane lungecarcinoma-cellelinie A549 (bane 2) var på 53 kilodalton, og det, der blev fældet fra den humane embryoniske lunge-cellelinie (HEL) var 18 DK 173597 B1 på 56 kilodalton (bane 3). Tidligere undersøgelser (43) har vist, at molekylvagten af HSV-glycoproteiner varierer afhængigt af værtscellen, og at denne forskel skyldes forskelle i glycosylering. For at bestemme, om det .It is seen (lanes 4 and 5) that a 59-60 kilodalton diffuse band was specifically precipitated from the gD12 cell line using either rabbit anti-HSV1 antibody or the 55-S monoclonal antibody, which is specific for the HSV1 protein (41). This molecular weight is in good agreement with that reported for gD isolated from HSV1-infected KB cells (42). It is seen that the same monoclonal antibody precipitated proteins of similar but different molecular weights from HSV1-infected human cell lines. The main product that was precipitated from the human lung carcinoma cell line A549 (lane 2) was 53 kilodaltons, and that precipitated from the human embryonic lung cell line (HEL) was 56 kilodaltons (lane 3). Previous studies (43) have shown that the molecular weight of HSV glycoproteins varies depending on the host cell and that this difference is due to differences in glycosylation. To determine if that.

5 i CHO-celler producerede gD.-protein faktisk var glycosy- leret, blev cellerne metabolisk mærket med ^H-glucosamin.5 in CHO cells produced gD. protein was actually glycosylated, the cells were metabolically labeled with 3 H-glucosamine.

Da der blev Odfældet bånd af identiske molekylvægte (bane 5 og 6) efter metabolisk mærkning med "^S-methio-ning eller ^H-glucosamin, konkluderede vi, at det i 10 CHO-celler producerede gD-protein er glycosyleret.When the bands of identical molecular weights (lanes 5 and 6) were decomposed after metabolic labeling with ³²S-methionine or ³H-glucosamine, we concluded that the gD protein produced in 10 CHO cells is glycosylated.

De humane cellelinier A549 (ATCC CCL 185) og HEL 299 (ATCC CCL 137) blev dyrket til konfluens i 3,5 cm livskulturskåle og inficeret med HSV1 i en multiplicitet på 10 pfu pr. celle. Virus-inficerede celler blev mærket 15 ved en metode mage til den, der er beskrevet af Cohen et al. (44). 4 Timer efter infektionen blev mediet fjer--i net, og cellerne blev vasket én gang med frisk, medium * .(Dulbecco’s modificerede Eagle's medium) og én gang med phosphatpufret saltopløsning (PBS). Derpå sattes 20 frisk medium indeholdende 1/10 af den normale koncen tration af methionin til cellerne sammen med ^S-methio-nin (Amersham, International) til en slutkoncentration på 75 ^uCi pr. ml medium. Cellerne blev dyrket i yderligere 20 timer og derpå indhøstet ved behandling af de 25 vaskede celler med PBS indeholdende EDTA (0,02 %). Virale proteiner blev solubiliseret i lysepuffer bestående af PBS, 3 % NP-40, 1 % okseserumalbumin, 5 x 10 ^ M phenylmethylsulfonylfluorid og 0,017 TIU/ml apoprotinin.The human cell lines A549 (ATCC CCL 185) and HEL 299 (ATCC CCL 137) were grown to confluence in 3.5 cm life culture dishes and infected with HSV1 at a multiplicity of 10 pfu per ml. cell. Virus-infected cells were labeled 15 by a method similar to that described by Cohen et al. (44). 4 Hours after infection, the medium was feathered - in mesh and cells were washed once with fresh, medium * (Dulbecco's modified Eagle's medium) and once with phosphate buffered saline (PBS). Then, 20 fresh medium containing 1/10 of the normal concentration of methionine to the cells was added with 3 S-methionine (Amersham, International) to a final concentration of 75 µCi per ml. ml of medium. The cells were cultured for an additional 20 hours and then harvested by treating the 25 washed cells with PBS containing EDTA (0.02%). Viral proteins were solubilized in lysis buffer consisting of PBS, 3% NP-40, 1% bovine serum albumin, 5 x 10 8 M phenylmethylsulfonyl fluoride and 0.017 TIU / ml apoprotinin.

Det resulterende lysat blev klaret ved centrifugering 30 ved 12000 x G i en mikrocentrifuge. Til immuno fældnings reaktioner blev cellerne eller viruslysaterne fortyndet tredobbelt med phosphatpufret saltopløsning, blandet med 2-5 ^ul af det passende antiserum og inkuberet i 30 minutter ved 4 °C. Antistof-antigen-komplekser 35 blev fjernet fra reaktionsmediet ved tilsætning af 25 /ul 19 DK 173597 B1 af en 10 % oplosning af fikseret S. aureus (Kessler (40a)) og blev udfaldet ved centrifugering ved 12000 x G i 30 s. S. aureus cellerne blev derpå vasket 3 gange med vaskepuffer (PBS, 1 % HP-40, 0,3 % natriumdodecyl-5 sulfat), og cellerne blev suspenderet i 20 ml polyacryl- amidgel-prøvepuffer (10 % glycerol, 5 % 2.mercaptoethanoiy 0,0625 M med hensyn til pH 6,8 "Tris"-puffer, 0,01 % bromphenolblåt) og inkuberet ved 90 °C i 3 minutter.The resulting lysate was clarified by centrifugation at 12000 x G in a microcentrifuge. For immunoprecipitation reactions, the cells or virus lysates were diluted triple with phosphate buffered saline, mixed with 2-5 µl of the appropriate antiserum and incubated for 30 minutes at 4 ° C. Antibody-antigen complexes 35 were removed from the reaction medium by addition of 25 µl of a 10% solution of fixed S. aureus (Kessler (40a)) and precipitated by centrifugation at 12000 x G for 30 s. The aureus cells were then washed 3 times with wash buffer (PBS, 1% HP-40, 0.3% sodium dodecyl sulfate), and the cells were suspended in 20 ml of polyacrylamide gel sample buffer (10% glycerol, 5% 2). mercaptoethanoyl 0.0625 M with respect to pH 6.8 "Tris" buffer, 0.01% bromophenol blue) and incubated at 90 ° C for 3 minutes.

Efter centrifugering (12000 x G) i 30 s blev supernatan-10 terne påført 10 S polyacrylamidgelplader (45).·After centrifugation (12000 x G) for 30 s, the supernatants were applied to 10 S polyacrylamide gel plates (45).

For yderligere at udforske den post-translatiohelle forarbejdning af klonet gD gennemførtes impuls-forfølgel- ses-undersøgelser. Fig. 4B viser immunofaldning af klonet gD fra gD12-celler med kanin-anti-HSVl-antistoffer (Dako, 15 Corp.) til forskellige tider efter impulsmærkning med 35 S-methionin. Fig. 4B viser en impulsmarkning af g012-celler. Ved disse undersøgelser blev celler dyrket til konfluens i 10 cm vavskulturskåle og mærket med "^S-methionin som beskrevet ovenfor med undtagelse, at msrk-20 ningsreaktionen blev udført i 15 minutter på is, cellerne vasket 3 gange med frisk medium cg derpå ført tilbage til inkubatoren og inkuberet ved 37 °C i forskellige tidsrum. Reaktionerne blev afsluttet ved vaskning af cellerne i kold phosphatpufret saltopløsning og solubi-25 lisering af cellerne som beskrevet ovenfor. Proteiner blev immunofældet ved de Følgende tider efter impulsmærkning: bane 1, 5 minutterj bane 2, 15 minutter; bane 3, 30 minutter; bane 4, 60 minutter; bane 5, 120 minutter. Forstadie formen af gD med en molekylvægt på 51 kd blev 30 specifikt udfaldet fra gD12-cellelinien 5 minutter efter en impuls med ^S-methionin, og dette forstadium blev fulgt ind i formen med højere molekylvægt (59 kd) efter omkring 60 minutter. Ud fra disse undersøgelser bedømmer vi halveringstiden for denne post-trans lationeIle be-35 givenhed til at være omkring 45 minutter. Forstadie- 20 DK 173597 B1 produktets Forbindelse mellem 51 kd båndet og 59 kd båndet minder nært om den, der er rapporteret For virus-produceret gO (14, 42, 46, 47), og kinetiken for denne proces ligner den, der er beskrevet aF Cohen et al.To further explore the post-translational whole processing of the cloned gD, impulse-pursuit studies were performed. FIG. Figure 4B shows immunoprecipitation of cloned gD from gD12 cells with rabbit anti-HSV1 antibodies (Dako, 15 Corp.) at various times after pulse labeling with 35 S-methionine. FIG. Figure 4B shows an impulse labeling of g012 cells. In these studies, cells were grown to confluence in 10 cm culture dishes and labeled with 3 S methionine as described above except that the msrkning reaction was carried out for 15 minutes on ice, the cells washed 3 times with fresh medium and then returned. The reactions were terminated by washing the cells in cold phosphate buffered saline and solubilizing the cells as described above Proteins were immunoprecipitated at the following times after pulse labeling: lane 1, 5 min 2, 15 minutes; lane 3, 30 minutes; lane 4, 60 minutes; lane 5, 120 minutes Precursor form of gD having a molecular weight of 51 kd was specifically precipitated from the gD12 cell line 5 minutes after a pulse of methionine, and this precursor was followed into the higher molecular weight form (59 kd) after about 60 minutes. From these studies we estimate the half-life of this post-trans latio no given time to be about 45 minutes. The precursor link between the 51 kd band and the 59 kd band closely resembles that reported for virus-produced gO (14, 42, 46, 47), and the kinetics of this process is similar to that described. by Cohen et al.

5 (42). I virusinFicerede celler er forskellen i molekyl vægt mellem Forstadiet og produktet blevet tilskrevet både N-Forbundne og O-Forbundne oligosacchårider (48).5 (42). In virus-infected cells, the difference in molecular weight between the precursor and the product has been attributed to both N-linked and O-linked oligosaccharides (48).

For at bestemme om gD blev eksporteret til celleoverfladen udførtes indirekte immunofluorescens-undersøgelser.To determine if gD was exported to the cell surface, indirect immunofluorescence studies were performed.

10 Ued disse undersøgelser blev kanin-, muse- og humant anti-HSU-antistof omsat med ufikserede celler under betingelser, som ikke permeabiliserer cellemembranen (49). g012-celler og udgangs(CHO)-cellerne (forhold 1:1) blev udpladet på glasdækplader (2,2 x 2,2 cm) og 15 dyrket, indtil cellerne var omkring 60 % konfluente.10 During these studies, rabbit, mouse, and human anti-HSU antibody was reacted with unfixed cells under conditions that do not permeabilize the cell membrane (49). g012 cells and the starting (CHO) cells (ratio 1: 1) were plated on glass cover plates (2.2 x 2.2 cm) and cultured until the cells were about 60% confluent.

Humant serum, som vides at indeholde antistoffer over for HSV1 (50), blev fortyndet 40 gange med phosphatpufret saltopløsning (PBS), og 100 ^ul blev pipetteret ud på vaskede celler, og cellerne blev inkuberet i 30 minutter 20 ved stuetemperatur i et befugtet kammer. Cellerne blev neddyppet 3 gange i PBS for at bortvaske ubundet antistof og blev derpå inkuberet med 100 yul 20 gange fortyndet tetramethylrhodaminisothiocyanat-mærkede gede-antihuman-IgG-antistoffer (Cappel Laboratories) i yderligere 30 25 minutter. Oet ubundne mærkede antistof blev bortvasket med PBS, og cellerne blev dehydratiseret i -iskoldt 50 % ethanol og 100 % ethanol og rehydratiseret med glycerol på et mikroskop-præparatglas (49). Cellerne blev derpå betragtet under Fasekontrast- og Fluorescens-optik i 30 fluorescensmikroskop (Zeiss). Fig. 5 viser: A, g012- og CHO-celler set visualiseret med Fasekontras toptik; B, fluorescensbillede af de samme celler som i A. Sammenligning af fasekontrastbillederne med Fluorescensbillederne (Fig. 5) viste, at gD12-cellerne var kraftigt 35 mærket, medens udgangs-CHO-cellerne kun vandt lidt eller 21 DK 173597 B1 intet mærket antistof. Ved kontrolforsøg med normale musesera, normale kaninsera eller' humane sera, som vides at være negative for HSV-antistoffer, kunne der ikke detekteres nogen specifik mærkning af cellerne. Disse 5 undersøgelser tydede på, at gD-proteinet blev eksporte ret til celleoverfladen. Forsøg med CHO- og gD12-celler fikseret før mærkningen med midler, som videns at permeabi-lisere cellemembranen (methanol eller acetone) gav et forskelligt mærkningsmøn3ter. Ved disse undersøgelser 10 blev der iagttaget en kraftig perinucleær mærkning af gD12-cellerne med anti-HSVl-antistoffer og ingen specifik msnkning af CHO-cellerne.Human serum, known to contain antibodies to HSV1 (50), was diluted 40 times with phosphate buffered saline (PBS) and 100 µl pipetted onto washed cells and the cells incubated for 30 min at room temperature in a humidified chamber. The cells were immersed 3 times in PBS to wash away unbound antibody and then incubated with 100 µl 20 times diluted tetramethylrhodamine isothiocyanate-labeled goat anti-human IgG (Cappel Laboratories) antibodies for an additional 30 minutes. The unbound labeled antibody was washed away with PBS and the cells were dehydrated in ice-cold 50% ethanol and 100% ethanol and rehydrated with glycerol on a microscope slide (49). The cells were then considered under Phase Contrast and Fluorescence optics in 30 fluorescence microscope (Zeiss). FIG. Figure 5 shows: A, g012 and CHO cells visualized with Phase control topics; B, fluorescence image of the same cells as in A. Comparison of the phase contrast images with the fluorescence images (Fig. 5) showed that the gD12 cells were strongly labeled, whereas the starting CHO cells only gained little or no labeled antibody. In control experiments with normal mouse sera, normal rabbit sera or human sera known to be negative for HSV antibodies, no specific labeling of the cells could be detected. These 5 studies indicated that the gD protein was exported right to the cell surface. Experiments with CHO and gD12 cells fixed prior to labeling with agents known to permeabilize the cell membrane (methanol or acetone) gave different labeling patterns. In these studies 10, strong perinuclear labeling of the gD12 cells was observed with anti-HSV1 antibodies and no specific labeling of the CHO cells.

For at bestemme om gD12-celler udtrykte antigeniske determinanter relevante for humane HSV1- og HSV2-infek-15 tioner undersøgtes bindingen af antistoffer fra individer, som man vidste havde anti-HSVl- eller anti-HSV2-antistof-fer (50). Radioimmunofældning - af lysater fra metabolisk mærkede gD12-celler gav resultater, som var sammenlignelige med dem, der blev opnået med gnaver-anti-HSV-sera 20 (fig. 4). På lignende måde gav humane anti-HSVl-sera specifik mærkning af gD!2-celler ved en indirekte immuno-fluorescens-prøVning (fig. 5) og mærkede ikke udgangs-CHO-cellelinien. Tilsammen giver resultaterne opnået med forskellige gnaver-anti-HSVl- og -HSV2-antisera, 25 monoklonale anti-gD-antistofFer og humane anti-HSV-anti- sera =.bevis for, at gD udtrykt på overfladen af gD12-cel-ler har et antal antigeniske determinanter fælles med det native virus, og at strukturen af disse determinanter ikke er afhængig af samvirken med andre HSVl-proteiner.To determine whether gD12 cells expressed antigenic determinants relevant to human HSV1 and HSV2 infections, the binding of antibodies from individuals known to have anti-HSV1 or anti-HSV2 antibodies was examined (50). Radioimmunoprecipitation of lysates from metabolically labeled gD12 cells gave results comparable to those obtained with rodent anti-HSV sera 20 (Fig. 4). Similarly, human anti-HSV1 sera gave specific labeling of gD! 2 cells by an indirect immunofluorescence assay (Fig. 5) and did not label the starting CHO cell line. Taken together, the results obtained with various rodent anti-HSV1 and HSV2 antisera, 25 monoclonal anti-gD antibodies and human anti-HSV anti-sera = evidence that gD expressed on the surface of gD12 cells have a number of antigenic determinants in common with the native virus and that the structure of these determinants does not depend on the interaction with other HSV1 proteins.

30 Den kendsgerning, at et af de prøvede monoklonale anti stoffer (1-S) vides at neutralisere HSV1 in vitro (41) og viser, at det gO, der produceres i CHO-celler, har mindst én af de neutraliserende antigeniske determinanter fælles med det native virus.The fact that one of the monoclonal antibodies (1-S) tested is known to neutralize HSV1 in vitro (41) and shows that the gO produced in CHO cells has at least one of the neutralizing antigenic determinants in common with the native virus.

22 DK 173597 B122 DK 173597 B1

For at få et kvantitativt mål for bindingen af anti-HSVl-antistoffer til g012-celler udvikledes en enzymforbundet immunosorptionsprøvning (ELISA) (52), Ved disse undersøgelser blev gD12-celler og CHO-celler udpladet og kemisk 5 fikseret til skiftende huller i 96 hullers mikrotiter- vavskulturplader. Forskellige antisera, som vides at indeholde antistoffer over for HSV, blev derpå rækkefor-tyndet og fik lov at reagere med de fikserede celler.To obtain a quantitative target for the binding of anti-HSV1 antibodies to g012 cells, an enzyme-linked immunosorption assay (ELISA) (52) was developed. In these studies, gD12 cells and CHO cells were plated and chemically fixed to alternate holes in 96 holes of microtiter tissue culture plates. Various antisera, which are known to contain antibodies to HSV, were then diluted and allowed to react with the fixed cells.

Ved prøvningens afslutning blev absorbansen i hvert 10 hul målt, og der blev konstrueret normalbindingskurver. *At the end of the test, the absorbance in every 10 holes was measured and normal bonding curves were constructed. *

Den specifikke binding af antistoffer til gD12-cellerne blev bestemt ved subtraktion af værdierne opnået med udgangs-CHO-cellerne fra dem, der blev opnået med gD12-céllerne. Specifik binding af høj-titer-sera kunne detek-15 teres i fortyndinger på 1:10000.The specific binding of antibodies to the gD12 cells was determined by subtracting the values obtained with the starting CHO cells from those obtained with the gD12 cells. Specific binding of high-titer sera could be detected in dilutions of 1: 10000.

Serumtitere bestemt under anvendelse af gD12-celle-ELISA-prøvningen blev sammenlignet med anti-HSVl- og anti-HSV2-.titere bestemt ved konventionelle metoder. Humane sera, som i forvejen var titreret (50) over for HSV ved kon-20 ventionelle prøvninger, dvs. inhibering af hæmagglutina- tion (IHA) eller komplementfiksering (CF), blev rskkefor-tyndet i huller på mikrotiterplader indeholdende enten gD12-celler eller udgangs-CHO-cellelinien, og bindingen af anti-gD-antistoffer blev kontrolleret ved en ELISA-25 prøvning. gD12-cellerne og udgangs-CHO-cellerne blev podet i skiftende huller på 96 hullers mikrotiter-vævs-kulturplader (Falcon Labware) og blev dyrket til konfluens i F12-medium (GIBCO) indeholdende 10 % føtalt okseserum.Serum titers determined using the gD12 cell ELISA assay were compared to anti-HSV1 and anti-HSV2 titers determined by conventional methods. Human sera which were already titrated (50) to HSV by conventional tests, i.e. inhibition of hemagglutination (IHA) or complement fixation (CF), were diluted into holes on microtiter plates containing either gD12 cells or the starting CHO cell line, and the binding of anti-gD antibodies was checked by an ELISA assay. . The gD12 cells and the starting CHO cells were seeded in alternating holes on 96-hole microtiter tissue culture plates (Falcon Labware) and grown to confluence in F12 medium (GIBCO) containing 10% fetal bovine serum.

Cellerne blev vasket 3 gange med phosphatpufret saltop-30 løsning (PBS) og blev derpå kemisk fikseret med 0,0625 % glutaraldehyd i PBS. Cellerne blev igen vasket 3 gange med PBS og opbevaret indtil anvendelsen ved A °C i PBS indeholdende 1 % okseserumalbumin, 100 mM glycin, 1 mM NaNj. For at måle anti-gD-antistoftitere blev cellerne 35 vasket med PBS og rækkefor tyndede antisera fik lov at 23 DK 173597 B1 reagere med de fikserede celler (50 yVl slutvolumen) i 1 time ved stuetemperatur. Ubundet antistof blev vasket bort» og cellerne blev inkuberet med 50 ^ul 1:2000 fortyndet gede-antihumant-IgG koblet til peberrod-peroxi-5 dase (Tago» Inc.). Det enzymforbundne antistof fik lov at reagere i 1 time ved stuetemperatur» og cellerne blev derpå vasket 3 gange med PBS. Efter inkubation tilsattes per'oxidase-substratet, o-phenylendiamin (200 yul), og reationen fik lov at skride frem i 10 minutter.The cells were washed 3 times with phosphate buffered saline (PBS) and then chemically fixed with 0.0625% glutaraldehyde in PBS. The cells were again washed 3 times with PBS and stored until use at A ° C in PBS containing 1% bovine serum albumin, 100 mM glycine, 1 mM NaN 2. To measure anti-gD antibody titers, the cells were washed with PBS and series thin antisera were allowed to react with the fixed cells (50 µl final volume) for 1 hour at room temperature. Unbound antibody was washed away and cells were incubated with 50 µl 1: 2000 diluted goat anti-human IgG coupled to horseradish peroxidase (Tago »Inc.). The enzyme-linked antibody was allowed to react for 1 hour at room temperature and the cells were then washed 3 times with PBS. After incubation, the peroxidase substrate, o-phenylenediamine (200 µl) was added and the reaction allowed to proceed for 10 minutes.

10 Reaktionen blev afsluttet ved tilsætning af 2,5 M ^SO^ (50 ^ul), og absorbansen af reaktionsmediet fra hvert hul blev bestemt med et automatiseret pladeaflæsnings-spektrofotometer (Titertek). I fig. 6 udviste serumet, repræsenteret ved de åbne og lukkede cirkler, en HSVl-15 CF-titer på 128 og HSV1- og HSV2-IHA-titere på 4096.The reaction was terminated by the addition of 2.5 M 2 SO 2 (50 µl) and the absorbance of the reaction medium from each hole was determined with an automated plate reading spectrophotometer (Titertek). In FIG. 6, the serum, represented by the open and closed circles, exhibited an HSV1-15 CF titer of 128 and HSV1 and HSV2 IHA titers of 4096.

Serumet, repræsenteret ved åbne og lukkede kvadrater, udviste en HSVl-CF-titer på <8 og HSV1- og HSV2-IHA-ti-tere på <8. A, lukket cirkei og lukket kvadrat angiver binding til gD12-celler, åben cirkel og åbent kvadrat 20 angiver binding til CHO-celler. B, lukket cirkel og lukket kvadrat repræsenterer den specifikke binding til gD12-celler udregnet ved subtraktion af værdierne i A. I fig. 6 kan det ses, at et serum med en høj anti-HSV-titer bestemt ved konventionelle prøvninger gav 25 en høj ELISA-titer, medens et andet serum med lave anti- HSV-titere ikke gav nogen detekterbar binding ved gD12-ElISA.The serum, represented by open and closed squares, showed an HSV1 CF titer of <8 and HSV1 and HSV2 IHA titers of <8. A, closed circle and closed square indicate binding to gD12 cells, open circle and open square 20 indicate binding to CHO cells. B, closed circle and closed square represent the specific binding to gD12 cells calculated by subtracting the values in A. In FIG. 6, it can be seen that a serum with a high anti-HSV titre determined by conventional tests yielded a high ELISA titre, while another serum with low anti-HSV titers gave no detectable binding by gD12-ELISA.

De beskrevne undersøgelser viser, at stabile cellelinier konstitutivt på deres overflade udtrykker et transficeret 30 genprodukt, som forbinder sig med antistoffer frembragt af herpes-virus-infektion.The studies described show that stable cell lines constitutively express on their surface a transfected gene product which associates with antibodies produced by herpes virus infection.

Immunisering af mus med gD12-celler.Immunization of mice with gD12 cells.

20 BALB/c-hunmus (5 uger gamle) blev skaffet fra Simonsen 24 DK 173597 B120 BALB / c female mice (5 weeks old) were obtained from Simonsen 24 DK 173597 B1

Laboratories (Gilroy, California). Musene blev delt i to grupper på hver 10 mus: en "forsøgs”-gruppe og en "kontrol"-gruppe. Hver mus i forsøgsgruppen blev injiceret med gD12-celler, som vides at udtrykke HSVl-5 glycoprotein D på deres overflade. Hver mus i kontrol gruppen blev injiceret med udgangs-CHO-cellelinien, hvorfra gD12-cellelinien var afledt. Til immunisering af mus blev begge typer celler dyrket til konfluens i 15 cm vsvskulturskåle. CHO-cellerne blev dyrket i 10 Hams F12-medium (GIBCO) suppleret med 7 % kommercielt dialyseret føtalt okseserum (GIBCO), penicillin (100 enh./ml) og streptomycin (100 enh./ml). gD12-cellerne blev dyrket i det samme medium uden glycin, hypoxanthin og thymidin. For at indhøste cellerne blev hver skål 15 vasket to gange med 15 ml phosphatpufret saltopløsning (PBS) og derpå behandlet med 15 ml PBS indeholdende 0,02 % EDTA. Efter 15 - 20 minutter blev cellerne fjernet fra skålen og peletteret ved centrifugering i 5 minutter ved fuld hastighed i en klinisk centrifuge (IEC modol 20 CL clinical centrifuge, rotor model 221). Supernatanten blev smidt væk, og cellerne blev gensuspenderet i PBS til en slutkoncentration på 1 ml PBS pr. hver 15 cm skål med celler. Hver mus blev derpå injiceret med 0,5 ml cellesuspension (ca. 5 x 10° celler) fordelt som 25 følger: 0,25 ml injiceret intraperitonealt og 0,25 ml injiceret subcutant i den løse hud i nakken. Musene blev derpå forstarkningsinjiceret 2 gange med friske celler (fremstillet som beskrevet ovenfor) den 38. dag og den 55. dag efter den oprindelige immunisering. Musene 30 blev blødtappet via halevenen den 68. dag for at opnå sera til in vitro neutraliseringsundersøgelser- Musene blev udsat for H5V1 (MacIntyre stamme) den 70. dag. Virusudsættelsen skete ved en intraperitoneal injektion på 2 x 107 pfu virus i hver mus. Musene blev bedømt 35 dagligt for dødelighed og hver anden dag for vagtændring og indtræden af lammelse. Alle musene i kontrolgruppen 25 DK 173597 B1 døde inden for 7 dage for virusudsættelsen, medens alle Forsøgsmusene blev beskyttet og ikke viste noget tegn på infektion. Disse undersøgelser fører til den konklusion, at immunisering med gD12-cellerne beskytter mod 5 en dødelig HSVl-udsættelse.Laboratories (Gilroy, California). The mice were divided into two groups of 10 mice each: a "test" group and a "control" group. Each mouse in the test group was injected with gD12 cells known to express HSV1-5 glycoprotein D on their surface. mice in the control group were injected with the starting CHO cell line from which the gD12 cell line was derived. For immunization of mice, both types of cells were grown to confluence in 15 cm culture dishes. The CHO cells were grown in 10 Hams F12 medium (GIBCO) supplemented with 7% commercially dialyzed fetal bovine serum (GIBCO), penicillin (100 units / ml) and streptomycin (100 units / ml), the gD12 cells were grown in the same medium without glycine, hypoxanthine and thymidine. each dish 15 was washed twice with 15 ml of phosphate buffered saline (PBS) and then treated with 15 ml of PBS containing 0.02% EDTA. After 15-20 minutes, the cells were removed from the dish and pelleted by centrifugation for 5 minutes at full speed. a clinical centrifuge (IEC module 20 CL clinical centrifuge, rotor model 221). The supernatant was discarded and the cells were resuspended in PBS to a final concentration of 1 ml PBS per ml. every 15 cm bowl of cells. Each mouse was then injected with 0.5 ml of cell suspension (approximately 5 x 10 ° cells) distributed as follows: 0.25 ml injected intraperitoneally and 0.25 ml injected subcutaneously into the loose skin of the neck. The mice were then amplified twice with fresh cells (prepared as described above) on the 38th day and the 55th day after the original immunization. Mice 30 were bleed via the tail vein on day 68 to obtain sera for in vitro neutralization studies. The mice were exposed to H5V1 (MacIntyre strain) on day 70. The virus exposure occurred by an intraperitoneal injection of 2 x 10 7 pfu virus in each mouse. The mice were rated 35 daily for mortality and every other day for guard change and paralysis onset. All the mice in the control group died within 7 days of the virus exposure, while all the test mice were protected and showed no evidence of infection. These studies lead to the conclusion that immunization with the gD12 cells protects against a lethal HSV1 exposure.

En varietet af transfektionsskemaer er selvfølgelig mulig under anvendelse af en række forskellige selekter-bare markører. F.eks. kan muse-L-celler nyttigt trans-ficeres under anvendelse af et utant dhfr-gen som en 10 selekterbar markør. gD-genet blev transficeret ind i sådanne celler via en vektor, der indeholder en sådan markør. I princippet kunne den beskrevne strategi anvendes til enhver situation, hvor der ønskes udtrykkelse af et membranprotein.Of course, a variety of transfection schemes is possible using a variety of selectable markers. Eg. For example, mouse L cells can be usefully transfected using an innate dhfr gene as a selectable marker. The gD gene was transfected into such cells via a vector containing such a marker. In principle, the strategy described could be applied to any situation where expression of a membrane protein is desired.

15 Udtrykkelse af en afkortet form af gD-genet.Expression of a truncated form of the gD gene.

Den forudgående beskrivelse angår fremstillingen af membranbundet gD-protein. Som omtalt ovenfor i forbindelse med fig. 2 blev der imidlertid ved analyse af amino-syresekvenserne af gD-proteinet i HSV1 og HSV2 i hvert 20 tilfælde identificeret et hydrophobt/hydrophilt carboxyl- terminalt membranbindende domæne (fig. 7).The foregoing description relates to the preparation of membrane bound gD protein. As discussed above in connection with FIG. However, in analysis of the amino acid sequences of the gD protein in HSV1 and HSV2, in each 20 cases, a hydrophobic / hydrophilic carboxyl-terminal membrane-binding domain was identified (Figure 7).

Et skematisk diagram af HSVl-glycoprotein D (gD).A schematic diagram of HSV1 glycoprotein D (gD).

Hydrophobe (gråtonet) og hydrophile (mærket +) områder af proteinet blev bestemt ud fra hydropatianalysen af 25 gD-proteinsekvensen afledt fra gensekvensen. Kun de områder, som menes at være vigtige for membranlokalisering og -binding, er vist. De funktionelle domæner er: a) signalsekvensen (33), b) det hydrophobe transmembrandomæne og c) det ladede membrananker. De 3 formodede 30 N-forbundne glycosyleringssteder er vist med bogstavet G. Udtrykkelsesplasmidet bestod af det bakterielle pBR322- 26 DK 173597 B1 repliceringsorigin og -ampicillinresistensgen, en cDNA-indsstning, son koder for muse-dihydrofolatreductase-genet under transcriptionsstyring af den tidlige SV40-promotor (53) og et HindliI-Hinfl-fragment, som koder 5 for de første 300 aminosyrer af gD under transcriptions styring af' en anden tidlig SV40-promotor. HindIII-cen-tret i dette fragment ligger 74 bp til 5'-siden for gD-genets start-methionincodon. HindllI-centret i vektorens tidlige SV40-område (36) ligger 250 bp til 3*-10 siden for SV40-promotorens Goldberg-Hogness-kasse. Hinfl- centret (gjort stumpt med Klenow-DNA-polymerase og 4 deoxynucleotidtriphosphater) ligeres til Hpal-centret i det 3'-utranslaterede område af hepatitis-B-virus-over-fladeantigen-genet (36). Denne metode er også nyttig 15 til fremstilling af et afkortet HSV2-gen. Den resulteren de sekvens skaber en stopcodon (TAA) umiddelbart efter aminosyre 300 i gD-genet. Transcriptionsafslutnings-og -polyad.enyleringscentre for den afkortede gD-gen-trans-cript er indkodet af det 31-utranslaterede område af 20 hepatitis-B-overfladeantigen-genet (36).Hydrophobic (grayscale) and hydrophilic (labeled +) regions of the protein were determined from the hydropathy analysis of the 25 gD protein sequence derived from the gene sequence. Only those areas that are thought to be important for membrane localization and binding are shown. The functional domains are: a) the signal sequence (33), b) the hydrophobic transmembrane domain, and c) the charged membrane anchor. The 3 putative 30 N-linked glycosylation sites are shown with the letter G. The expression plasmid consisted of the bacterial pBR322-26 DK 173597 B1 replication origin and ampicillin resistance gene, a cDNA insert that codes for the mouse dihydrofolate reductase gene during promoter (53) and a HindIII-Hinfl fragment encoding 5 for the first 300 amino acids of gD under the transcriptional control of another early SV40 promoter. The HindIII center of this fragment lies 74 bp to the 5 'side of the gD gene's start methionine codon. The HindIII center in the early SV40 region of the vector (36) lies 250 bp to the 3 * -10 side of the SV40 promoter Goldberg-Hogness box. The gene center (blunted with Klenow DNA polymerase and 4 deoxynucleotide triphosphates) is ligated to the Hpal center in the 3 'untranslated region of the hepatitis B virus surface antigen gene (36). This method is also useful for producing a truncated HSV2 gene. It results in the sequence creating a stop codon (TAA) immediately after amino acid 300 in the gD gene. Transcription termination and polyadenylation centers for the truncated gD gene transcript are encoded by the 31-untranslated region of the 20 hepatitis B surface antigen gene (36).

Plasmidet pgDtrunc.dhfr blev konstrueret som følger: det gD-holdige SacI-fragment på 2,9 kb blev isoleret fra BamHI-fragmentet klonet fra HSVl-genomet (se ovenfor) i plasmidet pFM3 (se ovenfor) skåret med SacI. Et Hindlll-25 BstNI-fragment på 1,6 kb indeholdende hele gD-genet blev subklonet ind i HindiII-BstNI-nedbrudt pFM42 (EP ansøgning nr. 68693). Dette plasmid blev derpå skåret med Hinfl, gjort stumpt med Klenow-DNA-polymerase og 4 deoxynucleotidtriphosphater og derpå skåret med Hindlll.The plasmid pgDtrunc.dhfr was constructed as follows: the 2.9 kb gD-containing SacI fragment was isolated from the BamHI fragment cloned from the HSV1 genome (see above) into plasmid pFM3 (see above) cut with SacI. A 1.6 kb HindIII BstNI fragment containing the entire gD gene was subcloned into HindiII-BstNI digested pFM42 (EP Application No. 68693). This plasmid was then cut with HinfI, blunted with Klenow DNA polymerase and 4 deoxynucleotide triphosphates and then cut with HindIII.

30 HindiII-stump-HinfI-fragmentet på 960 bp indeholdende det afkortede gD-gen blev isoleret og ligeret til Hindlll-HpaI-bedbrudt pEHBall4. Den resulterende konstruktion (pgDCos-trunc) indeholdt det afkortede gD-gen med hepa-titis-B-overfladeantigen-genet ved dets 3'-ende. Et 35 2,3 kb HindliI-BamHI-fragment indeholdende det afkortede 27 DK 173597 B1 gD-gen blev isoleret fra pgOCos-trune. Fragmentet på 2,8 kb indeholdende originet og den tidlige promotor fra SV40 og ampicillinresistens-genet og det bakterielle repliceringsorigin fra pBR322 blev isoleret fra plasmidet 5 pEHBal 14. Fragmentet på 2,1 kb indeholdende muse-dihydro- folatreductase-cDNA-klonen under transcriptionsstyring af en anden SV40-tidlig-promotor blev isoleret fra plasmidet pE348HBVE400D22 (36). Disse 3 fragmenter blev ligeret sammen med T4-DNA-ligase, og den resulterende 10 blanding blev anvendt ved at transformere E. coli stamme' 294. Plasmid-DNA fra de resulterende kolonier blev sigtet med Sac 2, og den korrekte konstruktion pgDtrunc.dhfr (fig1.’ 8) blev anvendt til yderligere transfektionsunder-søgelser.The 960 bp HindiII blunt HinfI fragment containing the truncated gD gene was isolated and ligated to HindIII-HpaI-digested pEHBall4. The resulting construct (pgDCos trunc) contained the truncated gD gene with the hepa-titis B surface antigen gene at its 3 'end. A 2.3 kb HindIII-BamHI fragment containing the truncated B1 gD gene was isolated from pgOCos trune. The 2.8 kb fragment containing the original and early SV40 promoter and the ampicillin resistance gene and bacterial replication origin of pBR322 was isolated from plasmid 5 pEHBal 14. The 2.1 kb fragment containing the mouse dihydrofolate reductase cDNA clone under transcriptional control of another SV40 early promoter was isolated from the plasmid pE348HBVE400D22 (36). These 3 fragments were ligated together with T4 DNA ligase and the resulting mixture was used to transform E. coli strain 294. Plasmid DNA from the resulting colonies was screened with Sac 2 and the proper construct pgDtrunc.dhfr (Fig.18 ') was used for further transfection studies.

15 Plasmidet pEHBal 14 blev konstrueret ved spaltning af pE342ARl (beskrevet nedenfor), en SV40-hepatitis-chimæra, med Xba I, som spalter én gang i kodeområdet for HBV-over-fladeantigenet, og derpå sekventielt fjerne sekvenser, der omgiver dette Xbal-center ved anvendelse af nuclea-20 sen Bal 31. Plasmidet blev ligeret i narvær af det syn tetiske oligonucleohid 5·-AGCTGAATTC, som forbinder HBV-DNA’en med et Hindlll-restriktionscenter.Plasmid pEHBal 14 was constructed by cleavage of pE342AR1 (described below), an SV40 hepatitis chimera, with Xba I, which cleaves once in the coding region of the HBV surface antigen, and then sequentially removes sequences surrounding this XbaI. center using the nuclease Bal 31. The plasmid was ligated in the presence of the synthetic oligonucleohide 5 · -AGCTGAATTC, which links the HBV DNA to a HindIII restriction center.

Resulterende plasmider blev sigtet for et EcoRI-HindlII-fragment på ca. 150 bp. pEHBal 14 blev sekvensbestemt, 25 hvilket bekræftede, at et Hindlli-center var blevet placeret ved et punkt lige ovenfor, hvor HBsAg-startco-donen normalt findes. Denne konstruktion placerer således et unikt HindllI-center, som er egnet til kloning ved en position, hvor et højt udtrykt protein (HBsAg) begynder 50 translation. Alle formodede signaler, som er nødvendige for høj udtrykkelse af et protein, bør være til stede på denne 5’-ledersekvens.Resulting plasmids were screened for an Eco RI-HindIII fragment of ca. 150 bp. pEHBal 14 was sequenced, confirming that a HindIII center had been located at a point just above where the HBsAg start codon is normally found. Thus, this construct places a unique HindIII center suitable for cloning at a position where a highly expressed protein (HBsAg) begins translation. All putative signals required for high expression of a protein should be present on this 5 'leader sequence.

Plasmidet pE342, som udtrykker HBV-overfladeantigen 28 DK 173597 B1 (også betegnet som pHBs348-E), er blevet beskrevet af Levinson et al., EP offentliggørelsesskrift nr. 0073656, der betragtes som inkorporeret i denne beskrivelse ved denne henvisning. (Kort fortalt blev originet fra abevirus 5 SV40 isoleret ved nedbrydning af SV40-DNA med HindlH og omdannelse af HindliI-enderne til EcoRI-ender ved tilføjelse af en omsætter (AGCTGAATTC)). Denne DNA blev skåret med PvuII, og RI-linkere tilføjet. Efter nedbrydning med EcoRl blev 348 bp fragmentet, der spænder over 10 originet, isoleret ved polyacrylamidgel-elektroforese og elektroeluering og klonet i pBR322. Udtrykkelses-plasmidet pHBs348-E blev konstrueret ved kloning af 1986 bp fragmentet fra EcoRl- og BgllI-nedbrydning af HBV (Animal Virus Genetics, (Ch. 5) Acad. Press, N.Y.The plasmid pE342, which expresses HBV surface antigen 28 DK 173597 B1 (also referred to as pHBs348-E), has been described by Levinson et al., EP Publication No. 0073656, which is considered to be incorporated in this specification by this reference. (Briefly, the origin of monkey virus 5 SV40 was isolated by digestion of SV40 DNA with HindIII and conversion of HindIII ends to EcoRI ends by addition of a converter (AGCTGAATTC). This DNA was cut with PvuII and RI linkers added. After digestion with EcoRl, the 348 bp fragment spanning the original was isolated by polyacrylamide gel electrophoresis and electroelution and cloned into pBR322. The expression plasmid pHBs348-E was constructed by cloning the 1986 bp fragment from EcoRl and BglII digestion of HBV (Animal Virus Genetics, (Ch. 5) Acad. Press, N.Y.

15 (1980)) (som spænder over genet, der koder for HBsAg) ind i pi asmidet pML (Lusky et al., Nature, 293: 79 (1981)) ved EcoRl- og BamHI-centrene. (pML er et derivat af pBR322, som har en deletion, der eliminerer sekvenser, som er inhiberende for plasmidreplicering i abeceller).15 (1980)) (spanning the gene encoding HBsAg) into the p ismid pML (Lusky et al., Nature, 293: 79 (1981)) at the EcoRl and BamHI centers. (pML is a derivative of pBR322 which has a deletion that eliminates sequences that are inhibitory for plasmid replication in monkey cells).

20 Det resulterende plasmid (pRI-Bgl) blev derpå linearise- ret med EcoRl, og 348 bp fragmentet repræsenterende SV40-ori.ginområdet blev indført i EcoRI-centret i pRI-Bgl. Originfragmentet kan indtræde i såvel den ene som den anden orientering. Da dette fragment koder for både 25 den tidlige og den sene Sl/40-protnotor foruden replice- ringsoriginet, vil HBV-gener udtrykkes under styring af såvel den ene som den anden promotor afhængigt af denne orientering (pHBs348-E repræsenterer HBs udtrykt under styring af den tidlige promotor). pE342 modifice-30 res ved delvis nedbrydning med EcoRl udfyldning i det spaltede center under anvendelse af Klenouz-DNA-polymerase I og ligering af plasmidet sammen igen, hvorved man fjerner EcoRI-centret forud for SV40-originet i pE342.The resulting plasmid (pRI-Bgl) was then linearized with EcoRI, and the 348 bp fragment representing the SV40 origin region was introduced into the EcoRI center of pRI-Bgl. The origin fragment can enter both orientation and orientation. Since this fragment encodes both the early and late S1 / 40 protnotor in addition to the origin of replication, HBV genes will be expressed under the control of one and the other promoter depending on this orientation (pHBs348-E represents HBs expressed under control of the early promoter). pE342 is modified by partial degradation with EcoR1 filling in the cleaved center using Klenouz DNA polymerase I and ligation of the plasmid back together, removing the EcoRI center prior to the SV40 origin in pE342.

Det resulterende plasmid betegnes pE342ARI.The resulting plasmid is designated pE342ARI.

35 Den resulterende sekvens skaber en stopcodon (TAA) umid- 29 DK 173597 B1 delbart efter aminosyre 300 i gO-genet. Transcriptions-afslutnings- og polyadenyleringscentrene for afkortet-gO-gentranscripten er indkodet af det 3'-utranslaterede område af hepatitis-B-overfladeantigen-genet (36)·.The resulting sequence creates a stop codon (TAA) immediately partitioned after amino acid 300 in the gO gene. The transcription termination and polyadenylation centers of the truncated gO gene transcript are encoded by the 3 'untranslated region of the hepatitis B surface antigen gene (36) ·.

5 Den resulterende vektor blev transficeret (40) ind i en dhfr” CHO-cellelinie (39), og der blev selekteret en egnet klon gG10*2, som producerede det afkortede gD-protein og secernerede det til det omgivende medium. Proteinet blev ekstraheret fra mediet, og cellerne blev 10 prøvet for immunogenaktivitet. Fig. 9 viser resultaterne af immunofældninger af intra- og ekstracellulære ^S-methionin-mærkede ekstrakter.The resulting vector was transfected (40) into a dhfr "CHO cell line (39), and a suitable clone gG10 * 2 was selected which produced the truncated gD protein and secreted it to the surrounding medium. The protein was extracted from the medium and the cells were tested for immunogenic activity. FIG. Figure 9 shows the results of immunoprecipitations of intra- and extracellular β-methionine-labeled extracts.

Radioimmunofældning af celleforbundne og secernerede former af gD.Radioimmunoprecipitation of cell-linked and secreted forms of gD.

15 Celler blev dyrket i Ham's F12-medium (Gibco) suppleret med 7 S kommercielt dialyseret føtalt okseserum (Gibco), penicillin (100 enh./ml) og streptomycin (100 enh./ml).Fifteen cells were grown in Ham's F12 medium (Gibco) supplemented with 7S commercially dialyzed fetal bovine serum (Gibco), penicillin (100 units / ml) and streptomycin (100 units / ml).

Da kulturerne var omkring 80 % konfluente, blev mediet fjernet, cellerne blev vasket to gange med phosphatpufret 20 saltopløsning (PBS), og der tilsattes et mærkende medium (Dulbecco's modificerede=Eagle's medium indeholdende 1/10 af den normale koncentration af methionin) til 2 35 en slutkoncentration på 0,05 ml/cm . Der tilsattes S-methionin SJ.204, Amersham Int.) til en slutkoncentration 25 på 50 - 75 yuCi/ml, og cellerne blev dyrket i yderligere 18 - 20 timer. Efter mærkningen blev mediet indhøstet, og cellerne blev vasket to gange i PBS og fjernet fra kulturskålene ved behandling med PBS indeholdende 0,02 % EDTA. Cellerne blev derpå solub,i 1 iseret i lysepuffer 30 bestående af: PBS? 3 % NP-40, 0,1 % okseserumalbumin, 5 x 10 ^ M phenylmethylsulfonylfluorid og 0,017 TlU/ml apoprotinin, og det resulterende lysat blev klaret ved centrifugering ved 12000 x G. Til immunofældningsreaktio- 30 DK 173597 B1 ner blev cellelysaterne fortyndet tredobbelt med PBS, og aliquoter (typisk 180 ^ul) blev blandet med 2-5 ^ul antisera og inkuberet ved 4 °C i 30 minutter. For at immunofælde den secernerede form af gD blev 500 ^ul 5 konditioneret medium inkuberet med 2 yul antisera i 30. minutter ved 4 °C. Immunkomplekser blev derpå adsorbe-ret til fikserede S. aureus celler ved Kessler's metode (40a) og blev udfeldet ved centrifugering ved 12000 x G i 30 s. S. aureus cellerne blev derpå vasket 3 gange 10 med vaskepuffer (PBS, 1 % NP-40, 0,3 % natriumdodecyl-sulfat), og immunkomplekserne blev elueret med 20 /u! polyacrylamidgel-prøvepuffer (62,5 mM ”Tris"-HCl-puffer (pH 6,8) indeholdende 10 % glycerol, 5 S 2-mercapto-ethanol og 0,01 % bromphenolblåt ved 90 °C i 3 minutter.When the cultures were about 80% confluent, the medium was removed, the cells were washed twice with phosphate buffered saline (PBS), and a labeling medium (Dulbecco's modified = Eagle's medium containing 1/10 of the normal concentration of methionine) was added to 2 A final concentration of 0.05 ml / cm. S-methionine SJ.204, Amersham Int.) Was added to a final concentration 25 of 50-75 µCi / ml and the cells were grown for an additional 18-20 hours. After labeling, the medium was harvested and the cells washed twice in PBS and removed from the culture dishes by treatment with PBS containing 0.02% EDTA. The cells were then solubilized in 1 buffered in light buffer 30 consisting of: PBS? 3% NP-40, 0.1% bovine serum albumin, 5 x 10 8 M phenylmethylsulfonyl fluoride and 0.017 TlU / ml apoprotinin, and the resulting lysate was cleared by centrifugation at 12000 x G. For immunoprecipitation reactions, the cell lysates were diluted triple with PBS, and aliquots (typically 180 µl) were mixed with 2-5 µl antisera and incubated at 4 ° C for 30 minutes. To immunoprecipitate the secreted form of gD, 500 µl of 5 conditioned medium was incubated with 2 µl antisera for 30 minutes at 4 ° C. Immune complexes were then adsorbed to fixed S. aureus cells by Kessler's method (40a) and precipitated by centrifugation at 12000 x G for 30 s. The S. aureus cells were then washed 3 times 10 with wash buffer (PBS, 1% NP). 40, 0.3% sodium dodecyl sulfate), and the immune complexes were eluted with 20 µl! polyacrylamide gel sample buffer (62.5 mM "Tris" HCl buffer (pH 6.8) containing 10% glycerol, 5 S 2-mercapto-ethanol and 0.01% bromophenol blue at 90 ° C for 3 minutes.

15 Efter centrifugering i 30 s blev supernatanterne påført 10 % polyacrylamidgelplader ifølge Laemmli's metode (45). A, immunofældning af fuld-længde membranbundet gD fra gD12-cellelinien. B, immunofældning af den celleforbundne form af det afkortede gD fra lysater af to 20 uafhængigt afledte cellelinier (1 og 2). C, immunofældning af det afkortede gD fra kultursupernatanterne af de to cellelinier fra B. (-) viser kontrol-kaninantiserumj (+) viser kanin-anti-HSVl-antiserum (Dako Corp.).After centrifugation for 30 s, the supernatants were applied to 10% polyacrylamide gel plates according to Laemmli's method (45). A, Immunoprecipitation of full-length membrane-bound gD from the gD12 cell line. B, Immunoprecipitation of the cell-linked form of the truncated gD from lysates of two 20 independently derived cell lines (1 and 2). C, Immunoprecipitation of the truncated gD from the culture supernatants of the two cell lines from B. (-) shows control rabbit antiserum (+) shows rabbit anti-HSV1 antiserum (Dako Corp.).

Der ses tydeligt en intracellular form på 35000 dalton 25 og et secerneret og tilsyneladende glycosyleret ekstracel- lulært gD-protein.An intracellular form of 35000 daltons 25 and a secreted and apparently glycosylated extracellular gD protein are clearly seen.

Fremstilling af afkortet gD anvendt til immunisering.Preparation of truncated gD used for immunization.

gD10.2-celler blev dyrket til konfluens i polystyren-vavs-kultur-rulleflasker (Corning 25140) i F12-medium suppleret 30 med 7 % kommercielt dialyseret føtalt kalveserum, 50 ^ug/ml streptomycin og 0,3 ^ug glutamin. Efter at der var nået konfluens, blev mediet fjernet, og cellerne blev vasket 3 gange i det samme medium uden føtalt kalve- 31 DK 173597 B1 serum og suppleret med 2 mg/ml Hepes-puFfer (serumfrit medium). Cellerne blev derpå dyrket i 3 - 4 dage i serum-frit medium, og det konditionerede medium blev derpå indhøstet og opbevaret ved -20 °C. Mediet blev derpå 5 optøet ved 37 °C og centri Fugeret ved 5000 omdr./min.gD10.2 cells were grown to confluence in polystyrene wafer culture roller bottles (Corning 25140) in F12 medium supplemented with 7% commercially dialyzed fetal calf serum, 50 µg / ml streptomycin and 0.3 µg glutamine. After confluency was reached, the medium was removed and the cells washed 3 times in the same medium without fetal calf serum and supplemented with 2 mg / ml Hepes-puFfer (serum-free medium). The cells were then cultured for 3-4 days in serum-free medium, and the conditioned medium was then harvested and stored at -20 ° C. The medium was then thawed at 37 ° C and centrifuged at 5000 rpm.

i 20 minutter i en Sorvall GS-3 rotor. Efter centrifugeringen blev pillen smidt væk, og supernatanten blev koncentreret i et ultrafiltreringsapparat (Amicon) udstyret med en YM-5 ultrafiltreringsmembran. Det resulterende 10 præparat blev koncentreret omkring 150 gange i forhold til udgangsmaterialet og indeholdt omkring 8 mg protein pr. liter. Præparatet blev derpå dialyseret i udstrakt grad over for phosphatpufret saltopløsning (PBS) og anvendt til immunisering uden yderligere rensning.for 20 minutes in a Sorvall GS-3 rotor. After centrifugation, the pill was discarded and the supernatant was concentrated in an ultrafiltration apparatus (Amicon) equipped with a YM-5 ultrafiltration membrane. The resulting preparation was concentrated about 150 times relative to the starting material and contained about 8 mg protein per day. liter. The preparation was then extensively dialyzed against phosphate buffered saline (PBS) and used for immunization without further purification.

15 Immunisering af mus15 Immunization of mice

Hver 8 uger gamle BALB/c-mus blev immuniseret med 36 ^ug protein indeholdt i 200 ^ul af en emulsion bestående af 50 % vandigt antigen og 50 % "Complete Freund's adjuvant.". Hver mus blev immuniseret med flere intradermale 20 og subcutane steder som følger: 25 ^ul i hver bagfods- trædepude, 50 ^ul i halen og 100 yUl fordelt blandt 3-5 intradermale steder langs ryggen. 4 Uger efter den primære immunisering blev musene forstærkningsimmuniseret med 36 ^ug af proteinet som ovenfor med undta-25 gelse af, at emulsionen blev fremstillet med "incompleteEvery 8 weeks old BALB / c mice were immunized with 36 µg protein contained in 200 µl of an emulsion consisting of 50% aqueous antigen and 50% "Complete Freund's adjuvant." Each mouse was immunized with multiple intradermal 20 and subcutaneous sites as follows: 25 µl in each hind foot cushion, 50 µl in the tail and 100 µl distributed among 3-5 intradermal sites along the spine. Four weeks after the primary immunization, the mice were gain-immunized with 36 µg of the protein as above except that the emulsion was prepared with "incomplete

Freund's adjuvant". Til forstærkningsimmunisering modtog hver mus 200 ^ul af antigenemulsionen fordelt som følger: 50 ^ul i halen, 150 ^ul fordelt mellem 5 intradermale steder langs ryggen. 19 Dage efter forstærkningen blev 30 omkring 500 ^ul blod opsamlet Fra hver mus ved haleaf- tapning. De sera, som blev opnået Fra denne aftapning, blev anvendt til in vitro neutraliseringsundersøgelser (se nedenfor). 37 Dage efter forstærkningen blev musene anvendt til virusudsættelsesundersogelser. Kontrolmus, 32 DK 173597 B1 som passede til forsøgsmusene med hensyn til alder, køn og stamme, blev immuniseret med humant serumalbumin (15 ^ug pr. mus) under anvendelse af den samme forskrift som med forsøgsmusene.Freund's adjuvant. "For enhancement immunization, each mouse received 200 µl of the antigen emulsion distributed as follows: 50 µl in the tail, 150 µl distributed between 5 intradermal sites along the spine. The sera obtained from this tapping were used for in vitro neutralization studies (see below). 37 Days after amplification, the mice were used for virus exposure studies. Control mice, 32 DK 173597 B1, which matched the experimental mice for age , gender and strain, were immunized with human serum albumin (15 µg per mouse) using the same regimen as with the experimental mice.

5 In vitro neutralisering.5 In vitro neutralization.

Sera fra 11 mus immuniseret med koncentreret gD10.2-kul- . tur-supernatant blev prøvet for evnen til at neutralisere HSV1 in vitro. Rækkefortyndet museserum (dobbeltfortyndinger: 1:8 til 1:16384) blev inkuberet med omkring 10 40 pfu HSV1 i 1 time ved 37 °C i Dulbecco's modificeredeSera from 11 mice immunized with concentrated gD10.2 carbon. trip supernatant was tested for the ability to neutralize HSV1 in vitro. Row-diluted mouse serum (double dilutions: 1: 8 to 1: 16384) was incubated with about 10 40 pfu HSV1 for 1 hour at 37 ° C in Dulbecco's modified

Eagle's medium (DMEM). Efter seruminkubationen blev hver fortynding påført omkring 40000- Vero-celler indeholdt i hvert hul på en 96 hullers vævskulturplade. Efter 3-4 dage blev virusvækst bestemt ved farvning af hvert 15 hul med 0,5 % krystalviolet. Huller hvori der var virus- vækst, viste ingen farvning. Neutraliseringstitere blev udregnet ved bestemmelse af den højeste serumfortynding, som forhindrede virusinduceret celledød. Alle prøvede sera (n = 10) fra mus immuniseret med gD10.2-superna-20 tantmateriale viste H.SVl-neutraliseringsaktivitet (område .Eagle's medium (DMEM). After the serum incubation, each dilution was applied to about 40,000 Vero cells contained in each hole on a 96-well tissue culture plate. After 3-4 days, virus growth was determined by staining each 15 hole with 0.5% crystal violet. Holes in which there was virus growth showed no staining. Neutralization titers were calculated by determining the highest serum dilution that prevented virus-induced cell death. All tested sera (n = 10) from mice immunized with gD10.2 supernatant showed H.SV1 neutralization activity (range.

1:16 til 1:512) og HSV2-neutra1iseringsakti vi tet (område 1:8 til 1:16). Kontrolmusesera (n = 8) gav ikke nogen neutralisering. Serum opnået fra en mus immuniseret med HSV1 gav en neutraliserende titer på 1:32.1:16 to 1: 512) and the HSV2 neutralization activity (range 1: 8 to 1:16). Control mouse sera (n = 8) did not provide any neutralization. Serum obtained from a mouse immunized with HSV1 gave a neutralizing titer of 1:32.

2 5 Virusudsattelse 11 Mus immuniseret med koncentreret gD10.2-supernatant og 13 kontrolmus immuniseret med humant serumalbumin blev udsat for 10000000 pfu HSV1 (Maclntyre-stamme) ved intraperitoneal injektion. 14 Dage efter injektionen 30 af virus viste ingen af de gD10.2-immuniserede mus noget tegn på virusinfektion. I kontrolgruppen var 7 af de 13 mus døde ved den 14. dag, 3 viste alvorligt tab og 33 DK 173597 B1 lammelse, og 3 så sunde ud. Statistisk analyse (tvo tailed Fisher exact test) viste, at Forskellen mellem den immuniserede gruppe og kontrolgruppen var signifikant ved niveauet p = 0,002 (se tabel 1).Virus exposure 11 Mice immunized with concentrated gD10.2 supernatant and 13 control mice immunized with human serum albumin were exposed to 10000000 pfu HSV1 (Maclntyre strain) by intraperitoneal injection. 14 Days after injection 30 of virus, none of the gD10.2 immunized mice showed any evidence of viral infection. In the control group, 7 of the 13 mice were dead by the 14th day, 3 showed severe loss and 33 paralysis, and 3 looked healthy. Statistical analysis (two tailed Fisher exact test) showed that the difference between the immunized group and the control group was significant at the p = 0.002 level (see Table 1).

34 DK 173597 B1 jj c © —I <1> <—I •h o cn34 DK 173597 B1 jj c © —I <1> <—I • h o cn

C -U li- H CC -U li- H C

ej c) to > ·Η (-lo?not c) to> · Η (-lo?

X) Ό CO 0) Η Ό OX) Ό CO 0) Η Ό O

(U C <—I fA .. E H (J C Cj 1*- O II(U C <-I fA .. E H {J C Cj 1 * - O II

tf) (D r—i h Η ·Η D d >» 0) ΙΛ O' I 3 Etf) (D r — i h Η · Η D d> »0) ΙΛ O 'I 3 E

r—I > Q) 4J £ 10 4) T3 C-t O Di E 33r — I> Q) 4J £ 10 4) T3 C-t O Tue E 33

Od) jj λ Ct © © «-(-«£(-1 jj f—i 1*— CO —4 JJ Cj O .C O' CM) a -H 0)Od) jj λ Ct © © «- (-« £ (-1 jj f — i 1 * - CO - 4 JJ Cj O .C O 'CM) a -H 0)

Jj Q) t-4 Cj Di <·- CD Ή H JJ 0) 0)Jj Q) t-4 Cj Di <· - CD Ή H JJ 0) 0)

Bi © -H © E © Ό (0 W COBi © -H © E © Ό (0 W CO

tf) (DO) > o? D K\ C E Cj C JJtf) (DO)> o? D K \ C E Cj C JJ

tIO| . OM) N £ P <U (0 (j O -H CTIO | . OM) N £ P <U (0 (j O -H C

O sj O C0«D> lA O Ό »TO :> © U_ C rtO sj O C0 «D> lA O Ό» TO:> © U_ C rt

T31 Ό 3WW »B C Q. Ό Di ET31 Ό 3WW »B C Q. Ό Tue E

EX o <u i? Λ I) h 3 on jj© ce cj c eb x: rH OD Cj X) X) -U CD 0 4) 1)4) i χ> © —i © to co (j ia c ro co © JJ fl) >—( O E © Ό to -H D Cj ΌEX o <u i? Λ I) h 3 on jj © ce cj c eb x: rH OD Cj X) X) -U CD 0 4) 1) 4) i χ> © —i © to co (j ia c ro co © JJ fl) > - (OE © Ό to -HD Cj Ό

~ jj © X) —l £3 ··"> <D T) C E O CO~ jj © X) —l £ 3 ·· "> <D T) C E O CO

<M © JJ C © © JJ © D-H e)®Ci_c<M © JJ C © © JJ © D-H e) ®Ci_c

—4 E -H Dør CTjJ Cj > EB—4 E -H Door CTjJ Cj> EB

> E O fA > 4) H C > (0 ·Η O I) (4 E> E O fA> 4) H C> (0 · Η O I) (4 E

tn CO -H Cj > ·Η Cj C 1-tJJ —4 —I © x i—i jjotn co© ο. © qVjq-pj) ^ e. x (j u. ό c» e- c' CO© © Γ~·Η Ό OM) Φ (0 U- —4 © «4- O JJ © C —(tn CO -H Cj> · Η Cj C 1-tJJ —4 —I © x i — i jjotn co © ο. © qVjq-pj) ^ e. X (j u. »C» e- c 'CO © © Γ ~ · Η Ό OM) Φ (0 U- —4 © «4- O JJ © C - (

OIJC «Η C B *—( JJ © > -H © COOIJC «Η C B * - (JJ ©> -H © CO

,-J C EB © (4 © Cj Cj O' > •H C (4 O G) © X σ» ¢) 4) ® s ·Η JJ Cj © I i—I © ro C (!) (Ι)Ό i 3 VO o . Ό OHH H Jj (4 (4 -r( Di <U »—I BQ a U O) O JJ © © C On 8), -JC EB © (4 © Cj Cj O '> • HC (4 OG) © X σ »¢) 4) ® s · Η JJ Cj © I i — I © ro C (!) (Ι) Ό i 3 VO o. Ό OHH H YY (4 (4 -r (T <U »—I BQ and U O) O YY © © C On 8)

c ·· ·Η σιΓ 0) O E 1*-C7I O M 3 —Ic ·· · Η σιΓ 0) O E 1 * -C7I O M 3 —I

t —I i—I C > E « CO ©-HECt -I i-I C> E «CO © -HEC

»—I CMIO CJ JJ © 3» © >-( ©CEN©»—I CMIO CJ JJ © 3» ©> - (© CEN ©

> CO Cj © O © JJ C D-HD> CO Cj © O © JJ C D-HD

—i . in·» J) h OOH (I) o > O' E t< Ό U) χ —| D © X) O £> © HU D E © Ή ©—I. in · »J) h OOH (I) o> O 'E t <Ό U) χ - | D © X) O £> © HU D E © Ή ©

CD © C C O .Ω JJ —1 '"-v-t Cj > ECD © C C O .Ω YY —1 '"-v-t Cj> E

C b IXt O Di £) EBC b IXt O Di £) EB

I— I © T3 ΟΙΌ © IA > E Cj JJI— I © T3 ΟΙΌ © IA> E Cj JJ

n Or-u) ro o ·<-)© ω ·α o © —t > O (0 (i Ό > CD O'—I Cj t>- Cj • to o> .X s —t e cd α © JJ CJ X e li- <t J-* -H Jj CO · 3 ,-t X) © *co © —i © cj ro c ro -h cmn Or-u) ro o · <-) © ω · α o © —t> O (0 (i Ό> CD O'— I Cj t> - Cj • to o> .X s –th cd α © JJ CJ X e li- <t J- * -H Jj CO · 3, -t X) © * co © —i © cj ro c ro -h cm

©lA CO © Cj ϋ Cj C CO jJ Di 3 © CO C O© lA CO © Cj ϋ Cj C CO jJ Tue 3 © CO C O

C·· O E C*— © cn ©JJ ΕΣΌΌ 3 OC ·· O E C * - © cn © JJ ΕΣΌΌ 3 O

i—i >jj© cro o de -4 I O I C O © »4- (4 O« · (-1 E oi — i> jj © cro o de -4 I O I C O © »4- (4 O« · (-1 E o

> NO <—I O <* —I UJ X) Jj x X) CO © > -H> NO <—I O <* —I UJ X) Jj x X) CO ©> -H

tn r—( >-HjQD ·ηχ © c jj © il x·· tn jj T) · »tj ε ·“· **- ·“· J3 r—i x ro © cn © > jj ©· c od o o.tn r— (> -HjQD · ηχ © c jj © il x ·· tn jj T) · »tj ε ·“ · ** - · “· J3 r — ix ro © cn ©> jj © · c od o o .

C E C Ό O O CL-—- Jj W ·—)C E C Ό O O CL -—- Jj W · -)

(J -Η ·Η 10 H i CO© © S (4 © X) JJ(J -Η · Η 10 H i CO © © S (4 © X) JJ

O U 4) ΌΗ O EB (4 E (4 <—I © C ©O U 4) ΌΗ O EB (4 E (4 <—I © C ©

CfA i*— O © C Q. > JJE © CL CO © (0 DCfA i * - O © C Q.> JJE © CL CO © (0 D

© © ro cj >·. cj © to cro co o x co d ro Π C JJ 0> © JJ © C-4 D H 4) -r-ι d E © •rt D © CO J3 (-4 Jj © Cj CO c: <fSH >© © ro cj> ·. cj © to cro co o x co d ro Π C JJ 0> © JJ © C-4 D H 4) -r-ι d E © • rt D © CO J3 (-4 Jj © Cj CO c: <fSH>

Jjf4 > O' D O H jJ -.-4 Cj I D Jj O -HJjf4> O 'D O H jJ -.- 4 Cj I D Jj O -H

C JJ C © C Di <4- JJ -M > O© E C · · (4 CC JJ C © C Di <4- JJ -M> O © E C · · (4 C

<£Oin (4 -1-4 C O Jj ti-u e CO (4 Jj Jj cn x α C -r! (4 ti OT © >- -H > © © C X?<£ Oin (4 -1-4 C O Jj ti-u e CO (4 Jj Jj cn x α C -r! (4 ti OT ©> - -H> © © C X?

Di © Di CPX) 4)4) C D X» Cj O . © 3» Cj > > -H C © coco > ‘—> © © - >Di © Di CPX) 4) 4) C D X »Cj O. © 3 »Cj>> -H C © coco> '-> © © ->

©EB © X E *·"· Cj CO *-4 *r4 © X) Jj CO «X© EB © X E * · "· Cj CO * -4 * r4 © X) Jj CO« X

—4 H 4) H CjX) Ό o 4) -4 B BH .tn JJ—4 H 4) H CjX) Ό o 4) -4 B BH .tn JJ

CO O Cl) D · M 1) C 3 Σ JC X) C C X CCO O Cl) D · M 1) C 3 Σ JC X) C C X C

4) » Η ΙΛ Cj O (J CO Ή -—4 O) CO © D © '— CO4) »Η ΙΛ Cj O (J CO Ή -—4 O) CO © D © '- CO

CD—1^4 ro O —- O © --4 c > «4- CO - C E CO Di < X t-, ti- <t »—I «—I Cj ©—4C DX)C0ECC->-4 © ao r- —i ro o —i > -h ecjj-h-m-h «4- CO C IA tA D Cj ti- X) t/S I D D CO Cj E ·«-»CD-1 ^ 4 ro O —- O © --4 c> «4- CO - CE CO Di <X t-, ti- <t» —I «—I Cj © —4C DX) COECC -> - 4 © ao r- —i ro o —i> -h ecjj-hmh «4- CO C IA tA D Cj ti- X) t / SIDD CO Cj E ·« - »

©©NO £ 4) X—I Cj © © CO © D C©AKE NO £ 4) X — I Cj © © CO © D C

Gi (D Ό <—I XJ DE CO > © Cj Xl C CO X) G»Gi (D Ό <—I XJ DE CO> © Cj Xl C CO X) G »

© D C ·· © nO © O D**-tn > U- D -H -H —4 -H© D C ·· © nO © O D ** - tn> U- D -H -H —4 -H

CO O Ω X CO —I > ON Z CO X <0 X XL' CO C C ro tnCO O Ω X CO —I> ON Z CO X <0 X XL 'CO C C ro tn

Cj ON CTNCj ON CTN

O O O · · U_ lA vA —I CM ΙΑ <ί 35 DK 173597 B1O O O · · U_ lA vA —I CM ΙΑ <ί 35 DK 173597 B1

Det fandtes, at det afkortede protein frigivet til mediet fra gD10.2-celler var effektivt til at beskytte mus mod en dødelig infektion af HSV1.It was found that the truncated protein released to the medium from gD10.2 cells was effective in protecting mice against a lethal infection of HSV1.

Antigenfremstilling til HSV2-virusudsættelse.Antigen preparation for HSV2 virus exposure.

5 Forstarkede gD10.2.2-celler, dyrket i nærvsrelse af 250 nM methotrexat, blev podet i rullekultur flasker 2 (850 cm ) og blev dyrket i Ham's F12-medium (GIBCO) suppleret med 7 % føtalt okseserum. Efter at cellerne havde nået konfluens (cå. 5 dage) blev dyrkningsmediet 10 fjernet, cellerne blev vasket 3 gange i phosphatpufret saltopløsning (PBS) for at fjerne serumproteiner, og der tilsattes nyt "serumfrit" dyrkningsmedium. Det serum-frie medium bestod af Ham's F12-medium indeholdende 25 mM Hepes-puffer. Cellerne blev derpå dyrket i 3 dage, 15 og det resulterende konditionerede medium blev indhøstet og anvendt til antigenfremstilling. Derpå sattes frisk serumfrit medium til cellerne, og kredsløbet med indhøst-ning af konditioneret medium med 3 dages intervaller blev gentaget yderligere 1 eller 2 gange, indtil cellerne 20 døde eller ikke længere hæftede til kulturoverfladen.5 Enriched gD10.2.2 cells, grown in the presence of 250 nM methotrexate, were seeded in roller culture flasks 2 (850 cm) and grown in Ham's F12 medium (GIBCO) supplemented with 7% fetal bovine serum. After the cells reached confluence (about 5 days), culture medium was removed, cells were washed 3 times in phosphate-buffered saline (PBS) to remove serum proteins, and new "serum-free" culture medium was added. The serum-free medium consisted of Ham's F12 medium containing 25 mM Hepes buffer. The cells were then cultured for 3 days, 15 and the resulting conditioned medium was harvested and used for antigen preparation. Then, fresh serum-free medium was added to the cells and the conditioned medium harvesting cycle at 3 day intervals was repeated an additional 1 or 2 times until cells 20 died or no longer adhered to the culture surface.

Det gD10.2.2-konditionerede serumfrie medium blev derpå filtreret og centrifugeret med lav hastighed for at fjerne cellerester, og det resulterende materiale blev koncentreret 10 - 20 gange med en ultrafiltreringsindret-25 ning (YM-10 membran, Amicon). Det koncentrerede medium blev derefter dialyseret natten over imod PBS (3 udskiftninger af PBS, 1 liter pr. udskiftning). Det resulterende materiale blev prøvet for at bestemme proteinkoncentrationen og analyseret ved polyacrylamidgelelektroforese 30 for at bestemme proteinsammensætningen og bedømme præpa ratets renhed. Det ved denne fremgangsmåde fremstillede materiale blev derpå anvendt til at immunisere dyr mod HSV2-infektion som beskrevet nedenfor.The gD10.2.2 conditioned serum-free medium was then filtered and centrifuged at low speed to remove cell debris, and the resulting material was concentrated 10-20 times with an ultrafiltration device (YM-10 membrane, Amicon). The concentrated medium was then dialyzed overnight against PBS (3 replacements of PBS, 1 liter per replacement). The resulting material was tested to determine the protein concentration and analyzed by polyacrylamide gel electrophoresis 30 to determine the protein composition and assess the purity of the preparation. The material prepared by this method was then used to immunize animals against HSV2 infection as described below.

36 DK 173597 B136 DK 173597 B1

Immunisering af mus mod H5V2-infektion.Immunization of mice against H5V2 infection.

40 BALB/c-hunmus blev skaffet fra the Charles River Laboratories (Boston, MA) og blev immuniseret med det secernerede gO-protein (gDtrunc) eller humant serumalbumin 5 (HSA) i en alder på 12 uger. Til den primære immunisering mod det secernerede gO-protein blev antigenet indstillet til en koncentration på omkring 70 ^ug/ml i phosphatpuf- · ret saltopløsning og blev emulgeret med et lige så stort volumen "complete Freund’s adjuvant". Hver mus blev 10 derpå immuniseret med 200 ^ul af denne emulsion fordelt som følger: 50 ^ul subcutant ved et sted ca. 1 cm fra haleroden, 25 ^ul subcutant i hver pagpotetrædepude og 100 ^ul fordelt blandt 3-5 intradermale steder langs ryggen. Musene blev derpå forstærkningsimmuniseret 15 med det samme antigen 1 måned efter den primære immuni sering. Til forstærkningsimmuniseringen blev antigenet s fremstillet ved den samme procedure som ved den primære immunisering med undtagelse af, at "complete Freund’s adjuvant" blev erstattet med "incomplete Freund's adju-20 vant". Til forstærkningsimmuniseringen blev 200 ^ul antigenemulsion injiceret i hver mus, fordelt som følger: 50 yul i halen, 25 ^ul subcutant i den løse hud over hvert lår og 100 ^ul fordelt blandt 3-5 intradermale steder langs ryggen. Kontrolgruppen af mus blev 25 immuniseret ifølge den samme forskrift som forsøgsgruppen af mus med den undtagelse, at’humant serumalbumin erstattede det secernerede gO-protein som immunogenet. Serum blev opsamlet fra musene 24 dage efter forstærkningen til anvendelse ved in vitro neutraliseringsundersøgelser.40 BALB / c female mice were obtained from the Charles River Laboratories (Boston, MA) and immunized with the secreted gO protein (gDtrunc) or human serum albumin 5 (HSA) at the age of 12 weeks. For the primary immunization against the secreted gO protein, the antigen was adjusted to a concentration of about 70 µg / ml in phosphate-buffered saline and emulsified with an equal volume of complete Freund's adjuvant. Each mouse was then immunized with 200 µl of this emulsion distributed as follows: 50 µl subcutaneously at a site ca. 1 cm from the tail root, 25 µl subcutaneously in each pageant tree pad and 100 µl distributed among 3-5 intradermal sites along the spine. The mice were then gain-immunized with the same antigen 1 month after the primary immunization. For the enhancement immunization, the antigen s were prepared by the same procedure as the primary immunization except that "complete Freund's adjuvant" was replaced by "incomplete Freund's adjuvant". For enhancement immunization, 200 µl of antigen emulsion was injected into each mouse, distributed as follows: 50 µl in the tail, 25 µl subcutaneously in the loose skin over each thigh, and 100 µl distributed among 3-5 intradermal sites along the spine. The control group of mice was immunized according to the same specification as the experimental group of mice, except that human serum albumin replaced the secreted gO protein as the immunogen. Serum was collected from the mice 24 days after enhancement for use in in vitro neutralization studies.

30 HSV2-virus-udsættelse.30 HSV2 virus exposure.

Både forsøgsgruppen (injiceret med secerneret gD) og kontrolgruppen (injiceret med HSA) af mus blev udsat ved en intraperitoneal injektion af HSV2 (MS-stamme) 37 DK 173597 B1 31 dage efter Forstærkningsimmuniseringen. Hver mus modtog 2 x 10^ pfu virus i 100 y-ul Dulbecco’s modificerede Eagle's medium (DMEM) indeholdende 10 % Føtalt okseserum. LD50-forsøg viste, at denne mængde virus 5 repræsenterede 100 - 500 gange den mængde virus, som kræves til at dræbe 50 % af en population af normale (uinjicerede) BALB/c-mus. De virusinjicerede mus blev iagttaget i et tidsrum på 3 uger. Alle kontrolmusene (injiceret med HSA) døde inden for 9 dage fra virusudsæt-10 teisen. Alle musene, som var vaccineret med det secerne rede gD-protein, overlevede alle 3 uger og forekom normale (dvs. de viste ikke tab eller lammelsé).Both the experimental group (injected with secreted gD) and the control group (injected with HSA) of mice were exposed by an intraperitoneal injection of HSV2 (MS strain) at 31 days post-amplification immunization. Each mouse received 2 x 10 6 pfu virus in 100 µl of Dulbecco's modified Eagle's medium (DMEM) containing 10% fetal bovine serum. LD50 experiments showed that this amount of virus 5 represented 100 - 500 times the amount of virus required to kill 50% of a population of normal (uninjected) BALB / c mice. The virus-injected mice were observed for a period of 3 weeks. All control mice (injected with HSA) died within 9 days of virus exposure-10. All mice vaccinated with the secreted gD protein survived every 3 weeks and appeared normal (ie, they did not show any loss or paralysis).

38 DK 173597 B1 »“I « i c »—i ε © -u ii- io i g>38 DK 173597 B1 »“ I «i c» —i ε © -u ii- io i g>

(D Ό tO AJ E C(D Ό tO AJ E C

•Ό 00 © W D C• Ό 00 © W D C

0) C iA O h ·· EH >>h 0)0) C iA O h ·· EH >> h 0)

OT © *—I 01 Η -H 3 ti 0) OOT © * —I 01 Η -H 3 ti 0) O

ι-Ι> -P---^ O) (O CJ U. 0)ι-Ι> -P --- ^ O) (O CJ U. 0)

4-1 »—I dl OH-UK (DU4-1 »—I dl OH-UK (DU

jj P P 4-1 » 01 O ·γΙ 0) Λ W (l cn σοι >*(i)0) tdtjI π οι n r o ή μ D Bl α ΙΛ Ό TO > S© X>[ CN 3 (Λ M U£ i) σ\ e x © c »—1 -PECO)jj PP 4-1 »01 O · γΙ 0) Λ W (l cn σοι> * (i) 0) tdtjI π οι nro ή μ D Bl α ΙΛ Ό TO> S © X> [CN 3 (Λ MU £ i ) σ \ ex © c »—1-PECO)

© P TI ©CO© P TI © CO

ΡΌϋ.-0-ρ-σβ» ·ΡΌϋ.-0-ρ-σβ »·

0) 01H O 0) P C0) 01H O 0) P C

I -*-> +1UH£ α © CN© *»-t C © © P <0 © 01 *—i ε α > >* m <o ρ *-t ;=» ε O -H 4J H C <4- © ©I - * -> + 1UH £ α © CN © * »- t C © © P <0 © 01 * —i ε α>> * m <o ρ * -t; =» ε O -H 4J HC <4 - © ©

co© -p ρ > -h to p -Pco © -p ρ> -h to p -P

Srt -X O LO 01H 0) 4-1 « l_ χ p c © -h ta © © © p e ό wSrt -X O LO 01H 0) 4-1 «l_ χ p c © -h ta © © © p e ό w

Cns* 0-H 0) E h T3Cns * 0-H 0) E h T3

(0ΗΗ ID « D(0ΗΗ ID «D

r-H <J- -H ta © <—I -P 3> Ir-H <J- -H ta © <—I -P 3> I

• cn p et; p o © tn cn 4-1 o © © I O © © 3=> d r-ι m ·'o o jo c to• cn p et; p o © tn cn 4-1 o © © I O © © 3 => d r-ι m · 'o o jo c to

©·. -Η Ω O P > > X© ·. -Η Ω O P>> X

c r-ι o i—( oi.c © ©·©·<-( II (0 OHOO Ό CN CN CN P -P © J3 > C © > r-t -P © O TO > —) cn m d p © □ © -p UJ X·· © © "O O CO © © p CO —I C C C O TO C O © < I P © <t Ό O'c r-ι oi— (oi.c © © · © · <- (II (0 OHOO Ό CN CN CN P -P © J3> C ©> rt -P © O TO> -) cn mdp © □ © - p UJ X ·· © © "OO CO © © p CO —ICCCO TO CO © <IP © <t Ό O '

I— CN © ~U ffl · r—II— CN © ~ U ffl · r — I

03 > UH4l<i P4J ra rH tn © © P Ό © 4-» • O X TO 3* O P D Di © 4J CN E «4- © W Ό D .. DO © ·© 4J > > © .-I O © P Qi.’p © TO >-(03> UH4l <i P4J ra rH tn © © P Ό © 4- »• OX TO 3 * OPD Di © 4J CN E« 4- © W Ό D .. DO © · © 4J>> ©.-IO © P Qi.'p © TO> - (

Cl gt- uh 3 -Ή I -d· I > P · 4-1 1-ttNO ·—I C O © · -H ©Cl gt- uh 3 -Ή I -d · I> P · 4-1 1-ttNO · —I C O © · -H ©

> O > O^H 0) © > h C> O> O ^ H 0) ©> h C

cn ·—I to -H jQ "O P © >ncn · —I to -H jQ "O P ©> n

X«. Χ-ΡΌ (0ffi©4-> TOX '. Χ-ΡΌ (0ffi © 4-> TO

—i ra © o*·—i +ιυ·π c ρ c ε c ex-π © 4-> ©-I ra © o * · —i + ιυ · π c ρ c ε c ex-π © 4-> ©

o ·Η -Η P 4-1 P OT SIo · Η -Η P 4-1 P OT SI

(^ ϋ4ΐυ e »u σ cm o©C4->o>ccm © © JJ S h λ-H c -H -H © σ c ©>©4J.p-hxp ε •H 3 >to_qpopp©(^ ϋ4ΐυ e »u σ cm o © C4-> o> ccm © © JJ S h λ-H c -H -H © σ c ©> © 4J.p-hxp ε • H 3> to_qpopp ©

4-1 p QCTi30P©0ot P4-1 p QCTi30P © 0ot P

C 4-1 <C P C SS U- SS MU---C OC 4-1 <C P C SS U- SS MU --- C O

<J O LO O. Ή C ·*-0 ·Η i—1 «*-<J O LO O. Ή C · * -0 · Η i — 1 «* -

Dl I C -Η P Ε Ή E TO CDl I C -Η P Ε Ή E TO C

> SS © TO O P © ©P>>TOPW4-> >> SS © TO O P © © P >> TOPW4->>

—1 K © X P 4-> 3 O—1 K © X P 4-> 3 O

•—1 jQ 4-1 ^ © 3 ·' © ra OT J3 . ^4 © O» c c 4-i ot mm S p cj —(3Ξ c © CD i—I CN DO^oD ·Η © 4-1 <c e p o _c · ό c? m © CO r- il C -H 2£ w c m o vo © >\r—i ©• —1 jQ 4-1 ^ © 3 · '© ra OT J3. ^ 4 © O »cc 4-i ot mm S p cj - (3Ξ c © CD i — I CN DO ^ oD · Η © 4-1 <cepo _c · ό c? M © CO r- il C -H 2 £ wcmo vo ©> \ r — i ©

© © N> (J\ H -U i) oJ© © N> (J \ H -U i) oJ

Ol TO TJ —I Ό O P -POl TO TJ —I Ό O P -P

O DC ••©C -HOC© ot oo 2ira^-i>©>ti-OT tn ρ cn o\ o r- r-~ * · u_ mm <—i cn 39 DK 173597 B1O DC •• © C-HOC © ot oo 2ira ^ -i> ©> ti-OT tn ρ cn o \ o r- r- ~ * · u_ mm <—i cn 39 DK 173597 B1

Afkortet glycoprotein 0 blev renset fra dyrkningsmedium, som var konditioneret ved væksten af den tidligere beskrevne gD10.2-cellelinie. Dyrkningsmediet blev koncentreret ved ultrafiltrering, og afkortet gD blev reset 5 ved immunoaffinitetschromatografi under anvendelse af et monoklonalt anti-gD-l-antistof koblet til "Sephadex® 4B"· Afkortet HSVl-glycoprotein D (gD-Ι) blev isoleret fra serumfrif medium konditioneret ved væksten af gD10.2-celler som tidligere beskrevet. Celledyrkningsmediet 10 blev koncentreret ved ultrafiltrering under anvendelse af kommercielt tilgængelige membraner (Amicon Corp.) og ammoniumsulfatfældning. gD-Ι blev derpå renset til næsten homogenitet ved immunoaffinitetschromatografi.Truncated glycoprotein 0 was purified from culture medium conditioned by the growth of the gD10.2 cell line previously described. The culture medium was concentrated by ultrafiltration and truncated gD was reset by immunoaffinity chromatography using a monoclonal anti-gD-1 antibody coupled to "Sephadex® 4B". Truncated HSV1 glycoprotein D (gD-Ι) was isolated from serum-free medium conditioned by the growth of gD10.2 cells as previously described. Cell culture medium 10 was concentrated by ultrafiltration using commercially available membranes (Amicon Corp.) and ammonium sulfate precipitation. gD-Ι was then purified to near homogeneity by immunoaffinity chromatography.

Immunoaffinitetssøjlen blev fremstillet ved kobling 15 af et monoklonalt antistof, produceret over for HSV1, til tværbundet sepharose*(Pharmacia Fine Chemicals) og elueret ved en metode mage til den, som er beskrevet af Axen et al. Nature 214, 1302-1304 (1967). Hovedproduktet i mediet af ufraktioneret dyrkningsmedium konditione-20 ret af gD10.2-cellelinien er den modne afkortede form af gD-Ι (omkring 43 - 46 kd) og en forstadieform af gD (omkring 38 - 40 kd). I gennemsnit repræsenterer gD proteinet 20 - 50 % af det protein, som er til stede i vækstkonditioneret medium. Fraktionering af dette 25 materiale ved immunoaffinitetschromatografi resulterede i en betydelig berigelse på gD. Det kan ses, at det eluerede materiale er frit for alle forurenende proteiner, der er detekterbare ved sølvfarvning. For at bestemme om rensning af proteinet ved denne forskrift denaturerede 30 proteinet eller brød molekylets antigeniske struktur, gennemførtes antigenicitetsundersøgelser med en række forskellige monoklonale antistoffer. Ved disse undersøgelser fandtes, at alle prøvede antistoffer undtagen dem, der er reaktive med carboxylenden, reagerede med 35 det rensede præparat. Der kunne ikke detekteres nogen forskel i antistofbindingsopførsel med det rensede præ- 40 DK 173597 B1 parat i forhold til materialet, som findes i ufraktionere-de ku ltursupernatanter.The immunoaffinity column was prepared by coupling a monoclonal antibody produced against HSV1 to cross-linked sepharose * (Pharmacia Fine Chemicals) and eluted by a method similar to that described by Axen et al. Nature 214, 1302-1304 (1967). The main product of the medium of unfractionated culture medium conditioned by the gD10.2 cell line is the mature truncated form of gD-Ι (about 43 - 46 kd) and a precursor form of gD (about 38 - 40 kd). On average, the gD protein represents 20 - 50% of the protein present in growth-conditioned medium. Fractionation of this material by immunoaffinity chromatography resulted in a significant enrichment of gD. It can be seen that the eluted material is free of all contaminating proteins detectable by silver staining. To determine whether purification of the protein by this specification denatured the protein or broke the antigenic structure of the molecule, antigenicity studies were performed with a variety of monoclonal antibodies. In these studies, it was found that all tested antibodies except those reactive with the carboxyl end reacted with the purified preparation. No difference in antibody binding behavior could be detected with the purified preparation prepared relative to the material found in unfractionated culture supernatants.

For at bestemme om det rensede gD-l-protein kunne anvendes effektivt som basis for .en unde renheds-vaccine·til at 5 beskytte mod genital infektion med HSV2, blev marsvin vaccineret med gD-1 sammensat i forskellige tilsætningsopløsninger. Ved de første undersøgelser blev renset gD inkorporeret i "complete Freund's adjuvant" og injiceret i intramuskulære og subcutane steder på Hartley-hun-' 10 marsvin. Hartley-hurimarsvin, 2 måneder gamle og med en vagt på omkring 250 g, blev købt fra Charles River Laboratories (Portage, MI). Til undersøgelser under anvendelse af "Freund's adjuvant" bestod den primære immunisering af injektionen af 30 ^ug gD-Ι emulgeret 15 i 50 λ "complete Freund's adjuvant" fordelt som følger: 0,5 ml injiceret subcutant i den løse hud i nakken og 0,5 ml injiceret intramuskulsrt i låret. Efter 31 dage blev dyrene forstsrkningsimmuniseret med den samme mængde antigen inkorporeret i "incomplete Freund's adjuvant".To determine if the purified gD-1 protein could be used effectively as a basis for a purity vaccine to protect against genital infection with HSV2, guinea pigs were vaccinated with gD-1 compounded in various addition solutions. In the first studies, purified gD was incorporated into complete Freund's adjuvant and injected into intramuscular and subcutaneous sites on Hartley female 10 guinea pigs. Hartley Hurim guinea pigs, 2 months old and weighing about 250 g, were purchased from Charles River Laboratories (Portage, MI). For studies using "Freund's adjuvant", the primary immunization of the injection consisted of 30 µg gD-Ι emulsified 15 in 50 λ "complete Freund's adjuvant" distributed as follows: 0.5 ml injected subcutaneously into the loose skin of the neck and 0 , 5 ml injected intramuscularly into the thigh. After 31 days, the animals were fortified immunized with the same amount of antigen incorporated into "incomplete Freund's adjuvant".

20 Kontroldyrene blev injiceret ifølge den samme forskrift som forsøgsdyrene ned den undtagelse, at der blev injiceret tilsætningsopløsning alene. Forsøgs- og kontrol-dyrene blev udsat ved intravaginal infektion med HSV2 19 dage efter forstærkningsimmuniseringen. Ved undersø-25 gelser under anvendelse af alun-tilsat gD-Ι blev 30 ^ug gD-Ι inkorporeret i enten alun-phosphat eller alunhydroxid (0,15 ml) anvendt til både den primære immunisering og forstærkningsimmuniseringen. Alun-tilsat protein blev injiceret ved intramuskulær injektion i bagbenene.The control animals were injected according to the same regulation as the test animals, except that additive solution was injected alone. The experimental and control animals were exposed to intravaginal infection with HSV2 19 days after enhancement immunization. In studies using alum-added gD-30, 30 µg of gD-Ι was incorporated into either alum phosphate or alum hydroxide (0.15 ml) used for both primary immunization and enhancement immunization. Alum added protein was injected by intramuscular injection into the hind legs.

30 Dyrene blev forstærkningsimmuniseret 51 dage efter den primære immunisering og udsat for levende virus 27 dage senere. Hvert dyr modtog én primær immunisering indeholdende 30 yug renset protein inkorporeret i "complete Freund's adjuvant" og én forstærkningsimmunisering (31 35 dage senere) med den samme mængde antigen .inkorporeret 41 DK 173597 B1 i "incomplete Freund’s adjuvant". Alle dyrene blev udsat ved intravaginal indpodning af HSV2 19 dage efter forstærkningsimmuniseringen. Tabel 3 angiver resultaterne opnået ved disse undersøgelser. Det kan ses, at dyrene 5 vaccineret med gD producerede høje niveauer af antistof fer, som var i stand til at forhindre både HSV1 og HSV2-virusinfektion ved en in vitro virusneutraliseringsprøvning. Det fandtes, at seraene fra disse dyr neutraliserede HSV1 lidt mere effektivt end HSV2. Dette resultat 10 er rimeligt i betragtning af, at immunogenet var afledt fra HSV1, og at der vides at være typespecifikke anti-geniske determinanter på gD-Ι (Éisenberg, R.J. et al., J. Virol. _3å: 428 (1980); Pereira, L. et al., Infect, and Immun, 2j?: 724 (1980); Showalter, J.D. et al., Infect.The animals were gain-immunized 51 days after primary immunization and exposed to live virus 27 days later. Each animal received one primary immunization containing 30 µg of purified protein incorporated into "complete Freund's adjuvant" and one enhancement immunization (31 35 days later) with the same amount of antigen incorporated 41 "incomplete Freund's adjuvant". All animals were exposed by intravaginal inoculation of HSV2 19 days after enhancement immunization. Table 3 lists the results obtained from these studies. It can be seen that the animals 5 vaccinated with gD produced high levels of antibodies capable of preventing both HSV1 and HSV2 virus infection by an in vitro virus neutralization assay. It was found that the sera from these animals neutralized HSV1 slightly more effectively than HSV2. This result 10 is reasonable considering that the immunogen was derived from HSV1 and that there are known to be type-specific anti-genetic determinants on gD-Ι (Éisenberg, RJ et al., J. Virol. 3: 428 (1980); Pereira, L. et al., Infect., And Immun. 2: 724 (1980); Showalter, J.D. et al., Infect.

15 and Immun. „34, i 684 (1981)). Mere slående var det, at alle dyrene vaccineret med gD-Ι var fuldstændigt beskyttet mod de kliniske manifestationer af virusinfektion (dvs. rødmehævelse, vesikel-dannelse, ulceration, tab af urintilbageholdelse og dødelig encephalitis).And Immune. "34, at 684 (1981)). More strikingly, all animals vaccinated with gD-Ι were completely protected against the clinical manifestations of viral infection (ie, redness, vesicle formation, ulceration, loss of urine retention and fatal encephalitis).

20 13 Af de 14 dyr, som var injiceret med tilsætningsmid del alene, udviklede alvorlige primære infektioner.20 13 Of the 14 animals injected with the additive part alone, severe primary infections developed.

Der var talrige vesikler, som typisk koalescerede til dannelse af akutte ulcerationer. I modsætning hertil gav dyrene vaccineret med gD-Ι ingen indikation på virus-25 infektion. Disse resultater viste klart, at gD-Ι inkor poreret i "complete Freund's adjuvant" kan give effektiv beskyttelse mod genital HSV2-infektion.There were numerous vesicles that typically coalesced to form acute ulcerations. In contrast, the animals vaccinated with gD-gav gave no indication of virus infection. These results clearly showed that gD-Ι incorporated in "complete Freund's adjuvant" can provide effective protection against genital HSV2 infection.

Da "complete Freund's adjuvant" ikke er acceptabelt til brug hos mennesker, ønskede man dernæst at bestemme, 30 om gD-Ι kunne give beskyttelse mod HSV2-infektion, når det blev sammensat med et tilsætningsmiddel, som var egnet til human brug. Til formål blev der igangsat undersøgelser med alun-fældede proteinkomplekser (J.S. Garvey et al., Methods in Immunology (1977), side 185(17)).Since "complete Freund's adjuvant" is not acceptable for human use, it was then sought to determine if gD-Ι could provide protection against HSV2 infection when combined with an additive suitable for human use. To this end, studies with alum-precipitated protein complexes have been initiated (J.S. Garvey et al., Methods in Immunology (1977), p. 185 (17)).

35 I tabel 3 sammenlignes resultater opnået under anvendel- 42 DK 173597 B1 se af gD-1 inkorporeret i tilsætningsmidlerne alun-hydroxid og alun-phosphat. Ved kontrolundersøgelser blev dyr vaccineret med tilsætningsmiddel alene. Det kan ses, at begge de alun-baserede præparater udløste høje 5 niveauer af neutraliserende antistoffer over for HSV1, og at de neutraliserende titere over for HSV1 var sammenlignelige med dem, der blev udløst over for gD-1 inkorporeret i "complete Freund's .adjuvant". Imidlertid var titer'ne af antistof, som var i stand til at neutralise-10 re HSV2, væsentligt lavere med gD-1 inkorporeret i et af alun-præparaterne end med gD-1 inkorporeret i "complete Freund's adjuvant". Dette resultat tyder på, at inkorporering af gD-1 i alun resulterer i tabet af en eller flere antigeniske determinanter fælles for HSV1 15 og HSV2, eller at genkendelsen af krydsreaktive anti gener er mere effektiv, når proteinet er inkorporeret i "Freund's adjuvant". Disse resultater tyder også på, at alun-hydroxid er et mere effektivt tilsætningsmiddel pnd alun-phosphat, da de neutraliserende titere over 20 for HSV1 og HSV2 er væsentligt højere med det først nævnte end med det sidstnævnte.In Table 3, results obtained using gD-1 incorporated in the additives alum hydroxide and alum phosphate are compared. In control studies, animals were vaccinated with additive alone. It can be seen that both of the alum-based preparations elicited high 5 levels of neutralizing antibodies to HSV1 and that the neutralizing titers against HSV1 were comparable to those triggered against gD-1 incorporated in complete Freund's. ". However, the titers of antibody capable of neutralizing HSV2 were significantly lower with gD-1 incorporated in one of the alum preparations than with gD-1 incorporated in "complete Freund's adjuvant". This result suggests that incorporation of gD-1 into alum results in the loss of one or more antigenic determinants common to HSV1 15 and HSV2, or that the recognition of cross-reactive anti genes is more effective when the protein is incorporated into Freund's adjuvant. These results also suggest that alum hydroxide is a more effective additive than alum phosphate, since the neutralizing titers above 20 for HSV1 and HSV2 are substantially higher with the former than with the latter.

Selv om den beskyttelse, som gives af alun-tilsætnings-præparaterne, var mindre effektiv end den, der opnås med "Freund's adjuvanf'-præparaterne var den ikke desto 25 mindre signifikant. Selv om et antal dyr viste tegn på virusinfektion, var infektionernes alvor betydeligt mindre end den, der blev iagttaget hos kontroldyr injiceret med tilsætningsmiddel alene. Således var middellæsionstallet 0,9 hos dyr vaccineret med alun-phosphat-30 vaccinesammensætningen og 0,7 hos dyr vaccineret med alun-hydroxid-vaccinesammensæthingen sammenlignet med et middellæsionstal på 3,2 for kontroldyrene injiceret med tilsætningsmiddel. Ifølge ή+ skalaen, der anvendes til bedømmelse af læsionsgrad, svarer reduktionen fra 35 et middellæsionstal på 3,2 til 0,7 til en reduktion 43 DK 173597 B1 i kliniske symptomer fra flere store vesikler (bedømmelse på 3) til mindre betydelig rødme og hævelse (bedømmelse på 0,5). Intressant er det, at den gennemsnitlige in vitro neutraliseringstiter over for HSV2 igennem disse 5 undersøgelser korrelegerede med alvoren af klinisk sygdom.Although the protection afforded by alum additives was less effective than that achieved with "Freund's adjuvant" preparations, it was nonetheless significant. Although a number of animals showed signs of viral infection, the severity of the infections was significantly less than that observed in control animals injected with additive alone, thus the mean lesion number was 0.9 in animals vaccinated with the alum-phosphate vaccine composition and 0.7 in animals vaccinated with the alum-hydroxide vaccine composition, compared with an average lesion number of 3 , 2 for the control animals injected with additive According to the ή + scale used to assess lesion rate, the reduction from 35 averaged 3.2 to 0.7 to a reduction 43 in clinical symptoms from several large vesicles (rating of 3) to less significant redness and swelling (rating of 0.5) Interestingly, the average in vitro neutralization titer for these 5 studies, HSV2 correlated with the severity of clinical disease.

De ovenfor beskrevne resultater viser, at de kliniske manifestationer af primår genital HSV2-infektion kan reduceres væsentligt ved vaccination med rekombinant gD-1. De opnåede resultater viser, at et enkelt HSV1-. 10 afledt glycoprotein kan give fuldstændig beskyttelse mod genital HSV2-infektion, når. det indgives i forbindelse med et kraftigt tilsætningsmiddel.The results described above show that the clinical manifestations of primary genital HSV2 infection can be significantly reduced by vaccination with recombinant gD-1. The results obtained show that a single HSV1. 10 derived glycoprotein may provide complete protection against genital HSV2 infection when. it is administered in conjunction with a powerful additive.

44 DK 173597 B1 i d -h44 DK 173597 B1 in d -h

C · — 1 COC · - 1 CO

¢0 <f N Η N to (9 t3 ^ C t ·* w λ -v ·Η E H t3 •h ico h i—i*—i *—ι o α> . ε -O rH C · JZ o¢ 0 <f N Η N to (9 t3 ^ C t · * w λ -v · Η E H t3 • h ico h i — i * —i * —ι o α>. Ε -O rH C · JZ o

E 01 O + 1 +1 +« +1 D D -DO DE 01 O + 1 +1 + «+1 D D -DO D

O "O -H + O 4) O D >, 0) <UO "O -H + O 4) O D>, 0) <U

0£ Ό W ·—I ΙΛ Ό N > L< T> O Li Li Ό 0] -H © CO ~ - 004)0)0)0 £ Ό W · —I ΙΛ Ό N> L <T> O Li Li Ό 0] -H © CO ~ - 004) 0) 0)

Li s:·-«-*-» Li 4- 0) 4- U 4- O' C O* O <3Li s: · - «- * -» Li 4- 0) 4- U 4- O 'C O * O <3

Ό CO Λ H H O UΌ CO Λ H H O U

o> * o) o »h d E i i) -r| V < Φ 3 ·Ηo> * o) o »h d E i i) -r | V <Φ 3 · Η

I JJ -Η Π (0 CIn JJ -Η Π (0 C

C oa) φ tn ho to .C oa) φ tn ho to.

o a-> jx t~> ~ ω u ε · H CL 03 O Γ" O CD Lt C - > O 0)4) d ε *h o <r vo .-t tu οοΗβ-υ c clo a-> jx t ~> ~ ω u ε · H CL 03 O Γ "O CD Lt C -> O 0) 4) d ε * h o <r vo. -t tu οοΗβ-υ c cl

<0 >»4J r-t -H D -H CO .C 0) C CL<0> »4J r-t -H D -H CO .C 0) C CL

C (0 to *—l -U 4)0 -h <c e ό σ ^ -l> » co σ'*-· o -,-r l a o) + h σ» O D to 4- rH 0) 0) CO- * ^ C * ^ ^ hC (0 to * - l -U 4) 0 -h <ce ό σ ^ -l> »co σ '* - · o -, - rlao) + h σ» OD to 4- rH 0) 0) CO- * ^ C * ^^ h

> * g -H t »V. to O> * g -H t »V. to O.

ία) o to co o: li -ri > Ό o ^ CO (O 3 · J) * 4) Γ to -ucn -rt k_j-u t ωία) o to co o: li -ri> Ό o ^ CO (O 3 · J) * 4) Γ to -ucn -rt k_j-u t ω

> CL-H o K\ vO ΓΛ O D ;» -H 0) <r ε -H> CL-H o K \ vO ΓΛ O D; » -H 0) <r ε -H

O ε-L» 0\ 1Λ <t 0\ f-ι X) > - 4) JOO ε-L »0 \ 1Λ <t 0 \ f-ι X)> - 4) JO

C >x (0 S 3 X-H ·- 4J 4C> x (0 S 3 X-H · - 4J 4

OC in ε O- 1(3 L H 4 -H SOC in ε O- 1 (3 L H 4 -H S

-η ·η ε jj ati to o f-t*o-η · η ε jj ati to o f-t * o

-L>0) O 4) CO 0) ε Ή CO-L> 0) O 4) CO 0) ε Ή CO

JX D Li * C'-'CjQLi^ 0)JX D Li * C '-' CjQLi ^ 0)

0)0 D Li -it NtA C C* C O *H D JZ0) 0 D Li -it NtA C C * C O * H D JZ

4- Li -H0) - - 0) ω ω CO C CO 0)0)4- Li -H0) - - 0) ω ω CO C CO 0) 0)

—) CQ. 3D f—t N »H O' ^ 4) +) XI (D T) -H-) CQ. 3D f-t N »H O '4) +) XI (D T) -H

UI*HO -ri CM 0) V) CO > DUI * HO -ri CM 0) V) CO> D

CD , I O C D 3» + J ΓΛ+Ι+ΙίΛ > -H C O OCD, I O C D 3 »+ J ΓΛ + Ι + ΙίΛ> -H C O O

<C CM >W -Γ-tCQLO V V 0) D (!) 4- C 4) C7> ε »- > —I D)3C O VO Γ- H m'OXOOh o o C/) o cn c-—- - - x) ec σ' o d d<C CM> W -Γ-tCQLO VV 0) D (!) 4- C 4) C7> ε »-> —ID) 3C O VO Γ- H m'OXOOh oo C /) o cn c -—- - - x) ec σ 'odd

mi ft-rCN CO 1Λ VO O -H D C D CLmi ft-rCN CO 1Λ VO O -H D C D CL

•H »—I Li Li D w 4> -H CO DE• H »—I Li Li D w 4> -H CO DE

Ή > D 0) CT 0)CL> β >n to tn 10 O 00 N N CO ε O 4) - a> 10 -Dm c Ή r-t - - ·—I >> _* Li o Li Ό •h cn r-i —- o cm .h o) co co a) oa> C ε <0 <—I CT H to ·· Η 3 Ό 0) CU Li 3» +1 K\+l-flK\ O 0) D 4) 0) 4- CT CD C/) V V CO Lt (0 X) Ό DO) C 3 X Ι*"* N Ot D8EC+ 0)0 •O φ o) - - ω o c-i o> i*'» c x:Ή> D 0) CT 0) CL> β> n to tn 10 O 00 NN CO ε O 4) - a> 10 -Dm c Ή rt - - · —I >> _ * Li o Li Ό • h cn ri —- o cm .ho) co co a) oa> C ε <0 <—I CT H to ·· Η 3 Ό 0) CU Li 3 »+1 K \ + l-flK \ O 0) D 4) 0 ) 4- CT CD C /) VV CO Lt (0 X) Ό DO) C 3 X Ι * "* N Ot D8EC + 0) 0 • O φ o) - - ω o ci o> i * '» cx:

O CD C σ\ σ\ O Ό D <0 D CTO CD C σ \ σ \ O Ό D <0 D CT

ε .-t C DE D ·- ODε.-t C DE D · - OD

3 O >>g tg (4 DO) C cn co o 4- ω Ό t-i -H C tf\ <J Ov O' O O' HOOCH 3 4> > ι—I r-i *—t C ·Η 4) \i£ > (0 ·Η D (i - Ε Ή 3 Li D Lc 0) ε E <0 4) 0)3 O >> g tg (4 DO) C cn co o 4- ω Ό ti -HC tf \ <J Ov O 'OO' HEAD 3 4>> ι — I ri * —t C · Η 4) \ i £ > (0 · Η D (i - Ε Ή 3 Li D Lc 0) ε E <0 4) 0)

CO Q) D i—C 0) CO <D ·—I COCO Q) D i-C 0) CO <D · —I CO

H D "O CO EH-Pto > JO JDH D "O CO EH-Pto> JO JD

= CO -H 0) -ri Q 0) O O= CO -H 0) -ri Q 0) O O

4- D _C X C —i XJ >» · »CO «—I4- D _C X C —i XJ> »·» CO «—I

a cqloo) co ω r-' co ε ο»ηand cqloo) co ω r- 'co ε ο »η

to to CO Li r-c D Ό C tO N to D COtwo to CO Li r-c D Ό C tO N to D CO

Ο > Ο T3 CO D O OCO COD3> Ο T3 CO D O OCO COD

Μ T) O JO >- 3 > *d (0 O' »C0 CO)Μ T) O JO> - 3> * d (0 O '»C0 CO)

Ή C '-} CL C D Q) 0) D .~t r-i 4- OCΉ C '-} CL C D Q) 0) D. ~ t r-i 4- OC

0) 3TDIIC0 C rH ^ Cl) ^ -HO0) 3TDIIC0 C rH ^ Cl) ^ -HO

d <u to c c .c x) ω ε tu to -ηd <u to c c .c x) ω ε tu to -η

D Li 330. O 4- S Γ> ·Η a COD Li 330. O 4- S Γ> · Η a CO

>> C U. S CO ·—t ·—I CO LiCCeOsO·· ΉΜ>> C U. S CO · —t · —I CO LiCCeOsO ·· ΉΜ

4)=D- CO CO O D -Η ·Η Ό ΙΛ O Lt HH4) = D- CO CO O D -Η · Η Ό ΙΛ O Lt HH

w σ co jo -H>co4)Ctae) 0) Ο -H CO C -Η -H Q. > (0 3 0·· C Ό4)w σ co jo -H> co4) Ctae) 0) Ο -H CO C -Η -H Q.> (0 3 0 ·· C Ό4)

CD C >34) I Li Li I VO I - Ο Ό ICD C> 34) I Li Li I VO I - Ο Ό I

3 rH 3 0) C *—t ·—I O C C0-H<r<jj-f -H -HC0 ε I Ό Li α> ] I 3 '—I s: > + i-i|CSI to Σ e ε Ό Ό Lu «—t O Q ή * *—i C3 CD — CO CO O' <0 * * + 45 DK 173597 B13 rH 3 0) C * -t · —IOC C0-H <r <jj-f -H -HC0 ε I Ό Li α>] I 3 '- I s:> + ii | Lu «—t OQ ή * * —i C3 CD - CO CO O '<0 * * + 45 DK 173597 B1

Fordelene ved at anvende det afkortede protein til diagnostiske og vaccineanvendelser er, at det, fordi det er secerneret til det ekstracellulare medium, er forurenet med langt farre proteiner, end der ville findes i et 5 hel-celle-praparat.The advantage of using the truncated protein for diagnostic and vaccine applications is that, because it is secreted to the extracellular medium, it is contaminated with far fewer proteins than would be found in a whole-cell preparation.

Det vil bemarkes, at der ifølge den foreliggende opfindelse anvendes en permanent cellelinie til at producere proteinet. Ved transfektion inkorporeres vektoren i celleliniens genom'og kan producere proteinet uden 10 cellelyse. Cellelinien kan således anvendes til konti nuert produktion af proteinet, især i den afkortede form, som secerneres fra cellen. F.eks. kan cellerne, der udtrykker afkortet protein, kontinuerligt anvendes i et perfusionssystem ved konstant at fjerne antigen-15 rigt medium fra cellerne og erstatte det med frisk medium.It will be appreciated that, according to the present invention, a permanent cell line is used to produce the protein. Upon transfection, the vector is incorporated into the cell line's genome and can produce the protein without cell lysis. Thus, the cell line can be used for continuous production of the protein, especially in the truncated form secreted from the cell. Eg. For example, the cells expressing truncated protein can be continuously used in a perfusion system by constantly removing antigenic medium from the cells and replacing it with fresh medium.

Den bestemte, her anvendte cellelinie var en CHO-linie, som var deficient med hensyn til dhfr-produktion, trans-ficeret med en vektor indeholdende en dhfr-markør. Ved at udsatte cellelinien for methotrexat (Mtx) under egnede 20 betingelser (54) kan dhfr-produktionen og dermed den forbundne gD-produktion forstærkes. Tre cellelinier afledt ved transfektion af afkortet gD-genet ind i dhfr” CHO-celler blev udpladet parallelt, mærket med ^5S-methio-nin og immunofældet som beskrevet i fig. 2. Banerne 25 1 og 2 angiver mængden af secerneret gD immunofældet fra 500 ^ul dyrkningsmedium konditioneret af to uafhængigt isolerede cellelinier før selektion med methotrexat.The particular cell line used here was a CHO line deficient in dhfr production transfected with a vector containing a dhfr marker. By exposing the cell line to methotrexate (Mtx) under suitable conditions (54), dhfr production and thus the associated gD production can be enhanced. Three cell lines derived by transfection of the truncated gD gene into dhfr "CHO cells were plated in parallel, labeled with 5S methionine and immunoprecipitated as described in FIG. 2. Lanes 25 1 and 2 indicate the amount of secreted gD immunoprecipitated from 500 µl of culture medium conditioned by two independently isolated cell lines before selection with methotrexate.

Bane 3 angiver mængden af afkortet gD immunofældet fra et lige så stort volumen dyrkningsmedium fra en celle-30 linie (gD10.2.2) selekteret for vækst i 250 nM methotrexat. Kanin-anti-HSVl-antistoffer (Dako Corp.) blev anvendt til immuno fældningerne, der er vist i bane 1-3. Bane 4 repræsenterer en kontrolimmunofældning af 500 ^ul medium konditioneret af gOlO.2.2-cellelinien med normalt 46 DK 173597 B1 kaninserum.Lane 3 indicates the amount of truncated gD immunoprecipitated from an equal volume of culture medium from a cell line (gD10.2.2) selected for growth in 250 nM methotrexate. Rabbit anti-HSV1 antibodies (Dako Corp.) were used for the immuno-precipitates shown in lanes 1-3. Lane 4 represents a control immunoprecipitation of 500 µl of medium conditioned by the gOlO.2.2 cell line with normal rabbit serum.

For at kvantificere de relative mængder af afkortet gD secerneret til dyrkningsmediet af cellelinier før og efter selektion i methotrexat gennemførtes en kompeti-' 5 tiv ELlSA-prøvning- gD12-celler, der udtrykte en membran- bundet form af gD, blev udpladet på og fikseret med glutaraldehyd til overfladen af 96 hullers mikrotiterpla-der som tidligere beskrevet. Konditioneret medium fra _ forskellige cellelinier, der var kendt for at producere 10 det afkortede gD, blev rækkefortyndet hen over mikroti- terpladen og blev inkuberet med en fikseret mængde (2 yul) kanin-anti-HSVl-antistof (Dako Corp.) i 1 time ved 20 °C. Ubundet antistof og opløselige afkortet-gD-antistof-komplekser blev fjernet ved vaskning af hvert 15 hul 3 gange med PBS. Peberrod-peroxidase koblet til gede-antikanin-IgG blev derpå omsat med de fikserede celler i 1 time ved 20 °C, og ubundet antistof blev fjernet ved vaskning 3 gange med PBS. Det kolorimetriske substrat, OPD (o-phenylendiamin), sattes derpå til hvert 20 hul og fik lov at reagere med de bundne peberrodperoxi- dase-antistof-komplekser i 15 minutter. Reaktionen blev afsluttet ved tilsætning af svovlsyre til en slutkoncen-tration på 0,25 N. Absorbansen af OPD'et i hvert hul blev bestemt ved anvendelse af en automatiseret mikroti-25 terpladescanner (Titertek multiskan), og der afsattes fortyndingskurver. Bindingen af anti-HSVl-antistoffer til udgangs-CHO-cellelinien blev anvendt til at måle graden af ikke-specifik binding ved hver fortynding.To quantify the relative amounts of truncated gD secreted into the culture medium of cell lines before and after selection in methotrexate, a competitive EL1SA assay gD12 cells expressing a membrane-bound form of gD were plated and fixed. with glutaraldehyde to the surface of 96-hole microtiter plates as previously described. Conditioned medium from various cell lines known to produce the truncated gD was diluted across the microtiter plate and incubated with a fixed amount (2 µl) of rabbit anti-HSV1 antibody (Dako Corp.) for 1 hour. hour at 20 ° C. Unbound antibody and soluble truncated gD antibody complexes were removed by washing each 15 hole 3 times with PBS. Horseradish peroxidase coupled to goat anti-rabbit IgG was then reacted with the fixed cells for 1 hour at 20 ° C and unbound antibody was removed by washing 3 times with PBS. The colorimetric substrate, OPD (o-phenylenediamine), was then added to every 20 holes and allowed to react with the bound horseradish peroxidase-antibody complexes for 15 minutes. The reaction was terminated by adding sulfuric acid to a final concentration of 0.25 N. The absorbance of the OPD in each hole was determined using an automated microtiter plate scanner (Titertek multiskan) and dilution curves were deposited. The binding of anti-HSV1 antibodies to the starting CHO cell line was used to measure the degree of non-specific binding at each dilution.

Mængden af afkortet gD i hver kultursupernatant var 30 omvendt proportional med mængden af absorbans i hvert hul. Aben cirkel, binding af anti-HSVl-antistoffer til gD12-celler i nærværelse af medium konditioneret af celler, der secernerede afkortet gD før forstærkning med methotrexat. Lukket cirkel, binding af anti-HSVl-35 antistoffer til gD12-celler i nærværelse af medium fra 47 DK 173597 B1 gD12.2.2-celler selekteret for vækst i 250 nM methotrexat. Åbent k vadrat, binding af anti-HSVl-antistoffer til gD12-celler i nærværelse af 100 gange koncentreret- medium fra uforstsrkede celler, der secernerede afkortet gD.The amount of truncated gD in each culture supernatant was inversely proportional to the amount of absorbance in each hole. Monkey circle, binding of anti-HSV1 antibodies to gD12 cells in the presence of medium conditioned by cells that secreted truncated gD before amplification with methotrexate. Closed circle, binding of anti-HSV1-35 antibodies to gD12 cells in the presence of medium from 47 g 171297.2 cells selected for growth in 250 nM methotrexate. Open square, binding of anti-HSV1 antibodies to gD12 cells in the presence of 100-fold concentrated medium from unstained cells that secreted truncated gD.

5 Denne procedure blev udført gD10.2-cellelinien for at producere en forstærket cellelinie gD10.2.2, som var i stand til at vokse i 250 nM methotrexat, og som secernerede omkring 20 gange mere afkprtet gD til dyrkningsmediet end udgangs-gD10.2-cellelinien (se fig. 10 og 11).- 10 dhfr-markør/f'orstarknings-systemet kan anvendes med andre celler, som er i stand til at optage og stabilt inkorporere fremmed DNA.This procedure was performed on the gD10.2 cell line to produce an amplified gD10.2.2 cell line capable of growing in 250 nM methotrexate and which secreted about 20 times more depressed gD into the culture medium than the starting gD10.2 cell line. cell line (see Figs. 10 and 11). The 10 dhfr marker / amplification system can be used with other cells capable of recording and stably incorporating foreign DNA.

Opfindelsens succes med at påvise, at en afkortet form af et membranbundet protein, der mangler den del af 15 det hydrophobt-hydrophile carboxylterminale område, som er ansvarligt for at binde det til membranen, alligevel kan være immunogen, viser, at lignende resultater kan forventes med andre immunogene membranbundne proteiner, der således tilvejebringer en forbedret kilde til 20 vaccine over for virus, parasitter og andre patogene organismer.The invention's success in demonstrating that a truncated form of a membrane-bound protein lacking that portion of the hydrophobic-hydrophilic carboxyl-terminal region responsible for binding it to the membrane may be immunogenic, nevertheless, similar results can be expected. with other immunogenic membrane-bound proteins, thus providing an improved source of 20 vaccine against viruses, parasites and other pathogenic organisms.

48 DK 173597 B1 ning at fjerne den membranbindende karakter, således at proteinet secerneres til det omgivende medium.In order to remove the membrane binding character, the protein is secreted to the surrounding medium.

EKSEMPEL 2EXAMPLE 2

Dette eksempel omhandler· et HSV2-gC-protein (tidligere 5 betegnet som et gF-protein).This example deals with an HSV2-gC protein (formerly referred to as a gF protein).

Celler, virus og DNA-isolering.Cells, viruses and DNA isolation.

HSV2 (stamme G) blev dyrket på HEp 2 celler efter inficering af cellekulturen ved en input-multiplicitet på 0,1 i 3 dage ved 33 °C i Dulbecco's modificerede Eagle's 10 medium indeholdende 10 % fatalt okseserum og antibio tika. HSV2-DNA blev isoleret ved nedbrydning med proteinase K efterfulgt åf CsCl-ultracentrifugering som beskrevet (23).HSV2 (strain G) was grown on HEp 2 cells after infecting the cell culture at an input multiplicity of 0.1 for 3 days at 33 ° C in Dulbecco's modified Eagle's 10 medium containing 10% fatal bovine serum and antibiotics. HSV2 DNA was isolated by digestion with proteinase K followed by CsCl ultracentrifugation as described (23).

pNA-manipulationer.pNA manipulations.

15 Restriktionsenzymer, DNA-polymerase-Klenour-fragment, T4-DNA-ligase og T4-polynuclsotidkinase blev købt fra Bethesda Research Labs og blev anvendt ifølge leverandørens retningslinier.15 Restriction enzymes, DNA polymerase Klenour fragment, T4 DNA ligase and T4 polynucleotide kinase were purchased from Bethesda Research Labs and used according to the supplier's guidelines.

Molekylær kloning af HSV2-DNA-restriktionsfragmenter.Molecular cloning of HSV2 DNA restriction fragments.

20 EcoRI-"P"-fragmentet, som svarer til den tilnærmede kortposition ca. 0,650 i HSV2-genomet, blev isoleret fra EcoRI-nedbrudt HSV2-DNA på 5 % acrylamidgeler. Det isolerede fragment blev klonet ind i EcoRI-nedbrudt pUC9 (28). Dette plasmid blev kaldt pUD-RIP.The EcoRI "P" fragment corresponding to the approximate map position is approx. 0.650 of the HSV2 genome was isolated from EcoRI degraded HSV2 DNA on 5% acrylamide gels. The isolated fragment was cloned into Eco RI digested pUC9 (28). This plasmid was called pUD-RIP.

25 pUC-RIP-subklonen blev derpå anvendt til at lokalisere et SacI-fragment af HSV2-genoraet, som indeholdt EcoRI-"PM-fragmentet. Southern-afdupningsforsøg (27) viste, 49 DK 173597 B1 at et 4,9 kb SacI-fragment af HSV2 indeholdt EcoRI-"Pn-fragroentet. Oette fragment blev.isoleret på 0,7 /O 3Q3TOS6 geler og blev klonet ind i et fra pBR322 afledt plasmid, som indeholdt et unikt Sacl-center (55). Oette plasmid 5 blev kaldt pBRSacI-"En. Yderligere restriktionsenzym analyse af peRSed^'E" påviste et 2,9 kb Sall-fragment med sekvenser homologe med EcoRI-’T^-fragmentet, som var subklonet' ind i SalI-nedbrudt pUC9 soro beskrevet ovenfor. Dette plasmid blev kaldt pgC2Sal2.9.The 25 pUC-RIP subclone was then used to locate a SacI fragment of the HSV2 gene containing the EcoRI-PM fragment. Southern Dilution Experiment (27) showed that a 4.9 kb Sac fragment of HSV2 contained the EcoRI - Pn fragment. This fragment was isolated on 0.7 / O 3Q3TOS6 gels and cloned into a plasmid derived from pBR322 which contained a unique SacI center (55). Another plasmid 5 was called pBRSacI- "A. Further restriction enzyme analysis of peRSed® E" detected a 2.9 kb SalI fragment having sequences homologous to the EcoRI-TT fragment subcloned into SalI-degraded pUC9 soro described above. This plasmid was called pgC2Sal2.9.

10 DNA-sekvensanalyse af klonet HSV2-DNA.10 DNA sequence analysis of cloned HSV2 DNA.

Hovedparten af DNA-sekvenserne blev bestemt under anvendelse af dideoxynucleotid-kædeafslutnings-teknikken.Most of the DNA sequences were determined using the dideoxynucleotide chain termination technique.

Forskellige fragmenter blev subklonet ind i den replika-tive form af ml3-fag-vektorerne mp7, mp8 og mp9, og 15 DNA-sekvensen blev bestemt som tidligere beskrevet (29).Various fragments were subcloned into the replicative form of the ml3 phage vectors mp7, mp8 and mp9, and the DNA sequence was determined as previously described (29).

32 I nogle tilfælde blev fragmenter P-mærket ved deres 32 5'-ender med y P-ATP og T4-polynucleotidkinase, og fragmentets DNA-sekvens blev bestemt ved anvendelse-af den kemiske degradationsmetode (56). Datamatassisteret 20 analyse af DNA- og protein-sekversdat.a blev gennemført under anvendelse af HOM-programmet (57). Hydropatien af de afledte aminosyresekvenser blev analyseret under anvendelse af en bredde på 12 aminosyrer og et spring på 1 (31a).32 In some cases, fragments were P-labeled at their 32 5 'ends with γ P-ATP and T4 polynucleotide kinase, and the DNA sequence of the fragment was determined using the chemical degradation method (56). Computer assisted analysis of DNA and protein sequence data was performed using the HOM program (57). The hydropathy of the deduced amino acid sequences was analyzed using a width of 12 amino acids and a jump of 1 (31a).

25 Southern-afdupningsanalyse af HSV2-DNA.Southern immersion analysis of HSV2 DNA.

Restriktionsendonuclease-nedbrudt HSV2-DNA og plasmid-DNA blev fraktioneret på 1,5 K agarosegeler og afduppet på nitrocellulose under anvendelse af standardprocedurer.Restriction endonuclease digested HSV2 DNA and plasmid DNA were fractionated on 1.5 K agarose gels and immersed on nitrocellulose using standard procedures.

De enkeltstrengede ender af Sac2-fragmentet, markeret 30 med en stjerne i fig. 12, blev udfyldt med KLenow-frag- mentet af DNA-polymerase I, og det resulterende sturop-endede fragment blev ligeret til SmaI-nedbrudt replikativThe single-stranded ends of the Sac2 fragment, marked 30 with an asterisk in FIG. 12, was filled in with the KLenow fragment of DNA polymerase I, and the resulting strop-ended fragment was ligated to SmaI digested replicative

Form af ml3mp7 (29) med TA-ONA-ligase. Den enkeltstren gede DNA fremstillet ud fra denne ligering og transfek- 32 50 DK 173597 B1 tion blev anvendt som skabelon for syntesen af P.-rosr-ket enkeltstrenget sonde-DNA med høj specifik aktivi-Form of ml3mp7 (29) with TA-ONA ligase. The single-stranded goat DNA prepared from this ligation and transfection was used as a template for the synthesis of P.-rosified single-stranded probe DNA with high specific activity.

OISLAND

5 te.t (1 x 10 tallinger/min.^ug) under anvendelse af5 te.t (1 x 10 counts / min. Μg) using

Klenov/-fragmentet af DNA-polymerase I. Hybridiseringer blev gennemført under anvendelse af standardprocedurer (27, 58).Klenov / fragment of DNA polymerase I. Hybridizations were performed using standard procedures (27, 58).

Resultater 10 Molekylår kloning af gF-kodningsområdet af HSV2-genomet.Results 10 Molecular cloning of the gF coding region of the HSV2 genome.

Den strategi, som blev antaget til isolering af gF-genet fra HSV2, var baseret på den antagelse, at dette gen var colinesrt med HSVl-gC-genet. Denne antagelse blev understøttet af den nylige erkendelse, at et 75000 dalton 15 glycoprotein, gF, med antigenisk beslsgtethed til HSV1- glycoprotein C findes i HSV2, og at genet for dette protein er tilnsrmelsesvis colinesrt med HSVl-gC-genet (22d, 59). Desuden tydede isoleringen af et monoklonalt antistof, som binder til både HSVl-gC og HSV2-F, yder-20 ligere på at disse to proteiner kan vare homologe med hinanden (22f). Det blev således besluttet, at DNA-se-kvensanalyse af det HSV2-genomiske område, som er colinesrt med HSVl-gC-genet, ville resultere i afledningen af proteinsekvensinformation, som ville lokalisere HSV2-25 gF-genet.The strategy adopted for isolating the gF gene from HSV2 was based on the assumption that this gene was colinescent with the HSV1 gC gene. This assumption was supported by the recent recognition that a 75,000 dalton glycoprotein, gF, with antigenic determination for HSV1 glycoprotein C is found in HSV2, and that the gene for this protein is approximately colinear with the HSV1-gC gene (22d, 59). . Furthermore, the isolation of a monoclonal antibody that binds to both HSV1-gC and HSV2-F further suggested that these two proteins may be homologous to each other (22f). Thus, it was decided that DNA sequence analysis of the HSV2 genomic region, which is colinear with the HSV1-gC gene, would result in the derivation of protein sequence information that would localize the HSV2-25 gF gene.

600 bp EcoRI-,,P,,-fragmentet af HSV2-genomet er blevet vist at høre til i position ca. 0,650 på kortet (12).The 600 bp EcoRI - P1 fragment of the HSV2 genome has been shown to belong to position ca. 0.650 on the card (12).

Dette område er tilnsrmelsesvis colinesrt med det kendte kodeområde for HSVl-gC-genet, som ligger mellem ca.This region is approximately colinear with the known coding region for the HSV1-gC gene, which is between ca.

30 0,630 og ca. 0,660 på kortet over HSVl-genomet (59).30 0.630 and approx. 0.660 on the HSV1 genome map (59).

Dette fragment blev isoleret fra en EcoRI-nedbrydning af HSV2-DNA klonet i plasmidet pUC9 (28), og dets DNA- 51 DK 173597 B1 sekvens blev bestemt (29, 56). Sammenligning af den resulterende sekvens med HSVl-gC-sekvensen (59) afslørede en betydelig grad af sekvenshomologi mellem EgoRI-"P1*-fragmentet og 3'-enden af HSVl-gC-kodeområdet. S a -5 ledes blev EcoRI-"P"-fragmentet derefter anvendt som sonde til at isolere et Sacl-restriktionsendonuclease-fragment fra HSV2-genomisk DNA, der overlappede EcoRI-,,P,,-fragmentet tilstrakkeligt til at inkludere resten af HSV2-genet, som var homologt med HSVl-gC-genet. Fig.This fragment was isolated from an EcoRI digestion of HSV2 DNA cloned into plasmid pUC9 (28) and its DNA sequence determined (29, 56). Comparison of the resulting sequence with the HSV1-gC sequence (59) revealed a significant degree of sequence homology between the EgoRI "P1 * fragment and the 3 'end of the HSV1-gC coding region. The fragment then used as a probe to isolate a Sac1 restriction endonuclease fragment from HSV2 genomic DNA that overlapped the Eco RI - P1 fragment sufficient to include the remainder of the HSV2 gene homologous to HSV1-gC. FIG.

10 12 belyser de trin, der blev foretaget for at isolere et 2,9 kb Sall-fragment fra HSV2-genomet, som indeholdt EcoRfragmentet, og som blev anvendt til efterfølgende DNA-sekvensanalyse.Fig. 12 illustrates the steps taken to isolate a 2.9 kb SalI fragment from the HSV2 genome containing the EcoR fragment and used for subsequent DNA sequence analysis.

DNA-sekvensanalyse af EcoRI-,,P"-området i HSV2-genomet.DNA sequence analysis of the Eco RI -, P - region of the HSV2 genome.

15 βΒαΙ-'Έ’1-fragmentet på 4,3 kb, som blev isoleret fra HSV2-genomet baseret på dets sekvenshomologi med EcoRI-"Ρ”-fragmentet, blev yderligere nedbrudt til opnåelse af et 2,9 kb Sall-fragment, som blev betegnet pgC2Sal2.9.The 4.3 kb βΒαΙ-Έ1 fragment, which was isolated from the HSV2 genome based on its sequence homology to the EcoRI "Ρ" fragment, was further digested to obtain a 2.9 kb SalI fragment, which was designated pgC2Sal2.9.

Fig. 12 belyser fragmenterne fra pgC2Sal2.9, som blev 20 underkastet DNA-sekvensanalyse under anvendelse af enten * dideoxynucleotid-sekvensbestemmelsesproceduren (29) eller den kemiske degradationsprocedure (569. Desuden viser denne figur positionen af EcoRI-"P,,-fragmentet i pgC2Sal2.9 såvel som positionen af et BgllI-ce'nter, 25 der svarer til den højre ende af BglII-"N,,-fragmentet ved position ca. 0,628 i HSV2-genomet (12).FIG. 12 illustrates the fragments of pgC2Sal2.9, which were subjected to DNA sequence analysis using either the * dideoxynucleotide sequencing procedure (29) or the chemical degradation procedure (569. In addition, this figure shows the position of the EcoRI-P1 fragment in pgC2Sal2. 9, as well as the position of a BglII cell, which corresponds to the right end of the BglII "N" fragment at position about 0.628 in the HSV2 genome (12).

Specifikt viser fig. 12 kloningen af pgC2Sal2.9, det HSV2-område, som ligger colinesrt med HSVl-gC på kortet.Specifically, FIG. 12 cloning of pgC2Sal2.9, the HSV2 region which is colinear with HSV1-gC on the map.

Området af HSV2-genom-kortlægningen fra ca. 0,61 til 50 ca. 0,66 blev klonet som et Sacl-fragment (pBRSac-”EM) under anvendelse af 600 bp EcoRI-"P"-fragmentet som sonde. En Sall-subklon af pBRSac-"E.", pgC2Sal2.9, blev anvendt til ONA-sekvensanalyse. Pile henfører til de sekvensbestemte områder, og lokaliseringen af en storre 52 DK 173597 B1 åben aFlæsningsramme på 479 aminosyrer afledt fra sekvensen er belyst. Forskellige restriktionscentre er belyst, herunder EcoRI-centrene, som afgrænser EcoRI-"P"-fragmen-tet, og det BglII-center, som findes ved den højre ende 5 af BgllI-"N"-fragmentet (kort position ca. 0,628) (26)..The area of HSV2 genome mapping from ca. 0.61 to 50 approx. 0.66 was cloned as a SacI fragment (pBRSac-EM) using the 600 bp EcoRI "P" fragment as probe. A SalI subclone of pBRSac- "E.", pgC2Sal2.9, was used for ONA sequence analysis. Arrows refer to the sequenced regions and the location of a larger open reading frame of 479 amino acids derived from the sequence is elucidated. Various restriction centers have been elucidated, including the EcoRI centers that delineate the EcoRI "P" fragment and the BglII center located at the right end 5 of the BglII "N" fragment (short position about 0.628) (26) ..

Sad I-fragmentet markeret med en stjerne (*) blev anvendt ved Southern-afdupningsforsøg for at undersøge den deletion, som viser sig i dette område (se resultater).The Sad I fragment marked with an asterisk (*) was used in Southern immersion experiments to investigate the deletion that appears in this region (see results).

Andre centre blev anvendt til DNA-sekvensbestemmelses-10 forsøg. Sm: Smal, 5a: Sac2, Rs: Rsal, Bg: Bgl2, Pv:Other centers were used for DNA sequencing experiments. Sm: Narrow, 5a: Sac2, Rs: Rsal, Bg: Bgl2, Pv:

Pvu2, RI: EcoRI.Pvu2, RI: EcoRI.

Fig. 13 belyser DNA-sekvensen opnået fra pgC2Sal2.9 sammenlignet med DNA-sekvensen af HSVl-gC-området (59). HSVl-gC-området (HSV-1) og sekvensen opnået fra 15 pgC2Sal2.9 (HSV-2) blev sammenlignet under anvendelse af HOM-programmet (57). Eftersom forskellige deletioner blev udnyttet til at maksimere sekvensoverlapning, er alle positioner, herunder mellemrum, blevet nummereret for tydeligheds skyld. Stjerner er anbragt over ikke-20 overensstemmende nucleotider. Den understregede "A"-rest ved position 43 i HSVl-sekvensen er det omtrentlige transcriptionsstartcenter for gC-mRNA'en. (59). "TATA" 1 og "TATA" 2 er de sandsynlige transcriptionsstyrings-områder for henholdsvis HSVl-gC-mRNA* en og 730 base 25 mRNA'en (59, 60). Den indsatte T-rest ved position 1728 i HSVl-sekvensen blev opdaget ved gentagen sekvensbestemmelse af dette område (M. Jackson, upubliceret) og fandtes at indføre en i-fase stopcodon ved positionerne 1735 - 1737, som var homolog med stopcodonen for 30 den større åbne HSV2-aflæsningsramme. Positionen af 730 base mRNA-startcodonen i HSV1 er vist ved position 2032 - 2034 ligesom positionen af en anden HSV2-start-codon ved position 1975 - 1977. 1 fig. 13 blev den belyste afledte sekvens af HSV2 sammen-35 lignet med DNA-sekvensen af gC-genområdet i HSV1 (59), 53 DK 173597 B1 som viste, at den samlede sekvenshomologi mellem disse to Fragmenter var omkring 68 %. Imidlertid viste visse områ.der af sekvensen enten en meget højere eller en lavere grad af sekvenshomologi end andre. F.eks. viste 5 sekvenserne mellem positionerne 0 og 570 i HSV1- og HSV2-sekvenserne kun 51 % homologi, medens området mellem position 570 og 1740 viste en meget højere grad af sekvenshomologi (80 %). Et yderligere hejhomologt område (70 %) fandtes også ved enden af de to sekvenser 10 fra position 1975 til position 2419. Foruden nucleotid- sekvenssndringerne viste de to genomer forskellige de-letioner eller indsætninger, når de blev sammenlignet med·hinanden. Den mest bemærkelsesværdige var et 81 bp område ved position 346 - 426 i HSVl-gC-sekvensen, 15 som mangler i HSV2-genomet. Af denne samlede sekvens sammenligning fremgår det, at der var en høj grad af sekvenshomologi mellem HSVl-gC-området og det her sekvensbestemte HSV2-område.FIG. Figure 13 illustrates the DNA sequence obtained from pgC2Sal2.9 compared to the DNA sequence of the HSV1-gC region (59). The HSV1-gC region (HSV-1) and the sequence obtained from 15 pgC2Sal2.9 (HSV-2) were compared using the HOM program (57). Since various deletions were used to maximize sequence overlap, all positions, including spaces, have been numbered for clarity. Asterisks are placed over non-conforming nucleotides. The underlined "A" residue at position 43 of the HSV1 sequence is the approximate transcription start center of the gC mRNA. (59). "TATA" 1 and "TATA" 2 are the likely transcriptional control regions for the HSV1-gC mRNA * and 730 base 25 mRNA, respectively (59, 60). The inserted T residue at position 1728 in the HSV1 sequence was detected by repeated sequencing of this region (M. Jackson, unpublished) and was found to introduce an in-phase stop codon at positions 1735 - 1737 which was homologous to the stop codon for the 30 larger open HSV2 reading frame. The position of the 730 base mRNA start codon in HSV1 is shown at position 2032 - 2034 as is the position of another HSV2 start codon at position 1975 - 1977. 1 fig. 13, the illuminated derived sequence of HSV2 was compared to the DNA sequence of the gC genome region of HSV1 (59), which showed that the overall sequence homology between these two fragments was about 68%. However, certain areas of the sequence showed either a much higher or a lower degree of sequence homology than others. Eg. the 5 sequences between positions 0 and 570 in the HSV1 and HSV2 sequences showed only 51% homology, whereas the region between positions 570 and 1740 showed a much higher degree of sequence homology (80%). An additional hi-homologous region (70%) was also found at the end of the two sequences 10 from position 1975 to position 2419. In addition to the nucleotide sequence changes, the two genomes showed different deletions or insertions when compared to each other. Most notable was an 81 bp region at positions 346 - 426 in the HSV1-gC sequence, 15 missing in the HSV2 genome. From this overall sequence comparison, it appears that there was a high degree of sequence homology between the HSV1-gC region and the HSV2 region determined here.

Frink et al. (59) har fundet, at 5'-enden af den 2520 20 base mRNA, der koder for HSVl-gC, rækker til den under stregede A-rest ved position 43 i fig. 13. Desuden udpegede de en AT-rig ,,TATA"-kasse-sekvens (60) omkring 22 bp 5' for denne rest. Sammenligning af de to i fig.Frink et al. (59) have found that the 5 'end of the 2520 base mRNA encoding HSV1-gC extends to the below dashed A residue at position 43 of FIG. 13. In addition, they designated an AT rich "TATA" box sequence (60) about 22 bp 5 'for this residue. Comparison of the two in FIG.

13 viste sekvenser viser, at HSV1- og HSV2-sekvenserne 25 begge indeholdt den identiske sekvens CGGGTATAAA, i dette område. Denne sekvens er identisk med den, der er rapporteret tidligere af Whitton et al. .(61), som er fundet at forekomme ved "TATA"-kasse-områderne i mange af de hidtil bestemte HSV1- og HSV2-sekvenser.13, the HSV1 and HSV2 sequences 25 both contained the identical sequence CGGGTATAAA, in this region. This sequence is identical to that reported previously by Whitton et al. (61) found to occur at the "TATA" box regions in many of the HSV1 and HSV2 sequences so far determined.

30 Denne bevarede sekvens efterfølges også af et G-rigt område i begge virusgenomer. Foruden dette formodede transcriptionsstyringsområde fandtes en anden "TATA"-kasse i begge sekvenser ved position 1845 - 1849 i fig. 13.This conserved sequence is also followed by a G-rich region in both viral genomes. In addition to this putative transcription control region, another "TATA" box was found in both sequences at positions 1845 - 1849 in FIG. 13th

Denne anden "TATA"-kasse er blevet foreslået at styre 35 transcript ionen af en 730 base mRNA i HSVl-genomet (59).This second "TATA" box has been proposed to control the transcript ion of a 730 base mRNA in the HSV1 genome (59).

54 DK 173597 B1 Både HSV1 og HSV2 indeholder denne sekvens omgivet af GC-rige flankerende sekvenser, inkluderende en CGGGCG-sekvens, som minder pm den CGGG-sekvens, der går forud for den første "ΤΑΤΑ’'-kasse. Desuden koder begge genomer 5 for åbne aflæsningsrammer 3' for disse andre "TATA"- kasser, som det vil blive omtalt nedenfor.54 GB 173597 B1 Both HSV1 and HSV2 contain this sequence surrounded by GC-rich flanking sequences, including a CGGGCG sequence similar to the CGGG sequence preceding the first "ΤΑΤΑ" box. In addition, both genomes encode 5 for open reading frames 3 'for these other "TATA" boxes, as will be discussed below.

For at bestemme om den ovenfor beskrevne 61 bp deletion virkelig fandtes i HSV2 genomet, eller om den var ét kunstprodukt af kloning eller sekvensbestemmelse, gen- 10 nemførtes Southern-afdupningsanalyse af den HSV2-geno- 32 miske DNA og den klonede HSV2-DNA. En P-mærket blev fremstillet ud fra et Sac2-fragment (se fragmentet i fig. 12), som spænder området, der mangler de 81 nucleo-tider. Hvis den HSV2-genomiske DNA mangler 81 bp om-15 rådet, så vil et Smal-BgllI-fragment, som spænder over det område, være på 576 bp, et SmaI-fragment vil være på 662 bp, og et Sac2-fragment vil være på 195 bp.To determine whether the above-described 61 bp deletion was truly present in the HSV2 genome, or whether it was one art product of cloning or sequencing, Southern immersion analysis of the HSV2 genomic DNA and the cloned HSV2 DNA was performed. A β-tag was prepared from a Sac2 fragment (see the fragment in Fig. 12) spanning the region lacking the 81 nucleotides. If the HSV2 genomic DNA is missing 81 bp in area, then a SmaI-BglII fragment spanning that region will be 576 bp, a SmaI fragment will be 662 bp, and a Sac2 fragment will be 195 bp.

Fig. 14 belyser Southern-afdupningsanalyse af HSV2-genomi.sk DNA og pgC2Sal2.9~DNA. Området, der spænder 20 over 81 bp området, som mangler i den i fig. 13 viste HSV2-sekvens (HSV2-positionerne 346 - 426), blev analyseret under anvendelse af Sac2-fragmentet mærket med en stjerne i fig. 12, som overlapper det deleterede område. Banerne 1 - 3 er restriktionsnedbrydninger af 25 HSV2-genomisk DNA, og banerne 4 - 6 er restriktionsen zymnedbrydninger af pgC2Sal2.9. De nedbrudte DNA’er blev underkastet elektroforese på 1,5 % agarosegeler, denatureret, afduppet på nitrocellulose og sonderet med det P-mærkede Sac2-fragment. (Pilene viser positi-30 onen af 564 bp Hindi 11-fragmentet af fag-λ-ΟΝΑ.) Bane 1, 6: Saml + Bgl2; bane 2, 5: Smal; bane 3, 4: Sac2.FIG. 14 illustrates Southern immersion analysis of HSV2-genomic DNA and pgC2Sal2.9 ~ DNA. The area spanning 20 over the 81 bp range, which is missing in the one shown in FIG. 13 HSV2 sequence (HSV2 positions 346 - 426), was analyzed using the Sac2 fragment labeled with an asterisk in FIG. 12, which overlaps the deleted area. Lanes 1 - 3 are restriction digests of 25 HSV2 genomic DNA and lanes 4 - 6 are restriction zyme digests of pgC2Sal2.9. The digested DNAs were electrophoresed on 1.5% agarose gels, denatured, immersed on nitrocellulose and probed with the P-labeled Sac2 fragment. (The arrows show the position of the 564 bp Hindi 11 fragment of phage λ-ΟΝΑ.) Lanes 1, 6: Saml + Bgl2; lanes 2, 5: Narrow; lanes 3, 4: Sac2.

De i fig. 14 viste resultater påviser, at de forudsagte 55 DK 173597 B1 restriktionscentre omgav området, der manglede de 81 basepar, i både den HSV2-genomiske ONA og den klonede HSV2-DNA. Oesuden vandrede de HSV2-genomiske fragmenter og de kolhede fragmenter nøjagtigt sammen, hvilket påvi-5 ser, at deletionen ikke er et kunstprodukt af kloning eller sekvensbestemmelse.The 14 shows that the predicted 55 restriction centers surrounded the region lacking the 81 base pairs in both the HSV2 genomic ONA and the cloned HSV2 DNA. In addition, the HSV2 genomic fragments and the carbonaceous fragments exactly migrated together, proving that deletion is not an art product of cloning or sequencing.

Analyse af den større åbne aflæsningramme i HSV2-SalI-fragmentet på 2,9 kbAnalysis of the larger open reading frame of the 2.9 kb HSV2-SalI fragment

Analyse af de potentielle kodesekvenser i 2,9 kb .Sall-DNA-10 fragmentet af H5V2 afslørede en åben aflæsningsramme på 479 aminosyrer, som begyndte med methioninet indkodet ved positionen 199 - 201 af den i fig. 13 viste HSV2 sekvens og endte med TAA-afslutningskodonen ved position 1735 - 1737 af HSV2-sekvensen i denne figur. Som det 15 kan ses af fig. 13, starter både HSVl-gC-proteinet og den åbne HSV2-aflæsningsramme ved omkring samme position i de to sekvenser i forhold til ,,TATA"-kasse-homo~ logierne. Desuden har det vist sig, at medens det oprindeligt syntes, at den åbne HSV2-aflssningsramme fundet 20 i dette område sluttede 12 codoner før HSVl-gC-genet, så har gentagen sekvensbestemmelse af det carboxyl terminale område af gC-gensekvensen (M. Jackson, upubliseret) af HSVl-stamme F afsløret, at den af Frink et al. (59) rapporterede sekvens manglede et thymidin-nucleotid 25 efter position 1727, og at indsætning af denne rest resulterede i et translateret HSVl-gC-protein, der sluttede på samme sted som den åbne HSV2-aflæsningsramme (1735 - 1737 i fig. 13). Når man således tager de forskellige deletioner og indsætninger i betragtning, som belyst 30 i fig- 13» viser HSVl-gC-genet og den åbne HSV2-aflæs- ningsramme en meget høj grad af overlapning.Analysis of the potential coding sequences in the 2.9 kb. Sal I DNA-10 fragment of H5V2 revealed an open reading frame of 479 amino acids, beginning with the methionine encoded at position 199 - 201 of the 13 showed HSV2 sequence and ended with the TAA termination codon at position 1735 - 1737 of the HSV2 sequence in this figure. As can be seen from FIG. 13, both the HSV1-gC protein and the open HSV2 reading frame start at about the same position in the two sequences relative to the "TATA" box homologies. In addition, while it initially appeared that the open HSV2 read frame found 20 in this region terminated 12 codons before the HSV1 gC gene, then repeated sequencing of the carboxyl terminal region of the gC gene sequence (M. Jackson, unpublished) of HSV1 strain F revealed that Frink et al (59) reported sequence lacking a thymidine nucleotide 25 at position 1727, and insertion of this residue resulted in a translated HSV1-gC protein ending at the same site as the open HSV2 reading frame (1735 - 1737 Thus, considering the various deletions and inserts as illustrated in Figure 13, the HSV1-gC gene and the open HSV2 reading frame show a very high degree of overlap.

Fig. 15 belyser translation of den store åbne HSV2-aflæs- 56 DK 173597 B1 ningsramme og sammenligning med HSVl-gC-aminosyresekvensen.FIG. 15 illustrates translation of the large open HSV2 reading frame and comparison with the HSV1-gC amino acid sequence.

Oer anvendtes enkelt-bogstavsaminosyresymbolerne. HSV-1 . gC henfører til HSVl-gC-sekvensen, og HSV-2 gF henfører til den åbne HSV2-aflæsningsramme-sekvens. Proteinerne 5 blev sammenlignet under anvendelse af HOM-programmet, som maksimerede homologier ved at indsætte åbninger, hvor det var nødvendigt (57). Stjerner er placeret over ikke-homologe aminosyrer. Formodede N-forbundne glyco-syleringscentre (NXS eller NXT) (62) er gråtonede, og 10 cysteinrester (C) er indrammede. Kun aminosyrer og ikke mellemrum er nummeret. 15B belyser translationen, af den anden åbne HSV2-aflssningsramme og sammenligning med 730 base mRNA-HVSl-proteinet. HVS-2 730 bp ORF er den ufuldstændige aminosyresekvens af den anden åbne 15 HSV2-aflæsningsramme fra position 1975 til position 2606 af den i fig. 13 viste HVS2-sekvens. HVS-1 730 bp ORF er aminosyresekvensen afledt for det protein, der er indkodet af 730 base mRNA'en for HSV1 (59). Bevarende aminosyreændringer med hensyn til ladning er mær-20 ket (C) og ikke-bevarende ændringer med hensyn til lad ning er mærket (N) i både fig. 4A og 4B.Oer was the single-letter amino acid symbols used. HSV-1. gC refers to the HSV1 gC sequence, and HSV-2 gF refers to the open HSV2 reading frame sequence. Proteins 5 were compared using the HOM program, which maximized homologies by inserting openings where needed (57). Stars are located above non-homologous amino acids. Presumed N-linked glycylation centers (NXS or NXT) (62) are grayed out and 10 cysteine residues (C) are framed. Only amino acids and not spaces are the number. Figure 15B illustrates the translation of the second open HSV2 reading frame and comparison with the 730 base mRNA HVS1 protein. HVS-2,730 bp ORF is the incomplete amino acid sequence of the second open HSV2 reading frame from position 1975 to position 2606 of the one shown in FIG. 13 shows the HVS2 sequence. HVS-1 730 bp ORF is the amino acid sequence derived for the protein encoded by the 730 base mRNA of HSV1 (59). Conservative amino acid changes in charge are labeled (C) and non-conservative changes in charge are labeled (N) in both Figs. 4A and 4B.

Fig. 15 belyser den høje grad af sekvenshomologi mellem HSVl-gC-genet og den åbne HSV2-aflæsningsramme på 479 aminosyrer. De første 19 aminosyrer indeholder omkring 25 80 % sekvenshomologi, hvor ændringerne i de første 25 aminosyrer alle er bevarende med hensyn til ladning.FIG. 15 illustrates the high degree of sequence homology between the HSV1-gC gene and the open HSV2 reading frame of 479 amino acids. The first 19 amino acids contain about 25 80% sequence homology where the changes in the first 25 amino acids are all conservative in charge.

Fra rest 124 i HSVl-gC (rest 90 i HSV2-sekvensen) til enden af begge proteiner er der omkring 74 % sekvenshomologi, hvor 75 % af aminosyreændringerne er bevarende 30 med hensyn til ladning. Fem formodede N-frobundne glyco- syleringscentre (NXS eller NXT (62)) er bevaret mellem de to proteiner, og alle syv cysteinrester er lokaliseret i homologe positioner i forhold til den C-terminale ende. Foruden den-samlede bevarelse af sekvenser i de 35 carboxytermina le 3/4 af proteinerne er der også store 57 DK 173597 B1 områder af sammenhængende aminosyresekvenshomologi med en længde på op til 20 rester (dvs. position 385 - 405 i HSVl-sekvensen og 352 - 372 i HSV2-sekvensen). Det kan konkluderes af denne sekvenssammenligning, at den 5 åbne aflæsningsramme i dette område af HVS2-genomet koder for et protein, som er homologt med HSVl-gC.From residue 124 in HSV1-gC (residue 90 in HSV2 sequence) to the end of both proteins, there is about 74% sequence homology, with 75% of the amino acid changes retaining 30 in terms of charge. Five putative N-seeded glycosylation centers (NXS or NXT (62)) are conserved between the two proteins, and all seven cysteine residues are located at homologous positions relative to the C-terminal end. In addition to the overall conservation of sequences in the 35 carboxy terminals le 3/4 of the proteins, there are also large regions of contiguous amino acid sequence homology with a length of up to 20 residues (i.e., positions 385 - 405 in the HSV1 sequence and 352 - 372 in the HSV2 sequence). It can be concluded from this sequence comparison that the 5 open reading frame in this region of the HVS2 genome encodes a protein homologous to HSV1-gC.

Medens HSV2-p’roteinet, som dette områder koder for, viser en betydelig grad af sekvenshomologi med HSVl-gC-se-kvensen, er der flere bemærkelsesværdige forskellige 10 mellem de to sekvenser. Den mest slående froskel er en deletion af 27 aminosyrer i HSV2-sekvensen, som findes i HSVl-gC-sekvensen fra rest 50 til rest 76 (fig. 15), og som svarer til deri ovenfor beskrevne 81 bp deletion-Foruden denne store deletion viser begge sekvenser mindre 15 deletioner på en eller to aminosyrer. Alle disse dele tioner findes i de aminoterminale områder af proteinerne. Foruden disse deletioner er der et stort antal amino-syreændringer i proteinernes aminoterminale område, som er klumpet sammen mellem resterne 29 og 123 i HSVl-gC-20 sekvensen (resterne 31 - 90 i HSV2-sekvensen). Kun 30 % af aminosyrerne i dette område er homologe, og meget åfd enne homologi skyldes bevarede prolinrester. 43 % af aminosyreudskiftningerne i dette område er ikke-bevarende med hensyn til ladning. De eneste andre områder, 25 som viste et så stort antal ændringer, er et carboxyl- terminalt hydrophont domæne (resterne 476 - 496 i HVS1-sekvensen og 443 - 463 i HSV2-sekvensen), hvor proteinerne er 55 % homologe, men hvor alle ændringerne er bevarende, uladede, hydrophobe aminosyrer, og proteinernes 30 carboxylender, hvor sekvenserne kun er 25 % homologe, men hvor den samlede aminosyresammensætning minder om hinanden (resterne 500 - 512 i HSVl-sekvensen og 467 - 479 i HSV2-sekvensen). Medens 5 af de formdoede N-forbundne glycosyleringscentre er bevaret mellem de 58 - DK 173597 B1 to proteiner, indeholder HSVl-gC-sekvensen to flere centre end HSV2-sekvensen (i alt ni mod syv). HSVl-gC-sekvensen indeholder 2N-forbundne glycosyleringscerftre i de 27 aminosyrer, som er deleteret fra HSV2-sekvensen 5 og et overlappende par centre mellem resterne 109 og 112 i fig. 15. HSV2-sekvensen indeholder 2N-forbundne glycosyleringscentre, som ikke findes i HSVl-sekvensen, hvoraf det ene er proksimalt til aminoenden.While the HSV2 β protein encoded by these regions shows a significant degree of sequence homology with the HSV1-gC-se sequence, there are several notable differences between the two sequences. The most striking frog is a deletion of 27 amino acids in the HSV2 sequence found in the HSV1-gC sequence from residue 50 to residue 76 (Fig. 15), which corresponds to the 81 bp deletion described above, in addition to this large deletion. both sequences show less deletions on one or two amino acids. All of these divisions are found in the amino-terminal regions of the proteins. In addition to these deletions, there are a large number of amino acid changes in the amino-terminal region of the proteins, which are clumped between residues 29 and 123 of the HSV1-gC-20 sequence (residues 31 - 90 of the HSV2 sequence). Only 30% of the amino acids in this region are homologous, and much of the homology is due to conserved proline residues. 43% of the amino acid replacements in this region are non-conservative in charge. The only other regions that showed such a large number of changes are a carboxyl-terminal hydrophonic domain (residues 476 - 496 in the HVS1 sequence and 443 - 463 in the HSV2 sequence), where the proteins are 55% homologous, but all the alterations are conservative, uncharged, hydrophobic amino acids, and the carboxyl ends of the proteins where the sequences are only 25% homologous but where the overall amino acid composition is similar (residues 500-512 in the HSV1 sequence and 467-479 in the HSV2 sequence). While 5 of the designed N-linked glycosylation centers are conserved between the two proteins, the HSV1-gC sequence contains two more centers than the HSV2 sequence (nine to seven in total). The HSV1-gC sequence contains 2N-linked glycosylation digests in the 27 amino acids deleted from HSV2 sequence 5 and an overlapping pair of centers between residues 109 and 112 of FIG. 15. The HSV2 sequence contains 2N-linked glycosylation centers not found in the HSV1 sequence, one of which is proximal to the amino terminus.

For mere fuldstændigt at undersøge de mulige strukturelle 10 homologier mellem HSV1- og HSV2-sekvenser gennemførtes en hydropatianalyse (31a). Fig. 6 belyser hydropatiana-lysen af HSVl-gC-proteinet og proteinet indkodet af den større åbne HSV2-aFlæsningsramme. Hydropatien af hvert protein blev bestemt under anvendelse af programmet 15 angivet af Hopp og Woods (31a). Hydrophobe områder er over midterlinienr og hydriphile områder er under midterlinien. Strækninger på 12 aminosyrer blev analyseret, og gennemsnitshydropatien blev udregnet. Formodede aspara-gin-forbundne glycosyleringscentre (62) er mærket (0).To more fully investigate the possible structural homologies between HSV1 and HSV2 sequences, a hydropathy analysis (31a) was performed. FIG. Figure 6 illustrates the hydropatiana light of the HSV1-gC protein and the protein encoded by the larger open HSV2 aL reading frame. The hydropathy of each protein was determined using the program 15 reported by Hopp and Woods (31a). Hydrophobic areas are above the midline and hydriphilic areas are below the midline. Stretches of 12 amino acids were analyzed and the average hydropathy calculated. Presumed asparagine-linked glycosylation centers (62) are labeled (0).

20 gC-1: HSVl-gC-protein-hydropati. gC-2 (gF): hydropati af proteinet indkodet i den større åbne HSV2-aflæsningsramme .20 gC-1: HSV1-gC protein hydropathy. gC-2 (gF): hydropathy of the protein encoded in the larger open HSV2 reading frame.

Fig. 16 viser, at begge proteiner udviste en yderst høj grad af strukturel homologi baseret på aminosyrese-. 25 kvensernes hydrophile og hydrophobe egendkaber. Hvert viser et N-terminalt hydrophobt domæne efterfulgt af en strækning af hydrphile aminosyrer, som indeholder enten 6 af i alt 9 (HSV1) eller 3 af i alt 7 (HSV2) formodede N-forbundne glycosyleringscentre. Toppene 30 og dalene, som følger dette hydrophile område, er meget ens i begge proteiner, inklusive det hdyrophile domæne indeholdende det afsluttende N-forbundne glycosylerings-center. Begge proteiners carboxylender viser et meget 59 DK 173597 B1 hydrophobt område på 20 rester efterfulgt af en hydro-phil carboxylende. De 27 på hinanden følgende aminosyrer, som findes udelukkende i HSVl-gC-proteinet, viser dig at kode for et relativt hydrophilt område mellem rester-5 ne 50 og 76 (fig. 16). Som konklusion afslører denne analyse, at hydropatitrækkene ved HSVl-gC- og HVS2-pro-teinerne er meget ens, og at de mindst bevarede aminotermi-nale områder af proteinerne fidnes i hydrophile områder, som har evnen til at blive stærkt glycosyleret.FIG. 16 shows that both proteins exhibited an extremely high degree of structural homology based on amino acid synthesis. 25 the hydrophilic and hydrophobic properties of the quince. Each shows an N-terminal hydrophobic domain followed by a stretch of hydrphilic amino acids containing either 6 of a total of 9 (HSV1) or 3 of a total of 7 (HSV2) putative N-linked glycosylation centers. The peaks and valleys that follow this hydrophilic region are very similar in both proteins, including the hdyrophilic domain containing the final N-linked glycosylation center. The carboxyl ends of both proteins show a highly hydrophobic region of 20 residues followed by a hydrophilic carboxyl end. The 27 consecutive amino acids found exclusively in the HSV1-gC protein show you to encode a relatively hydrophilic region between residues 50 and 76 (Fig. 16). In conclusion, this analysis reveals that the hydropathy features of the HSV1-gC and HVS2 proteins are very similar and that the least conserved amino-terminal regions of the proteins fade into hydrophilic regions which have the ability to be highly glycosylated.

10 Analyse af den anden åbne HSV2-aflasningsramme10 Analysis of the second open HSV2 relief frame

Translation af de sidste 431 basepar afd en i fig. 13 viste HSV2-sekvens (resterne 1975 - 2406) afslørede en anden åben aflæsningsramme på 105 aminosyrer. Seiv om den her rapporterede sekvensinformation er utilstrsk-15 kelig til at indeholde hele den anden åbne HSV2-aflæsnings- ramme, afslørede en sammenligning af denne sekvens med den åbne aflasningsramme, som er indkodet af 730 base mRNA’en for HSV1, som rapporteret af.Frink et al. (10), også en høj grad af sekvenshomologi. Som det kan ses 20 i fig. 15B, viste de to sekvenser 75 % sekvenshomolgi i de overlappende områder, hvor omkring 90 % af aminosyre-ændringerne var bevarende med hensyn til ladning. Hoved-froskellen mellem de to sekvenser var et 19 aminosyrer langt N-terminalt område, som fandtes i HSV2-sekvensen, 25 men ikke i HSVl-sekvensen. Selv om Funktionen af det i dette område indkodede protein er ukendt, viste proteinerne fra HSV1 og HVS2 således en ebtydelig grad af sekvenshomologi.Translation of the last 431 base pairs of one in fig. 13, HSV2 sequence (residues 1975 - 2406) revealed another open reading frame of 105 amino acids. Whether the sequence information reported here is insufficient to contain the entire second open HSV2 read frame revealed a comparison of this sequence with the open read frame encoded by the 730 base HSV1 base mRNA, as reported by Frink et al. (10), also a high degree of sequence homology. As can be seen in FIG. 15B, the two sequences showed 75% sequence homology in the overlapping regions where about 90% of the amino acid changes were conservative in charge. The main fuselage between the two sequences was a 19 amino acid N-terminal region found in the HSV2 sequence, but not in the HSV1 sequence. Thus, although the function of the protein encoded in this region is unknown, the proteins of HSV1 and HVS2 showed a clear degree of sequence homology.

Diskussion 50 De ovenstående resultater viser, at HVS2-genomet koder 60 DK 173597 B1 for en colineært kortlagt homolog til HVS-glycoprotein C. Colineariteten af de her fundne sekvenser bestyrkes ved fundet af en sekvens 3' for den større åbne HSV2-aflæsningsramme, som øjensynligt koder for en homolog 5 til 730 base mRNA'en for HSV1 (10). Tidligere kortlæg ning af HSV2-gF-genet (33) sammen med de her beskrevne egenskaber for den større åbne aflæsningsramme i dette område af HSV2-genomet inkluderende flere potentielle N-forbundne glycosyleringscentre og en tilsyneladende 10 aminoterminalsignalsekvens (5) såvel som et formodet carboxyl terminalt transmembrandomæne (28) tillader den konklusion, at det her beskrevne HSV2-protein er glycoproteinet gF. Desuden er størrelsen a fd et transla-terede HSV2-protein (ca. 52 000 dalton) mage tild en, 15 som er rapporteret med det endoglycosidae H behandlede native HSV2-gF (54 000 dalton) (22d). Endelig angiver den store grad af aminosyresekvenshomologi såvel som bevarelen af flere potentielle N-forbundne glycosyleringscentre og alle 7 cysteinrester en strukturel homo-20 logi mellem HSVl-gC og HSV/2-gF. Disse resultater tyder således stærkt på, at HSVl-gC-proteinet og HSV2-gF-pro-teinet er homologe med hinanden.Discussion 50 The above results show that the HVS2 genome encodes a colinearly mapped homolog to HVS glycoprotein C. The colinearity of the sequences found here is corroborated by finding a sequence 3 'for the larger open HSV2 reading frame, which apparently encodes a homologous 5 to 730 base mRNA for HSV1 (10). Previous mapping of the HSV2 gF gene (33) together with the properties described herein for the larger open reading frame in this region of the HSV2 genome including several potential N-linked glycosylation centers and an apparent 10 amino-terminal signal sequence (5) as well as a putative carboxyl terminal transmembrane domain (28) allows the conclusion that the HSV2 protein described herein is the glycoprotein gF. In addition, the size of a translated HSV2 protein (about 52,000 daltons) is similar to that reported with the endoglycosidae H treated native HSV2-gF (54,000 daltons) (22d). Finally, the high degree of amino acid sequence homology as well as the preservation of several potential N-linked glycosylation centers and all 7 cysteine residues indicates a structural homology between HSV1-gC and HSV / 2-gF. Thus, these results strongly suggest that the HSV1-gC protein and HSV2-gF protein are homologous to each other.

Disse resultater hjælper til at forklare tidligere resultater, som viste, at’ H5V2-gF og HSVl-gC var i hovedsagen 25 typespecifikke, men at de havde type-fælles determinanter (17, 22d, 22f, 43). Oa flere tidlige undersøgelser (17, 18, 43) viste, at disse proteiner inducerede overvejende type-specifikke antistoffer, er det rimeligt, at de mest antigenjske områder af proteiner findes i de mere 30 divergente N-terminale sekvenser, som følger de formodet hydrophobe signalsekvenser. De divergente områders hydro-phile art sammen deres høje indhold af potentielle N-forbundne glycosyleringscentre (62) tyder på, at disse områder vil være lokaliseret på proteinets overflade.These results help explain previous results which showed that 'H5V2-gF and HSV1-gC were essentially 25 type-specific, but that they had type-common determinants (17, 22d, 22f, 43). Among other early studies (17, 18, 43) showed that these proteins induced predominantly type-specific antibodies, it is reasonable that the most antigenic regions of proteins are found in the more 30 divergent N-terminal sequences following the putative hydrophobic signal sequences. The hydrophilic nature of the divergent regions together with their high content of potential N-linked glycosylation centers (62) suggests that these regions will be located on the surface of the protein.

35 Blotlæggelse af disse divergente sekvenser ved proteiner- 61 DK 173597 B1 nes yderside kan vare ansvarlig for frembringelsen af type-specifikke antistoffer rettet mod disse divergente epitoper. Imidlertid kan type-falles antistoffer sandsynligvis også frembringes af de mere højtbevarede carboxyl-5 terminale 3/4 af proteinerne, da hydrophile områder bevaret mellem gC og gF kunne blotlægges på ydersiden af proteinerne og, i et tilf*lde, kan være glycosyleret (resterne 363 - 366 i HSVl-gC og 330 - 332 i HSV2-gF).Exposure of these divergent sequences to the exterior of the protein may be responsible for the production of type-specific antibodies directed against these divergent epitopes. However, type-dropped antibodies can probably also be produced by the more highly conserved carboxyl-terminal 3/4 of the proteins, since hydrophilic regions conserved between gC and gF could be exposed on the outside of the proteins and, in one case, may be glycosylated (the residues). 363 - 366 in HSV1-gC and 330 - 332 in HSV2-gF).

Således har HSVl-gC og HSV2-gF både type-specifikke 10 og type-falles determinanter, men det synes som om de type-specifikke determinanter er mere antigeniske.Thus, HSV1-gC and HSV2-gF have both type-specific and type-fall determinants, but it seems that the type-specific determinants are more antigenic.

Selv om en forklaring af de type-specifikke og typefalles determinanter i gC og gF ikke er kendt, er det muligt, at proteinerne har mindst 2 funktioner, hvoraf 15 den ene er vigtig for levedygtigheden af begge virus, det type-falles domane, og den anden er specifik for hver virus-type, det type-specifikke domane. Selv om funktionerne af gC og gF for tiden er ukendt, og selv om levedygtige gC~ mutanter af HSV1 er blevet isoleret 20 in vitro (65), er det ikke klart, at hverken gC eller gF kan undværes af virusserne under in vivo infektion af den humane og etableringen af latens. Det er muligt, at mindst nogle af de biologiske forskelle mellem HSV1 og HSV2, herunder forkærlighed for infektionssted og 25 virulens, kan skyldes de betydelige strukturelle forskelle mellem de aminoterminale områder af gC og gF.Although an explanation of the type-specific and type-case determinants in gC and gF is unknown, it is possible that the proteins have at least 2 functions, one of which is important for the viability of both viruses, the type-case domain, and the other is specific to each virus type, the type-specific domain. Although the functions of gC and gF are currently unknown, and although viable gC mutants of HSV1 have been isolated in vitro (65), it is not clear that neither gC nor gF can be avoided by the viruses during in vivo infection of the human and the establishment of latency. It is possible that at least some of the biological differences between HSV1 and HSV2, including predisposition to infection site and virulence, may be due to the significant structural differences between the amino-terminal regions of gC and gF.

Det kan konkluderes, selv uden nogen funktionel viden om disse proteiner, at der må virke forskellige selektionstryk på de divergente og bevarede domaner af gC og gF; 30 Tidligere sekvenssammenligning af gO-generne i HSV1 og HSV2 (58) viste, at den aminoterminale signalsekvens (63) og det carboxylsterminale transmembrandomæne (64) 62 DK 173597 B1 var i stand til at tolere et stort antal mutationer, så lange de indførte aminosyrer var hydrophobe. gC-og gF- sekvenssammenligning viser et lignende resultat i det carboxylterminale formodede transmembrandomæne (64) fra resterne 476 - 496 i gC og 443 - 463 i gF.It can be concluded, even without any functional knowledge of these proteins, that different selection pressures must act on the divergent and conserved domains of gC and gF; Earlier sequence comparisons of the gO genes in HSV1 and HSV2 (58) showed that the amino-terminal signal sequence (63) and the carboxyl-terminal transmembrane domain (64) were able to tolerate a large number of mutations as long as the introduced amino acids. was hydrophobic. gC and gF sequence comparison shows a similar result in the carboxyl terminal putative transmembrane domain (64) from residues 476 - 496 in gC and 443 - 463 in gF.

5 Det store antal heterologe hydrophobe udskiftninger i dette områder tyder på, at ligesom i gD enhver aminosyre, som er lipidopløselig, kan toleres i dette område.The large number of heterologous hydrophobic substitutions in this region suggests that, as in gD, any amino acid that is lipid soluble can be tolerated in this region.

I modsætning til gD er de aminoterminale signalsekvenser 10 i gC og gF imidlertid stærkt homologe i de første 19 rester. Således har dette område enten en vigtig bevaret funktion udover dirigering af glycoproteinerne ind i det rå endoplasmiske reticulum (3), eller der kan være et overlappende gen eller en anden funktionel sekvens 15 i dette område af genomet, som må bevares 866).However, unlike gD, the amino-terminal signal sequences 10 in gC and gF are highly homologous in the first 19 residues. Thus, this region either has an important conserved function in addition to directing the glycoproteins into the crude endoplasmic reticulum (3), or there may be an overlapping gene or other functional sequence 15 in this region of the genome which must be preserved (866).

Selv om der er præsenteret utilstrækkelig HSV2-sekvens til en fuldstændig sammenligning, viser området -3' for starten af HSVl-gC-roRNA-transcription en identisk sekvens, CGGGTATAA, i både HSV1- og HSV2-genomet. Desuden efterføl-20 ges begge sekvenser af et G-rigt område umiddelbart forud for starten af transcription. Således findes der, som det tidligere blev fundet for gD-generne i HSV1 og HSV2, opstrøms- sekvenshomologier mellem de to virustyper, som antyder muligheden af, at disse områder er 25 involveret i transcriptionsregulering af disse gener.Although insufficient HSV2 sequence has been presented for a complete comparison, the region -3 'of the onset of HSV1-gC-roRNA transcription shows an identical sequence, CGGGTATAA, in both the HSV1 and HSV2 genome. In addition, both sequences of a G-rich region are followed immediately prior to the onset of transcription. Thus, as previously found for the gD genes in HSV1 and HSV2, upstream sequence homologies exist between the two virus types, suggesting the possibility that these regions are involved in transcriptional regulation of these genes.

Interessant nok viser den anden MTATA"-kasse homologi, soro er fundet i begge virusgenomer, og som sandsynligvis styrer transcriptionen af 730 base mRNA'en (59, 60), også en relativt høj grad af sekvenshomologi i HSV1 30 og HSV2. Forud for disse ,,TATA,,-kasser ligger CG-rige sekvenser, som ligner, men ikke er identiske, med dero, der ligger forud de første ”TATA”-områder vist i fig.Interestingly, the second MTATA "box homology, soro found in both viral genomes, and which probably controls the transcription of the 730 base mRNA (59, 60), also shows a relatively high degree of sequence homology in HSV1 30 and HSV2. these "TATA" boxes are CG-rich sequences that are similar, but not identical, to those preceded by the first "TATA" regions shown in FIG.

13, og de efterfølges begge af et 14 bp område, der viser ca. 80 £ sekvenshomologi. Hele området med homo-35 logi» som omgiver dette område, er kun på 33 bp med en samlet sekvenshomologi på ca 75 X. Hvis dette område er 63 DK 173597 B1 involveret i transcriptionsregulering af 730 base mRNA'en, forekommer det, at en relativt kort sekvens kan være tilstrækkelig til genkendelse af transcriptionsregulerende elementer.13, and they are both followed by a 14 bp range showing approx. £ 80 sequence homology. The entire region of homology that surrounds this region is only 33 bp with a total sequence homology of about 75 X. If this region is involved in transcriptional regulation of the 730 base mRNA, it appears that a relatively short sequence may be sufficient for recognition of transcriptional regulatory elements.

5· Resultaterne viser, at HSVl-gC og HSV2-gF er stærkt homologe, og at de koder for type-fælles og type-spe-cifikke domæner. Da de to proteiner udviser væsentlig sekvenshomologi, og da de øjensynligt ligger coliniært på kortet, støtter vi det forslag, der er fremsat af 10 Zeulak og Spear (22d), at ændre navnet på HSV2-gF til HSV-gC eller gC-2. Desuden åbner de her rapporterede sekvensbestemmelsesdata vejen for en funktionel analyse af gC-1- og gC-2-proteinerne ved gensidig ombytning af forskellige type-specifikke områder mellem de to 13 proteiner in vitro og udtrykkelse af chimæriske sekvenser i pattedyrceller (67) eller reinkorporering af disse områder i virusset (68).5 · The results show that HSV1-gC and HSV2-gF are highly homologous and that they encode type-common and type-specific domains. Since the two proteins exhibit substantial sequence homology and since they appear to be colinear on the map, we support the suggestion made by 10 Zeulak and Spear (22d) to change the name of HSV2-gF to HSV-gC or gC-2. In addition, the sequence determination data reported here opens the way for a functional analysis of the gC-1 and gC-2 proteins by mutually exchanging different type-specific regions between the two 13 proteins in vitro and expression of chimeric sequences in mammalian cells (67) or reincorporation. of these areas in the virus (68).

Det antages, at de klonede gC-2-glycoproteiner kan udtrykkes og præpareres til en vaccine på en måde, som 20 er analog med den, der. er angivet i eksempel 1.It is believed that the cloned gC-2 glycoproteins can be expressed and prepared for a vaccine in a manner analogous to that. are given in Example 1.

Det antages endvidere, at en vaccine, som inkluderer en blanding af sådanne rekombinante gC- og gD-glycopro-teiner, vil være væsentligt mere effektiv som vaccine over forHSVl og HSV2 end en, der er baseret på et af 25 glycoproteinerne alene.Furthermore, it is believed that a vaccine which includes a mixture of such recombinant gC and gD glycoproteins will be significantly more effective as a vaccine for HSV1 and HSV2 than one based on one of the 25 glycoproteins alone.

Referencerne, som er samlet i den efterfølge bibliografi, og hvortil der er henvist ved parenteser i den forudgående tekst, betragtes som inkorporeret i denne beskrivelse ved denne henvisning.The references which are included in the subsequent bibliography and which are referred to by parentheses in the preceding text are considered to be incorporated in this description by this reference.

64 DK 173597 B164 DK 173597 B1

Bibiioqra F i 1. Emtage et al., Hature 283, 171 (1980); Davis et al., Proc.Library F in 1. Emtage et al., Hature 283, 171 (1980); Davis et al., Proc.

Natl. Acad. Sci. (USA) 78, 5376 (1981); tøeiland et al., Mature 292, 851 (1981).Natl. Acad. Sci. (USA) 78, 5376 (1981); Tøeiland et al., Mature 292, 851 (1981).

2. Kupper et al.,Nature 289, 555 (1981); Kleid. et al., Science 214, 1125 (1981).2. Kupper et al., Nature 289, 555 (1981); Kleid. et al., Science 214, 1125 (1981).

3. Charnay et al., Nucleic Acids Research 7.» 335 (1979);3. Charnay et al., Nucleic Acids Research 7. » 335 (1979);

Valenzuela et al., Nature 298, 347 (1982).Valenzuela et al., Nature 298, 347 (1982).

4. Rose et al., Proc. Natl. Acadj.Sci. (USA) 78, 6670 (1981).4. Rose et al., Proc. Natl. Acadj.Sci. (USA) 78, 6670 (1981).

5. Yelverton, et al., Science 219, 614 (1983).5. Yelverton, et al., Science 219, 614 (1983).

6. Watson et al., Science 218, 381 (1982).6. Watson et al., Science 218, 381 (1982).

7. Gething et al., Nature 293, 620 (1981); Liu et al., DNA 2» 213 (1982); Goodenow et al., Science 215, 677 (1982); Goodenow et al., Nature 300, 231 (1982); Crowley et al., Kolec. and Cell. Biol. 3y 44 (1983).7. Gething et al., Nature 293, 620 (1981); Liu et al., DNA 2 »213 (1982); Goodenow et al., Science 215, 677 (1982); Goodenow et al., Nature 300, 231 (1982); Crowley et al., Kolec. and Cell. Biol. 3y 44 (1983).

8. Rose et al., Cell 30, 753 (1982).8. Rose et al., Cell 30, 753 (1982).

9. Spear, P.G., (1930), Herpesviruses, p709-750, in H.A. Blough and J.M. Tiffaney (ed)., Cell Hembranes and Viral Envelopes, Vol.9. Spear, P.G., (1930), Herpesviruses, p709-750, in H.A. Blough and J.M. Tiffaney (ed)., Cell Hembranes and Viral Envelopes, Vol.

2., Academic Press, Inc., New York.2nd, Academic Press, Inc., New York.

10. Balachandran et al., J. Virol. £4, 344 (1982).10. Balachandran et al., J. Virol. £ 4, 344 (1982).

11. Norrild, Curr. Top. Microbiol Immunol. 90, 67 (1930).11. Norrild, Curr. Top. Microbiol Immunol. 90, 67 (1930).

12. Roizman, Cell lj6, 481 (1979).12. Roizman, Cell l6, 481 (1979).

65 DK 173597 B1 13. Baucke et al., J. Virol. 32, 779 (1979).65 DK 173597 B1 13. Baucke et al., J. Virol. 32, 779 (1979).

14. Cohen et al., 0. Virol. 27, 172.14. Cohen et al., 0. Virol. 27, 172.

15. Eberle et al., J. Virol: 36, 665 (1980).15. Eberle et al., J. Virol: 36, 665 (1980).

16. Norrild et al., J. Virol. 26, 712 (1978).16. Norrild et al., J. Virol. 26, 712 (1978).

17. Powell et al., Mature 249, 360 (1974).17. Powell et al., Mature 249, 360 (1974).

18. Eberle et al., Infect, ϊπκηυη. 31, 1062 (1981).18. Eberle et al., Infect, ϊπκηυη. 31, 1062 (1981).

19. Pereira- et al., Infect. Immun. £9, 724.19. Pereira et al., Infect. Immune. £ 9, 724.

20. Sim, C., et al-, 0. Gen. Virpl. 19, 217 (1973).20. Sim, C., et al., 0. Gen. Virpl. 19, 217 (1973).

21. Showalter et al., Infect. Immun. 34, 684 (1981).21. Showalter et al., Infect. Immune. 34, 684 (1981).

22a. Eisenberg et al., 0. Virol. 41, 1099.22a. Eisenberg et al., 0. Virol. 41, 1099.

22b. Balachandran et al., J. Virol.'39,' 438 (198Γ).22b. Balachandran et al., J. Virol. 39, 438 (198 ().

22c. Para et al., d. Virol. 41^, 137 (1982).22c. Para et al., I.e., Virol. 41, 137 (1982).

22d. Zezulak. ét al., 0. Virol. 47, 553 (1983).22d. Zezulak. one al., 0. Virol. 47, 553 (1983).

22f. Zweig et al., d. Virol. 47, 185 (1983).22f. Zweig et al., I.e., Virol. 47, 185 (1983).

23. Anderson et al., 0. Virol. 30, 805 (1979).23. Anderson et al., 0. Virol. 30, 805 (1979).

24. tee et al., d. Virol. 43, 41 (1982).24. Tea et al., I.e., Virol. 43, 41 (1982).

25. Murray et al., Mol. Genet. _150, 53 (1977).25. Murray et al., Mol. Genet. , 150 (53).

26. Benton et al., ScienceJ96, 180 (1977).26. Benton et al., Science J96, 180 (1977).

66 DK 173597 B1 27. Southern, J. Hol. Biol. 98, 503 (1975).66 DK 173597 B1 27. Southern, J. Hol. Biol. 98, 503 (1975).

28. Vieira et al., Gene 19, 259 (1982).28. Vieira et al., Gene 19, 259 (1982).

29. Messing et al., Nuc. Acid. Res. jl, 309 (1981).29. Messing et al., Nuc. Acid. Res. Jl, 309 (1981).

30. Sanger et al., Proc. Natl. Acad. Sci. (USA) 74, 5436 (1977).30. Sanger et al., Proc. Natl. Acad. Sci. (USA) 74, 5436 (1977).

31. Atlas of Protein Sequence and Structure V.5, Supplement 2, 1976, M.O. Dayhoff, ed., The Biochemical Research Foundation, Spring, Maryland, p. 311.31. Atlas of Protein Sequence and Structure V.5, Supplement 2, 1976, M.O. Dayhoff, ed., The Biochemical Research Foundation, Spring, Maryland, p 311.

31a. Hopp -et al., Proc. Natl. Acad. Sci. (USA) 78, 3324 (1981).31a. Jump et al., Proc. Natl. Acad. Sci. (USA) 78, 3324 (1981).

32. Watson et al., Nucl. Acid. Res. 11, 1507 (1983).32. Watson et al., Nucl. Acid. Res. 11, 1507 (1983).

33. Biobel, Proc. Natl. Acad. Sci. (USA) 77, 1746 (1980).33. Biobel, Proc. Natl. Acad. Sci. (USA) 77, 1746 (1980).

34. Rose. et al., Proc. Natl. Acad. Sci. (USA) 77, 3884 (1980).34. Rose. et al., Proc. Natl. Acad. Sci. (USA) 77, 3884 (1980).

35. Ruyechan et al., 0. Virol. 29’, 677 (1979); Roizman, Cel! 26, 481 (1979).35. Ruyechan et al., 0. Virol. 29 ', 677 (1979); Roizman, Cel! 26, 481 (1979).

36. Simonsen et al., Proc. Natl. Acad. Sci. (USA) 80, 2495 (1983).36. Simonsen et al., Proc. Natl. Acad. Sci. (USA) 80, 2495 (1983).

37. Lusky. et al., Nature 293, 79 (19S1).37. Lusky. et al., Nature 293, 79 (19S1).

38. Nunberg et al., Cell 19^, 355 (1980).38. Nunberg et al., Cell 19, 355 (1980).

39. Urlaiib et al., Proc. Natl. Acad. Sci, (USA) 2Ζ.» 4216 (1930).39. Urlaiib et al., Proc. Natl. Acad. Sci, (USA) 2Ζ. » 4216 (1930).

40. Graham et al., Virol. 52, 456, (1973).40. Graham et al., Virol. 52, 456, (1973).

40a. Kessler, J. Immuno. 115, 1617 (1975).40a. Kessler, J. Immuno. 115, 1617 (1975).

67 DK 173597 B1 41. .Showalter et al., Infect, and Immun. 34, 684 (1981); Monoclonal anti—gO antibodies, 1-S and S5rS were kindly provided by Or.67 DK 173597 B1 41. Showalter et al., Infect, and Immun. 34, 684 (1981); Monoclonal anti-gO antibodies, 1-S and S5rS were kindly provided by Or.

Martin Zweig of the Laboratory of Molecular Oncology, National Cancer Institute, Frederick, Maryland 21701.Martin Zweig of the Laboratory of Molecular Oncology, National Cancer Institute, Frederick, Maryland 21701.

42. Cohen, et a!., 0. Virol. 36, 429 (1980).42. Cohen, et al., 0. Virol. 36, 429 (1980).

43. Pereira et al., Proc. Hatl. Acad. Sci. (USA) 78, 5202 (1981). - 44. Cohen et al.,J. Virol. 27, 172 (1973).43. Pereira et al., Proc. Hatl. Acad. Sci. (USA) 78, 5202 (1981). 44. Cohen et al., J. Virol. 27, 172 (1973).

45. Laemmli, Nature 227, 680 (1970).45. Laemmli, Nature 227, 680 (1970).

46. Honess. et al., 0. Virol. 16, 1308 (1975).46. Honess. et al., 0. Virol. 16, 1308 (1975).

47. Spear, J. Virol. 17, 991 (1976).47. Spear, J. Virol. 17, 991 (1976).

48. 'Campadel 1 i-Fiuaie et al., 0. Viro). 43, 1061 (1982); Johnson et al., Cell 32, 987 (1933); Cohen et al., 0. Virol. 46, 679 (1983).48. 'Campadel 1 i-Fiuaie et al., 0. Viro). 43, 1061 (1982); Johnson et al., Cell 32, 987 (1933); Cohen et al., 0. Virol. 46, 679 (1983).

49. Bloch, J. Cell. Biel. 82, 629.(1979).49. Bloch, J. Cell. Biel. 82, 629. (1979).

50. Humant herpetisk serum titreret overfor HSV-1 og HSV-2 ved hemaglutinationsinhiberings- og komplement-binefingsprøvninger blev venligst leveret af Dr.50. Human herpetic serum titrated against HSV-1 and HSV-2 by hemaglutination inhibition and complement staining tests was kindly provided by Dr.

John A. Stewart For the Centers for Disease Control, Atlanta, Georgia.John A. Stewart For the Centers for Disease Control, Atlanta, Georgia.

51. Rector, et al., Infect, and Immun. 38, 168 (1982).51. Rector, et al., Infect, and Immun. 38, 168 (1982).

52. Kennett i Monoclonal Antibodies, K. Kerrett, T. McKearn, and B. Bechtel, eds. (Plenum Press, K.Y., 1980), pp. 376-377.52. Kennett in Monoclonal Antibodies, K. Kerrett, T. McKearn, and B. Bechtel, eds. (Plenum Press, K.Y., 1980), pp. 376-377.

53. Fiers et al., Nature 273, 113 (1978); Gluzman, Cell 23, 275 (1981).53. Fiers et al., Nature 273, 113 (1978); Gluzman, Cell 23, 275 (1981).

68 DK 173597 B1 54. Lee et al., Nature 294, 223 (1981); Kaufman et al., Mol. and Cell. Biol. 2, 1304 (1983); Kaufman et al., J. Mol. Biol. 159, 601 (1982).68 DK 173597 B1 54. Lee et al., Nature 294, 223 (1981); Kaufman et al., Mol. and Cell. Biol. 2, 1304 (1983); Kaufman et al., J. Mol. Biol. 159, 601 (1982).

55. Kleid et al., Science 214, 1125 (1981).55. Kleid et al., Science 214, 1125 (1981).

56. Maxam et al., Methods Enzymol. 65, 499 (1980).56. Maxam et al., Methods Enzymol. 65, 499 (1980).

57. Dayhoff, M., Ed. Atlas of Protein Sequence and Structure, Vol.57. Dayhoff, M., Ed. Atlas of Protein Sequence and Structure, Vol.

5, Supplement 2, National Biochemical Research Foundation, ’5, Supplement 2, National Biochemical Research Foundation, '

Silver Spring, Maryland, p. 311 (1976).Silver Spring, Maryland, p. 311 (1976).

58. Lasky et al., ONA, in press (1984).58. Lasky et al., ONA, in press (1984).

59. Frink et al., J. Virol. 45, 634 (1983).59. Frink et al., J. Virol. 45, 634 (1983).

60. McKnight et al., Science 217, 316 (1982).60. McKnight et al., Science 217, 316 (1982).

61. Whitton et al., Nucl. Acids Res. 13, 6271 (1983).61. Whitton et al., Nucl. Acids Res. 13, 6271 (1983).

62. Hubbard et al., Ann. Rev. Biochem.'50,' 555 (1981).62. Hubbard et al., Ann. Rev. Biochem. 50, 555 (1981).

63. Blobel, Proc. Natl-. Acad. Sci. USA 77, 1491 (1980).63. Blobel, Proc. Natl. Acad. Sci. USA 77, 1491 (1980).

64. Sabatini et al., 0. Cell. Biol. 92, 1 (1982).64. Sabatini et al., 0. Cell. Biol. 92, 1 (1982).

65. Cassai et al., Intervirology f>, 212 (1975).65. Cassai et al., Intervirology, 212 (1975).

66. Hall et al., 0. Virol. 43, 594 (1982).66. Hall et al., 0. Virol. 43, 594 (1982).

Claims (9)

69 DK 173597 B169 DK 173597 B1 1. Fremgangsmåde til fremstilling af et membranfrit trunkat af et membranbundet polypeptid, hvilket trunkat mangler mem- 5 branbindende domæne, hvorved polypeptidtrunkatet er fri for denne membran, og hvilket trunkat har eksponerede antigene determinanter, som er i stand til at fremkalde neutraliserende antistoffer ved in vivo-udsættelse for et patogen, hvilken fremgangsmåde er kendetegnet ved, at der udtrykkes DNA, som 10 koder for trunkatet, i en stabil eukaryot cellelinje, der er transficeret med DNA'et.A method for producing a membrane-free truncate of a membrane-bound polypeptide, which truncate lacks a membrane-binding domain, whereby the polypeptide truncate is free of this membrane, and which truncate has exposed antigenic determinants capable of inducing neutralizing antibodies by in vivo exposure to a pathogen, characterized by expressing DNA encoding the truncate in a stable eukaryotic cell line transfected with the DNA. 2. Fremgangsmåde ifølge krav 1, som yderligere omfatter, at det trunkerede polypeptid genvindes som et sekretionsprodukt. 15The method of claim 1, further comprising recovering the truncated polypeptide as a secretion product. 15 3. Fremgangsmåde ifølge krav 1 eller krav 2, som omfatter de foreløbige trin, hvor der fremstilles DNA, som koder for det membranbundne polypeptid, men mangler kodning for membranbindende domæne, DNA'et inkorporeres i en ekspressionsvektor, og 20 den eukaryote værtscelle transficeres med vektoren.The method of claim 1 or claim 2, comprising the preliminary steps of producing DNA encoding the membrane-bound polypeptide but lacking coding for membrane-binding domain, incorporating the DNA into an expression vector, and transfecting the eukaryotic host cell with vector. 4. Fremgangsmåde ifølge et hvilket som helst af kravene 1, 2 eller 3, hvor den transficerede værtscelle er en pattedyrcel-lelinje. 25The method of any one of claims 1, 2 or 3, wherein the transfected host cell is a mammalian cell line. 25 5. Fremgangsmåde ifølge krav 4, hvor cellelinjen er deficient med hensyn til produktion af dhfr, og vektoren indeholder en selekterbar dhfr-markør.The method of claim 4, wherein the cell line is deficient in the production of dhfr and the vector contains a selectable dhfr marker. 6. Fremgangsmåde ifølge et hvilket som helst af kravene 1 til 5, hvor det membranfri trunkat er et trunkat af et glycoprotein D fra et herpes simplex-virus type 1 eller type 2, og patogenet er herpes simplex-virus type 1 og/eller type 2. 70 DK 173597 B1The method of any one of claims 1 to 5, wherein the membrane-free truncate is a glycoprotein D truncate of a herpes simplex virus type 1 or type 2 and the pathogen is herpes simplex virus type 1 and / or type 2. 70 DK 173597 B1 7. Fremgangsmåde ifølge et hvilket som helst af kravene 1 til 5, hvor det membranfri trunkat er et trunkat af et glycoprotein C fra et herpes simplex-virus type 1 eller type 2, og 5 patogenet er herpes simplex-virus type 1 og/eller type 2.The method of any one of claims 1 to 5, wherein the membrane-free truncate is a truncate of a glycoprotein C from a herpes simplex virus type 1 or type 2 and the pathogen is herpes simplex virus type 1 and / or type 2. 8. Fremgangsmåde ifølge krav 6, hvor det membranfri trunkat omfatter den N-terminale region af gD-polypeptid op til omkring aminosyrerest 300. 10The method of claim 6, wherein the membrane-free truncate comprises the N-terminal region of gD polypeptide up to about amino acid residue 300. 9. Fremgangsmåde ifølge et hvilket som helst af de foregående krav, som yderligere omfatter, at der formuleres en vaccine med polypeptidet.A method according to any one of the preceding claims, further comprising formulating a vaccine with the polypeptide.
DK199701244A 1983-08-30 1997-10-31 Process for the preparation of a membrane-free truncate from a membrane-bound polypeptide DK173597B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DK199701244A DK173597B1 (en) 1983-08-30 1997-10-31 Process for the preparation of a membrane-free truncate from a membrane-bound polypeptide

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
US52791783A 1983-08-30 1983-08-30
US52791783 1983-08-30
US54755183A 1983-10-31 1983-10-31
US54755183 1983-10-31
US58817084A 1984-03-09 1984-03-09
US58817084 1984-03-09
DK198404122A DK172694B1 (en) 1983-08-30 1984-08-29 Vaccines containing glycoprotein C or D from herpes simplex virus
DK412284 1984-08-29
DK124497 1997-10-31
DK199701244A DK173597B1 (en) 1983-08-30 1997-10-31 Process for the preparation of a membrane-free truncate from a membrane-bound polypeptide

Publications (2)

Publication Number Publication Date
DK124497A DK124497A (en) 1997-10-31
DK173597B1 true DK173597B1 (en) 2001-04-23

Family

ID=27439695

Family Applications (1)

Application Number Title Priority Date Filing Date
DK199701244A DK173597B1 (en) 1983-08-30 1997-10-31 Process for the preparation of a membrane-free truncate from a membrane-bound polypeptide

Country Status (1)

Country Link
DK (1) DK173597B1 (en)

Also Published As

Publication number Publication date
DK124497A (en) 1997-10-31

Similar Documents

Publication Publication Date Title
DK172694B1 (en) Vaccines containing glycoprotein C or D from herpes simplex virus
JP4486055B2 (en) Type 1 bovine herpesvirus deletion mutant, vaccine based thereon and kit for detecting type 1 bovine herpesvirus
Collen et al. AT cell epitope in VP1 of foot-and-mouth disease virus is immunodominant for vaccinated cattle.
US5648079A (en) Herpes simplex virus glycoprotein B vaccine
US5750114A (en) Recombinant herpes simplex gB-gD vaccine
EP0236145A1 (en) Processes for the production of HCMV glycoproteins, antibodies thereto and HCMV vaccines, and recombinant vectors therefor
US6174532B1 (en) L2 immunogenic peptides of papillomavirus
US7264817B1 (en) Immunogenic composition based on a truncated derivative of a membrane bound protein and process for making it
JP4317786B2 (en) gp350 / 220 non-splicing variants
US20040082033A1 (en) Process for the production of HCMV glycoproteins, antibodies thereto and HCMV vaccines, and recombinant vectors therefor
DK171976B1 (en) Method for producing Herpes simplex virus glycoprotein, diagnostic kit for detecting Herpes simplex virus type 1 and type 2 and method for in vitro detection of antibody or antigen.
DK173597B1 (en) Process for the preparation of a membrane-free truncate from a membrane-bound polypeptide
WO1990001546A1 (en) Equine herpesvirus-1 vaccine
Hu et al. Studies of TGEV spike protein GP195 expressed in E. coli and by a TGE-vaccinia virus recombinant
CA1341291C (en) Vaccines based on membrane bound proteins and process for making them
Bröker et al. Escherichia coli-derived envelope protein gD but not gC antigens of herpes simplex virus protect mice against a lethal challenge with HSV-1 and HSV-2
AU660528B2 (en) Process for the expression of herpes simplex virus type 1 glycoprotein E and methods of use
WO1989006971A1 (en) Conserved rotavirus gene segments and use in immunization and neutralization
Dadley-Moore et al. Synthetic peptides induce antibodies in sheep against Taenia ovis
WO1999036087A1 (en) Novel vaccine compositions for herpes simplex virus
Heineman The Mapping of Epstein-Barr Virus Gp85 and the Identification of a Novel EBV Glycoprotein
Demkowicz Jr Identification and immunologic characterization of two antigenic core proteins of vaccinia virus
AU5013099A (en) Papillomavirus vaccine
MXPA00002577A (en) Hepatitis b virus polypeptides

Legal Events

Date Code Title Description
B1 Patent granted (law 1993)
PUP Patent expired