DK172932B1 - Method and device for reducing vibrations in a wind turbine blade. - Google Patents

Method and device for reducing vibrations in a wind turbine blade. Download PDF

Info

Publication number
DK172932B1
DK172932B1 DK199500742A DK74295A DK172932B1 DK 172932 B1 DK172932 B1 DK 172932B1 DK 199500742 A DK199500742 A DK 199500742A DK 74295 A DK74295 A DK 74295A DK 172932 B1 DK172932 B1 DK 172932B1
Authority
DK
Denmark
Prior art keywords
mass
blade
cylinder
buoyancy
rod system
Prior art date
Application number
DK199500742A
Other languages
Danish (da)
Other versions
DK74295A (en
Inventor
Henrik Stiesdal
Peder Bay Enevoldsen
Original Assignee
Bonus Energy As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bonus Energy As filed Critical Bonus Energy As
Priority to DK199500742A priority Critical patent/DK172932B1/en
Priority to AU62987/96A priority patent/AU6298796A/en
Priority to PCT/DK1996/000283 priority patent/WO1997001709A1/en
Priority to EP96921911A priority patent/EP0835380A1/en
Publication of DK74295A publication Critical patent/DK74295A/en
Application granted granted Critical
Publication of DK172932B1 publication Critical patent/DK172932B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • F03D1/0675Rotors characterised by their construction elements of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/305Flaps, slats or spoilers
    • F05B2240/3052Flaps, slats or spoilers adjustable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/96Preventing, counteracting or reducing vibration or noise
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Description

i DK 172932 B1 5 Opfindelsen angår en fremgangsmåde til reduktion af svingninger i en vindmøllevinge, så belastningerne på vingen og på resten af møllekonstruktionen reduceres.The invention relates to a method for reducing vibrations in a wind turbine blade so that the stresses on the blade and on the rest of the turbine structure are reduced.

Opfindelsen omhandler også en indretning til brug ved ud-10 øvelse af fremgangsmåden.The invention also relates to a device for use in practicing the method.

Det er en kendt sag, et vindmøller udsættes for store, varierende aerodynamiske belastninger under drift. Belastningerne varierer stokastisk, fordi luftens strømning er tur-15 bulent. Desuden varierer belastningerne systematisk, fordi hastighedsprofilet varierer med højden over jorden, og fordi mølletårnet som regel giver en vindskygge, selv når rotoren er placeret på tårnets vindside. Endvidere kan vingerne under bestemte aerodynamiske betingelser have lille 20 eller negativ aerodynamisk dæmpning, hvorved der kan forekomme såkaldte stall-svingninger. Disse stall-svingninger kan blive meget store og kan alvorligt nedsætte vindmøllens levetid.It is a known case that a wind turbine is subjected to large, varying aerodynamic loads during operation. The loads vary stochastically because the flow of air is turbulent. Furthermore, the loads vary systematically because the velocity profile varies with the height above the ground and because the mill tower usually provides a shade of wind, even when the rotor is located on the tower's windward side. Furthermore, under certain aerodynamic conditions, the blades may have slight or negative aerodynamic damping, so that so-called stall oscillations may occur. These stall swings can become very large and can seriously reduce the wind turbine's life.

25 Det er også en kendt sag, at opdriftsegenskaberne med et givet vingeprofil kan ændres på forskellig måde. Udfældning af en flap nær profilets bagkant, løft af en slot over vingens forkant og placering af vortex generators på vingens sugeside vil normalt forøge opdriften på profilet. Fore-30 komst af en turbulator nær vingens forkant eller åbning af kanaler for gennemstrømning på tværs af profilet vil normalt reducere opdriften på profilet. Opdriftsegenskaberne på hele vingen kan ændres ved ændring af vingens indstillingsvinkel .25 It is also a known case that the buoyancy characteristics of a given blade profile can be changed in different ways. Precipitation of a flap near the trailing edge of the profile, lifting of a slot over the leading edge of the blade and placement of vortex generators on the suction side of the blade will usually increase the buoyancy of the profile. The appearance of a turbulator near the leading edge of the blade or opening of channels for flow across the profile will usually reduce the buoyancy of the profile. The buoyancy characteristics of the entire blade can be changed by changing the blade setting angle.

3535

Der er en række kendte fremgangsmåder og indretninger.There are a number of known methods and devices.

2 DK 172932 B1 hvormed vindmøllevingers aerodynamiske egenskaber ændres på en eller flere af de ovennævnte måder med henblik på at reducere de aerodynamiske belastninger på en vindmøllevinge.2 DK 172932 B1 by which the aerodynamic properties of wind turbine blades are altered in one or more of the above ways in order to reduce the aerodynamic loads on a wind turbine blade.

Mange stall-regulerede vindmøller har således turbulatorer 5 på vingerne for at sænke den maksimale opdrift. Pitch-regulerede vindmøller ændrer vingernes indstillingsvinkel som respons på diverse parametre. Disse parametre er ofte begrænset til den afgivne effekt, men der er også systemer, hvor belastningerne på vingeroden måles og bruges I regule-10 ringsalgoritmen.Thus, many stall-controlled wind turbines have turbulators 5 on the blades to lower the maximum buoyancy. Pitch-regulated wind turbines change the setting angle of the blades in response to various parameters. These parameters are often limited to the output power, but there are also systems where the loads on the blade root are measured and used in the control algorithm.

Under svingninger optræder de største belastninger, når strukturen er fuldt deformeret. Det vil sige, at der kræves en forholdsvis avanceret form for regulering, hvis belast-15 ningernes størrelse skal reduceres væsentligt på baggrund af en måling af belastningernes størrelse. En sådan regulering kan for eksempel udføres med et D-led (differentiering af målesignalet). Det er imidlertid svært at udføre som en mekanisk løsning og vil normalt forudsætte, at reguleringen 20 er aktiv og er baseret på elektronisk signalbehandling.During oscillations, the greatest loads occur when the structure is fully deformed. That is, a relatively advanced form of regulation is required if the magnitude of the loads is to be substantially reduced based on a measurement of the magnitude of the loads. For example, such a control can be performed with a D-link (differentiation of the measurement signal). However, it is difficult to perform as a mechanical solution and would normally require control 20 to be active and based on electronic signal processing.

Det er derfor formålet med den foreliggende opfindelse at angive en fremgangsmåde, som på en simpel måde kan reducere eventuelle svingninger i en vindmøllevinge ved at ændre 25 dens aerodynamiske egenskaber, idet der også skal angives en indretning til brug ved udøvelsen af fremgangsmåden.It is therefore the object of the present invention to provide a method which can simply reduce any oscillations in a wind turbine blade by altering its aerodynamic characteristics, also providing a device for use in the practice of the method.

Dette formål opnås ved en fremgangsmåde af den i indledningen angivne art, hvilken fremgangsmåde ifølge opfindelsen 30 er særegen ved, at vingens aerodynamiske egenskaber ændres som funktion af en forskydbar indretnings acceleration og/eller hastighed i omdrejningsretningen og/eller ud af rotorplanet.This object is achieved by a method of the kind specified in the introduction, which method according to the invention 30 is peculiar in that the aerodynamic characteristics of the blade are changed as a function of a displaceable device acceleration and / or speed in the direction of rotation and / or out of the rotor plane.

35 Det overordnede princip i opfindelsen er at lave en simpel, direkte kobling mellem accelerationen og/eller hastighedenThe overall principle of the invention is to make a simple, direct coupling between the acceleration and / or the speed

VV

3 DK 172932 B1 af vingens yderste del og de aerodynamiske egenskaber af vingen. Herved opnås på en særlig fordelagtig måde, at eventuelle svingninger reduceres.3 DK 172932 B1 of the wing's outer part and the aerodynamic characteristics of the wing. This results in a particularly advantageous way of reducing any oscillations.

5 Opfindelsen tager udgangspunkt i det forhold, at accelerationen og/eller hastigheden af den yderste del af en vindmøllevinge er et godt udtryk for, hvordan belastningerne vil udvikle sig ved strukturelle svingninger. I modsætning til ved en måling af belastningernes størrelse, hvor det 10 maksimale signal først opnås ved forekomsten af selve den situation, som man ønsker at undgå, vil en måling af accelerationen og/eller hastigheden give det maksimale signal allerede på det tidspunkt, hvor en svingning begynder at udvikle sig. Det skal nævnes, at vingens enkelte dele under 15 rotation stedse accelereres indad. Denne centripetalacceleration er opfindelsen uvedkommende, og med begrebet acceleration menes i denne beskrivelse acceleration i omdrej-ningsretningen (kantvis acceleration) eller ud af rotorplanet (flapvis acceleration).The invention is based on the fact that the acceleration and / or velocity of the outermost part of a wind turbine blade is a good expression of how the loads will develop in structural oscillations. Contrary to a measurement of the magnitude of the loads, where the maximum signal is first obtained by the occurrence of the situation itself that one wishes to avoid, a measurement of the acceleration and / or velocity will give the maximum signal already at the time when a oscillation begins to develop. It should be mentioned that the individual parts of the wing under 15 rotation are constantly accelerated inwards. This centripetal acceleration is irrelevant to the invention, and by the term acceleration in this description is meant acceleration in the direction of rotation (angular acceleration) or out of the rotor plane (flap acceleration).

2020

Svingningsdæmpningen kan opnås ved at ophænge en masse i eller på vingen og koble denne med en eller flere indretninger, der ændrer opdriftsforholdene på vingen.The vibration damping can be achieved by hanging a mass in or on the wing and coupling it with one or more devices which change the buoyancy conditions on the wing.

25 De anførte aerodynamiske egenskaber, der ændres, er ikke kun begrænset til vingens opdrift, men kan også omhandle vingens modstand og pitchmoment.25 The listed aerodynamic properties that are changed are not only limited to the buoyancy of the blade, but can also deal with the blade's resistance and pitch torque.

Vingens opdrift kan således både forøges og formindskes, 30 for eksempel ved benyttelse af en flap, der normalt vil forøge opdriften, når den udfældes.Thus, the buoyancy of the blade can be both increased and decreased, for example by using a flap which will normally increase buoyancy when it is precipitated.

Hvad angår opdriftsændringens orientering i forhold til omdrejningsretningen og/eller ud af rotorplanet (hvor opdrif-35 ten ikke er den eneste aerodynamiske egenskab, der er relevant), er det ikke givet, at bestemte accelerationer med 4 DK 172932 B1 fordel skal give bestemte opdriftsændringer.As to the orientation of the buoyancy change with respect to the direction of rotation and / or out of the rotor plane (where the buoyancy is not the only aerodynamic characteristic relevant), it is not certain that certain accelerations with 4 DK 172932 B1 advantage should give certain buoyancy changes .

Indretningen ifølge opfindelsen er ved en første udførelsesform særegen ved, at indretningen er en masse, som via 5 et stangsystem er svingbart lejret om en akse, der strækker sig i vingens længderetning, så massen ved svingning i retning på tværs af rotorplanet og gennem stangsystemet bevæger en flap til mindre opdrift på vingen.In a first embodiment, the device according to the invention is peculiar in that the device is a mass which is pivotally mounted via a rod system about an axis extending longitudinally of the blade, so that the mass travels in a direction transverse to the rotor plane and through the rod system. a flap for less buoyancy on the wing.

10 De uselvstændige krav omhandler fordelagtige udførelsesformer for indretningen ifølge opfindelsen.The dependent claims relate to advantageous embodiments of the device according to the invention.

Opfindelsen skal forklares nærmere i det følgende under henvisning til tegningen, hvor: 15The invention will be explained in more detail below with reference to the drawings, in which:

Fig. 1 viser et diagram over de dynamiske belastninger af en vindmøllevinge, fig. 2a-g viser en række eksempler på kendte fremgangsmå- 20 der til forøgelse af opdriften på en vinge, fig. 3a-c viser en række eksempler på kendte fremgangsmåder til reduktion af opdriften på en vinge, 25 fig. 4 viser en udførelsesform for en indretning ifølge opfindelsen, hvor den flapvise acceleration af en ophængt masse ændrer en vinges opdrift med en flap, 30 fig. 5 viser en udførelsesform for en indretning ifølge opfindelsen, hvor den kantvise acceleration af en ophængt masse ændrer en vinges opdrift med en tur-bulator, 35 fig. 6 viser en udførelsesform for en indretning ifølge opfindelsen, hvor accelerationen af en ophængt 5 DK 172932 B1 masse ændrer en vinges opdrift via et viskøst medium, fig. 7 viser en udførelsesform for en indretning ifølge 5 opfindelsen, hvor den accelerende masse selv er et viskøst medium, der kan fylde eller drænere en oppustelig flap på en vinge, fig. 8 viser en udførelsesform for en indretning ifølge 10 opfindelsen, hvor den accelerende masse er forbun det til en hydraulisk ventil, som styrer hele vindmøllevingens indstillingsvinkel, og fig. 9 viser et diagram over, hvordan de dynamiske be-15 lastninger på en vindmøllevinge kan reduceres med en indretning ifølge opfindelsen.FIG. 1 is a diagram showing the dynamic loads of a wind turbine blade; FIG. Figures 2a-g show a number of examples of known methods for increasing the buoyancy of a blade; Figures 3a-c show a number of examples of known methods for reducing the buoyancy of a blade; 4 shows an embodiment of a device according to the invention, in which the flapwise acceleration of a suspended mass changes the buoyancy of a blade with a flap; 5 shows an embodiment of a device according to the invention, where the angular acceleration of a suspended mass changes the buoyancy of a blade with a turbulator; 6 shows an embodiment of a device according to the invention in which the acceleration of a suspended mass changes the buoyancy of a blade via a viscous medium; 7 shows an embodiment of a device according to the invention, wherein the accelerating mass itself is a viscous medium capable of filling or draining an inflatable flap on a wing; 8 shows an embodiment of a device according to the invention, where the accelerating mass is connected to a hydraulic valve which controls the entire angle of the wind turbine blade; and FIG. 9 shows a diagram of how the dynamic loads on a wind turbine blade can be reduced with a device according to the invention.

I fig. 1 ses et diagram, som viser de dynamiske belastninger på en vindmøllevinge. Diagrammet er resultatet af en 20 computer-simulering, der er udtrykt som bøjningsmomentet i vingeroden vist over tiden. En langsom svingning 1, der skyldes vindprofilets variation med højden over jorden under en omdrejning af rotoren er overlejret med en hurtigere svingning 2, der skyldes tilfældig excitation af strukturen 25 fra turbulens.In FIG. 1 is a diagram showing the dynamic loads on a wind turbine blade. The diagram is the result of a 20 computer simulation, expressed as the bending moment in the wing root shown over time. A slow oscillation 1 due to the variation of the wind profile with the height above the ground during a rotation of the rotor is superimposed with a faster oscillation 2 due to random excitation of the structure 25 from turbulence.

I fig. 2a-g ses eksempler på kendte fremgangsmåder til at ændre en vindmøllevinges aerodynamiske egenskaber, såsom en forøgelse af vingens opdrift. De viste fremgangsmåder om-30 fatter forskellige udførelsesformer: Plain flap or aileron 2a, split flap 2b, external airfoil flap 2c, slotted flap 2d, double slotted flap 2e, leading edge slat 2f og vortex generators 2g.In FIG. Figures 2a-g show examples of known methods for changing the aerodynamic properties of a wind turbine blade, such as an increase in the buoyancy of the blade. The methods shown include various embodiments: Plain flap or aileron 2a, split flap 2b, external airfoil flap 2c, slotted flap 2d, double slotted flap 2e, leading edge slat 2f and vortex generators 2g.

35 I fig. 3a-c ses eksempler på kendte fremgangsmåder til at ændre en vindmøllevinges aerodynamiske egenskaber, såsom en 6 DK 172932 B1 reduktion af vingens opdrift. De viste fremgangsmåder omfatter turbo-tape 10, stall-liste 11 og ventilation 12.35 In FIG. Figures 3a-c show examples of known methods for changing the aerodynamic properties of a wind turbine blade, such as a reduction of the buoyancy of the blade. The methods shown include turbo tape 10, stall list 11 and ventilation 12.

De anførte aerodynamiske egenskaber, der ændres, er ikke 5 kun begrænset til vingens opdrift, men kan også omhandle vingens modstand og pitchmoment. En mulighed er således en ren spoilervirkning, som kun vedrører modstanden.The aerodynamic properties listed that are changed are not only limited to the buoyancy of the blade, but can also deal with the blade's resistance and pitch torque. One possibility is thus a purely spoiler effect which relates only to the resistance.

Vingens opdrift kan således både forøges og formindskes, 10 for eksempel ved benyttelse af en flap, der normalt vil forøge opdriften, når den udfældes.Thus, the buoyancy of the blade can be both increased and decreased, 10 for example by using a flap which will normally increase buoyancy when it is precipitated.

Hvad angår opdriftsændringens orientering i forhold til omdrejningsretningen og/eller ud af rotorplanet (hvor opdrif-15 ten ikke er den eneste aerodynamiske egenskab, der er relevant), er det ikke givet, at bestemte accelerationer med fordel skal give bestemte opdriftsændringer. Der kan godt forekomme situationer, hvor sammenhængen er anderledes end den, der umiddelbart forventes. Disse mere uventede sammen-20 hænge klarlægges først effektivt ved en aero-elastisk beregning .As to the orientation of the buoyancy change with respect to the direction of rotation and / or out of the rotor plane (where the buoyancy is not the only aerodynamic property relevant), it is not certain that certain accelerations should advantageously give certain buoyancy changes. There may well be situations where the context is different from what is immediately expected. These more unexpected interconnections are first clarified effectively by an aero-elastic calculation.

I fig. 4 ses en udførelsesform for en indretning ifølge opfindelsen. En masse 13 er ophængt svingbart om et punkt 25 14a, så massen kan bevæges i flapvis retning (det vil sige på tværs af korden). Ved et stangsystem 14 er massen 13 forbundet til en flap 15. Hvis vingen accelereres væk fra vinden 16, hvilket den vil gøre, når et pludseligt vindstød øger de aerodynamiske belastninger, bevæger massen 13 sig 30 mod vingens trykside 17 og fører dermed flappen 15 i en retning mod mindre opdrift, hvorved belastningerne på vingen reduceres.In FIG. 4 shows an embodiment of a device according to the invention. A mass 13 is pivotally suspended about a point 25 14a so that the mass can be moved in a flapwise direction (i.e., across the chord). By a rod system 14, the mass 13 is connected to a flap 15. If the wing is accelerated away from the wind 16, which it will do when a sudden gust of wind increases the aerodynamic loads, the mass 13 moves toward the pressure side 17 of the wing, thus leading the flap 15 in a direction towards less buoyancy, thereby reducing the loads on the wing.

I fig. 5 ses en anden udførelsesform for en indretning 35 ifølge opfindelsen, hvor en masse 18 er ophængt svingbart om et punkt 19a, så massen er bevægelig i kantvis retningIn FIG. 5, another embodiment of a device 35 according to the invention is shown in which a mass 18 is pivotally suspended about a point 19a so that the mass is movable in an angular direction.

1 J1 J

> 7 DK 172932 B1 (det vil sige på langs af korden). Ved et stangsystem 19 er massen 18 forbundet til en turbulator 20. Hvis vingen accelereres fremad i omdrejningsretningen 21 f hvilket den vil gøre under kantvise stall-svingninger, når opdriften varie-5 rer ustabilt på grund af vingens egenbevægelse, bevæger massen 18 sig mod vingens bagkant 22 og hæver dermed turbu-latoren 20 op over vingens overflade 23, hvorved opdriften atter reduceres, og den ustabile tilstand ophører.> 7 DK 172932 B1 (that is, along the cord). In a rod system 19, the mass 18 is connected to a turbulator 20. If the blade is accelerated forwardly in the direction of rotation 21 f which it will do during angular stall oscillations when the buoyancy varies unstably due to the blade's self-motion, the mass 18 moves toward the blade's trailing edge 22, thereby raising the turbulator 20 over the surface 23 of the blade, thereby reducing buoyancy again and stopping the unstable state.

10 I fig. 6 ses en tredie udførelsesform for en indretning ifølge opfindelsen, hvor en masse 24 er anbragt i en cylinder 25 og er centreret af to fjedre 26. Cylinderen 25 er fyldt med et viskøst medium 27 og er ved et rørsystem 28 forbundet med en cylinder 29, der kan aktivere en opdrifts-15 ændrende indretning 30. Massen 24 er udformet som et stempel i cylinderen 25 og er indrettet til at lade det viskøse medium passere forbi sig og/eller gennem sig fra den ene ende til den anden, idet massen 24 for eksempel har mindre diameter end lysningen i cylinderen 25 eller har på figuren 20 ikke viste langsgående boringer. Ved passende afstemning af drænagen i pasningen mellem massen 24 og cylinderen 25 eller dimensionering af boringerne samt eventuel yderligere drænage 31 kan en ønsket dæmpning opnås. Fordelen ved den udførelsesform er, at den opdriftsændrende indretning 30 25 ved stationære forhold vil være ubelastet fra svingningsdæmperen og kan stille sig i en stilling, der er resultatet af de aerodynamiske reaktionskræfter.10 In FIG. 6 shows a third embodiment of a device according to the invention, in which a mass 24 is arranged in a cylinder 25 and is centered by two springs 26. The cylinder 25 is filled with a viscous medium 27 and is connected to a cylinder 29 by a pipe system 28, which can activate a buoyancy-changing device 30. The mass 24 is designed as a piston in the cylinder 25 and is adapted to pass the viscous medium past and / or through it from one end to the other, the mass 24 for example is smaller in diameter than the groove in the cylinder 25 or has longitudinal bores not shown in the figure 20. By appropriately matching the drainage in the fit between the mass 24 and the cylinder 25 or sizing the bores as well as any additional drainage 31, a desired damping can be obtained. The advantage of this embodiment is that in stationary conditions the buoyancy-changing device 30 25 will be unloaded from the oscillator and can position itself in a position resulting from the aerodynamic reaction forces.

I fig. 7 ses en fjerde udførelsesform for en indretning 30 ifølge opfindelsen, hvor en masse består af en viskøs væske 32, der hovedsageligt er anbragt i en beholder 33 og ved et rørsystem 34 er forbundet med en opdriftsdæmpende indretning 35, der her har form som en oppustelig flap 36. En fleksibel rørvæg 37 tillader den nødvendige volumenændring.In FIG. 7 shows a fourth embodiment of a device 30 according to the invention, in which a mass consists of a viscous liquid 32 which is arranged mainly in a container 33 and is connected by a pipe system 34 to a buoyancy damping device 35, which here has the form of an inflatable flap 36. A flexible pipe wall 37 allows the necessary volume change.

35 I fig. 8 ses endnu en udførelsesform for en indretning ( * 8 DK 172932 B1 ifølge opfindelsen. Her er en masse 38 ved hjælp af et stangsystem forbundet til en hydraulisk ventil 39, som indgår i et hydraulisk system, der er antydet med litra P.35 In FIG. 8 shows another embodiment of a device (* 8 DK 172932 B1 according to the invention. Here, a mass 38 is connected by means of a rod system to a hydraulic valve 39 which is part of a hydraulic system indicated by point P.

Ventilen 39 styrer det hydrauliske medium til en cylinder 5 40, der på sin side regulerer indstillingsvinklen for hele vingen.The valve 39 directs the hydraulic medium to a cylinder 40 which in turn regulates the angle of adjustment of the entire blade.

I fig. 9 ses et diagram, som viser de dynamiske belastninger på en vindmøllevinge, når en indretning ifølge opfin-10 delsen, som er vist i fig. 4, er implementeret. Det ses tydeligt, at de hurtige belastninger fra den tilfældige excitation (sammenlign med svingning 2 i fig. 1), er reduceret.In FIG. 9 is a diagram showing the dynamic loads on a wind turbine blade when a device according to the invention shown in FIG. 4, is implemented. It is clearly seen that the rapid loads from the random excitation (compare with oscillation 2 in Fig. 1) are reduced.

Den langsomme svingning, der skyldes vindprofilets variation med højden over jorden under en omdrejning af rotoren 15 (sammenlign med svingning 1 på fig. 1), er ikke nævneværdigt reduceret, men er også af mindre betydning for møllens levetid.The slow oscillation due to the variation of the wind profile with the height above the ground during rotation of the rotor 15 (compare with oscillation 1 in Fig. 1) is not appreciably reduced, but is also of minor importance for the mill's service life.

Claims (7)

1. Fremgangsmåde til reduktion af svingninger i en vindmøllevinge, kendetegnet ved, at vingens aerodyna- 5 miske egenskaber ændres som funktion af en forskydbar indretnings (13, 18, 26, 32, 38) acceleration og/eller hastighed i omdrejningsretningen og/eller ud af rotorplanet.A method for reducing vibrations in a wind turbine blade, characterized in that the aerodynamic properties of the blade change as a function of a displaceable device (13, 18, 26, 32, 38) of acceleration and / or speed in the direction of rotation and / or out. of the rotor plane. 2. Indretning til brug ved udøvelse af den i krav 1 omhand-10 lede fremgangsmåde til reduktion af svingninger i en vindmøllevinge, kendetegnet ved, at indretningen er en masse (13), som via et stangsystem (14) er svingbart lejret om en akse (14a), der strækker sig i vingens længderetning, så massen (13) ved svingning i retning på tværs af 15 rotorplanet gennem stangsystemet (14) bevæger en flap (15) til mindre opdrift på vingen.Apparatus for use in the practice of the method according to claim 1 for reducing vibrations in a wind turbine blade, characterized in that the device is a mass (13) which is pivotally mounted about an axis via a rod system (14). (14a) extending in the longitudinal direction of the blade so that the mass (13), when pivoting in a direction across the rotor plane through the rod system (14), moves a flap (15) for less buoyancy on the wing. 3. Indretning ifølge krav 2, kendetegnet ved, at indretningen er en masse (38), som via et stangsystem (41) 20 er svingbart lejret om en akse (41a), der strækker sig i vingens længderetning, så massen (38) ved svingning i retning på tværs af rotorplanet gennem stangsystemet (41) påvirker en hydraulisk ventil (39), der styrer et hydraulisk medium til respektive ender af en cylinder (40), som er 25 indrettet til at ændre vingens indstillingsvinkel.Device according to claim 2, characterized in that the device is a mass (38) which is pivotally mounted via a rod system (41) 20 about an axis (41a) extending longitudinally of the blade, so that the mass (38) at oscillation across the rotor plane through the rod system (41) affects a hydraulic valve (39) which controls a hydraulic medium at respective ends of a cylinder (40) adapted to change the blade setting angle. 4. Indretning ifølge krav 2, kendetegnet ved, at indretningen er en masse (18), som via et stangsystem (19) er svingbart lejret om en akse (19a), der strækker sig i 30 vingens længderetning, så massen (18) ved svingning i rotorens omdrejningsretning gennem stangsystemet (19) bevæger en opdriftsændrende indretning i form af en turbulator (20).Device according to claim 2, characterized in that the device is a mass (18) which is pivotally mounted via a rod system (19) about an axis (19a) extending longitudinally of the blade, so that the mass (18) at pivoting in the direction of rotation of the rotor through the rod system (19) moves a buoyancy-changing device in the form of a turbulator (20). 5. Indretning ifølge krav 2, kendetegnet ved, at indretningen er en viskøs væske (32), som er anbragt i en DK 172932 B1 cylinder (33), der strækker sig vinkelret på vingens længderetning og hvis i rotorens omdrejningsretning forreste ende har en elastisk eftergivelig væg (37), og hvis bageste ende med en rørledning (34) er sluttet til en opdriftsæn-5 drende indretning (35) i form af en med den viskøse væske (32) oppustelig flap (35).Device according to claim 2, characterized in that the device is a viscous liquid (32) arranged in a cylinder (33) which extends perpendicularly to the longitudinal direction of the vane and which has an elastic front end in the direction of rotation of the rotor. resilient wall (37) and the rear end of which is connected to a pipeline (34) to a buoyancy-reducing device (35) in the form of a flap (35) inflatable with the viscous liquid (32). 6. Indretning ifølge krav 2, kendetegnet ved, at indretningen er en masse (24), der som et stempel er f or-10 skydeligt anbragt i en første cylinder (25) og i en af accelerationer upåvirket stilling er centreret i cylinderen (25) ved hjælp af ved hver ende af massen (24) anbragte fjedre (26), at cylinderen (25) indeholder et viskøst medium og via ved hver ende placerede rørledninger (28) er 15 sluttet til enderne af en anden cylinder (29) med stempel (29a) og stempelstang (29b), hvis udragende ende er forbundet med en opdriftsændrende indretning (30), såsom en flap eller en turbulator.Device according to claim 2, characterized in that the device is a mass (24) which, as a piston, is slidably disposed in a first cylinder (25) and in an unaffected position is centered in the cylinder (25). ) by means of springs (26) arranged at each end of the mass (24) that the cylinder (25) contains a viscous medium and via pipelines (28) located at each end 15 are connected to the ends of another cylinder (29) with piston (29a) and piston rod (29b), the protruding end of which is connected to a buoyancy-changing device (30), such as a flap or a turbulator. 7. Indretning ifølge krav 6, kendetegnet ved, at massen (24) har mindre tværsnitsareal end tværsnitsarealet af den første cylinder (25), og at den første cylinders (25) to ender er forbundet med en rørledning (31a), hvori en justerbar drøvleventil (31) er indsat.Device according to claim 6, characterized in that the mass (24) has less cross-sectional area than the cross-sectional area of the first cylinder (25) and that the two ends of the first cylinder (25) are connected to a pipeline (31a) in which an adjustable throttle valve (31) is inserted.
DK199500742A 1995-06-27 1995-06-27 Method and device for reducing vibrations in a wind turbine blade. DK172932B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DK199500742A DK172932B1 (en) 1995-06-27 1995-06-27 Method and device for reducing vibrations in a wind turbine blade.
AU62987/96A AU6298796A (en) 1995-06-27 1996-06-26 Method and device for reduction of vibrations in a windmill blade
PCT/DK1996/000283 WO1997001709A1 (en) 1995-06-27 1996-06-26 Method and device for reduction of vibrations in a windmill blade
EP96921911A EP0835380A1 (en) 1995-06-27 1996-06-26 Method and device for reduction of vibrations in a windmill blade

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DK74295 1995-06-27
DK199500742A DK172932B1 (en) 1995-06-27 1995-06-27 Method and device for reducing vibrations in a wind turbine blade.

Publications (2)

Publication Number Publication Date
DK74295A DK74295A (en) 1996-12-28
DK172932B1 true DK172932B1 (en) 1999-10-11

Family

ID=8097017

Family Applications (1)

Application Number Title Priority Date Filing Date
DK199500742A DK172932B1 (en) 1995-06-27 1995-06-27 Method and device for reducing vibrations in a wind turbine blade.

Country Status (4)

Country Link
EP (1) EP0835380A1 (en)
AU (1) AU6298796A (en)
DK (1) DK172932B1 (en)
WO (1) WO1997001709A1 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29720741U1 (en) * 1997-11-22 1998-05-28 Aerodyn Eng Gmbh Device for detecting vibrations of the rotor blades of a wind turbine
DE19815519A1 (en) 1998-03-31 1999-10-07 Tacke Windenergie Gmbh Rotor blade for a wind turbine
DE29807874U1 (en) * 1998-05-04 1999-09-30 Husumer Schiffswerft Inh Gebru Rotor blade set for wind power plant for electricity generation
DK174404B1 (en) 1998-05-29 2003-02-17 Neg Micon As Wind turbine with vibration damper
WO2002077449A1 (en) * 1999-11-11 2002-10-03 Hitachi Zosen Corporation Propeller type windmill for power generation
DK200300670A (en) 2003-05-05 2004-11-06 Lm Glasfiber As Wind turbine with buoyancy regulating organs
US7637721B2 (en) * 2005-07-29 2009-12-29 General Electric Company Methods and apparatus for producing wind energy with reduced wind turbine noise
DE102006022266A1 (en) * 2005-11-04 2007-05-10 Daubner & Stommel GbR Bau-Werk-Planung (vertretungsberechtigter Gesellschafter: Matthias Stommel, 27777 Ganderkesee) Wind turbine
WO2007089136A2 (en) * 2006-02-03 2007-08-09 Pantheon Bv Wind turbine tower vibration damping
ES2379159T3 (en) 2006-06-09 2012-04-23 Vestas Wind Systems A/S A wind turbine blade and a step-controlled wind turbine
WO2008040347A1 (en) * 2006-10-02 2008-04-10 Vestas Wind Systems A/S A wind turbine, a method for damping edgewise oscillations in one or more blades of a wind turbine by changing the blade pitch and use hereof
ES2324002B1 (en) * 2007-06-22 2010-05-13 GAMESA INNOVATION & TECHNOLOGY, S.L. AIRLINER SHOVEL WITH DEFLECTABLE ALERONS.
WO2010023286A2 (en) * 2008-08-29 2010-03-04 Vestas Wind Systems A/S Wind turbine blade with device for modifying the blade aerodynamic surface
DE102008061838A1 (en) * 2008-12-15 2010-06-17 Repower Systems Ag Rotor blade of a wind turbine with a turbulator
WO2011147422A2 (en) * 2010-05-27 2011-12-01 Vestas Wind Systems A/S Method and apparatus for reducing fluid flow induced forces produced by vortex shedding on a wind turbine rotor blade
US8251657B2 (en) * 2011-01-06 2012-08-28 Siemens Aktiengesellschaft Load mitigation device for wind turbine blades
DE202012005356U1 (en) 2012-05-30 2012-07-10 Petra Staude Rotor blade for wind turbines with profiles in tandem arrangement
DE102012216804B4 (en) * 2012-09-19 2015-06-03 Senvion Se Damping system and rotor blade
EP2851557A1 (en) * 2013-09-24 2015-03-25 LM WP Patent Holding A/S A wind turbine blade with root end aerodynamic flaps
CN105134482B (en) * 2015-07-22 2018-03-06 扬州大学 Large-scale intelligent fan blade System Grey color compositional modeling and the method for optimization vibration control
CN112196727A (en) * 2020-10-28 2021-01-08 山东科技大学 Stall nonlinear flutter suppression type wind turbine blade and flutter suppression system
EP4310318A1 (en) * 2022-07-21 2024-01-24 Siemens Gamesa Renewable Energy A/S Wind turbine rotor blade

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK160632C (en) * 1988-12-23 1991-09-02 Helge Petersen AERODYNAMIC BRAKE ON A WINDOWS FOR A WINDOW

Also Published As

Publication number Publication date
WO1997001709A1 (en) 1997-01-16
EP0835380A1 (en) 1998-04-15
AU6298796A (en) 1997-01-30
DK74295A (en) 1996-12-28

Similar Documents

Publication Publication Date Title
DK172932B1 (en) Method and device for reducing vibrations in a wind turbine blade.
Fuglsang et al. Development of the Risø wind turbine airfoils
CN106884760B (en) A kind of wind power generating set emergency feathering control method
Pawsey Development and evaluation of passive variable-pitch vertical axis wind turbines
CA2516477C (en) Method of controlling aerodynamic load of a wind turbine based on local blade flow measurement
EP1214521B1 (en) Modified wind turbine airfoil
Rasmussen et al. Present status of aeroelasticity of wind turbines
EP2633189B1 (en) A method of controlling a wind turbine
EP3469213B1 (en) Damping of edgewise wind turbine blade vibrations
CN101806277A (en) Aerodynamic device for detection of wind turbine blade operation
WO2013087468A1 (en) A wind turbine blade control method
Zhang et al. Parameter study of sizing and placement of deformable trailing edge flap on blade fatigue load reduction
CA2990780A1 (en) Methods for controlling wind turbine with thrust control twist compensation
EP4139569A1 (en) Rotor blade deflection control using active rotor blade add-on
CN114222905A (en) Vane performance monitor
Bergami et al. Stability investigation of an airfoil section with active flap control
CN114263564A (en) Wind turbine generator active power control method and system considering non-variable-pitch wind speed range
WO2020029324A1 (en) Wind turbine control and braking method based on individual pitch control
WO2018145715A1 (en) Method and system for controlling a wind turbine
EP3580453B1 (en) Method and system for controlling a wind turbine
Nedyalkov et al. Cavitation investigation of hydrofoils for marine hydrokinetic turbines
EP2927483A1 (en) Noise control in wind turbines
Lobitz Flutter speed predictions for MW-sized wind turbine blades
Hansen Unsteady BEM model
Gutiérrez et al. Induced stalled flow due to roughness sensitivity for thick airfoils in modern wind turbines

Legal Events

Date Code Title Description
B1 Patent granted (law 1993)
PUP Patent expired

Expiry date: 20150627