DK173116B1 - Cylinder liner for an internal combustion engine - Google Patents

Cylinder liner for an internal combustion engine Download PDF

Info

Publication number
DK173116B1
DK173116B1 DK199600547A DK54796A DK173116B1 DK 173116 B1 DK173116 B1 DK 173116B1 DK 199600547 A DK199600547 A DK 199600547A DK 54796 A DK54796 A DK 54796A DK 173116 B1 DK173116 B1 DK 173116B1
Authority
DK
Denmark
Prior art keywords
recesses
piston
cylinder liner
piston ring
liner
Prior art date
Application number
DK199600547A
Other languages
Danish (da)
Other versions
DK54796A (en
Inventor
Allan Istergaard
Original Assignee
Man B & W Diesel As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DK199600547A priority Critical patent/DK173116B1/en
Application filed by Man B & W Diesel As filed Critical Man B & W Diesel As
Priority to PCT/DK1997/000191 priority patent/WO1997042406A1/en
Priority to AU27632/97A priority patent/AU2763297A/en
Priority to JP9539439A priority patent/JP2000509460A/en
Priority to TW086105550A priority patent/TW384356B/en
Priority to GB9823276A priority patent/GB2326446B/en
Priority to CN97194448A priority patent/CN1081739C/en
Priority to KR1019980708746A priority patent/KR20000010686A/en
Priority to HR970228A priority patent/HRP970228A2/en
Publication of DK54796A publication Critical patent/DK54796A/en
Application granted granted Critical
Publication of DK173116B1 publication Critical patent/DK173116B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J1/00Pistons; Trunk pistons; Plungers
    • F16J1/02Bearing surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/02Cylinders; Cylinder heads  having cooling means
    • F02F1/10Cylinders; Cylinder heads  having cooling means for liquid cooling
    • F02F1/16Cylinder liners of wet type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/18Other cylinders
    • F02F1/22Other cylinders characterised by having ports in cylinder wall for scavenging or charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J10/00Engine or like cylinders; Features of hollow, e.g. cylindrical, bodies in general
    • F16J10/02Cylinders designed to receive moving pistons or plungers
    • F16J10/04Running faces; Liners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Description

i DK 173116 B1in DK 173116 B1

Opfindelsen angår en cylinderforing til en forbrændingsmotor, navnlig en totakts krydshovedmotor, med et stempel, der er bevægeligt i foringen i dennes længderetning mellem et bunddødpunkt, i hvilket skylle-5 luftporte i cylinderforingens væg er frilagte over stempeloversiden, og et topdødpunkt, i hvilket stemplet befinder sig i sin øverste stilling i cylinderforingen, og hvor stemplet er forsynet med flere stempelringe, hvis yderside glider langs foringens inderside, hvilken 10 cylinderforing i sin inderside har flere recesser, der danner gasstrømningsforbindelser mellem rummene over og under en stempelring, når denne står ud for recesserne.BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a cylinder liner for an internal combustion engine, in particular a two-stroke cross-head motor, with a piston movable in the longitudinal direction thereof between a bottom dead center, in which flushing air ports in the wall of the cylinder liner are exposed over the piston upper surface, and a top dead center is in its uppermost position in the cylinder liner and wherein the piston is provided with multiple piston rings, the outside of which slides along the inside of the liner, which 10 cylinder liner at its inner side has several recesses forming gas flow connections between the spaces above and below a piston ring as it stands out for the recesses.

En cylinderforing af denne type er kendt fra JP-A 62-26346, der med henblik på mindskning af trykfaldet 15 over den øverste stempelring og opnåelse af ens trykfald over alle stempelringene foreskriver, at cylinderforingens inderside skal forsynes med recesser. Recesserne har betydelig dybde og en udstrækning i foringens længderetning, der kun er en anelse større end højden 20 af en stempelring. Disse recesser virker som små kamre, der i løbet af stemplets kompressionsslag fyldes med komprimeret luft, som efter passagen af stempelringen ledes ud i ringrummet under denne og derved hæver trykket under stempelringen, så trykfaldet over stempel-25 ringen er mindre i løbet af den fortsatte opovergående stempelbevægelse. Det nævnes som en fordel ved denne kendte cylinderforing, at fyldningen af rummene mellem stempelringene med ren komprimeret luft modvirker tilsmudsning af ringspor og af foringens inderside.A cylinder liner of this type is known from JP-A 62-26346, which, in order to reduce the pressure drop 15 over the upper piston ring and obtain uniform pressure drop over all the piston rings, requires that the inside of the cylinder liner be provided with recesses. The recesses have considerable depth and a lengthwise extension of the casing that is only slightly larger than the height 20 of a piston ring. These recesses act as small chambers which, during the compression stroke of the piston, are filled with compressed air, which, after the passage of the piston ring, is discharged into the annulus below it, thereby raising the pressure under the piston ring, so that the pressure drop over the piston ring is less during the continued upward piston movement. It is mentioned as an advantage of this known cylinder liner that the filling of the spaces between the piston rings with clean compressed air counteracts the contamination of the ring groove and of the inside of the liner.

30 Det er velkendt at forsyne stempelringene med lækagespor, der leder gas forbi stempelringen for at mindste trykfaldet over ringen og dermed ringsliddet.It is well known to provide leakage grooves to the piston rings that pass gas past the piston ring to minimize the pressure drop across the ring and thus the ring wear.

Sådanne lækagespor har dog tendens til at påføre de højtbelastede stempelringe mekaniske svækkelser, der 35 nedsætter ringenes levetid. Udformningen af lækagespor 2 DK 173116 B1 i stempelringene har endvidere den ulempe, at stempel-ringene udsættes for stor varmepåvirkning i materialet omkring sporene og i de områder, der træffes af en nedadrettet lækagestråle af varm gas fra et lækagespor 5 i en overliggende stempelring.However, such leakage traces tend to cause mechanical impairments to the life of the piston rings which reduce the service life of the rings. Furthermore, the design of leak grooves 2 in the piston rings has the disadvantage that the piston rings are subjected to a large heat stress in the material around the grooves and in the areas affected by a downward leaking jet of hot gas from a leak groove 5 in an overlying piston ring.

Ved moderne forbrændingsmotorer, især totakts krydshovedmotorer, er forbrændingstrykket og middeltrykket meget høje,-hvilket medfører, at trykdifferencerne over stempelringene er meget store, og dette kan give 10 forholdsvis stort slid på ringene og på foringen.In modern internal combustion engines, especially two-stroke cross-head motors, the combustion pressure and mean pressure are very high, which means that the pressure differences across the piston rings are very large and this can cause 10 relatively large wear on the rings and on the casing.

Den foreliggende opfindelse har til formål at forbedre driftsforholdene for og levetiden af stempelringene og foringen på en måde, som kun i begrænset omfang påvirker motorens nyttevirkningsgrad i negativ 15 retning.It is an object of the present invention to improve the operating conditions and service life of the piston rings and the liner in a manner which only negatively affects the efficiency of the engine in a negative direction.

Med henblik herpå er cylinderforingen ifølge .j opfindelsen ejendommelig ved, at i det mindste nogle af recesserne ligger ud for den øverste stempelring, når j stemplet er i topdødpunktet, og at i foringens længde- | 20 retning har de enkelte recesser mindst dobbelt så stor udstrækning som højden af den øverste stempelring.To this end, the cylinder liner of the invention is peculiar in that at least some of the recesses are adjacent to the upper piston ring when the j piston is at the top dead center and that in the length of the liner | 20 direction, each recess has at least twice the height of the upper piston ring.

Placeringen af recesserne i foringens inderside med t en beliggenhed ud for den øverste stempelring, når stemplet er i topdødpunktet, indebærer, at den kraftige 25 trykstigning ved initieringen af forbrændingen i forbrændingskammeret over stemplet giver en lækagestrømning af forbrændingsgas gennem recesserne og ned under den eller de øverste stempelringe, så trykdifferencen over denne eller disse mindskes på netop det tidspunkt 30 af motorcyklussen, hvor trykdifferencerne er størst.The location of the recesses on the inside of the casing at a location outside the upper piston ring when the piston is at the top dead-end means that the strong pressure increase upon initiation of combustion in the combustion chamber above the piston causes a leakage of combustion gas through the recesses or downs. top piston rings, so that the pressure difference across this or these decreases at just that time 30 of the motor cycle where the pressure differences are greatest.

Dette giver en effektiv mindskning af ring- og forings-sliddet.This provides an effective reduction of the ring and casing wear.

Når stemplet er bevæget passende langt ned fra topdødpunktet, glider stempelringene på et afsnit af ;- 35 foringen, hvor der ikke er recesser og dermed heller w 13 -in 3 DK 173116 B1 ingen omstrømning af lækagegas. Da trykket over stemplet er væsentlig lavere i denne del af motorcyklussen, er der ikke de samme slidproblemer som omkring topdød-punktet. I forhold til placering af lækagespor i 5 stempelringene giver cylinderforingen ifølge opfindelsen således den fordel, at det for motorens nyttevirkningsgrad vigtige tryk i forbrændingskammeret kun lækker ned under stempelringene ved de stempelpositioner nær topdødpunktet, hvor der ud for ringene er recesser i 10 foringens inderside. Derudover opnås den fordel, at varmetilførslen til materialet omkring recesserne er mindre, fordi forbrændingsgassen kun strømmer gennem recesserne i en forholdsvis lille del af motorcyklussen.When the piston is moved appropriately far down from the top dead center, the piston rings slide on a section of; - the liner, where there are no recesses and thus no flow of leakage gas. As the pressure across the piston is substantially lower in this part of the motor cycle, there are not the same wear problems as around the peak dead-end. Thus, relative to the location of leakage grooves in the piston rings, the cylinder liner of the invention provides the advantage that the pressure of the engine important in the combustion chamber only drops below the piston rings at the piston positions near the top dead center, where there are recesses in the inside of the liner. In addition, the advantage is obtained that the heat supply to the material around the recesses is smaller because the combustion gas flows only through the recesses in a relatively small part of the motor cycle.

Udformningen af recesserne med længder, der er 15 væsentlig større end højden af den øverste stempelring, bevirker, at forbrændingsgassen strømmer forbi stempel-ringen/-ringene i løbet af et længere tidsrum, og da volumenet af rummene mellem stempelringene ikke påvirkes af udformningen af recesserne, kan en ønsket mindskning 20 af trykdifferencerne over stempelringene opnås med en mindre volumenstrøm af lækagegas per tidsenhed. Lækage-arealet af recesserne kan således laves fordelagtigt lille, hvilket yderligere begrænser den lokale varmepåvirkning i foringsmaterialet omkring recesserne og 25 mindsker de spændingskoncentrationer, der opstår i dette materiale.The design of the recesses having lengths substantially greater than the height of the upper piston ring causes the combustion gas to flow past the piston ring (s) over a longer period of time and since the volume of the spaces between the piston rings is not affected by the design of the recesses. , a desired reduction 20 of the pressure differences across the piston rings can be achieved with a smaller volume flow of leakage gas per unit time. Thus, the leakage area of the recesses can be made advantageously small, further limiting the local heat stress in the casing material around the recesses and reducing the stress concentrations that occur in this material.

Ved at placere de som lækagespor virkende recesser i foringens inderside kan i det mindste den øverste stempelring udformes uden sådanne lækagespor, hvorved 30 styrkemæssig svækkelse af stempelringene undgås og fremstillingen af ringene forenkles. Foringens materiale er i stand til at modstå højere temperaturer end stempelringene, og i modsætning til stempelringene afkøles materialet i foringens øvre afsnit normalt af 4 DK 173116 B1 køleboringer, der borttransporterer den i materialet tilførte varme.By placing the recesses acting as leakage grooves on the inside of the casing, at least the upper piston ring can be formed without such leakage grooves, thereby avoiding 30 weakening of the piston rings and simplifying the manufacture of the rings. The material of the casing is capable of withstanding higher temperatures than the piston rings, and unlike the piston rings, the material in the upper section of the casing is usually cooled by cooling bores which transport away the heat supplied in the material.

Placeringen af recesserne i det øverste afsnit af foringens inderside giver endvidere den fordel, at 5 recesserne ligger i et foringsområde, hvor det nominelle spændingsniveau er trykspændinger som følge af varme-spændingerne frembragt af det høje temperaturniveau i starten af forbrændingen. Dette mindsker i væsentlig grad risikoen for dannelse af udmattelsesrevner i 10 materialet omkring recesserne. Det er en yderligere fordel ved opfindelsen, at cylinderforingen almindeligvis slides væsentligt langsommere end stempelringene, og dermed vil recesserne bevare et lækageareal af en 1 ønsket størrelse i længere tidsrum end ved placering af 15 lækagespor i ydersiden af stempelringene. i I en foretrukken udførelsesform er foringen forsynet med mindst tre grupper af recesser, hvoraf ‘ recesserne i den første gruppe ligger ud for den øverste stempelring, recesserne i den anden gruppe ligger ud for 20 den næstøverste stempelring og er forsat i foringens omkredsretning i forhold til recesserne i de andre grupper, og recesserne i den tredie gruppe ligger ud for den tredieøverste stempelring, når stemplet er i topdødpunktet, og recesserne i den anden gruppe strækker 25 sig over et foringslængdeafsnit, hvori recesserne i den første og den tredie gruppe er i det mindste delvis beliggende. De tre gruppér af recesser giver mulighed for kontrolleret lækage af forbrændingsgas forbi ikke bare den øverste stempelring, men også de to under-30 liggende stempelringe, og dermed for styring af trykdifferencerne over disse tre stempelringe. Som alternativ til denne udførelsesform kan der eksempelvis være en enkelt gruppe af recesser, der har så stor længde, — at de strækker sig forbi de to eller de tre øverste ** 35 stempelringe, når stemplet er i topdødpunktet. Dette w 5 DK 173116 B1 giver dog ikke mulighed for en individuel styring af trykdifferencerne over stempelringene. I den foretrukne udførelsesform sikrer recesserne i den anden gruppe en kontinuert lækage af forbrændingsgas ned under den 5 øverste stempelring, mens denne ved stemplets nedover-gående bevægelse bevæges ned forbi området med recesserne. Forsætningen i omkredsretningen af recesserne i den anden gruppe i forhold til de øvrige recesser tvinger lækagegassen, der strømmer forbi en stempelring, til at 10 strømme i omkredsretningen, inden strømningen om muligt fortsætter ned under den underliggende stempelring.Furthermore, the location of the recesses in the upper section of the inside of the casing provides the advantage that the 5 recesses lie in a casing area where the nominal stress level is compressive stresses due to the heat stresses produced by the high temperature level at the start of combustion. This significantly reduces the risk of fatigue crack formation in the material around the recesses. It is a further advantage of the invention that the cylinder liner generally wears substantially slower than the piston rings, and thus the recesses maintain a leakage area of a desired size for a longer period of time than when placing 15 leakage grooves in the outside of the piston rings. In a preferred embodiment, the liner is provided with at least three groups of recesses, of which the recesses of the first group are adjacent to the upper piston ring, the recesses of the second group are adjacent to the second highest piston ring and are disposed in the circumferential direction of the liner the recesses of the second group, and the recesses of the third group are adjacent to the third upper piston ring when the piston is at the top dead center, and the recesses of the second group extend over a casing length section wherein the recesses of the first and third groups are in the at least partially located. The three groups of recesses allow controlled leakage of combustion gas past not only the upper piston ring but also the two underlying piston rings, and thus for controlling the pressure differences across these three piston rings. As an alternative to this embodiment, for example, there may be a single group of recesses of such length that they extend beyond the two or the top three piston rings when the piston is at the top dead center. However, this w 5 does not allow for individual control of the pressure differences across the piston rings. In the preferred embodiment, the recesses of the second group ensure a continuous combustion gas leakage below the upper piston ring, while the downward movement of the piston moves it down past the recess area. The circumferential displacement of the recesses of the second group relative to the other recesses forces the leakage gas flowing past a piston ring to flow in the circumferential direction before the flow, if possible, continues below the underlying piston ring.

Denne forlængelse af strømningsvejen afkøler lækagegassen og frembringer et fordelagtigt tryktab i gassen ved strømningen fra den ene til den anden gruppe af reces-15 ser. Opdelingen af recesserne i grupper giver også den fordel, at lækagemængderne mindskes trinvist, når stempelringenes undersider passerer ned forbi de nedre ender af recesserne i de forskellige grupper ved stemplets bevægelse bort fra topdødpunktet.This extension of the flow path cools the leakage gas and produces an advantageous pressure loss in the gas as the flow from one to the other group of recesses. The division of the recesses into groups also offers the advantage that the quantities of leakage decrease incrementally as the undersides of the piston rings pass down past the lower ends of the recesses in the various groups as the piston moves away from the top dead center.

20 I en foretrukken videreudvikling ligger recesserne i den tredie gruppe i forlængelse af recesserne i den første gruppe med en i recessernes længderetning indbyrdes adskillelse, der er større end højden af den nsstøverste stempelring. Når stemplet befinder sig 25 omkring topdødpunktet, ligger den næstøverste stempel-ring ud for adskillelsen mellem recesserne i den første og den tredie gruppe og afbryder den direkte strømningsforbindelse fra forbrændingskammeret ned under den tredieøverste stempelring. Der er desuden fremstillings-30 mæssige fordele ved at recesserne i to grupper ligger i forlængelse af hinanden.20 In a preferred further development, the recesses of the third group are in extension of the recesses of the first group with a longitudinal separation between the recesses greater than the height of the uppermost piston ring. When the piston is 25 around the peak dead center, the second highest piston ring is adjacent to the separation between the recesses of the first and third groups and interrupts the direct flow connection from the combustion chamber below the third upper piston ring. In addition, there are manufacturing advantages in that the recesses in two groups are in extension.

Der kan hensigtsmæssigt ved mindst en længdeposi-. tion i foringen være mindst fire, fortrinsvis mindst otte recesser fordelt over foringens omkreds, hvor disse 35 recesser set i omkredsretningen skiftevis tilhører den DK 173116 B1 6 anden gruppe og enten den første eller den tredie gruppe. Opdelingen af det totale lækageareal på flere recesser mindsker tværsnitsarealet af den enkelte recess og fordeler varmepåvirkningen fra lækagegassen på flere 5 positioner, så lokalopvarmningen bliver mindre. Indskydningen af en recess hørende til den anden gruppe mellem recesserne, der afhængende af den pågældende længdeposition i foringen hører til enten den første eller den tredie gruppe, frembringer den ovennævnte 10 fordelagtigt lange strømningsvej for gasstrømningerne gennem samtlige recesser. Hvis særlige forhold taler for kortere eller længere strømningsveje i et bestemt omkredsområde af foringen, er det muligt at udelade recesserne hørende til den anden gruppe mellem et antal 15 af recesserne i de øvrige grupper, hvilket forlænger =| strømningsvejen, eller at lade et antal af recesserne i første og tredie gruppe være sammenhængende, hvilket I giver direkte gemmenstrømning, men dette er ikke I foretrukne løsninger.Conveniently, at least one longitudinal position may be provided. tions in the liner be at least four, preferably at least eight recesses distributed over the circumference of the liner, where these 35 recesses, in the circumferential direction, alternately belong to the second group and either the first or the third group. Splitting the total leakage area into several recesses reduces the cross-sectional area of the individual recess and distributes the heat effect of the leakage gas to several 5 positions, so that the local heating is reduced. The insertion of a recess belonging to the second group between the recesses, which, depending on the longitudinal position in the casing, belongs to either the first or the third group, produces the above-mentioned advantageously long flow path for the gas flows through all recesses. If special conditions indicate shorter or longer flow paths in a particular circumferential area of the liner, it is possible to omit the recesses belonging to the second group between a number of 15 recesses in the other groups, which prolongs = | the flow path, or leaving a number of recesses in the first and third groups coherent, which gives you direct storage flow, but this is not your preferred solution.

20 Med henblik på opnåelse af mindst muligt tryktab fra forbrændingskammeret kan foringen udformes således, at ingen af recesserne strækker sig ned under den nederste stempelring, når stemplet er i topdødpunktet. Ringpakken på stemplet giver dermed fuld afspærring af 25 forbrændingskammeret nedadtil, og lækagegassen strømmer kun ned under de tre øverste stempelringe i den forholdsvis korte periode, hvor disse befinder sig ud for recesserne.20 In order to obtain the least possible pressure loss from the combustion chamber, the liner can be designed such that none of the recesses extend below the lower piston ring when the piston is at the top dead center. The ring package on the piston thus provides full shut-down of the combustion chamber downwards, and the leakage gas flows only below the three upper piston rings during the relatively short period when these are located outside the recesses.

Behovet for nedsættelse af trykdifferencen over en 3 0 stempelring er størst for den øverste stempelring. I en udførelsesform danner recesserne kun gasstrømningsforbindelser forbi en eller flere af de tre øverste stempelringe, mens stemplet befinder sig mellem topdød-~~ punktet ved 0 krumtapgrader og stempelpositioner, der 35 for den øverste stempelring er beliggende i intervallet xs 7 DK 173116 B1 fra 15 til 20 krumtapgrader, for den næstøverste stempelring i intervallet fra 10 til 15 krumtapgrader og for den tredieøverste stempelring i intervallet fra 5 til 8 krumtapgrader før eller efter topdødpunktet. Den 5 fulde bevægelse af stemplet fra topdødpunktet til bunddødpunktet sker fra 0 til 180 krumtapgrader, og det ses af ovennævnte gradintervaller, at recesserne med fordel kan ligge i det allerøverste afsnit af cylinderforingens inderside.The need for reducing the differential pressure over a 30 piston ring is greatest for the upper piston ring. In one embodiment, the recesses form only gas flow connections past one or more of the top three piston rings, while the piston is between the top dead center at 0 crankshaft and piston positions located for the upper piston ring in the range xs 7 DK 173116 B1 from 15 to 20 cranks, for the second highest piston ring in the range of 10 to 15 cranks and for the third top piston ring in the range of 5 to 8 cranks before or after the peak deadlock. The full movement of the piston from the top dead center to the bottom dead point occurs from 0 to 180 degrees of crankshaft, and it is seen from the above degree intervals that the recesses may advantageously lie in the uppermost section of the inside of the cylinder liner.

10 Det foretrækkes, at det af recesserne dannede lækageareal A for gasstrømning forbi den øverste stempelring er beliggende i intervallet fra D /70000 til D /2000 mm , hvor D er foringens indre diameter i mm, og A er arealet i mm . Hvis lækagearealet bliver mindre 15 end D /70000 mm er trykdifferencen over stempelringen uhensigtsmæssig stor, hvilket giver store strømningshastigheder for lækagegassen med medfølgende forhøjede termiske belastninger i materialet omkring recesserne samt forholdsvist stort slid på ringen og foringen. Hvis 20 lækagearealet bliver større end D /2000 mm bliver trykdifferencen over stempelringen så lille, at den vanskeligt kan slutte tæt an mod cylinderforingens inderside med det resultat, at en betydende del af forbrændingstrykket over stemplet risikerer at undvige 25 forbi stempelringen.It is preferred that the gas area leakage area A for gas flow past the upper piston ring is located in the range of D / 70000 to D / 2000 mm, where D is the inner diameter of the casing and A is the area in mm. If the leakage area becomes smaller than D / 70000 mm, the pressure difference across the piston ring is inappropriately large, which results in large flow rates for the leakage gas with consequent increased thermal stresses in the material around the recesses and relatively large wear on the ring and the liner. If the leakage area becomes larger than D / 2000 mm, the pressure difference across the piston ring becomes so small that it can be difficult to connect tightly to the inside of the cylinder liner with the result that a significant portion of the combustion pressure above the piston risks avoiding 25 past the piston ring.

Det er velkendt, blandt andet fra EP-B 0558583, at en cyUnderforing i et øvre afsnit kan være forsynet med køleboringer, hvis længdeakser forløber skråt i forhold til foringens længdeakse. Når en sådan foring anvendes 30 i forbindelse med den foreliggende opfindelse foretrækkes, at længdeaksen for hver recess forløber i det væsentlige parallelt med den hosliggende køleborings længdeakse. Med dette forløb af recesserne fremmes bortledningen af den af lækagegassen afsatte varme, så 35 temperaturniveauet i materialet omkring recesserne 8 DK 173116 B1 holdes passende lavt og så vidt muligt på samme niveau langs hele længden af recesserne. I det nævnte EP patent er beskrevet, hvorledes køleintensiteten af den enkelte køleboring kan styres ved at montere eller fjerne en 5 skærm, der afskærer kølevandet fra et nærmest foringens inderside liggende afsnit af køleboringen. Hvis recesserne forløber umiddelbart ud for en køleboring, kan skærmen i køleboringen fjernes i det afsnit, der ligger ud for recessen, så der her sker en kraftigere køling 10 end i de områder, hvor der ikke er en nærtliggende recess.It is well known, inter alia, from EP-B 0558583 that a cylinder liner in an upper section may be provided with cooling bores whose longitudinal axes extend obliquely to the longitudinal axis of the liner. When such a liner is used in connection with the present invention, it is preferred that the longitudinal axis of each recess extend substantially parallel to the longitudinal axis of the adjacent cooling bore. With this course of recesses, the dissipation of the heat deposited by the leakage gas is promoted so that the temperature level in the material around the recesses is kept suitably low and as far as possible at the same level along the entire length of the recesses. The EP patent discloses how the cooling intensity of the individual cooling bore can be controlled by mounting or removing a screen that cuts off the cooling water from a portion of the cooling bore closest to the inside of the casing. If the recesses extend immediately before a cooling bore, the screen in the cooling bore can be removed in the section adjacent to the recess, so that there is more powerful cooling 10 than in the areas where there is no nearby recess.

I et alternativ til denne opnåelse af forøget kølevirkning ud for recesserne kan foringen ifølge opfindelsen videreudvikles således, at cylinderforingen 15 har flere køleboringer, der ligger jævnt fordelt over foringens omkreds, at hver recess forløber i hovedsagelig lige stor afstand fra de to nærmestliggende af de jævnt fordelte køleboringer, og at der ud for recesserne er supplerende køleboringer i områderne i 20 mellem de jævnt fordelte køleboringer. De supplerende køleboringer kan bortlede den varmemængde, der afsættes j i materialet omkring recesserne.In an alternative to this increase in cooling effect outside the recesses, the lining according to the invention can be further developed such that the cylinder liner 15 has several cooling bores which are evenly distributed over the circumference of the casing, so that each recess extends at substantially equal distance from the two adjacent of the evenly distributed cooling bores and that adjacent to the recesses there are additional cooling bores in the areas of 20 between the evenly distributed cooling bores. The additional cooling bores can divert the amount of heat deposited j into the material around the recesses.

For at tilvejebringe ekstra køling af materialet i 1 omkring det øverste afsnit af recesserne i den første 25 gruppe foretrækkes, at de supplerende køleboringer, der I ligger ud for recesserne hørende til den første gruppe T strækker sig højere op i foringens væg end de jævnt fordelte køleboringer.In order to provide additional cooling of the material in 1 around the upper portion of the recesses of the first group, it is preferred that the additional cooling bores lying in front of the recesses of the first group T extend higher up into the wall of the casing than the evenly spaced ones. cooling bores.

Eksempler på udførelsesformer for opfindelsen 30 forklares herefter nærmere med henvisning til den skematiske tegning, hvor fig. 1 i dellængdesnit viser en skitse af en T cylinderforing ifølge opfindelsen, fig. 2 i længdesnit og større skala et øverste * 35 afsnit af cylinderforingen monteret i motoren, m -ra 9 DK 173116 B1 fig. 3 et udfoldet udsnit af cylinderforingens øverste afsnit med recesser i indersiden, hvor et udsnit af et stempel i topdødpunktet er indtegnet i figurens venstre side og et længdesnit med en indprojiceret 5 køleboring er indtegnet i figurens højre side, fig. 4 forstørrede udsnit af foringsområderne omkring recesserne i fig. 3, fig. 5 et tværsnit gennem cylinderforingen ifølge opfindelsen, og 10 fig. 6 i større skala et udsnit angivet ved cirklen S i fig. 5 af vægpartiet omkring en recess.Examples of embodiments of the invention 30 will now be explained in more detail with reference to the schematic drawing, in which fig. 1 is a partial longitudinal sectional view of a T cylinder liner according to the invention; FIG. 2 in longitudinal section and on a larger scale an upper * 35 section of the cylinder liner mounted in the engine, m -ra 9 DK 173116 B1 fig. Fig. 3 is an unfolded section of the upper section of the cylinder liner with recesses on the inside, where a section of a piston at the top dead center is inscribed in the left side of the figure and a longitudinal section with a projected 5 cooling bore is inscribed in the right side of the figure. 4 shows enlarged sections of the casing areas around the recesses of FIG. 3, FIG. 5 is a cross-section through the cylinder liner of the invention; and FIG. 6 on a larger scale a section indicated by the circle S in FIG. 5 of the wall portion around a recess.

I fig. 1 ses en generelt med 1 betegnet cylinderforing til en stor totakts krydshovedmotor, der kan anvendes som stationær motor til drift af en elgenerator 15 eller som fremdrivningsmotor i et skib. Afhængigt af motorstørrelsen kan cylinderforingen udføres i forskellige størrelser med cylinderboringer, der typisk kan ligge i intervallet fra 250 mm til 1000 mm, og tilsvarende typiske længder, der kan ligge i intervallet 20 fra 1000 mm til 4500 mm. Foringen fremstilles normalt i støbejern, og den kan være i et stykke eller delt i to stykker, der er samlet i forlængelse af hinanden. Det er også muligt ved den delte foring at lave det øvre stykke i stål. Krydshovedmotorer af den nævnte type 25 udvikles i retning af meget høje effektive kompressionsforhold, såsom 1:16 - 1:20, hvilket medfører store belastninger på stempelringene.In FIG. 1, a generally designated 1 cylinder cylinder liner is shown for a large two-stroke cross-head motor which can be used as a stationary motor for operating an electric generator 15 or as a propulsion engine in a ship. Depending on the engine size, the cylinder liner can be made in various sizes with cylinder bores which can typically range from 250 mm to 1000 mm, and corresponding typical lengths which can range from 20 mm to 1000 mm to 4500 mm. The liner is usually made of cast iron and may be one-piece or split into two consecutive pieces. It is also possible to make the upper piece in steel by the split lining. Cross-head motors of the said type 25 are developed in the direction of very high effective compression ratios, such as 1:16 - 1:20, which causes large loads on the piston rings.

I figuren er foringshalvdelen vist til højre for længdeaksen 2 vist i længdesnit. Foringen kan på 30 velkendt vis (se fig. 2) monteres i den kun delvis viste motor ved at en rundtgående, nedadvendende flade 3 positioneres på toppladen 4 i motorens stativ eller cylinderblok, hvorefter et stempel 5 monteres i cylinderforingen, og et cylinderdæksel 6 anbringes på toppen 35 af foringen på dennes rundtgående, opadvendende flade 10 DK 173116 B1 7 og spændes fast til toppladen ved hjælp af ikke viste dækseltappe.In the figure, the casing half shown to the right of the longitudinal axis 2 is shown in longitudinal section. The liner can in a well-known manner (see Fig. 2) be mounted in the only partially shown motor by positioning a circumferential, downward-facing surface 3 on the top plate 4 of the motor stand or cylinder block, after which a piston 5 is mounted in the cylinder liner and a cylinder cover 6 is mounted. on the top 35 of the liner on its circumferential upwardly facing surface and is clamped to the top plate by means of cover pins not shown.

I cylinderforingens nedre afsnit er der en rundt-gående række af skylleluftporte 8. Stemplet er be-5 vægeligt i foringens længderetning mellem et topdød-punkt, hvor stempeloversiden 9 befinder sig oppe i en udboring i cylinderdækslet 6 (se fig. 2) ved en position, der i fig. l er markeret ved A, og et bunddød-punkt, hvor stempeloversiden 9 befinder sig umiddelbart 10 under den nedre afslutning af skylleluftportene i en position markeret ved B.In the lower section of the cylinder casing there is a circumferential row of purging air ports 8. The piston is movable in the longitudinal direction of the casing between a top dead end, the piston top 9 being in a bore in the cylinder cover 6 (see Fig. 2). position shown in FIG. 1 is marked at A, and a bottom dead point where piston top 9 is immediately 10 below the lower end of the flushing ports in a position marked at B.

Stemplet er gennem en stempelstang 10, et krydshoved og en plej Istang på velkendt vis forbundet med motorens krumtapaksel. For hver gang krumtapakslen 15 udfører en drejning på 360° bevæges stemplet fra bunddødpunktet til topdødpunktet og tilbage igen. Der er således en entydig sammenhæng mellem krumtapakslens ’ drej estilling og stemplets position i cylinderforingen.The piston is connected to the crankshaft of the motor through a piston rod 10, a crosshead and a groomed rod. Each time the crankshaft 15 performs a 360 ° turn, the piston moves from the bottom dead center to the top dead center and back again. Thus, there is a clear connection between the crankshaft's pivot position and the piston's position in the cylinder liner.

Hvis drej estillingen svarende til stemplets topdødpunkt 20 benævnes 0 krumtapgrader, foregår den nedovergående stempelbevægelse til bunddødpunktet i løbet af de efterfølgende 180 krumtapgrader.If the pivot position corresponding to the piston top dead 20 is referred to as 0 cranks, the downward piston movement to the bottom dead point will occur during the subsequent 180 cranks.

Ved en stempelposition på 40 krumtapgrader eller ij mere under topdødpunktet er der i foringens inderside ’ 25 en bølgeformet smøreolierille 11, der gennem tilgangs- I huller 12 fødes med smøreolie for smøring af løbefladen på foringens inderside 13.At a plunger position of 40 crankshaft or more below the top dead center, there is a corrugated lubricating oil groove 11 inside the liner 25 which is fed through lubricating holes 12 with lubricating oil to lubricate the running surface on the liner interior 13.

Cylinderforingen 1 er i det øvre afsnit beliggende mellem fladerne 3 og 7 udformet med større ydre diame-30 ter, og i toppen af dette afsnit er mange langstrakte køleboringer 14 boret således op i foringens væg fra en udvendig recess 15, at de rette køleboringers længdeakser forløber skråt eller vindskævt i forhold til foringens længdeakse 2. I hver køleboring er indsat et ~ 35 rør eller en ledeplade, der styrer det indstrømmende 31 m n ϋΐ 11 DK 173116 B1 kølevand fra recessen 15 op til boringens øvre blindende, hvorfra kølevandet strømmer nedefter og ud i et kammer 16, hvorfra vandet via rør 17 ledes op i cylinderdækslet. Det skal bemærkes, at køleboringerne i fig.The cylinder liner 1 is located in the upper section between the surfaces 3 and 7 with larger outer diameters, and at the top of this section many elongated cooling bores 14 are drilled up into the wall of the liner from an external recess 15 to the longitudinal axes of the right cooling bores. inclines or windswept relative to the longitudinal axis of the casing 2. A ~ 35 pipe or guide plate is inserted in each cooling bore that controls the influent 31 mn rec 11 recess 15 up to the upper blind of the bore, from which the cooling water flows downward and out into a chamber 16, from which the water is led through the pipe 17 into the cylinder cover. It should be noted that the cooling bores of FIG.

5 2 er tegnet som om deres længdeakser forløb i snit-planet, selv om de i realiteten forløber skråt i forhold hertil. Recessen 15 er omgivet af en rundtgående skærmplade 18. Det er velkendt, at køleboringerne kan have andre udformninger, fx krumme rør, der er indstøbt 10 i foringens væg og udmunder i et kammer ved toppen af foringens yderside.5 2 is drawn as if their longitudinal axes were in the plane of the plane, although in reality they are inclined in relation thereto. Recess 15 is surrounded by a circumferential shield plate 18. It is well known that the cooling bores may have other designs, e.g. curved tubes embedded 10 in the casing wall and culminate in a chamber at the top of the casing exterior.

I fig. 2 er stemplet 5 vist i topdødpunktet. Stemplet er forsynet med fire stempelringe, hvoraf den øverste stempelring 19 fortrinsvis er af gastæt type, 15 dvs. ringens deling vist ved 20 i fig. 5 er udformet således, at gas er i det væsentlige hindret i at strømme gennem ringdelingen. Dette kan eksempelvis ske ved, at ringens ene ende har en flad udragende tap, der rager ind i en modsvarende udsparing i ringens anden ende.In FIG. 2, the plunger 5 is shown at the top dead center. The piston is provided with four piston rings, of which the upper piston ring 19 is preferably gas-tight, ie. ring division shown at 20 in FIG. 5 is designed so that gas is substantially prevented from flowing through the ring division. This can be done, for example, in that one end of the ring has a flat protruding pin projecting into a corresponding recess at the other end of the ring.

20 Tappen og udsparingen har mindre radial bredde end stempelringen, så der på ringens inderside er et vægparti, der dækker udsparingen og hindrer gasgennemstrømning. Den næstøverste stempelring 21, den tredieø-verste stempelring 22 og den nederste stempelring 23 er 25 sædvanlige ringe, hvis ringdeling er udformet som en spalte, der forløber skråt i omkredsretningen fra ringover- til ringundersiden. Det foretrækkes, at spalten i den tredieøverste stempelring forløber skråt i modsat retning af spalterne i den næstøverste og den 30 nederste stempelring. Som alternativ til anvendelsen af en gastæt øverste stempelring 19, kan denne være af samme type som de underliggende stempelringe 21-23. Ringydersiderne, der glider langs foringens inderside 13, er glatte og udført uden lækagespor.The pin and recess have less radial width than the piston ring, so that on the inside of the ring there is a wall portion that covers the recess and prevents gas flow. The second uppermost piston ring 21, the third upper piston ring 22, and the lower piston ring 23 are 25 ordinary rings, the ring portion of which is formed as a slit extending circumferentially from the ring to the bottom. It is preferred that the gap in the third upper piston ring extend obliquely in the opposite direction to the slits in the second upper and lower piston ring. As an alternative to the use of a gas tight upper piston ring 19, it may be of the same type as the underlying piston rings 21-23. The annular sides sliding along the inside of the casing 13 are smooth and made without any leaks.

12 DK 173116 B1 Når stemplet er i topdødpunktet ligger stempelringene ud for et øverste afsnit af foringens inderside, hvilket afsnit er benævnt med 24 i fig. 1. I fig. 3 ses dette afsnit i større skala. Foringens inderside er i 5 den viste udførelsesform forsynet med en første gruppe af recesser 25, der ligger ud for og strækker sig forbi den øverste stempelring 19, og med en anden gruppe af recesser 26, der ligger ud for og strækker sig forbi den næstøverste stempelring 21, samt med en tredie gruppe 10 af recesser 27, der ligger ud for og strækker sig forbi den tredieøverste stempelring 22, når stemplet som vist er i topdødpunktet. De længdepositioner i foringen, som svarer til midten af stempelringene i topdødpunktet er markeret ved linier, som i fig. 4 er benævnt 19', 21', 15 22' og 23'.12 DK 173116 B1 When the piston is at the top dead center, the piston rings lie opposite an upper section of the inside of the casing, which section is designated 24 in FIG. 1. In FIG. 3, this section is seen on a larger scale. In the illustrated embodiment, the inner surface of the liner is provided with a first group of recesses 25 extending and extending past the upper piston ring 19 and with a second group of recesses 26 extending and extending past the second highest piston ring. 21, as well as with a third group 10 of recesses 27 which extends beyond and extends past the third piston ring 22 when the piston is as shown in the top dead center. The longitudinal positions in the liner corresponding to the center of the piston rings at the top dead center are marked by lines as in FIG. 4 are designated 19 ', 21', 15 22 'and 23'.

Recessernes længdeakser forløber i det viste eksempel skråt eller vindskævt i forhold til foringens længdeakse 2 på samme måde som køleboringerne 14 med det resultat, at recesserne forløber i det væsentlige 20 parallelt med de hosliggende køleboringer. Det ses også, at ingen af recesserne strækker sig ned under den nederste stempelring 23. Recesserne 27 i den tredie gruppe forløber parallelt med og i forlængelse af recesserne 25 i den første gruppe, men med en indbyrdes 25 adskillelse 28, der med fordel kan være større end højden af den næstøverste stempelring 21, men ikke behøver at være det. Recesserne 26 i den anden gruppe har større længde end de øvrige recesser for at tilvejebringe kontinuert gaslækage forbi den øverste 30 stempelring 19, indtil denne er bevæget ned til den nedre ende af recesserne 27. Udsnittet i højre side af fig. 4 viser et eksempel på, at mindst en af recesserne 27 kan strække sig længere ned i foringen end de øvrige recesser i den tredie gruppe, så strømningen af lækage- ^ 35 gas gennem recesserne 27 afbrydes og åbnes trinvist.The longitudinal axes of the recesses, in the example shown, extend obliquely or windwardly with respect to the longitudinal axis 2 of the casing in the same way as the cooling bores 14, with the result that the recesses extend substantially 20 parallel to the adjacent cooling bores. It will also be seen that none of the recesses extends below the lower piston ring 23. The recesses 27 of the third group extend parallel to and in extension of the recesses 25 of the first group, but with a separation 25 which may advantageously be greater than the height of the second-highest piston ring 21, but need not be. The recesses 26 of the second group have a greater length than the other recesses to provide continuous gas leakage past the upper piston ring 19 until it is moved down to the lower end of the recesses 27. The right side section of FIG. 4 shows an example that at least one of the recesses 27 can extend further down the liner than the other recesses of the third group, so that the flow of leakage gas through the recesses 27 is interrupted and opened incrementally.

i 13 DK 173116 B1 I topdødpunktet strømmer varm forbrændingsgas fra forbrændingskammeret over stemplet ned gennem recesserne 25 til det mellem stemplets yderside og foringens inderside 13 beliggende ringformede rum mellem stempel-5 ringene 19 og 21. Derefter kan gassen strømme i omkredsretningen hen til recesserne 26 og videre ned i det ringformede rum mellem stempelringene 21 og 22, hvorfra gassen atter kan strømme i omkredsretningen og via recesserne 27 nå ned i det ringformede rum mellem 10 stempelringene 22 og 23. Samtidig kan gassen strømme gennem ringdelingerne i stempelringene 21-23, og eventuelt også gennem ringdelingen i den øverste stempelring 19, hvis denne ikke er af gastæt type. Ved stemplets nedovergående bevægelse vil lækagemængderne 15 mindskes efterhånden som stempelringene passerer de nedre ender af recesserne 27.In the top dead center, hot combustion gas flows from the combustion chamber across the piston through the recesses 25 to the annular space between the piston rings 19 and 21. between the piston rings 19 and 21. The gas can then flow circumferentially to the recesses 26 and further down into the annular space between the piston rings 21 and 22, from which the gas can again flow in the circumferential direction and reach through the recesses 27 into the annular space between the piston rings 22 and 23. At the same time, the gas can flow through the ring distributions in the piston rings 21-23, and optionally also through the ring division of the upper piston ring 19, if it is not of gas-tight type. In the downward movement of the piston, the leakage rates 15 will decrease as the piston rings pass through the lower ends of the recesses 27.

Køleboringerne 14 ligger jævnt fordelt langs foringens omkreds, og hver af recesserne 25-27 ligger i lige stor afstand fra de to nærmest liggende køleborin-20 ger 14. Ud for recesserne 26 er der midt mellem de tilhørende køleboringer 14 boret en supplerende køleboring 14', der bortleder den varme, som tilføres fra strømmen af lækagegas gennem recesserne 26. Ud for recesserne 25 og 27 er der midt mellem de tilhørende 25 køleboringer 14 boret en supplerende køleboring 14'', der bortleder den varme, som tilføres fra strømmen af lækagegas gennem recesserne 25 og 27. Køleboringerne 14'' strækker sig højere op i foringens væg end køleboringerne 14. Det er muligt at placere recesserne 25-27 30 umiddelbart ud for de jævnt fordelte køleboringer 14, for derved at undgå fremstillingen af de supplerende køleboringer.The cooling bores 14 are evenly distributed along the circumference of the casing, and each of the recesses 25-27 is equally spaced from the two adjacent cooling bores 14. Out of the recesses 26, an additional cooling bore 14 'is borne in the middle between the associated cooling bores 14 which dissipates the heat supplied from the flow of leakage gas through the recesses 26. Out of the recesses 25 and 27, an additional cooling bore 14 '' is drilled in the middle of the associated 25 cooling bores 14, which dissipates the heat supplied from the flow of leakage gas. through the recesses 25 and 27. The cooling bores 14 '' extend higher up into the casing wall than the cooling bores 14. It is possible to place the recesses 25-27 30 immediately next to the evenly distributed cooling bores 14, thereby avoiding the manufacture of the additional cooling bores.

Tværsnittet vist i fig. 5 forløber i stemplet umiddelbart over den øverste stempelring 19 og i 35 foringen i lidt lavere niveau, så køleboringernes øvre 14 DK 173116 B1 ender ses i snittet. For overskueligheds skyld er selve stemplet udeladt i figuren. I den første gruppe er der fire recesser 25 jævnt fordelt langs foringens omkreds og midt mellem disse fire recesser 26 i den anden 5 gruppe. Under recesserne 25 er der fire recesser 27 i den tredie gruppe. Det er klart, at der kan være færre, eksempelvis 2, eller flere, såsom 6, 8, 10 eller 12 recesser i hver gruppe. Antallet afpasses efter det ønskede tværsnitsareal af den enkelte recess og efter 10 det ønskede største lækageareal for gasstrømning forbi den øverste stempelring. Hvis den øverste stempelring ikke er af gastæt type, skal det uden for stemplet beliggende tværsnitsareal af spalten ved ringdelingen j medregnes i det ønskede største lækageareal med det I 15 resultat, at foringens inderside kan udformes med færre : recesser.The cross section shown in FIG. 5 extends in the piston immediately above the upper piston ring 19 and in the casing at a slightly lower level, so that the upper ends of the cooling bores 14 DK 173116 B1 are seen in the section. For the sake of clarity, the stamp itself is omitted in the figure. In the first group there are four recesses 25 evenly distributed along the circumference of the casing and in the middle between these four recesses 26 in the second 5 group. During recesses 25, there are four recesses 27 in the third group. Clearly, there may be fewer, for example, 2, or more, such as 6, 8, 10, or 12 recesses in each group. The number is adjusted according to the desired cross-sectional area of the individual recess and after 10 the desired maximum leakage area for gas flow past the upper piston ring. If the upper piston ring is not of gas-tight type, the outside cross-sectional area of the gap at the ring division j must be included in the desired largest leakage area with the result that the inside of the casing can be designed with fewer recesses.

Som et eksempel kan nævnes, at hvis cylinderf oringen 1 vist i fig. 5 har en indre diameter på 600 mm kan det med fire recesser i hver gruppe være passende at 20 give hver recess et tværsnitsareal på omkring 12,5 mm , hvilket kan opnås med en recessbredde i omkredsretningen på omtrent 9 mm og en recessdybde i radialretningen på omtrent 2,5 mm, når recessen har en spændingsmæssig gunstig tværsnitsfacon som vist i fig. 6, hvor bunden 25 set fra stempelsiden har et konkavt midterste afsnit, der går jævnt over i to konvekse sideafsnit, der går tangentielt over i foringens inderside 13. Når foringen slides ved kørsel med motoren, vil lækagearealet " mindskes, fordi indersiden 13 slides et stykke ned i 30 recesserne. Hvis lækagearealet nærmer sig den nedre grænse kan det være nødvendigt at genoprette recess-faconen ved fornyet bearbejdning af foringen.As an example, if the cylinder liner 1 shown in FIG. 5 having an inner diameter of 600 mm, with four recesses in each group, it may be appropriate to give each recess a cross-sectional area of about 12.5 mm, which can be achieved with a recess width in the circumferential direction of about 9 mm and a recess depth in the radial direction of about 2.5 mm when the recess has a voltage favorable cross-sectional shape as shown in FIG. 6, where the bottom 25 seen from the piston side has a concave middle section that smoothly passes into two convex side sections tangentially to the inside of the casing 13. As the casing wears when driving with the engine, the leakage area "is reduced because the interior 13 wears a If the leakage area approaches the lower limit, it may be necessary to restore the recess shape by reworking the liner.

Foringen med recesserne ifølge opfindelsen kan også «Η fremstilles på basis af en allerede ibrugtaget cylinder- -™ 35 foring. I forbindelse med udskiftning af en stempelring,The liner with the recesses of the invention can also be manufactured on the basis of an already in-use cylinder liner. When replacing a piston ring,

OTOT

TTl r*5TTl r * 5

HH

7Γ 15 DK 173116 B1 såsom den øverste, kan recesserne 25-27 bearbejdes ind i foringens inderside ud for og på langs af de allerede eksisterende køleboringer.7Γ 15 DK 173116 B1 such as the upper one, the recesses 25-27 can be machined into the inside of the casing outside and along the already existing cooling bores.

Hvis der ikke skal tages særlige hensyn til 5 afkølingen af materialet omkring recesserne, eksempelvis fordi materialet kan modstå de aktuelle temperaturniveauer, kan receserne forløbe parallelt med foringens længdeakse 2. Foringen kan også udformes med kun én eller med flere end tre grupper af recesser. En eller 10 flere af recesserne kan ligge i lavere niveau end den nederste stempelring, når stemplet er i topdødpunktet, men der opnås ingen fordele ved at lade recesser ligge længere nede i foringen end oliefordelingsrillen 11.If special consideration is not given to the cooling of the material around the recesses, for example because the material can withstand the current temperature levels, the recesses can run parallel to the longitudinal axis of the casing 2. The casing can also be designed with only one or more than three groups of recesses. One or 10 more of the recesses may be at a lower level than the lower piston ring when the piston is at the top dead center, but no benefits are obtained by leaving recesses further down the liner than the oil distribution groove 11.

Cylinderforingen ifølge opfindelsen kan også 15 anvendes til andre motortyper end beskrevet ovenfor, fx til en firtakts mediumspeed motor, hvor der ikke er køleboringer inde i foringens væg.The cylinder liner according to the invention can also be used for other types of motor than described above, for example for a four stroke medium speed motor where there are no cooling bores inside the wall of the liner.

Claims (10)

16 DK 173116 B116 DK 173116 B1 1. Cylinderforing (l) til en forbrændingsmotor, navnlig en totakts krydshovedmotor, med et stempel (5), der er bevægeligt i foringen i dennes længderetning 5 mellem et bunddødpunkt, i hvilket skylleluftporte (8) i cylinderforingens væg er frilagte over stempeloversiden (9) , og et topdødpunkt, i hvilket stemplet befinder sig i sin øverste stilling i cylinderforingen, og hvor stemplet er forsynet med flere stempelringe (19, 21-23), 10 hvis yderside glider langs foringens inderside (13), hvilken cylinderforing i sin inderside har flere recesser, der danner gasstrømningsforbindelser mellem 1 rummene over og under en stempelring, når denne står ud for recesserne, kendetegnet ved, at i det ] 15 mindste nogle af recesserne (25) ligger ud for den øverste stempelring, når stemplet er i topdødpunktet, og at i foringens længderetning har de enkelte recesser (25-27) mindst dobbelt så stor udstrækning som højden ; af den øverste stempelring (19).A cylinder liner (1) for an internal combustion engine, in particular a two-stroke cross-head motor, with a piston (5) movable in the liner in its longitudinal direction 5 between a bottom dead center, in which flushing air ports (8) in the wall of the cylinder liner are exposed over the piston top (9). ), and a top dead center at which the piston is in its upper position in the cylinder liner and the plunger is provided with several piston rings (19, 21-23), the outside of which slides along the inside of the liner (13), which cylinder liner in its inside has several recesses forming gas flow connections between the 1 compartments above and below a piston ring when facing the recesses, characterized in that at least some of the recesses (25) are opposite the upper piston ring when the piston is at the top dead center and that in the longitudinal direction of the casing, the individual recesses (25-27) have at least twice the height; of the upper piston ring (19). 2. Cylinderforing ifølge krav ^kendeteg net ved, at foringen (1) er forsynet med mindst tre t grupper af recesser, hvoraf recesserne (25) i den første Ti gruppe ligger ud for den øverste stempelring (19) , recesserne (26) i den anden gruppe ligger ud for den ^ 25 næstøverste stempelring (21) og er forsat i foringens omkredsretning i forhold til recesserne (25, 27) i de andre grupper, og recesserne (27) i den tredie gruppe ligger ud for den tredieøverste stempelring (22), når ^ stemplet er i topdødpunktet, og at recesserne (26) i den 30 anden gruppe strækker sig over et foringslængdeafsnit, hvori recesserne (25, 27) i den første og den tredie gruppe er i det mindste delvis beliggende. ^ 3. Cylinderforing ifølge krav 2,kendeteg- ^ net ved, at recesserne (27) i den tredie gruppe ~ 3 5 ligger i forlængelse af recesserne (25) i den første 11 n «i 17 DK 173116 B1 gruppe med en i recessernes længderetning indbyrdes adskillelse (28), der er større end højden af den næstøverste stempelring (21).Cylinder liner according to claim 1, characterized in that the liner (1) is provided with at least three t groups of recesses, the recesses (25) of the first Ten group being adjacent to the upper piston ring (19), the recesses (26) in the second group is adjacent to the ^ 25 second upper piston ring (21) and is set in the circumferential direction of the casing relative to the recesses (25, 27) of the other groups, and the recesses (27) of the third group are adjacent to the third upper piston ring (21). 22) when the piston is at the peak dead center and the recesses (26) of the second group extend over a casing length section, wherein the recesses (25, 27) of the first and third groups are at least partially located. 3. Cylinder liner according to claim 2, characterized in that the recesses (27) in the third group are in extension of the recesses (25) in the first 11 n 'of a group of one of the recesses. longitudinal separation between each other (28) greater than the height of the second upper piston ring (21). 3. D /70000 til D /2000 mm , hvor D er foringens indre . 2 diameter i mm, og A er arealet i mm .3. D / 70000 to D / 2000 mm, where D is the inner lining. 2 diameter in mm and A is the area in mm. 4. Cylinderforing ifølge krav 2 eller 3, k e n - 5 detegnet ved, at der ved mindst en længdeposition i foringen er mindst fire, fortrinsvis mindst otte recesser (25, 26; 25, 27) fordelt over foringens omkreds, og at disse recesser set i omkredsretningen skiftevis tilhører den anden gruppe og enten den første 10 eller den tredie gruppe.Cylinder liner according to claim 2 or 3, characterized in that at least one longitudinal position in the liner there are at least four, preferably at least eight recesses (25, 26; 25, 27) distributed over the circumference of the liner, and these recesses in the circumferential direction, the second group alternately belongs to either the first 10 or the third group. 5. Cylinderforing ifølge et af kravene 1-4, k e n -detegnet ved, at ingen af recesserne strækker sig ned under den nederste stempelring (23), når stemplet er i topdødpunktet.Cylinder liner according to any one of claims 1-4, characterized in that none of the recesses extends below the lower piston ring (23) when the piston is at the top dead center. 6. Cylinderforing ifølge et af kravene 1-5, ken detegnet ved, at recesserne (25-27) kun danner gasstrømningsforbindelser forbi en eller flere af de tre øverste stempelringe (19, 21, 22), .mens stemplet (5) befinder sig mellem topdødpunktet ved 0 krumtapgrader 20 og stempelpositioner, der for den øverste stempelring (19) er beliggende i intervallet fra 15 til 20 krumtapgrader, for den næstøverste stempelring (21) i intervallet fra 10 til 15 krumtapgrader og for den tredieø-verste stempelring (22) i intervallet fra 5 til 8 25 krumtapgrader før eller efter topdødpunktet.Cylinder liner according to one of claims 1-5, characterized in that the recesses (25-27) form only gas flow connections past one or more of the three upper piston rings (19, 21, 22) while the piston (5) is located between the peak dead center at 0 crankshaft 20 and piston positions located for the upper piston ring (19) in the range of 15 to 20 crankshaft, for the second highest piston ring (21) in the range of 10 to 15 crankshaft and for the third upper piston ring (22 ) in the range of 5 to 8 25 degrees of cranking before or after the peak deadlock. 7. Cylinderforing ifølge et af de foregående krav, kendetegnet ved, at det af recesserne (25-27) dannede lækageareal A for gasstrømning forbi den øverste stempelring (19) er beliggende i intervallet fraCylinder lining according to one of the preceding claims, characterized in that the leakage area A for gas flow past the upper piston ring (19) formed by the recesses (25-27) is located in the interval from 8. Cylinderforing ifølge et af kravene 1-7, ken detegnet ved, at cylinderforingen i et øvre afsnit er forsynet med køleboringer (14, 14', 14''), 35 hvis længdeakser forløber skråt i forhold til foringens DK 173116 B1 18 længdeakse (2), og at længdeaksen for hver recess (25-27) forløber i det væsentlige parallelt med den hosliggende køleborings længdeakse.Cylinder liner according to one of claims 1-7, characterized in that the cylinder liner in the upper section is provided with cooling bores (14, 14 ', 14' '), whose longitudinal axes extend obliquely with respect to the longitudinal axis of the liner DK 173116 B1 18 (2) and that the longitudinal axis of each recess (25-27) extends substantially parallel to the longitudinal axis of the adjacent cooling bore. 9. Cylinderforing ifølge krav 8,kendeteg-5 n e t ved, at cylinderforingen har flere køleboringer (14), der ligger jævnt fordelt over foringens omkreds, at hver recess (25-27) forløber i hovedsagelig lige stor afstand fra de -to nærmestliggende af de jævnt fordelte køleboringer, og at der ud for recesserne er supplerende 10 køleboringer (14', 14'') i områderne mellem de jævnt fordelte køleboringer.Cylinder liner according to claim 8, characterized in that the cylinder liner has several cooling bores (14) which are evenly distributed over the circumference of the liner, that each recess (25-27) extends at substantially equal distance from the adjacent the evenly distributed cooling bores and that in addition to the recesses there are an additional 10 cooling bores (14 ', 14' ') in the areas between the evenly distributed cooling bores. 10. Cylinderforing ifølge krav 9, kende t eg - 1 net ved, at de supplerende køleboringer (14''), der 1 ligger ud for recesserne (25) hørende til den første I 15 gruppe strækker sig højere op i foringens væg end de jævnt fordelte køleboringer (14). i ϋ ra 71 imA cylinder liner according to claim 9, characterized in that the additional cooling bores (14 '') which lie 1 next to the recesses (25) of the first group extend higher in the wall of the liner than the evenly distributed cooling bores (14). I was 71 years old
DK199600547A 1996-05-07 1996-05-07 Cylinder liner for an internal combustion engine DK173116B1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
DK199600547A DK173116B1 (en) 1996-05-07 1996-05-07 Cylinder liner for an internal combustion engine
AU27632/97A AU2763297A (en) 1996-05-07 1997-04-28 A cylinder liner for an internal combustion engine
JP9539439A JP2000509460A (en) 1996-05-07 1997-04-28 Cylinder liner for internal combustion engine
TW086105550A TW384356B (en) 1996-05-07 1997-04-28 Cylinder liner for an internal combustion engine
PCT/DK1997/000191 WO1997042406A1 (en) 1996-05-07 1997-04-28 A cylinder liner for an internal combustion engine
GB9823276A GB2326446B (en) 1996-05-07 1997-04-28 A cylinder liner for an internal combustion engine
CN97194448A CN1081739C (en) 1996-05-07 1997-04-28 Cylinder liner for IC engine
KR1019980708746A KR20000010686A (en) 1996-05-07 1997-04-28 Cylinder liner for inner combustion engine
HR970228A HRP970228A2 (en) 1996-05-07 1997-05-06 A cylinder liner for an internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DK54796 1996-05-07
DK199600547A DK173116B1 (en) 1996-05-07 1996-05-07 Cylinder liner for an internal combustion engine

Publications (2)

Publication Number Publication Date
DK54796A DK54796A (en) 1997-11-08
DK173116B1 true DK173116B1 (en) 2000-01-31

Family

ID=8094786

Family Applications (1)

Application Number Title Priority Date Filing Date
DK199600547A DK173116B1 (en) 1996-05-07 1996-05-07 Cylinder liner for an internal combustion engine

Country Status (9)

Country Link
JP (1) JP2000509460A (en)
KR (1) KR20000010686A (en)
CN (1) CN1081739C (en)
AU (1) AU2763297A (en)
DK (1) DK173116B1 (en)
GB (1) GB2326446B (en)
HR (1) HRP970228A2 (en)
TW (1) TW384356B (en)
WO (1) WO1997042406A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4633639A (en) * 1983-12-05 1987-01-06 Deimen Michael L Construction block
DK56897A (en) * 1997-05-16 1998-11-17 Man B & V Diesel A S Cylinder liner for a diesel-type internal combustion engine
EP2628932A2 (en) * 2003-03-03 2013-08-21 Bando Kiko Co. Ltd. Reciprocating engine
BRPI0622053A2 (en) 2006-10-20 2014-04-29 Bando Kiko Co ALTERNATE PISTON DRIVING ENGINE
KR101860458B1 (en) 2009-03-27 2018-07-05 빈터투르 가스 앤 디젤 아게 Cylinder having means for the distribution of lubricant
US10245806B2 (en) 2011-02-22 2019-04-02 The George Washington University Friction reduction for engine components
EP2703630A1 (en) * 2012-08-31 2014-03-05 Wärtsilä Schweiz AG Cylinder liner for a stroke piston combustion engine
EP2746531B1 (en) * 2012-12-21 2015-07-22 Caterpillar Energy Solutions GmbH Unburned fuel venting in internal combustion engines
EP2746553B1 (en) 2012-12-21 2016-04-20 Caterpillar Energy Solutions GmbH Unburned fuel venting in internal combustion engines
DK178937B9 (en) * 2015-11-02 2017-07-03 Man Diesel & Turbo Filial Af Man Diesel & Turbo Se Tyskland A cylinder liner for a two-stroke crosshead engine
DK179020B1 (en) * 2015-11-02 2017-08-28 Man Diesel & Turbo Filial Af Man Diesel & Turbo Se Tyskland A cylinder liner for a two-stroke crosshead engine
DK178939B1 (en) * 2015-11-02 2017-06-19 Man Diesel & Turbo Filial Af Man Diesel & Turbo Se Tyskland A cylinder liner for a two-stroke crosshead engine
US11326694B2 (en) * 2019-12-17 2022-05-10 Acd, Llc Cryogenic piston ring improvement

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1216612B (en) * 1964-05-23 1966-05-12 Maschf Augsburg Nuernberg Ag Cylinder liner for four-stroke internal combustion engines
DE3936813C1 (en) * 1989-11-04 1990-06-07 Man B & W Diesel Ag, 8900 Augsburg, De IC engine air buffer system - consists of blind bores in area of cylinder swept by piston rings
DK277690D0 (en) * 1990-11-22 1990-11-22 Man B & W Diesel Gmbh CYLINDER LINING FOR A WATER-COOLED COMBUSTION ENGINE

Also Published As

Publication number Publication date
TW384356B (en) 2000-03-11
HRP970228A2 (en) 2000-12-31
GB2326446A (en) 1998-12-23
DK54796A (en) 1997-11-08
GB2326446B (en) 1999-08-04
GB9823276D0 (en) 1998-12-23
WO1997042406A1 (en) 1997-11-13
AU2763297A (en) 1997-11-26
KR20000010686A (en) 2000-02-25
JP2000509460A (en) 2000-07-25
CN1218540A (en) 1999-06-02
CN1081739C (en) 2002-03-27

Similar Documents

Publication Publication Date Title
DK173116B1 (en) Cylinder liner for an internal combustion engine
RU2163683C2 (en) Piston ring for internal combustion engine
CN1100203C (en) Stirling engine
US4428330A (en) Piston for internal combustion engines
FR2486152A1 (en) INTERNAL COMBUSTION ENGINE HAVING OIL COOLING
RU2536480C2 (en) Cylinder for reciprocating-piston ice, its application as cylinder to house large engine piston and method of lubricant distribution in said cylinder
US3659569A (en) Liquid cooled cylinder sleeve, particularly for internal combustion engines
KR101941504B1 (en) Piston ring for two-stroke engines
DK2821626T3 (en) STAMP COLLECTION
GB2284860A (en) Liquid cooled i.c.engine cylinder head
WO1998041749A1 (en) A piston for a two-stroke crosshead engine of the diesel type
CN109989846B (en) Split steel top steel skirt piston
MXPA06010458A (en) Cylinder liner providing coolant shunt flow.
RU2189479C2 (en) Cylinder liner for internal combustion engine of diesel type (versions)
KR101576967B1 (en) Method for optimization of function of piston ring package and piston ring package therefor
CN111033022B (en) Internal combustion engine housing with cylinder cooling
GB2104621A (en) Piston ring lubrication
EP0076348A1 (en) Exhaust valve casing
US3213766A (en) Light weight piston
SU979679A1 (en) Piston
SU1113578A1 (en) Internal combustion engine with liquid and air cooling
KR20220116294A (en) Pistons for internal combustion engines
US1271147A (en) Internal-combustion engine.
NO881708L (en) PISTON COMBUSTION ENGINE.
WO1994028296A1 (en) A method and an internal combustion engine

Legal Events

Date Code Title Description
B1 Patent granted (law 1993)
PBP Patent lapsed

Country of ref document: DK