DK170551B1 - Method of casting lightweight metal objects - Google Patents

Method of casting lightweight metal objects Download PDF

Info

Publication number
DK170551B1
DK170551B1 DK240879A DK240879A DK170551B1 DK 170551 B1 DK170551 B1 DK 170551B1 DK 240879 A DK240879 A DK 240879A DK 240879 A DK240879 A DK 240879A DK 170551 B1 DK170551 B1 DK 170551B1
Authority
DK
Denmark
Prior art keywords
sand
polyol
amine
binder
polyisocyanate
Prior art date
Application number
DK240879A
Other languages
Danish (da)
Other versions
DK240879A (en
Inventor
John J Gardikes
Young D Kim
Robert J Schafer
Original Assignee
Ashland Oil Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ashland Oil Inc filed Critical Ashland Oil Inc
Publication of DK240879A publication Critical patent/DK240879A/en
Application granted granted Critical
Publication of DK170551B1 publication Critical patent/DK170551B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/162Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents use of a gaseous treating agent for hardening the binder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/20Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents
    • B22C1/22Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins
    • B22C1/2233Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • B22C1/2273Polyurethanes; Polyisocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/18Catalysts containing secondary or tertiary amines or salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3271Hydroxyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3271Hydroxyamines
    • C08G18/3278Hydroxyamines containing at least three hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3271Hydroxyamines
    • C08G18/329Hydroxyamines containing aromatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/50Polyethers having heteroatoms other than oxygen
    • C08G18/5021Polyethers having heteroatoms other than oxygen having nitrogen
    • C08G18/5033Polyethers having heteroatoms other than oxygen having nitrogen containing carbocyclic groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Mold Materials And Core Materials (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Ceramic Products (AREA)

Description

DK 170551 B1DK 170551 B1

Den foreliggende opfindelse angår en fremgangsmåde til støbning af letvægtsmetalgenstande hvilke metalgenstande formes under anvendelse af ikke-varmehærdede urethan-binde-middelholdige støbegenstande, hvilke støbegenstande smuldrer 5 efter støbningen af metalgenstandene. Støbegenstandene består af et støbebindemiddel af en blanding af polyoler indeholdende aminbaserede polyoler, polyisocyater og et støbe-aggregat, hvilken blanding er hærdet under indvirkning af en urethankatalysator. De til støbningen af letvægtsmetal-10 genstande benyttede støbegenstande, udviser overlegen smuldreevne og udrystelighed.The present invention relates to a method for casting lightweight metal articles which are formed using non-heat cured urethane binder containing moldings which crumble after casting the metal articles. The moldings consist of a molding binder of a mixture of polyols containing amine-based polyols, polyisocyates and a casting aggregate which is cured under the action of a urethane catalyst. The castings used for the casting of lightweight metal objects exhibit superior crumbability and erosion.

Der kendes urethan-cold-box-bindemidler til anvendelse til binding af aggregater, der er nyttige som støbekerner og forme. I USA-patentskrift nr. 3.409.579 beskrives et eksempel 15 på en sådan cold-box-bindemiddel-komposition og anvendelsen deraf til fremstilling af kerner og forme til støbeformål.Urethane cold-box binders are known for use in bonding aggregates useful as cast cores and molds. U.S. Patent No. 3,409,579 describes Example 15 of such a cold-box binder composition and its use in the manufacture of cores and molds for molding purposes.

I USA-patentskrift nr. 3.645.942 er angivet en metode til fremstilling af ikke-varmehærdende urethanbindemiddelholdige støbegenstande. Disse støbegenstande dannes ved blanding af 20 en polyisocyanat-præpolymerbestanddel, af en ikke-tørrende ricinusolie og et aromatisk polyisocyanat, og en aminpolyol-bestanddel med sand, under samtidig indvirkning af en katalysator. I USA-patentskrift nr. 3.645.942 bliver imidlertid ikke nævnt de specielle problemer, som opstår i forbindelse 25 med støbning af letvægtsmetalgenstande.U.S. Patent No. 3,645,942 discloses a method of making non-heat-curing urethane binder-containing moldings. These moldings are formed by mixing a polyisocyanate prepolymer component, a non-drying castor oil and an aromatic polyisocyanate, and an amine polyol component with sand, under the same action of a catalyst. However, United States Patent No. 3,645,942 does not mention the particular problems that arise in connection with the casting of lightweight metal objects.

Endvidere kendes ikke-varmehærdende urethanbindemidler til anvendelse til binding af aggregater, der er nyttige som støbekerner og forme. I USA-patentskrift nr. 3.676.392 beskrives et eksempel på en sådan ikke-varmehærdende binde-30 middelkomposition og anvendelsen deraf til fremstilling af kerner og forme til støbeformål.Furthermore, non-thermosetting urethane binders are known for use in bonding aggregates useful as mold cores and molds. U.S. Patent No. 3,676,392 describes an example of such a non-thermosetting binder composition and its use in the manufacture of cores and molds for molding purposes.

Der har i lang tid inden for støberiindustrien været et ønske om et ikke-varmehærdende og cold-boxbindemiddel til fremstilling af forme til lette metaller såsom aluminium og DK 170551 B1 2 magnesium. De hidtil kendte ikke-varmehærdende og cold-box-bindemidler er ikke i stand til at give kerner og forme til støbning af disse letvægtsmetaller med de krævede kerne-og formeegenskaber samt en god udrystelighed. Når der an-5 vendes tilstrækkeligt bindemiddel til at opnå en anvendelig styrke og slidbestandighed, nedbrydes kernerne og formene ikke tilfredsstillende ved letmetallernes støbetemperaturer. *For a long time in the foundry industry, there has been a desire for a non-curing and cold-box binder for the production of molds for light metals such as aluminum and DK 170551 B1 2 magnesium. The previously known non-thermosetting and cold-box binders are not capable of providing cores and molds for casting these lightweight metals with the required core and mold properties as well as good extensibility. When sufficient binder is used to obtain a usable strength and abrasion resistance, the cores and molds do not degrade satisfactorily at the casting temperatures of the light metals. *

Dvs. de udviser dårlig udrystelighed. Det har været et stadigt problem at finde et bindemiddel, som på den ene side 10 giver stærke, ikke-sprøde kerner og forme og på den anden side nedbrydes godt ved aluminiums og magnesiums støbetemperatur til frembringelse af let udrystelighed.Ie they exhibit poor extravagance. It has been an ongoing problem to find a binder which, on the one hand, provides strong, non-brittle cores and molds and, on the other hand, is well degraded by the casting temperature of aluminum and magnesium to produce easy extrusions.

Ved den foreliggende opfindelse tilvejebringes således en fremgangsmåde, hvor ikke-varmehærdende urethan- og cold-box-15 bindemidler anvendes. De anvendes til fremstilling af kerner og forme, som har styrke og ikke-sprødhed, men som stadigvæk nedbrydes godt ved lave støbetemperaturer, dvs. under jernmetallers støbetemperaturer. Kernerne og formene udviser kombinationen af styrke og let udrystelighed ved støbetem-20 peraturerne for letvægtsmetaller såsom aluminium og magnesium. Opfindelsen er ejendommelig ved det i krav l's kendetegnende del angivne.Thus, the present invention provides a method in which non-thermosetting urethane and cold-box binders are used. They are used in the manufacture of cores and molds which have strength and non-brittleness, but which are still well degraded at low molding temperatures, ie. below cast metal temperatures. The cores and molds exhibit the combination of strength and light agility at the molding temperatures of lightweight metals such as aluminum and magnesium. The invention is characterized by the characterizing part of claim 1.

Den foreliggende opfindelse bygger delvis på aminpolyolers autokatalytiske natur.The present invention is based in part on the autocatalytic nature of amine polyols.

25 Det har vist sig, at der kan anvendes et urethanbindemiddel dannet som reaktionsprodukt af et polyisocyanat og en amin-baseret polyol til fremstilling af kerner og forme. Bindemidlet kan hurtigt hærdes under anvendelse af en gasformig tertiær aminkatalysator. Det har vist sig, at en polyol, der 30 er reaktionsprodukt af en aminforbindelse og et alkylenoxid, kan anvendes sammen med et polymert isocyanat til fremstilling af et ikke-varmehærdende eller et cold-box-bindemiddel, * der, efter blanding med sand eller et andet egnet støbeaggregat og hærdning, danner kerner og forme, som besidder frem-35 ragende arbejdsegenskaber, dvs. styrke, slidresistens og DK 170551 B1 3 ikke-sprødhed. Disse egenskaber forenes med fremragende udrystningsegenskaber, når de udnyttes ved støbning af ikke-jernmetaller. Denne kombination af gode arbejdsegen-skaber og fremragende udrystelighed er især signifikant og 5 unik, når bindemidlet anvendes til fremstilling af kerner, der skal anvendes ved lavtemperaturstøbning. Der anvendes en katalysator til hærdning af bestanddelene i bindemiddel-systemet. Egnede katalysatorer til cold-box-bindemidlet er gasformige tertiære aminer eller aminer, der kan indføres som 10 en gas. Trimethylamin, dimethylethylamin og trimethylamin er foretrukne katalysatorer.It has been found that a urethane binder formed as a reaction product of a polyisocyanate and an amine-based polyol can be used to prepare cores and molds. The binder can be rapidly cured using a gaseous tertiary amine catalyst. It has been found that a polyol which is the reaction product of an amine compound and an alkylene oxide can be used with a polymeric isocyanate to prepare a non-curing or cold-box binder which, after mixing with sand or another suitable casting assembly and curing, forming cores and molds which have excellent working properties, ie. strength, abrasion resistance and DK 170551 B1 3 non-brittleness. These properties combine with excellent shaking properties when utilized by casting non-ferrous metals. This combination of good working properties and excellent extensibility is especially significant and unique when the binder is used to prepare cores to be used in low temperature casting. A catalyst is used to cure the components of the binder system. Suitable catalysts for the cold-box binder are gaseous tertiary amines or amines which can be introduced as a gas. Trimethylamine, dimethylethylamine and trimethylamine are preferred catalysts.

Harpikskompositionerne finder anvendelse som to-komponent-komposition eller -system. Komponent ét er aminpolyolen. Komponent to er polyisocyanatet. Begge komponenter er i 15 flydende form og er generelt opløsninger med organiske opløsningsmidler. Ved anvendelsestidspunktet, dvs. når urethan-bindemidlet dannes, forenes aminpolyolkomponenten og poly-isocyanatkomponenten og anvendes til den tilsigtede anvendelse. Til støberianvendelse, dvs. anvendelse af kompositionerne 20 som bindemiddel for kerner og forme, foretrækkes det først at blande en komponent med et støbeaggregat såsom sand. Derefter tilsættes den anden komponent, og efter opnåelse af en ensartet fordeling af bindemidlet på aggregatet formes den resulterende støbeblanding i den ønskede form. Det formede 25 produkt kan straks sættes til side og vil hærdes til dannelse af en kerne eller form ved stuetemperatur. Kompositionerne er generelt autokatalytiske i en vis grad. Det vil sige, at når aminpolyolen og isocyanatet forenes, er reaktiviteten af polyolen med isocyanatet sådan, at reaktionen skrider hurtigt 30 frem. Reaktivitetsgraden af aminpolyolen og polyisocyanatet afhænger af polyolens reaktivitet. Det formede produkt kan også hærdes til dannelse af en kerne eller form ved at blive bragt i kontakt med en gasformig katalysator.The resin compositions find use as a two-component composition or system. Component one is the amine polyol. Component two is the polyisocyanate. Both components are in liquid form and are generally organic solvent solutions. At the time of use, ie. when the urethane binder is formed, the amine polyol component and the polyisocyanate component are combined and used for the intended use. For foundry use, ie When using the compositions 20 as a binder for cores and molds, it is first preferred to mix a component with a casting assembly such as sand. Then, the second component is added and after obtaining a uniform distribution of the binder on the assembly, the resulting molding mixture is formed into the desired shape. The molded product can be set aside immediately and will cure to form a core or mold at room temperature. The compositions are generally autocatalytic to some extent. That is, when the amine polyol and the isocyanate are combined, the reactivity of the polyol with the isocyanate is such that the reaction proceeds rapidly. The reactivity of the amine polyol and the polyisocyanate depends on the reactivity of the polyol. The molded product may also be cured to form a core or mold by contacting a gaseous catalyst.

Til trods for at kompositionerne er autokatalytiske, anvendes 35 inden for urethanteknologien kendte flydende aminkatalysa-torer og metalliske katalysatorer i den ikke-varmehærdende DK 170551 B1 4 udgave. Ved udvælgelse af en hensigtsmæssig katalysator kan kernefremstillingsprocessens betingelser, f.eks. arbejdstid og striptid, indstilles som ønsket.Although the compositions are autocatalytic, 35 known liquid amine catalysts and metallic catalysts are used in the non-heat curing DK 170551 B1 4 in the urethane technology. In selecting an appropriate catalyst, the conditions of the nucleation process, e.g. working time and stripping time, set as desired.

Der kan også anvendes inden for cold-box-teknologien kendte 5 gasformige aminkatalysatorer. Det faktiske hærdningstrin kan udføres ved at suspendere en tertiær amin i en inert gasstrøm og at lede gasstrømmen, der indeholder den tertiære amin, gennem formen under et tilstrækkeligt tryk til at gennemtrænge den støbte form, indtil harpiksen er hærdet. Bindemid-10 delkompositionerne kræver usædvanlig korte hærdningstider til opnåelse af acceptable trækstyrker, hvilket er en egenskab af særdeles stor kommerciel betydning. Optimale hærdningstider bestemmes let eksperimentelt. Da blot katalytiske koncentrationer af den tertiære amin er nødvendige til at bevirke 15 hærdningen, er en særdeles fortyndet strøm generelt tilstrækkelig til at opnå hærdningen. Koncentrationer af den tertiære amin på over det, der er nødvendigt til at bevirke hærdningen, er imidlertid ikke skadelige for det resulterende hærdede produkt. Der kan anvendes inerte gasstrømme, f.eks.Also known in the art of cold-box technology are 5 gaseous amine catalysts. The actual curing step can be performed by suspending a tertiary amine in an inert gas stream and passing the gas stream containing the tertiary amine through the mold under a sufficient pressure to penetrate the molded mold until the resin is cured. The binder intermediate compositions require exceptionally short cure times to obtain acceptable tensile strengths, which is a property of very great commercial importance. Optimal curing times are easily determined experimentally. Since only catalytic concentrations of the tertiary amine are necessary to effect the cure, a highly diluted stream is generally sufficient to obtain the cure. However, concentrations of the tertiary amine above that necessary to effect the cure are not detrimental to the resulting cured product. Inert gas streams, e.g.

20 luft, carbondioxid eller nitrogen, der indeholder fra 0,01 til 20 volumenprocent tertiær amin. Normalt gasformige tertiære aminer kan ledes gennem formen som sådan eller i fortyndet form. Egnede tertiære aminer er gasformige tertiære aminer såsom trimethylamin. Normalt flydende tertiære aminer 25 såsom triethylamin er imidlertid lige så egnede i dampform, eller hvis de er suspenderet i et gasformigt medium og derpå ledes gennem formen. Selv om ammoniak, primære aminer og sekundære aminer udviser nogen aktivitet ved frembringelse af en reaktion ved stuetemperatur, er de de tertiære aminer 30 væsentligt underlegne. Funktionelt substituerede aminer såsom dimethylethanolamin falder inden for definitionen af tertiære aminer og kan anvendes som hærdningsmidler. Funktionelle grupper, som ikke indvirker på den tertiære amins virkning, er f.eks. hydroxylgrupper, alkoxygrupper, amino- og alkyl- y 35 aminogrupper, ketoxygrupper og thiogrupper.20 air, carbon dioxide or nitrogen containing from 0.01 to 20% by volume of tertiary amine. Usually gaseous tertiary amines can be passed through the mold as such or in dilute form. Suitable tertiary amines are gaseous tertiary amines such as trimethylamine. However, normally liquid tertiary amines such as triethylamine are equally suitable in vapor form or if suspended in a gaseous medium and then passed through the mold. Although ammonia, primary amines and secondary amines show some activity in producing a reaction at room temperature, they are substantially inferior to the tertiary amines. Functionally substituted amines such as dimethylethanolamine fall within the definition of tertiary amines and can be used as curing agents. Functional groups which do not affect the action of the tertiary amine are e.g. hydroxyl groups, alkoxy groups, amino and alkyl γ amino groups, ketoxy groups and thio groups.

•'i $.··?· DK 170551 B1 5• 'i $. ··? · DK 170551 B1 5

De aminpolyoler, der anvendes til dannelse af urethanbinde-middelkompositionerne, fremstilles normalt som reaktions-produkt af et alkylenoxid og en aminforbindelse. Udtrykket "aminpolyol" anvendes her til at identificere sådanne reak-5 tionsprodukter, men er ikke begrænset specifikt til sådanne syntesemetoder. Generelt betragtes en vilkårlig polyol, der indeholder mindst en eller flere tertiære amingrupper, som faldende inden for rammerne af udtrykket "aminpolyol". De alkylenoxider, der anvendes til fremstilling af aminpoly-10 olerne, er fortrinsvis ethylenoxid og propylenoxid. Det synes imidlertid muligt også at anvende andre alkylenoxider. Mængden af alkylenoxid i mol pr. mol af aminforbindelsen kan variere væsentligt. Det formodes, at alkoxyleringsgraden ikke reducerer den resulterende aminpolyols evne til at virke som 15 et bindemiddel.The amine polyols used to form the urethane binder compositions are usually prepared as the reaction product of an alkylene oxide and an amine compound. The term "amine polyol" is used herein to identify such reaction products, but is not specifically limited to such synthetic methods. Generally, any polyol containing at least one or more tertiary amine groups is considered to fall within the term "amine polyol". The alkylene oxides used to prepare the amine polyols are preferably ethylene oxide and propylene oxide. However, it appears possible to use other alkylene oxides as well. The amount of alkylene oxide in moles per moles of the amine compound can vary substantially. It is believed that the degree of alkoxylation does not reduce the ability of the resulting amine polyol to act as a binder.

Aminforbindelserne, som omsættes med alkylenoxider til dannelse af aminpolyoler, der er nyttige i de her omhandlede bindemiddelkompositioner, er f.eks. ammoniak og mono- og polyaminoforbindelser med primært og sekundært aminonitrogen.The amine compounds which are reacted with alkylene oxides to form amine polyols useful in the present binder compositions are e.g. ammonia and mono- and polyamino compounds with primary and secondary amino nitrogen.

20 Specifikke eksempler er f.eks. aliphatiske aminer såsom primære alkylaminer, ethylendiamin, diethylentriamin og triethylentetramin, cykloaliphatiske aminer, aromatiske aminer såsom o-, m- og p-phenylendiaminer eller anilinfor-maldehydharpikser. Der kan også anvendes blandinger af de 25 ovenfor anførte aminpolyoler. Endvidere er en blanding af aminpolyoler med andre polyoler, dvs. non-aminpolyoler, nyttig. Generelt formodes det, at aminholdige forbindelser, som, når de alkoxyleres, giver en polyol med to eller flere reaktive hydroxylgrupper, er nyttige til de her omhandlede 30 kompositioner.Specific examples are e.g. aliphatic amines such as primary alkyl amines, ethylenediamine, diethylenetriamine and triethylenetetramine, cycloaliphatic amines, aromatic amines such as o-, m- and p-phenylenediamines or aniline formaldehyde resins. Mixtures of the above-mentioned amine polyols may also be used. Furthermore, a mixture of amine polyols with other polyols, i. non-amine polyols, useful. In general, it is believed that amine-containing compounds which, when alkoxylated, give a polyol having two or more reactive hydroxyl groups are useful for the compositions of the present invention.

Den anvendte polyolbestanddels natur påvirker kernefremstillingsprocesbetingelserne. Ved en cold-box-proces, dvs. en proces, hvor det harpiksovertrukne sand hærdes ved gasning med en aminkatalysator, er en vigtig egenskab ved bindemidlet 35 dets "bench-life"-tid. "Bench-life"-tiden, som svarer til arbejdstiden i et ikke-varmehærdende system, er det tidsrum, DK 170551 B1 6 i hvilket det harpiksovertrukne sand kan anvendes. Efter at bindemidlet er fordelt på et aggregat, begynder bindemidlet at reagere. Efter et vist tidsrum er reaktionen forløbet i en sådan udstrækning, at det harpiksovertrukne sand ikke længere 5 kan anvendes. Sandet, der er overtrukket med bindemidlet, siges derpå at være "shot". Det tidsrum, der forløber, fra sandet er overtrukket med harpiksen, indtil sandblandingen er "shot", er kendt som "bench-life"-tiden i et cold-box-system. Det har vist sig, at anvendelsen af aromatisk initierede 10 aminpolyoler resulterer i en uventet forøgelse i "bench-life" -tiden for det harpiksovertrukne sand. Dette uventede resultat er af stor nytte og anses for at være vigtigt.The nature of the polyol constituent used influences the core manufacturing process conditions. In a cold-box process, ie. a process in which the resin-coated sand is cured by gassing with an amine catalyst is an important feature of the binder 35's "bench-life" time. The "bench-life" time, which corresponds to the working time of a non-heat curing system, is the period in which the resin-coated sand can be used. After the binder is distributed to an aggregate, the binder begins to react. After a certain period of time, the reaction has proceeded to such an extent that the resin-coated sand can no longer be used. The sand coated with the binder is then said to be "shot". The elapsed time from the sand is coated with the resin until the sand mixture is "shot" is known as the "bench-life" time in a cold-box system. It has been found that the use of aromatically initiated 10 amine polyols results in an unexpected increase in the "bench-life" time of the resin coated sand. This unexpected result is of great benefit and is considered important.

Som nævnt ovenfor har det vist sig nyttigt at blende eller blande en aminpolyol med en anden polyol, en polyhydroxyl-15 forbindelse, der er i stand til at reagere med et polyiso-cyanat. Denne nytte viser sig især i de "styrker ud af boxen", der opnås efter eksponering af bindemidlet for katalysatoren. Særlig foretrukne er de i USA-patentskrift nr. 3.485.797 beskrevne hydroxyholdige phenolharpikser, der i 20 støberiindustrien er kendt som "PEP"®-harpikser.As mentioned above, it has been found useful to blend or mix an amine polyol with another polyol, a polyhydroxyl compound capable of reacting with a polyisocyanate. This utility is particularly evident in the "strengths out of the box" obtained after exposure of the binder to the catalyst. Particularly preferred are the hydroxy-containing phenolic resins disclosed in U.S. Patent No. 3,485,797, known in the foundry industry as "PEP" ® resins.

Den anden komponent eller bestanddel af bindemiddelkomposi-tionen indeholder et aliphatisk, cykloaliphatisk eller aromatisk polyisocyanat med fortrinsvis 2-5 isocyanatgrupper.The second component or component of the binder composition contains an aliphatic, cycloaliphatic or aromatic polyisocyanate having preferably 2-5 isocyanate groups.

Der kan, om ønsket, anvendes blandinger af polyisocyanater.If desired, mixtures of polyisocyanates may be used.

25 Der kan også anvendes isocyanatpræpolymerer fremstillet ved at omsætte et overskud af polyisocyanat med en polyvalent alkohol, f.eks. en præpolymer af toluendiisocyanat og ethy-lenglycol. Egnede polyisocyanater er f.eks. aliphatiske polyisocyanater såsom hexamethylendiisocyanat, alicykliske 30 polyisocyanater såsom 4,4'-dicyklohexylmethandiisocyanater eller aromatiske polyisocyanater såsom 2,4- eller 2,6-toluendiisocyanat, diphenylmethandiisocyanat eller dimethylderi-vaterne deraf. Yderligere eksempler på egnede polyisocyanater er 1,5-naphthalendiisocyanat, triphenylmethantriisocyanat, 35 xylylendiisocyanat og methylderivaterne deraf, polymethylen-polyphenylisocyanater og methylderivaterne deraf samt chlor- DK 170551 B1 7 phenylen-2,4-diisocyanat. Selv om alle polyisocyanater reagerer med aminpolyolen til dannelse af en tværbundet polymerstruktur, er de foretrukne polyisocyanater aromatiske polyisocyanater, især diphenylmethandiisocyanat, triphenyl-5 methantriisocyanat og blandinger deraf.Isocyanate prepolymers prepared by reacting an excess of polyisocyanate with a polyhydric alcohol, e.g. a prepolymer of toluene diisocyanate and ethylene glycol. Suitable polyisocyanates are e.g. aliphatic polyisocyanates such as hexamethylene diisocyanate, alicyclic polyisocyanates such as 4,4'-dicyclohexylmethane diisocyanates or aromatic polyisocyanates such as 2,4- or 2,6-toluene diisocyanate, diphenylmethane diisocyanate or dimethyl derivatives thereof. Further examples of suitable polyisocyanates are 1,5-naphthalene diisocyanate, triphenylmethane triisocyanate, xylylene diisocyanate and their methyl derivatives, polymethylene polyphenylisocyanates and their methyl derivatives, and chloro-phenylene-2,4-diisocyanate. Although all polyisocyanates react with the amine polyol to form a crosslinked polymer structure, the preferred polyisocyanates are aromatic polyisocyanates, especially diphenylmethane diisocyanate, triphenylmethane triisocyanate and mixtures thereof.

Polyisocyanatet anvendes generelt i omtrentlig en støkiometrisk mængde, dvs. i en tilstrækkelig koncentration til at bevirke hærdning af aminpolyolen. Det er imidlertid muligt at afvige fra denne mængde inden for visse grænser, og i nogle 10 tilfælde kan opnås fordele. Generelt anvendes polyisocyanatet i en mængde på 10 - 500 vægtprocent baseret på aminpolyolen. Der anvendes fortrinsvis 20 - 300 vægtprocent polyisocyanat på samme basis. Polyisocyanatet anvendes i flydende form. Flydende polyisocyanater kan anvendes i ufortyndet form.The polyisocyanate is generally used in approximately a stoichiometric amount, i.e. in a sufficient concentration to effect cure of the amine polyol. However, it is possible to deviate from this amount within certain limits and in some 10 cases benefits can be obtained. Generally, the polyisocyanate is used in an amount of 10-500% by weight based on the amine polyol. Preferably 20 to 300% by weight of polyisocyanate is used on the same basis. The polyisocyanate is used in liquid form. Liquid polyisocyanates can be used in undiluted form.

15 Faste eller viskøse polyisocyanater anvendes i form af organiske opløsningsmiddelopløsninger, idet opløsningsmidlet er til stede i en mængde på op til 80 vægtprocent af opløsningen .Solid or viscous polyisocyanates are used in the form of organic solvent solutions, the solvent being present in an amount of up to 80% by weight of the solution.

Selv om det anvendte opløsningsmiddel, i kombination med 20 enten aminpolyolen eller polyisocyanatet eller begge bestanddele, ikke i nogen signifikant grad deltager i reaktionen mellem isocyanatet og aminpolyolen, kan det påvirke reaktionen. Således begrænser forskellen i polaritet mellem polyisocyanatet og aminpolyolen valget af opløsningsmidler, med 25 hvilke begge bestanddele er kompatible. Sådan kompatibilitet er nødvendig for at opnå en fuldstændig reaktion og hærdning af bindemiddelkompositionerne. Polære opløsningsmidler af enten protisk eller aprotisk type er gode opløsningsmidler for aminpolyolen. Det foretrækkes derfor at anvende opløs-30 ningsmidler eller kombinationer af opløsningsmidler, hvor opløsningsmidlet(midlerne) for polyolen og for polyisocyanatet er kompatible, når de blandes. Udover hensynet til kompatibiliteten udvælges opløsningsmidlerne for enten polyolen eller polyisocyanatet, så at der fås lav viskositet, ringe 35 luft, højt kogepunkt og "interness". Eksempler på sådanne opløsningsmidler er benzen, toluen, xylen, ethylbenzen og DK 170551 B1 8 blandinger deraf. Foretrukne aromatiske opløsningsmidler er opløsningsmidler og blandinger deraf, som har et højt aromatisk indhold og et kogepunkt inden for området fra ca.Although the solvent used, in combination with either the amine polyol or the polyisocyanate or both, does not significantly participate in the reaction between the isocyanate and the amine polyol, it can influence the reaction. Thus, the difference in polarity between the polyisocyanate and the amine polyol limits the choice of solvents with which both components are compatible. Such compatibility is necessary to achieve a complete reaction and cure of the binder compositions. Polar solvents of either protic or aprotic type are good solvents for the amine polyol. Therefore, it is preferred to use solvents or combinations of solvents where the solvent (s) of the polyol and of the polyisocyanate are compatible when mixed. In addition to compatibility considerations, the solvents are selected for either the polyol or polyisocyanate so as to obtain low viscosity, low air, high boiling point and "internal". Examples of such solvents are benzene, toluene, xylene, ethylbenzene and mixtures thereof. Preferred aromatic solvents are solvents and mixtures thereof which have a high aromatic content and a boiling point within the range of from about.

137°C til ca. 385°C. De polære opløsningsmidler bør ikke være 5 ekstremt polære, så at de bliver inkompatible, når de an- * vendes i kombination med det aromatiske opløsningsmiddel.137 ° C to approx. 385 ° C. The polar solvents should not be extremely polar so that they become incompatible when used in combination with the aromatic solvent.

Egnede polære opløsningsmidler er generelt sådanne, som inden for området er klassificeret som "coupling solvents", og omfatter furfural, "Cellosolve"®, glycoldiacetat, butyl- Φ 10 "Cellosolve" -acetat, isophoron og lignende. Det kan være muligt også at anvende nogle reaktive polyoler som et opløsningsmiddel. Det skal endvidere bemærkes, at vand har vist sig at være et egnet opløsningsmiddel for aminpolyolen under visse betingelser.Suitable polar solvents are generally those which in the art are classified as "coupling solvents" and include furfural, "Cellosolve" ®, glycol diacetate, butyl "10" Cellosolve "acetate, isophorone and the like. It may also be possible to use some reactive polyols as a solvent. Furthermore, it should be noted that water has been found to be a suitable solvent for the amine polyol under certain conditions.

15 Bindemiddelbestanddelene forenes og blandes derpå med sand eller et lignende støbeaggregat til dannelse af støbemixen, eller støbemixen kan dannes ved sekventiel blanding af komponenterne med aggregatet. Fremgangsmåder til at fordele bindemidlet på aggregatpartiklerne er velkendte inden for 20 området. Støbemixen kan eventuelt indeholde andre bestanddele såsom jernoxid, formalede hørfibre, træflis, bej eller tungt-smeltelige pulvere. Aggregatet, f.eks. sand, er sædvanligvis hovedbestanddelen, og bindemiddelbestanddelen udgør en relativt mindre mængde. Selv om det sand, der anvendes, fortrins-25 vis er tørt sand, kan nogen fugt tolereres. Dette er især tilfældet, hvis det anvendte opløsningsmiddel er ikke-bland-bart med vand, eller hvis der anvendes et overskud af poly-isocyanatet i forhold til det, der er nødvendigt for hærdningen, da et sådant overskud af polyisocyanat vil reagere 30 med vandet, og vand er et nyttigt opløsningsmiddel for aminpolyolen.The binder components are then combined and mixed with sand or a similar casting assembly to form the molding mix, or the molding mix may be formed by sequential mixing of the components with the aggregate. Methods of distributing the binder on the aggregate particles are well known in the art. The molding mix may optionally contain other ingredients such as iron oxide, ground flax fiber, wood chips, beech or heavy-meltable powders. The unit, e.g. sand is usually the main constituent and the binder constituent constitutes a relatively smaller amount. Although the sand used is preferably dry sand, some moisture can be tolerated. This is especially the case if the solvent used is immiscible with water or if an excess of the polyisocyanate is used relative to that needed for the cure, since such excess polyisocyanate will react with the water. and water is a useful solvent for the amine polyol.

99

Som angivet ovenfor anses de gode udrystningsegenskaber eller god smuldreevne for kerner fremstillet under anvendelse af * det her omhandlede bindemiddel at være en betydelig erken-35 delse. De her omhandlede bindemidler sønderdeles eller nedbrydes let, hvorved en adskillelse af kernen fra det støbte -· ·1|ΐ»=13 DK 170551 B1 9 materiale bliver mulig. Til støbning ved lave temperaturer, f.eks. ved ca. 980°C eller derunder, er udrystningen et hovedproblem. Generelt støbes ikke-jernmetaller, herunder aluminium og magnesium, ved disse temperaturer. Hvis binde-5 midlet ikke nedbrydes, bevirker dette store vanskeligheder ved fjernelse af sandet fra det støbte emne. Således kræver kerner med en lav udrystningsgrad eller smuldreevne, dvs. lav grad af bindemiddelnedbrydelse, mere tid og mere energi til fjernelse af sandet fra det støbte emne. Anvendelsen af de 10 her omhandlede bindemiddel-kompositioner resulterer i mange tilfælde i en faktisk 100%'s udrystning uden tilførsel af nogen ekstern energi. Forbedringen i udrystningen kan tilskrives nærværelsen af aminpolyolen i bindemiddelkomposi-tionen. Som det vil være klart for fagmanden, er en vilkårlig 15 kernes evne til at rystes ud i en vis grad afhængig af den mængde bindemiddel, der er anvendt til at binde sandpartiklerne til en sammenhængende form.As indicated above, the good shaking properties or good crumbability of cores made using the binder herein is considered to be a significant recognition. The binders herein are easily decomposed or broken down, thereby allowing separation of the core from the molded material · · 1 | ΐ »= 13 DK 170551 B1 9. For molding at low temperatures, e.g. at about. 980 ° C or below, shaking is a major problem. Generally, non-ferrous metals, including aluminum and magnesium, are cast at these temperatures. If the binder is not degraded, this causes great difficulty in removing the sand from the molded article. Thus, cores with a low degree of shaking or crumbling ability, i.e. low degree of binder degradation, more time and more energy to remove the sand from the cast. The use of the 10 binder compositions herein results in many cases in an actual 100% shaking without the application of any external energy. The improvement in the shaking can be attributed to the presence of the amine polyol in the binder composition. As will be apparent to those skilled in the art, the ability of any 15 cores to shake out depends to some extent on the amount of binder used to bond the sand particles to a coherent form.

Den procentdel bindemiddel, der anvendes, baseret på vægten af sandet, afhænger af de ønskede kerneegenskaber, som kræves 20 af bindemiddelsystemet. Det er klart, at når bindemiddel-mængden i systemet forøges, sker generelt en forøgelse af kernens trækstyrke. Bindemiddelniveauet kan således varieres inden for rimelige grænser til opnåelse af ønskede egenskaber. Et foretrukket område for bindemidlet er i henhold til 25 den foreliggende opfindelse fra 0,7% til 2,5%, baseret på vægten af sand. Det er imidlertid muligt at anvende så lidt som 0,5% og så meget som 10% bindemiddel og stadig opnå egenskaber, som er fordelagtige til visse anvendelser. Det har imidlertid også vist sig, at når bindemiddelniveauet forøges, 30 kan udrystningsgraden reduceres for højere bindemiddelni-veauer.The percentage of binder used, based on the weight of the sand, depends on the desired core properties required by the binder system. Obviously, as the amount of binder in the system is increased, the tensile strength of the core generally increases. Thus, the binder level can be varied within reasonable limits to achieve desired properties. According to the present invention, a preferred range of the binder is from 0.7% to 2.5%, based on the weight of sand. However, it is possible to use as little as 0.5% and as much as 10% binder and still obtain properties which are advantageous for certain applications. However, it has also been found that as the binder level is increased, the degree of shaking can be reduced for higher binder levels.

Den foreliggende opfindelse belyses nærmere ved følgende eksempler, hvori alle dele er vægtdele, og alle procentangivelser er vægtprocentangivelser, hvis intet andet er an-35 givet:The present invention is further illustrated by the following examples in which all parts are parts by weight and all percentages are percentages by weight unless otherwise indicated:

Eksempel 1.Example 1.

DK 170551 B1 10DK 170551 B1 10

En aromatisk aminpolyol fremstilles ved at propoxylere et mol m-phenylendiamin med 4,2 mol propylenoxid. En opløsning med 40% faststofindhold af den aromatiske aminpolyol fremstilles « 5 ved at opløse polyolen i et aliphatisk opløsningsmiddel, butyl-"Cellosolve"®. Denne opløsning betegnes "del I". En * polymer isocyanatopløsning med 75% faststofindhold baseret på Φ "Mondur" MR, der er en blanding af diphenylmethandiisocyanat og polymethylenpolyphenylisocyanat, og som er kommercielt 10 tilgængelig fra Mobay, fremstilles under anvendelse af et aromatisk opløsningsmiddel, der kommercielt er tilgængeligt som "HISOL"*10. Isocyanatopløsningen betegnes "del II". Der anvendes en næsten støkiometrisk mængde polyisocyanat til at reagere fuldstændigt med polyolens hydroxygrupper.An aromatic amine polyol is prepared by propoxylating one mole of m-phenylenediamine with 4.2 moles of propylene oxide. A 40% solids solution of the aromatic amine polyol is prepared by dissolving the polyol in an aliphatic solvent, butyl "Cellosolve" ®. This solution is referred to as "Part I". A 75% solids polymeric isocyanate solution based on Mond "Mondur" MRI, a mixture of diphenylmethane diisocyanate and polymethylene polyphenylisocyanate and commercially available from Mobay, is prepared using an aromatic solvent commercially available as "HISOL" * 10th The isocyanate solution is designated "Part II". An almost stoichiometric amount of polyisocyanate is used to react completely with the hydroxy groups of the polyol.

15 "Wedron" 5010-sand (vasket og tørret, finkornet kvartssand, AFSGFN 66) anbringes i et egnet blandeapparat. "Del I" blandes med sandet, indtil der fås et ensartet overtræk. I "del I" er inkorporeret en urethankatalysator, triethylen-diamin, der er kommercielt tilgængelig under varemærke Φ 20 "DABCO" . Denne katalysator er en velkendt urethankatalysator. Der anvendes 0,8% katalysator, beregnet på vægten af "del I". "Del II" sættes til det overtrukne sand og blandes, indtil der opnås en homogen sandblanding. Der anvendes i alt 1¾% bindemiddel ("del I" og "del II") beregnet på sandet.15 "Wedron" 5010 sand (washed and dried, fine-grained quartz sand, AFSGFN 66) is placed in a suitable mixer. "Part I" is mixed with the sand until a uniform coating is obtained. Included in "Part I" is a urethane catalyst, triethylene diamine, which is commercially available under trademark Φ 20 "DABCO". This catalyst is a well-known urethane catalyst. 0.8% catalyst is used, based on the weight of "Part I". "Part II" is added to the coated sand and mixed until a homogeneous sand mixture is obtained. A total of 1¾% binder ("Part I" and "Part II") used on the sand is used.

25 Blandingen af sand, polyol, katalysator og polyisocyanat anbringes i en keme-box, og der fremstilles standardtræk-styrkeprøver, der er kendt som "kødben". Der opnås en bearbejdelighedstid på 70 minutter og "strip"-tid på 110 minutter. Trækstyrken efter 24 timer er 1,59 x 106 N/m2.The mixture of sand, polyol, catalyst and polyisocyanate is placed in a seed box and standard tensile strength tests known as "meat bones" are prepared. A workability time of 70 minutes and strip time of 110 minutes are obtained. The tensile strength after 24 hours is 1.59 x 106 N / m2.

PP

30 "Kødben"-kernerne anvendes til udrystningsundersøgelser med støbte aluminiumsemner. Syv trækstyrkeprøver (kødben) an- , bringes i en form. Formen inkorporeres i et indløbssystem.The 30 "meat bone" cores are used for shredding studies with cast aluminum blanks. Seven tensile strength tests (meat bones) are placed in a mold. The mold is incorporated into an inlet system.

Formen er udformet til at give hule støbte emner med en metaltykkelse på ca. 6,35 mm på alle sider. Der er en åbning DK 170551 B1 11 i en ende af det støbte emne til fjernelse af kernen fra emnet. Smeltet aluminium ved ca. 705°C fremstillet ud fra aluminiumbarrer hældes i formen. Efter afkøling i ca. 1 time brydes de støbte aluminiumemner fra indløbssystemet og fjer-5 nes fra formen til udrystningsundersøgelser.The mold is designed to provide hollow molded workpieces with a metal thickness of approx. 6.35 mm on all sides. There is an opening DK 170551 B1 11 at one end of the molded blank for removing the core from the blank. Melted aluminum at approx. 705 ° C made from aluminum bars is poured into the mold. After cooling for approx. For 1 hour, the cast aluminum blanks are broken from the inlet system and removed from the mold for shaking tests.

Udrystningsundersøgelserne udføres ved at anbringe et støbt emne i en beholder med et rumfang på ca. 3,8 liter. Beholderen anbringes på en rystemekanisme og rystes i 2 minutter Vægten af den sandkerne, som fjernes fra det støbte emne på 10 denne måde, sammenlignes med sandkernens initialvægt, og den procentvise udrystning beregnes. Det sand, der er tilbage i emnet efter den ovenfor beskrevne udrystning, fjernes ved skrabning og vejes også. Sandkernen bundet med det ovenfor beskrevne aminpolyol-polyisocyanat-katalysatorbindemiddel 15 smuldrer og flyder ud af det støbte aluminiumemne uden anvendelse af rystemekanismen og uden tilførsel af nogen ydre mekanisk energi. Udrysteligheden er 100%.The shaking tests are performed by placing a molded blank in a container with a volume of approx. 3.8 liters. The container is placed on a shaking mechanism and shaken for 2 minutes. The weight of the sand core which is removed from the molded workpiece in this way is compared to the initial weight of the sand core and the percentage shaking is calculated. The sand left in the workpiece after the above-described shaking is removed by scraping and also weighed. The sand core bonded with the amine polyol-polyisocyanate catalyst binder 15 described above crumbles and flows out of the cast aluminum blank without the use of the shaking mechanism and without the application of any external mechanical energy. The outbreak is 100%.

Eksempel 2-3.Examples 2-3.

Under anvendelse af den i eksempel 1 beskrevne fremgangsmåde 20 fremstilles kødbenstestkerner under anvendelse af de nedenfor beskrevne bestanddele og fremgangsmåder. Kernerne anvendes til udrystningsundersøgelser for støbte aluminiumemner som beskrevet i eksempel 1.Using the method 20 described in Example 1, meat bone test cores are prepared using the ingredients and methods described below. The cores are used for shredding studies for cast aluminum blanks as described in Example 1.

DK 170551 B1 12DK 170551 B1 12

Eksempel 2 Eksempel 3Example 2 Example 3

Sand "Wedron" "Wedron" 5010 5010Sand "Wedron" "Wedron" 5010 5010

Aminbestanddel 5 Alkylen- - * oxidAmine Component Alkylene - - * oxide

Molforhold AO: aminMole ratio AO: amine

Aminpolyol "Pluracol" *c "Pluracol"*d 10 767 795Amine polyol "Pluracol" c c "Pluracol" d 10 767 795

Poly- "Mondur"* MR "Mondur"* MRPoly- "Mondur" * MR "Mondur" * MR

isocyanatisocyanate

Opløsnings- 40% 35% middel i 15 aminpolyol "HISOL"* 10 "HISOL"® 10Solution 40% 35% agent in 15 amine polyol "HISOL" * 10 "HISOL" ® 10

Opløsnings- 44%e 35%e middel i polyisocyanatSolution 44% e 35% e agent in polyisocyanate

Katalysator (1) 1,4% (1) 1¾% 20 Bearbejde- 25 min. 7 min.Catalyst (1) 1.4% (1) 1¾% 20 Processing 25 min. 7 min.

lighedstid "Strip"- tid 31 min. 10,5 min.similarity "Strip" - time 31 min. 10.5 min.

Procentdel 1,5% 1,5% bindemiddel 25 Del I 50% 50%Percentage 1.5% 1.5% binder Part I 50% 50%

Del II 50% 50%Part II 50% 50%

Trækstyrke 1 N/m2 2 timer 1,55x1O6 - - 30 3 timer - - l,54xl06 4 timer - - 1,45x1O6 24 timer 2,54xl06 2,21xl06Tensile strength 1 N / m2 2 hours 1.55x1O6 - 30 3 hours - - 1.54x106 4 hours - - 1.45x1O6 24 hours 2.54x106 2.21x106

Udryste- 92% 100% lighed 35 Kerner fremstillet som beskrevet ovenfor smuldrer og flyder ud af det støbte emne uden anvendelse af en rystemekanisme og ' uden tilførsel af nogen ydre mekanisk energi.Equip 92% 100% similarity 35 Cores made as described above crumble and flow out of the molded blank without the use of a shaking mechanism and without the application of any external mechanical energy.

1) 50% phenylpropylpyridin og 50% af et lithiumsalt af en carboxylsyre .1) 50% phenylpropylpyridine and 50% of a lithium salt of a carboxylic acid.

DK 170551 B1 13 c"Pluracol"® 767 er et varemærke for en propoxyleret aromatisk aminbaseret polyol, der er kommercielt tilgængelig fra BASF Wyandotte .DK 170551 B1 13 c "Pluracol" ® 767 is a trademark of a propoxylated aromatic amine based polyol commercially available from BASF Wyandotte.

d"Pluracol"® 795 er et varemærke for en ethoxyleret aromatisk 5 aminbaseret polyol, der er kommercielt tilgængelig fra BASF Wyandotte.d "Pluracol" ® 795 is a trademark of an ethoxylated aromatic 5 amine based polyol commercially available from BASF Wyandotte.

eEn blanding af "HISOL·"® 10 og petroleum.eA mixture of "HISOL ·" ® 10 and petroleum.

Eksempel 4.Example 4

En aromatisk aminpolyol fremstilles ved at propoxylere et mol 10 o-phenylendiamin med 4,2 mol propylenoxid. Der fremstilles en opløsning med 40% faststofindhold af den aromatiske aminpolyol ved at opløse polyolen i isophoron. Denne opløsning benævnes "del I". Et polymert isocyanat, "Mondur"® MR benævnes "del II". Der anvendes en næsten støkiometrisk mængde 15 polyisocyanat til at reagere fuldstændigt med polyolens hydroxylgrupper.An aromatic amine polyol is prepared by propoxylating a mole of 10-phenylenediamine with 4.2 moles of propylene oxide. A solution with 40% solids content of the aromatic amine polyol is prepared by dissolving the polyol in isophorone. This solution is referred to as "Part I". A polymeric isocyanate, "Mondur" ® MR is referred to as "Part II". An almost stoichiometric amount of polyisocyanate is used to react completely with the hydroxyl groups of the polyol.

φ "Wedron" 5010-sand (vasket og tørret, finkornet kvartssand, AFSGFN 66) anbringes i et egnet blandeapparat. "Del I" blandes med sandet, indtil der fås et ensartet overtræk. I "del 20 I" er inkorporeret en 33%'s opløsning i dipropylenglycol af en urethankatalysator, triethylendiamin, der er kommercielt tilgængelig under varemærket "DABCO" . Denne katalysator er en velkendt urethankatalysator. Der anvendes 1,0% katalysator, beregnet på vægten af "del I". "Del II" sættes til det 25 overtrukne sand og blandes, indtil der er fremstillet en homogen sandblanding. Der anvendes i alt 1¾% bindemiddel (55% "del I" og 45% "del II"), beregnet på vægten af sand.φ "Wedron" 5010 sand (washed and dried, fine-grained quartz sand, AFSGFN 66) is placed in a suitable mixer. "Part I" is mixed with the sand until a uniform coating is obtained. In "Part 20 I" is incorporated a 33% solution in dipropylene glycol of a urethane catalyst, triethylenediamine, which is commercially available under the trademark "DABCO". This catalyst is a well-known urethane catalyst. 1.0% catalyst is used, based on the weight of "Part I". "Part II" is added to the 25 coated sand and mixed until a homogeneous sand mixture is prepared. A total of 1¾% binder (55% "part I" and 45% "part II"), based on the weight of sand, is used.

Blandingen af sand, polyol, katalysator og polyisocyanat anbringes i en kernebox, og der fremstilles standardtrækstyrke-30 prøver, der er kendt som "kødben". Der opnås en bearbejdelighedstid på 9 minutter og en "strip"-tid på 20 minutter.The mixture of sand, polyol, catalyst and polyisocyanate is placed in a core box and standard tensile strength tests known as "meat bones" are prepared. A workability time of 9 minutes and a strip time of 20 minutes are obtained.

DK 170551 B1 14DK 170551 B1 14

Trækstyrkerne efter 2 timer og 24 timer er henholdsvis 2,01 x 106 N/m2 og 2,16 x 106 N/m2.The tensile strengths after 2 hours and 24 hours are 2.01 x 106 N / m2 and 2.16 x 106 N / m2 respectively.

"Kødben"-kernerne anvendes til udrystningsundersøgelser med støbte aluminiumemner. Syv trækstyrkeprøver (kødben) anbrin- * 5 ges i en form. Formen anbringes i et indløbssystem. Formen er beregnet til at fremstille hule støbte emner med en metal-tykkelse på ca. 6,35 mm på alle sider. Der er en åbning i en ende af det støbte emne til fjernelse af kernen derfra.The "meat bone" cores are used for shredding studies with cast aluminum blanks. Seven tensile strength tests (meat bones) are placed * 5 in one form. The mold is placed in an inlet system. The mold is intended to produce hollow molded workpieces having a metal thickness of approx. 6.35 mm on all sides. There is an opening at one end of the molded blank for removing the core therefrom.

Smeltet aluminium ved ca. 705°C fremstillet ud fra aluminium-10 barrer hældes i formen. Efter afkøling i ca. 1 time brydes de støbte aluminiumemner fra indløbssystemet og fjernes fra formen til udrystningsundersøgelser.Melted aluminum at approx. 705 ° C made from aluminum-10 bars is poured into the mold. After cooling for approx. For 1 hour, the cast aluminum blanks are broken from the inlet system and removed from the mold for shaking studies.

Udrystningsundersøgelserne foretages ved at anbringe et støbt emne i en beholder med et rumfang på ca. 3,8 liter. Behol-15 deren anbringes på en rystemekanisme og rystes i 2 minutter.The shaking tests are done by placing a molded blank in a container with a volume of approx. 3.8 liters. The container is placed on a shaking mechanism and shaken for 2 minutes.

Vægten af det sand, som fjernes fra emnet på denne made, sammenlignes med sandkernens initialvægt, og den procentvise udrystning beregnes. Det efter den ovenfor beskrevne udryst-ning i emnet tilbageværende sand fjernes ved skrabning og 20 vejes også. Sandkernen bundet med det ovenfor beskrevne aminpolyol-polyisocyanat-katalysator-bindemiddel smuldrer og flyder ud af det støbte aluminiumemne uden anvendelse af rystemekanismen og uden tilførsel af nogen ydre mekanisk energi. Udrysteligheden er 100%.The weight of the sand removed from the workpiece in this way is compared to the initial weight of the sand core and the percentage shaking is calculated. The remaining sand after the above-described shaking of the workpiece is removed by scraping and also weighed. The sand core bonded with the above-described amine polyol-polyisocyanate catalyst binder crumbles and flows out of the cast aluminum blank without the use of the shaking mechanism and without the application of any external mechanical energy. The outbreak is 100%.

25 Eksempel 5.Example 5.

Under anvendelse af den i eksempel 4 beskrevne fremgangsmåde fremstilles kødbenstestkerner under anvendelse af de nedenfor beskrevne bestanddele og fremgangsmåder. Kernerne anvendes til udrystningsundersøgelse under anvendelse af støbte alumi- 5 30 niumemner som beskrevet i eksempel 4.Using the method described in Example 4, meat bone test cores are prepared using the ingredients and methods described below. The cores are used for shaking examination using molded aluminum blanks as described in Example 4.

Eksempel 5 DK 170551 B1 15Example 5 DK 170551 B1 15

Sand "Wedron" 5010Sand "Wedron" 5010

Aminbestanddel Anilin 5 Alkylen- Propylen- oxid oxidAmine component Aniline 5 Alkylene-Propylene oxide oxide

Molforhold AO:amin 2,2:1Mole ratio AO: amine 2.2: 1

Aminpolyolamine polyol

10 Polyisocyanat "Mondor"* MRPolyisocyanate "Mondor" * MR

Opløsningsmiddel 60% (X) i aminpolyolSolvent 60% (X) in amine polyol

Opløsningsmiddel intet i polyisocyanat 15 Katalysator 1% "Dabco"Solvent None in Polyisocyanate Catalyst 1% "Dabco"

Bearbej de- 70 min.Edit for 70 min.

ligshedtid "Strip"-tid 140 min.strip time lightness 140 min.

Procentdel 1,5% 20 bindemiddelPercentage of 1.5% binder

Del I 61%Part I 61%

Del II 39%Part II 39%

Trækstyrke i N/m2 24 timer 1,24x1O6 25 Udrystelighed 74% X) En blanding af butyl-"Cellosolve"®-acetat (40%) og "HISOL"® 10 (20%).Tensile strength in N / m2 24 hours 1.24x1O6 25 Shakeout 74% X) A mixture of butyl "Cellosolve" acetate (40%) and "HISOL" ® 10 (20%).

Kerner fremstillet som beskrevet ovenfor smuldrer og flyder ud af det støbte emne uden anvendelse af en rystemekanisme, 30 under tilførsel af ydre mekanisk energi.Cores made as described above crumble and flow out of the molded blank without the use of a shaking mechanism, 30 supplied by external mechanical energy.

Eksempel 6.Example 6

En aminpolyol fremstilles ved at propoxylere 1,0 mol m-phenylendiamin med 6,0 mol propylenoxid. Der fremstilles en opløsning med 40% indhold af fast stof af aminpolyolen ved at 35 opløse polyolen i et blandingsopløsningsmiddel af 40% isophoron, 16,5% af et aromatisk opløsningsmiddel og 3,5% petroleum. Denne opløsning benævnes "del I". En polymer DK 170551 B1 16 isocyanatopløsning med et faststofindhold på 75% baseret på "Mondur"® MR, der er kommercielt tilgængelig fra Mobay, fremstilles under anvendelse af et aromatisk opløsningsmiddel "HISOL·"® 10. Isocyanatopløsningen betegnes "del II". Der 5 anvendes en næsten støkiometrisk mængde polyisocyanat til at » reagere fuldstændigt med polyolens hydroxygrupper.An amine polyol is prepared by propoxylating 1.0 mole of m-phenylenediamine with 6.0 moles of propylene oxide. A solution containing 40% solids content of the amine polyol is prepared by dissolving the polyol in a mixture solvent of 40% isophorone, 16.5% of an aromatic solvent and 3.5% of petroleum. This solution is referred to as "Part I". A polymer DK 170551 B1 16 isocyanate solution having a solids content of 75% based on "Mondur" ® MR commercially available from Mobay is prepared using an aromatic solvent "HISOL ·" ® 10. The isocyanate solution is designated "Part II". An almost stoichiometric amount of polyisocyanate is used to completely react with the hydroxy groups of the polyol.

"Wedron" 5010-sand (vasket og tørret finkornet kvartssand, AFSGFN 66) anbringes i et egnet blandeapparat. "Del I" blandes med sandet, indtil der fås et ensartet overtræk. "Del II" 10 sættes til det overtrukne sand og blandes, indtil der fås en homogen sandblanding. Der anvendes i alt 1¾% bindemiddel (lige store mængder "del I" og "del II"), beregnet på vægten af sand."Wedron" 5010 sand (washed and dried fine-grained quartz sand, AFSGFN 66) is placed in a suitable mixer. "Part I" is mixed with the sand until a uniform coating is obtained. "Part II" 10 is added to the coated sand and mixed until a homogeneous sand mixture is obtained. A total of 1¾% binder is used (equal amounts of "Part I" and "Part II"), based on the weight of sand.

Blandingen af sand, polyol og polyisocyanat blæses i en 15 konventionel kernehulhed eller box til fremstilling af standard træks tyrke prøvekerner, der kendes som "kødben". Kødbenstestkernerne hærdes ved at eksponere kernerne for en tertiær aminkatalysator. Aminkatalysatoren, dimethylethyl-amin, suspenderes i carbondioxid, en inert bæregas. Kernerne 20 eksponeres for aminkatalysatoren i ca. 20 sekunder (gasningstid) og lades forblive i kerneboxen i 10 minutter (hviletid), før kernen fjernes fra boxen. Der måles trækstyrker på 0,17 x 106 N/m2 lige efter udtagelsen af boxen, 0,50 x 106 N/m2 efter 1 time og 0,93 x 10s N/m2 efter 24 timer.The mixture of sand, polyol and polyisocyanate is blown into a conventional core cavity or box for the production of standard tensile Turkish sample cores known as "meat bones". The meat bone test cores are cured by exposing the cores to a tertiary amine catalyst. The amine catalyst, dimethylethylamine, is suspended in carbon dioxide, an inert carrier gas. The cores 20 are exposed to the amine catalyst for approx. 20 seconds (gassing time) and left in the core box for 10 minutes (resting time) before removing the core from the box. Tensile strengths of 0.17 x 106 N / m2 are measured immediately after removal of the box, 0.50 x 106 N / m2 after 1 hour and 0.93 x 10s N / m2 after 24 hours.

25 "Kødben"-kernerne anvendes til udrystningsforsøg med støbte aluminiumemner. Syv trækstyrkeprøver (kødben) anbringes i en form. Formen sluttes til et indløbssystem. Formen er beregnet til at-fremstille hule støbte emner med en metaltykkelse på ca. 6,35 mm på alle sider. Der er en åbning i en ende af 30 emnet til fjernelse af kernen fra støbeemnet. Smeltet alumi- ? nium ved ca. 705°C fremstillet ud fra aluminium-barrer hældes i formen. Efter afkøling i ca. 1 time brydes aluminiumemnerne ' fra indløbssystemet og fjernes fra formen til udrystnings-undersøgelse.The 25 "meat bone" cores are used for shredding experiments with cast aluminum blanks. Seven tensile strength tests (meat bones) are placed in a mold. The mold is connected to an inlet system. The mold is intended to produce hollow molded articles having a metal thickness of approx. 6.35 mm on all sides. There is an opening at one end of the blank for removing the core from the molding. Melted alumi-? nium at approx. 705 ° C made from aluminum bars is poured into the mold. After cooling for approx. For 1 hour, the aluminum blanks' are broken from the inlet system and removed from the mold for shaking examination.

DK 170551 B1 17DK 170551 B1 17

Udrystningsundersøgelser udføres ved at anbringe et støbeemne i en beholder med et rumfang på ca. 3,8 liter. Beholderen anbringes på en rystemekanisme og rystes i 2 minutter. Vægten af det sand, der fjernes fra støbeemnet på denne måde, sam-5 menlignes med sandkernens initialvægt, og den procentvise udrystning beregnes. Det sand, der er tilbage i støbeemnet efter den ovenfor beskrevne udrystning, fjernes ved skrabning og vejes også. Sandkernen bundet med det ovenfor beskrevne aminpolyol-polyisocyanat-bindemiddel smuldrer og flyder ud af 10 aluminiumstøbeemnet uden anvendelse af rystemekanismen og uden anvendelse af nogen ydre mekanisk energi. Udrystelig-heden er 100%.Shaking tests are carried out by placing a molding blank in a container with a volume of approx. 3.8 liters. The container is placed on a shaking mechanism and shaken for 2 minutes. The weight of the sand removed from the cast in this way is compared to the initial weight of the sand core and the percentage shaking is calculated. The sand remaining in the cast after the above-described shaking is removed by scraping and also weighed. The sand core bonded with the above-described amine polyol-polyisocyanate binder crumbles and flows out of the aluminum cast without the use of the shaking mechanism and without the use of any external mechanical energy. The shake is 100%.

Eksempel 7-11.Examples 7-11.

Under anvendelse af de i eksempel 6 beskrevne fremgangsmåder 15 fremstilles testkerner, og de testes under anvendelse af de nedenfor beskrevne bestanddele og metoder.Using the methods 15 described in Example 6, test cores are prepared and tested using the ingredients and methods described below.

DK 170551 B1 18DK 170551 B1 18

Eksempel 7 Eksempel 8 Eksempel 9 Eksempel 10 Eksempel 11Example 7 Example 8 Example 9 Example 10 Example 11

Sand "Wedron" "Wedron" "Wedron" "Wedron" "Wedron 5010 5010 5010 5010 5010Sand "Wedron" "Wedron" "Wedron" "Wedron" "Wedron 5010 5010 5010 5010 5010

Amin- Anilin o-phenylen m-phenylen m-phenyl en-»CURITHANE1,103 5 forbindelser diamin en anilin * formaldehyd harpiks der leveres af Upjohn 10 Alkylen- Propylen- Propylen- Propylen- Propylen- Propylen- oxid oxid oxid oxid oxid oxidAmine Aniline o-phenylene m-phenylene m-phenyl en- »CURITHANE1,103 5 compounds diamin en aniline * formaldehyde resin supplied by Upjohn 10 Alkylene-Propylene-Propylene-Propylene-Propylene-Propylene Oxide Oxide Oxide Oxide Oxide

Molforhold AO: Amin 2:1 4,2:1 4,2:1 8:1 4:1Mole ratio AO: Amine 2: 1 4.2: 1 4.2: 1 8: 1 4: 1

Aminpolyol 15 Poly- "Mondur"* "Mondur"* "Mondur"* "Mondur"* "Mondur"*Amine Polyol Poly- "Mondur" * "Mondur" * "Mondur" * "Mondur" * "Mondur" *

isocyanat MR MR MR MR MRisocyanate MR MR MR MR MR

Opløsningsmiddel i aminpolyol 60% (1) 60% Iso- 60% Iso- 60% (1) 60% Iso- 2 0 phoron phoron phoronSolvent in amine polyol 60% (1) 60% Iso-60% Iso-60% (1) 60% Iso-phoron phoron phoron

Opløsnings intet 25% (2) 25% 25% (2) intet middel i "HISOL"* 10 polyisocyanatSolution nothing 25% (2) 25% 25% (2) no agent in "HISOL" * 10 polyisocyanate

Katalysator Trimethyl- Dimethyl- Dimethyl- Dimethyl- Trimethyl- 25 amin ethylamin ethylamin ethylamin amin suspenderet suspenderet suspenderet i C02 i C02 i C02Catalyst Trimethyl-Dimethyl-Dimethyl-Dimethyl-Trimethyl-amine Ethylamine Ethylamine Ethylamine Amine Suspended Suspended Suspended in CO 2 in CO 2 in CO 2

Gasningstid 10 sek. 10 sek. 10 sek. 20 sek. 5 sek.Gassing time 10 sec. 10 sec. 10 sec. 20 sec. 5 sec.

Hviletid 5 min. 3 min. 10 min. 10 min. 2 min.Resting time 5 min. 3 min. 10 min. 10 min. 2 min.

3 0 Trækstyrke i N/m2 Lige efter udtagelse af box 0,21xl06 0,34xl06 0,03xl06 0,72xl06 0,21xl06 35 1 time - - 0,69xl06 0,49xl06 0,72xl06 - - 24 timer 0,62xl06 0,59xl06 0,80xl06 - - 0,34xl063 0 Tensile strength in N / m2 Right after removal of box 0.21x106 0.34x106 0.03x106 0.72x106 0.21x106 35 1 hour - - 0.69x106 0.49x106 0.72x106 - - 24 hours 0.62x106 0, 59x106 0.80x106 - 0.34x106

Bindemiddel- mængde i alt 1,5% 1,5% 1,5% 1,5% 1,5% 5Total amount of binder 1.5% 1.5% 1.5% 1.5% 1.5% 5

Del I 75% 50% 50% 50% 75% 40 Del II 25% 50% 50% 50% 25%Part I 75% 50% 50% 50% 75% 40 Part II 25% 50% 50% 50% 25%

Udrystelighed 100% 100% 100% 100% 100% DK 170551 B1 19Extravagance 100% 100% 100% 100% 100% DK 170551 B1 19

Kerner fremstillet som beskrevet ovenfor smuldrer og flyder ud af støbeemnet uden anvendelse af rystemekanisme og uden tilførsel af nogen ydre mekanisk energi.Cores made as described above crumble and flow out of the mold without the use of a ratchet mechanism and without the application of any external mechanical energy.

(1) En blanding af isophoron (40%), aromatiske opløsningsmid-5 ler (16,5%), petroleum (3,5%).(1) A mixture of isophorone (40%), aromatic solvents (16.5%), petroleum (3.5%).

(2) En blanding af et aromatisk opløsningsmiddel, der er kommercielt tilgængeligt under varebetegnelse "Texaco Solvent" 7545 (19%) og petroleum (6%).(2) A mixture of an aromatic solvent commercially available under the trade name "Texaco Solvent" 7545 (19%) and petroleum (6%).

Eksempel 12.Example 12.

10 En aminpolyol fremstilles ved at propoxylere 1,0 mol m-phe-nylendiamin med 8,0 mol propylenoxid. En phenolisk polyol, Φ der er kommercielt tilgængelig som "PEP" -harpiks, sættes til aminpolyolen til fremstilling af en polyolblånding. Forholdet mellem o-aminpolyol og ikke-aminpolyol er 2:1. Der fremstil-15 les en opløsning med 60% faststofindhold af polyolen ved at opløse polyolblandingen i isophoronopløsningsmiddel. Opløsningen betegnes "del I". En polymer isocyanatopløsning med 75% faststofindhold, baseret på "Mondur"® MR, der er kommercielt tilgængelig fra Mobay, fremstilles under anvendelse af 20 en opløsningsmiddelblanding, der indeholder 19% "Texaco" 7545, et aromatisk opløsningsmiddel, og 6% petroleum. Isocya-natopløsningen betegnes "del II". Der anvendes en næsten støkiometrisk mængde polyisocyanat til at reagere fuldstændigt med polyolets hydroxylgrupper.An amine polyol is prepared by propoxylating 1.0 mole of m-phenylenediamine with 8.0 moles of propylene oxide. A phenolic polyol Φ commercially available as "PEP" resin is added to the amine polyol to produce a polyol blend. The ratio of o-amine polyol to non-amine polyol is 2: 1. A solution of 60% solids content of the polyol is prepared by dissolving the polyol mixture in isophorone solvent. The solution is referred to as "Part I". A polymeric isocyanate solution with 75% solids content, based on "Mondur" ® MR commercially available from Mobay, is prepared using a solvent mixture containing 19% Texaco 7545, an aromatic solvent, and 6% petroleum. The isocyanate solution is designated "Part II". An almost stoichiometric amount of polyisocyanate is used to react completely with the hydroxyl groups of the polyol.

25 "Wedron" 5010-sand (vasket og tørret finkornet sand, AFSGN 66) anbringes i et egnet blandeapparat. "Del I" blandes med sandet, indtil der fås et ensartet overtræk. "Del II" sættes til det overtrukne sand og blandes, indtil der er dannet en homogen sandblanding. Der anvendes i alt 1 1/2% bindemiddel 30 (44% "del I" og 56% "del II") baseret på vægten af sand.25 "Wedron" 5010 sand (washed and dried fine-grained sand, AFSGN 66) is placed in a suitable mixer. "Part I" is mixed with the sand until a uniform coating is obtained. "Part II" is added to the coated sand and mixed until a homogeneous sand mixture is formed. A total of 1 1/2% of binder 30 (44% "Part I" and 56% "Part II") based on the weight of sand is used.

Blandingen af sand, polyol og polyisocyanat blæses i en sædvanlig kernehulhed eller box til fremstilling af standard- DK 170551 Bl 20 trækstyrkeprøvekerner, der kendes som "kødben". Kødbenstestkernerne hærdes ved at eksponeres kernerne for en tertiær aminkatalysator. Aminkatalysatoren, dimethylethylamin, suspenderes i carbondioxid, en inert bæregas. Kernerne eks-5 poneres for aminkatalysatoren i ca. 5 sekunder (gasningstid) ? og lades forblive i kerneboxen i 1 minut (hviletid), før kernen fjernes fra boxen. Trækstyrkerne er umiddelbart efter ^ fjernelse fra boxen ca. 0,40 x 106 N/m2, efter 1 time ca.The mixture of sand, polyol and polyisocyanate is blown into a conventional core cavity or box to produce standard tensile strength test cores known as "meat bone". The meat bone test cores are cured by exposing the cores to a tertiary amine catalyst. The amine catalyst, dimethylethylamine, is suspended in carbon dioxide, an inert carrier gas. The nuclei are exposed to the amine catalyst for approx. 5 seconds (gassing time)? and leave in the core box for 1 minute (rest time) before removing the core from the box. Immediately after ^ removal from the box, the tensile strengths are approx. 0.40 x 106 N / m2, after 1 hour approx.

1,38 x 106 N/m2 og ved støbningstidspunktet ca. 1,45 x 10 106N/m2.1.38 x 106 N / m2 and at the time of casting approx. 1.45 x 10 106N / m2.

"Kødben"-kernerne anvendes til udrystningsundersøgelser med aluminiumstøbeemner. Syv trækstyrkeprøver (kødben) anbringes i en form. Formen anbringes i et indløbssystem. Formen er beregnet til fremstilling af hule støbeemner med en metal-15 tykkelse på ca. 6,35 mm på alle sider. Der er anbragt en åbning i en ende af støbeemnet til fjernelse af kernen derfra. Smeltet aluminium ved ca. 705°C fremstillet ud fra aluminiumbarrer hældes i formen. Efter afkøling i ca. 1 time brydes aluminiumstøbeemnerne fra indløbssystemet og fjernes 20 fra formen til udrystningsundersøgelser.The "meat bone" cores are used for shredding studies with aluminum castings. Seven tensile strength tests (meat bones) are placed in a mold. The mold is placed in an inlet system. The mold is intended for making hollow castings having a metal thickness of approx. 6.35 mm on all sides. An aperture is provided at one end of the casting for removing the core therefrom. Melted aluminum at approx. 705 ° C made from aluminum bars is poured into the mold. After cooling for approx. For 1 hour, the aluminum moldings are broken from the inlet system and 20 removed from the mold for shaking studies.

Udrystningsundersøgelserne udføres ved at anbringe et støbeemne i en beholder på ca. 3,8 liter. Beholderen anbringes på en rystemekanisme og rystes i 2 minutter. Vægten af den sandkerne, der fjernes fra støbeemnet på denne måde, sammen -25 lignes med sandkernens initialvægt, og den procentvise ud- rystning beregnes. Det sand, der forbliver i støbeemnet efter den ovenfor beskrevne udrystning, fjernes ved skrabning og vejes også. Sandkernen bundet med det ovenfor beskrevne aminpolyol-polyisocyanat-bindemiddel smuldrer og flyder ud af 30 aluminiumstøbeemnet uden anvendelse af rystemekanismen og uden tilførsel af nogen ydre mekanisk energi. Udrysteligheden » er 100%.The shaking tests are performed by placing a molding blank in a container of approx. 3.8 liters. The container is placed on a shaking mechanism and shaken for 2 minutes. The weight of the sand core removed from the molding in this way is compared to -25 is equal to the initial weight of the sand core and the percentage equipments are calculated. The sand remaining in the mold after the above-described shaking is removed by scraping and also weighed. The sand core bonded with the above-described amine polyol-polyisocyanate binder crumbles and flows out of the aluminum die without the use of the shaking mechanism and without the application of any external mechanical energy. The extravagance »is 100%.

y Ί.....y Ί .....

DK 170551 B1 21DK 170551 B1 21

Eksempel 13 Eksempel 14Example 13 Example 14

Sand "Wedron"5010 "Wedron"5010Sand "Wedron" 5010 "Wedron" 5010

Aminforbindelse "Curithane"103Amine compound "Curithane" 103

Alkylenoxid Propylenoxid 5 Molforhold alkylenoxid:aminAlkylene oxide Propylene oxide 5 Mole ratio of alkylene oxide: amine

Aminpolyol "Pluracol"* 7351Amine polyol "Pluracol" * 7351

Ikke-aminpolyol Phenolisk polyol Phenolisk polyolNon-amine polyol Phenolic polyol Phenolic polyol

Forhold aminpolyol: 10 ikke-aminpolyol 2:1 2:1Amine polyol ratio: 10 non-amine polyol 2: 1 2: 1

Polyisocyanat "Mondur"® MRPolyisocyanate "Mondur" ® MR

Opløsningsmiddel i polyolblanding 40% Butyl-"Cello- 40% Butyl-"Cello solve"®-acetat solve"*-acetat 15 Opløsningsmiddel i polyisocyanat 25% "Aromatic 25% petroleum solvent 7545", 6% petroleumSolvent in polyol mixture 40% Butyl "Cello 40% Butyl" Cello solve "® acetate solve" * - Acetate 15 Solvent in polyisocyanate 25% "Aromatic 25% petroleum solvent 7545", 6% petroleum

Katalysator Trimethylamin Trimethylamin 20 Gasningstid 5 sek. 5 sek.Catalyst Trimethylamine Trimethylamine 20 Gasification time 5 sec. 5 sec.

Hviletid 1 min. 1 min.Resting time 1 min. 1 min

Trækstyrke i N/m2 0,31xl06 0,36xl06 1 time 0,88x10® 0,86xl06 4 timer 0,76xl06 - - 25 støbetidspunkt l,12xl06 0,88xl06Tensile strength in N / m2 0.31x106 0.36x106 1 hour 0.88x10® 0.86x106 4 hours 0.76x106 - - 25 molding time l, 12x106 0.88x106

Bindemiddel i alt 1,5% 1,5%Total binder 1.5% 1.5%

Del I 44% 50%Part I 44% 50%

Del II 56% 50%Part II 56% 50%

Udrystelighed 100% 48% 30 1 En aminbaseret polyol fra BASF (formodes at være ethoxyle- ret og aromatisk).Extravagability 100% 48% 30 1 An amine-based polyol from BASF (presumed to be ethoxylated and aromatic).

Sandkernen bundet med den aminpolyol, der er afledt af pro-poxyleret "Curithane" 103, en anilin-formaldehydharpiks, der leveres af Upjohn, smuldrer og flyder ud af aluminiumstøbe -35 emnet uden anvendelse af rystemekanismen og uden anvendelse af ydre energi. Sandkernen baseret på "Pluracol"® 735 rystes for at få den angivne udrystningsgrad.The sand core bonded with the amine polyol derived from propoxylated "Curithane" 103, an aniline-formaldehyde resin supplied by Upjohn, crumbles and flows out of the aluminum cast-35 blank without the use of the shaking mechanism and without the use of external energy. The sand core based on "Pluracol" ® 735 is shaken to obtain the specified degree of shaking.

Eksempel 15.Example 15

22 DK 170551 B122 DK 170551 B1

En aminpolyol fremstilles ved at propoxylere 1,0 mol ethylendiamin med 8,0 mol propylenoxid. Der fremstilles en opløsning med et faststofindhold på 50% af aminpolyolen. v 5 Ved at opløse polyolen i en blanding af opløsningsmiddel 30% isophoron, 16,5% af et aromatisk opløsningsmiddel og 3,5% ✓ petroleum. Denne opløsning benævnes "del I". En polymer isocyanatopløsning, der indeholder 75% fast stof, baseret på Φ "Mondur" MR, der er kommercielt tilgængelig fra Mobay, 10 fremstilles under anvendelse af et aromatisk opløsningsmiddel, "Texaco 7545" (19%) og petroleum (6%). Isocyanat-opløsningen betegnes "del II". Der anvendes en næsten støkiometrisk mængde af polyisocyanat til at reagere fuldstændigt med polyolens hydroxygrupper.An amine polyol is prepared by propoxylating 1.0 mol of ethylenediamine with 8.0 mol of propylene oxide. A solution having a solids content of 50% of the amine polyol is prepared. v 5 By dissolving the polyol in a mixture of solvent 30% isophorone, 16.5% of an aromatic solvent and 3.5% ✓ petroleum. This solution is referred to as "Part I". A polymeric isocyanate solution containing 75% solids, based on Mond "Mondur" MRI commercially available from Mobay, is prepared using an aromatic solvent, "Texaco 7545" (19%) and petroleum (6%). The isocyanate solution is designated "Part II". An almost stoichiometric amount of polyisocyanate is used to react completely with the hydroxy groups of the polyol.

15 "Wedron" 5010-sand (vasket og tørret finkornet kvartssand, AFSGFN 66) anbringes i et egnet blandeapparat. "Del I" blandes med sandet, indtil der fås et ensartet overtræk. "Del II" sættes til det overtrukne sand og blandes, indtil der er fremstillet en homogen sandblanding. Der anvendes i alt 1¾% 20 bindemiddel (lige store dele "del I" og "del II"), beregnet på sandvægten.15 "Wedron" 5010 sand (washed and dried fine-grained quartz sand, AFSGFN 66) is placed in a suitable mixer. "Part I" is mixed with the sand until a uniform coating is obtained. "Part II" is added to the coated sand and mixed until a homogeneous sand mixture is prepared. A total of 1¾% 20 binder is used (equal parts "part I" and "part II"), based on the sand weight.

Blandingen af sand, polyol og polyisocyanat blæses i en konventionel kemehulhed eller box til fremstilling af standardtræks tyrkeprøvekerner, der kendes som "kødben". Kødbens-25 testkerneme hærdes ved at eksponere kernerne for en tertiær aminkatalysator, trimethylamin. Kernerne eksponeres for aminkatalysatoren i ca. 10 sekunder (gasningstid) og lades -forblive i kerneboxen i 5 minutter (hviletid), før kernen fjernes fra boxen. Trækstyrkerne er ca. 0,55 x 106 N/m2 30 15 minutter efter gasningen og ca. 0,93 x 106 N/m6 efter ^ 24 timer.The blend of sand, polyol and polyisocyanate is blown into a conventional core cavity or box to produce standard feature turkey core samples known as "meat bones". The bone marrow test cores are cured by exposing the cores to a tertiary amine catalyst, trimethylamine. The nuclei are exposed to the amine catalyst for approx. 10 seconds (gassing time) and allow to remain in the core box for 5 minutes (rest time) before removing the core from the box. The tensile strengths are approx. 0.55 x 106 N / m2 30 minutes after gassing and approx. 0.93 x 106 N / m6 after ^ 24 hours.

Kødbenkerneme anvendes til udrystningsundersøgelser med aluminiumstøbeemner. Syv trækstyrkeprøver (kødben) anbringes i en form. Formen tilsluttes et indløbssystem. Formen er 3- DK 170551 B1 23 beregnet til fremstilling af hule støbeemner med en metaltykkelse på ca. 6,35 mm på alle sider. Støbeemnet er i den ene ende forsynet med en åbning til fjernelse af kernen fra støbeemnet. Smeltet aluminium ved ca. 705°C fremstillet ud 5 fra aluminiumbarrer hældes i formen. Efter afkøling i ca.The meat countertops are used for shredding studies with aluminum castings. Seven tensile strength tests (meat bones) are placed in a mold. The mold is connected to an inlet system. The mold is 3- DK 170551 B1 23 intended for the manufacture of hollow castings with a metal thickness of approx. 6.35 mm on all sides. The molding is provided at one end with an opening for removing the core from the molding. Melted aluminum at approx. 705 ° C made out of 5 from aluminum bars is poured into the mold. After cooling for approx.

1 time brydes aluminiumstøbeemnerne fra indløbssystemet og fjernes fra formen til udrystningsundersøgelse.For 1 hour, the aluminum moldings are broken from the inlet system and removed from the mold for shaking examination.

Udrystningsundersøgelser udføres ved at anbringe et støbeemne i en beholder med et rumfang på ca. 3,8 liter. Beholderen 10 anbringes på en rystemekanisme og rystes i 2 minutter. Vægten af den sandkerne, der fjernes fra støbeemnet på denne måde, sammenlignes med sandkernens initialvægt, og den procentvise udrystning beregnes. Sand, der forbliver i støbeemnet efter rystningen som beskrevet ovenfor, fjernes ved skrabning og 15 vejes også. Sandkernen bundet med det ovenfor beskrevne aminpolyol-polyisocyanat-bindemiddel smuldrer og flyder ud af aluminiumstøbeemnet uden anvendelse af rystemekanisme og uden tilførsel af nogen ydre mekanisk energi. Udrysteligheden er 100%.Shaking tests are carried out by placing a molding blank in a container with a volume of approx. 3.8 liters. The container 10 is placed on a shaking mechanism and shaken for 2 minutes. The weight of the sand core removed from the cast in this way is compared to the initial weight of the sand core and the percentage shaking is calculated. Sand remaining in the mold after shaking as described above is removed by scraping and also weighed. The sand core bonded with the above-described amine polyol-polyisocyanate binder crumbles and flows out of the aluminum mold without the use of a ratchet mechanism and without the application of any external mechanical energy. The outbreak is 100%.

20 Eksempel 16. (Sammenligningseksempel)Example 16. (Comparative Example)

En opløsning med 58,5% faststofindhold af phenolisk polyol, Φ der er kommercielt tilgængelig som "PEP" -harpiks, fremstilles ved at opløse polyolen i "HISOL"® 10. Denne opløsning benævnes "del I". En polymer isocyanatopløsning med et fast-25 stofindhold på 75%, baseret på "Mondur"® MR, som er kommercielt tilgængelig fra Mobay, fremstilles under anvendelse af en opløsningsmiddelblanding bestående af 19 "Texaco 7545", et aromatisk opløsningsmiddel, og 6% petroleum. Isocyanat-opløsningen betegnes "del II". Der anvendes en næsten støk-30 iometrisk mængde polyisocyanat til at reagere fuldstændigt med polyolens hydroxygrupper.A solution with 58.5% solids content of phenolic polyol Φ commercially available as "PEP" resin is prepared by dissolving the polyol in "HISOL" ® 10. This solution is referred to as "Part I". A polymeric isocyanate solution having a solids content of 75%, based on "Mondur" ® MR, commercially available from Mobay, is prepared using a solvent mixture consisting of 19 "Texaco 7545", an aromatic solvent, and 6% petroleum. . The isocyanate solution is designated "Part II". An almost stoichiometric amount of polyisocyanate is used to react completely with the hydroxy groups of the polyol.

"Wedron" 5010-sand (vasket og tørret finkornet sand, AFSGEN 66) anbringes i et egnet blandeapparat. "Del I" blandes med sandet, indtil der fås et ensartet overtræk. "Del II" sættes DK 170551 B1 24 til det overtrukne sand og blandes, indtil der fås en homogen sandblanding. Der anvendes i alt 1,8% bindemiddel (lige store mængder "del I" og "del II"), baseret på sandvægten."Wedron" 5010 sand (washed and dried fine-grained sand, AFSGEN 66) is placed in a suitable mixer. "Part I" is mixed with the sand until a uniform coating is obtained. "Part II" is added DK 170551 B1 24 to the coated sand and mixed until a homogeneous sand mixture is obtained. A total of 1.8% binder is used (equal amounts of "Part I" and "Part II"), based on the sand weight.

Blandingen af sand, polyol og polyisocyanat blæses ind i en 3 5 konventionel kernehulhed eller box til fremstilling af stan- dardtrækstyrkeprøvekerner, der kendes som "kødben". Kødben- 9 testkernerne hærdes ved at eksponere kernerne for en tertiær aminkatalysator. Aminkatalysatoren, dimethylethylamin, suspenderes i carbondioxid, en inert bæregas. Kernerne eks-10 poneres for aminkatalysatoren i ca. 1 sekund (gasningstid) og tages straks ud af kerneboxen. Trækstyrkerne i 1 minut efter udtagelsen fra boxen ca. 1,25 x 106 N/m6, efter 4 timer ca.The mixture of sand, polyol and polyisocyanate is blown into a conventional core cavity or box to produce standard tensile strength test cores known as "meat bone". The meat bone test cores are cured by exposing the cores to a tertiary amine catalyst. The amine catalyst, dimethylethylamine, is suspended in carbon dioxide, an inert carrier gas. The nuclei are exposed to the amine catalyst for approx. 1 second (gassing time) and immediately removed from the core box. The tensile forces for 1 minute after removal from the box approx. 1.25 x 106 N / m6, after 4 hours approx.

1,55 x 106 N/m2 og efter 20 timer ca. 2,05 x 106 N/m2.1.55 x 106 N / m2 and after 20 hours approx. 2.05 x 106 N / m2.

Kødbenskernerne anvendes til udrystningsundersøgelser ved 15 aluminiumstøbeemner. Syv trækstyrkeprøver (kødben) anbringes i en form. Formen tilsluttes et indløbssystem. Formen er udformet til fremstilling af hule støbeemner med en metal-tykkelse på ca. 3,5 mm på alle sider. Støbeemnet er i den ene ende forsynet med en åbning til fjernelse af kernen derfra.The meat bone cores are used for shaking tests on 15 aluminum castings. Seven tensile strength tests (meat bones) are placed in a mold. The mold is connected to an inlet system. The mold is designed to produce hollow castings having a metal thickness of approx. 3.5 mm on all sides. The molding is provided at one end with an opening for removing the core therefrom.

20 Smeltet aluminium med en temperatur på ca. 705°C fremstillet ud fra aluminiumbarrer hældes i formen. Efter afkøling i ca.Melted aluminum with a temperature of approx. 705 ° C made from aluminum bars is poured into the mold. After cooling for approx.

1 time brydes aluminiumstøbeemnerne fra indløbssystemet og fjernes fra formen til udrystningsundersøgelse.For 1 hour, the aluminum moldings are broken from the inlet system and removed from the mold for shaking examination.

Udrystningsundersøgelsen udføres ved at anbringe et støbeemne 25 i en beholder med et rumfang på ca. 3,8 liter. Beholderen anbringes på en rystemekanisme og rystes i 2 minutter. Vægten af den sandkerne, der fjernes fra støbeemnet på denne måde, sammenlignes med sandkernens initialvægt, og udrystningen beregnes i procent. Det sand, der forbliver i støbeemnet 30 efter rystningen som beskrevet ovenfor, fjernes ved skrabning * og vejes også. Sandkernen bundet med det ovenfor beskrevne phenolharpiks-polyisocyanat-bindemiddel rystes ikke ud efter a rystningen. Udrysteligheden er 0%. Ved en sammenligning af dette eksempel med de foregående eksempler ses den fordel, 35 der opnås ved udrystningen, ved at anvende en aminpolyol i et DK 170551 B1 25 cold-box-system i forhold til andre polyoler anvendt i et cold-box-system, når der støbes ved lave temperaturer.The shaking test is carried out by placing a casting blank 25 in a container with a volume of approx. 3.8 liters. The container is placed on a shaking mechanism and shaken for 2 minutes. The weight of the sand core removed from the cast in this way is compared to the initial weight of the sand core and the shaking is calculated as a percentage. The sand remaining in mold 30 after shaking as described above is removed by scraping * and also weighed. The sand core bonded with the above-described phenolic resin polyisocyanate binder is not shaken out after the shaking. The outbreak is 0%. By comparing this example with the previous examples, the advantage gained from the shaking is seen by using an amine polyol in a cold-box system compared to other polyols used in a cold-box system, when casting at low temperatures.

Claims (2)

1. Fremgangsmåde til støbning af letvægtsmetalgenstande, hvilke metalgenstande formes under anvendelse af ikke-varme-hærdede urethanbindemiddelholdige støbegenstande, hvilke i 5 støbegenstande smuldrer efter støbningen af metalgenstandene, kendetegnet ved, at man J ψ (a) danner en støbeblanding ved på et aggregat at påføre en ikke-varmehærdende binderkomposition i en bindende mængde på op til 10%, baseret på vægten af aggregatet, 10 hvorhos kompositionen indeholder en blanding af en polyolbestanddel omfattende en aminpolyol; en flydende polyisocyanatbestanddel; og en katalysator for dannelse af urethan, (b) former støbeblandingen til den ønskede støbegenstand, 15 (c) lader blandingen hærde efter at den ønskede støbe genstand er blevet formet, (d) opvarmer letvægtsmetallet, indtil det smelter og er støbeligt, (e) støber letvægtsmetallet under anvendelse af den 20 formede støbegenstand, (f) lader det støbte metal størkne, og (g) bringer støbegenstanden til at smuldre og fjerner den smuldrede støbegenstand fra den støbte letvægtsmetalgenstand. ft 25A method of casting lightweight metal articles which are formed using non-heat cured urethane binder containing moldings which crumble in 5 castings after casting the metal articles, characterized in that J ψ (a) forms a casting applying a non-thermosetting binder composition in a binding amount of up to 10%, based on the weight of the aggregate, 10 wherein the composition contains a mixture of a polyol component comprising an amine polyol; a liquid polyisocyanate component; and a catalyst for urethane formation, (b) forming the molding mixture to the desired molding article, (c) letting the mixture cure after the desired molding article has been formed, (d) heating the lightweight metal until it melts and castable, (e) ) molds the lightweight metal using the molded molding article, (f) solidifies the cast metal, and (g) causes the molding article to crumble and removes the crumbed molding article from the molded lightweight metal article. ft 25 2. Fremgangsmåde ifølge krav 1, kendetegnet ved, at aminpolyolen omfatter en aromatisk aminpolyol.Process according to claim 1, characterized in that the amine polyol comprises an aromatic amine polyol.
DK240879A 1978-06-14 1979-06-08 Method of casting lightweight metal objects DK170551B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US91563078A 1978-06-14 1978-06-14
US91541378A 1978-06-14 1978-06-14
US91541378 1978-06-14
US91563078 1978-06-14

Publications (2)

Publication Number Publication Date
DK240879A DK240879A (en) 1979-12-15
DK170551B1 true DK170551B1 (en) 1995-10-23

Family

ID=27129668

Family Applications (1)

Application Number Title Priority Date Filing Date
DK240879A DK170551B1 (en) 1978-06-14 1979-06-08 Method of casting lightweight metal objects

Country Status (6)

Country Link
CH (1) CH647965A5 (en)
DE (1) DE2923131C2 (en)
DK (1) DK170551B1 (en)
GB (1) GB2024232B (en)
NO (1) NO155997C (en)
SE (1) SE446098C (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2088886B (en) * 1980-10-06 1984-07-18 Mitsubishi Petrochemical Co Binder composition for foundry molds or cores
DE10318740A1 (en) * 2003-04-25 2004-11-11 Bayer Materialscience Ag Polyurethane formulations and their use
US7416785B2 (en) * 2004-05-26 2008-08-26 Basf Corporation Polyurethane-encapsulated particle comprising polyol derived from aromatic amine-based initiator
DE102009024182B3 (en) * 2009-06-08 2011-03-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Forming and removing mold or core during casting, e.g. of filigree structures, by forming mold or core containing hollow particles, to be collapsed under pressure after casting
EP2734320B1 (en) * 2011-07-19 2016-11-16 Ask Chemicals L. P. Method for curing cold-box foundry shape with gaseous catalyst

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3485797A (en) * 1966-03-14 1969-12-23 Ashland Oil Inc Phenolic resins containing benzylic ether linkages and unsubstituted para positions
US3429848A (en) * 1966-08-01 1969-02-25 Ashland Oil Inc Foundry binder composition comprising benzylic ether resin,polyisocyanate,and tertiary amine
US3645942A (en) * 1970-04-29 1972-02-29 Quaker Oats Co Foundry process using a propoxylated toluene diamine as an extender with a castor oil-aromatic diisocyanate prepolymer
US3676392A (en) * 1971-01-26 1972-07-11 Ashland Oil Inc Resin compositions
US3933727A (en) * 1972-09-26 1976-01-20 Ab Bofors Method of producing polyurethane-based cores and moulds according to the so-called cold-box procedure
JPS5480234A (en) * 1977-12-09 1979-06-26 Nissan Motor Resin composition for binding cast sand particles

Also Published As

Publication number Publication date
DE2923131A1 (en) 1980-01-03
GB2024232B (en) 1983-01-19
CH647965A5 (en) 1985-02-28
GB2024232A (en) 1980-01-09
NO791925L (en) 1979-12-17
NO155997C (en) 1987-07-08
DE2923131C2 (en) 1985-05-23
SE7905016L (en) 1979-12-15
SE446098B (en) 1986-08-11
NO155997B (en) 1987-03-30
SE446098C (en) 1987-10-20
DK240879A (en) 1979-12-15

Similar Documents

Publication Publication Date Title
KR830001610B1 (en) Dendritic binder made of a mixture of polyol and isocyanato urethane polymer
CA1251597A (en) Polyurethane binder compositions
EP2486071B1 (en) Lignite-based urethane resins with enhanced suspension properties and foundry sand binder performance
KR20100092953A (en) Bio-based binder system
FI90020C (en) Gjuteriharts
WO2011044003A2 (en) Lignite-urethane based resins for enhanced foundry sand performance
US4698377A (en) Binder compositions containing phenolic resins and esters of alkoxy acids
DK170551B1 (en) Method of casting lightweight metal objects
EP2485860B1 (en) Lignite-based urethane resins with enhanced suspension properties and foundry sand binder performance
US4448907A (en) Process for casting lightweight metals
US20180065170A1 (en) Three component polyurethane binder system
US4370463A (en) Process for no-bake foundry application utilizing polyurethanes based on amine polyols
US3941743A (en) Cast metal appearing metal filled resin compositions
CA1134989A (en) Cold hardening binder for material mixtures for the production of casting moulds and cores
JPS643586B2 (en)
US3839265A (en) Polymeric composition and method
TW200418926A (en) Reactive amine catalysts for use in PUCB foundry binder
US9738749B2 (en) Polyurethane casting compound for producing wear protection coatings in casting house applications
US7119131B2 (en) Urethane binder compositions for foundry applications
KR840000172B1 (en) Process for no-bake foundry application utilizing polyure-thanes based on amine polyols
WO2005009647A2 (en) Stabilized phenolic resole resin compositions and their use
US6387983B1 (en) Foundry mixes containing an aliphatic mercaptan
WO2002047462A2 (en) Foundry binder systems which contain a silane-modified polyisocyanate
NO176700B (en) Molding core or mold, and method of making such molding mold or mold
JPH04279240A (en) Manufacture of mold

Legal Events

Date Code Title Description
B1 Patent granted (law 1993)
PBP Patent lapsed