DK167901B1 - Compositions for treating mammalian infections, which compositions comprise Hymenoptera venom, proteinaceous components or polypeptide components of such venom, or analogues of these proteinaceous components or polypeptide components, and a unit dose which comprises such a composition - Google Patents

Compositions for treating mammalian infections, which compositions comprise Hymenoptera venom, proteinaceous components or polypeptide components of such venom, or analogues of these proteinaceous components or polypeptide components, and a unit dose which comprises such a composition Download PDF

Info

Publication number
DK167901B1
DK167901B1 DK293790A DK293790A DK167901B1 DK 167901 B1 DK167901 B1 DK 167901B1 DK 293790 A DK293790 A DK 293790A DK 293790 A DK293790 A DK 293790A DK 167901 B1 DK167901 B1 DK 167901B1
Authority
DK
Denmark
Prior art keywords
hbv
melittin
venom
polymyxin
antibiotic
Prior art date
Application number
DK293790A
Other languages
Danish (da)
Other versions
DK293790D0 (en
DK293790A (en
Inventor
Allen W Benton
Lorraine M Mulfinger
Henning Loewenstein
Original Assignee
Vespa Lab Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US1989/001643 external-priority patent/WO1990011766A1/en
Application filed by Vespa Lab Inc filed Critical Vespa Lab Inc
Publication of DK293790D0 publication Critical patent/DK293790D0/en
Publication of DK293790A publication Critical patent/DK293790A/en
Application granted granted Critical
Publication of DK167901B1 publication Critical patent/DK167901B1/en

Links

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Description

i DK 167901 B1in DK 167901 B1

Opfindelsen angår en sammensætning til behandling af en infektion i et pattedyr, hvilken sammensætning omfatter et første antibiotisk middel besiddende aktivitet mod infektionen og et andet middel, som er mindst en Hymenoptera-gift, eller mindst en aktiv proteinkompo-5 nent af en Hymenoptera-gift, eller mindst en polypeptidkomponent af en Hymenoptera-gift, eller mindst en analog eller kemisk modificeret derivat af en aktiv proteinkomponent af Hymenoptera-gift, eller mindst en analog eller kemisk modificeret derivat af en polypeptidkomponent af Hymenoptera-gift eller blandinger heraf, hvor det andet 10 middel er biuretpositivt, og hvor andelene af det første antibiotiske middel og det andet middel er således, at det andet middel forstærker aktiviteten af det første antibiotiske middel.The invention relates to a composition for treating an infection in a mammal, comprising a first antibiotic-possessing activity against the infection and a second agent which is at least one Hymenoptera venom, or at least one active protein component of a Hymenoptera venom. , or at least one polypeptide component of a Hymenoptera venom, or at least one analog or chemically modified derivative of an active protein component of Hymenoptera venom, or at least one analog or chemically modified derivative of a polypeptide component of Hymenoptera venom or mixtures thereof, the other 10 agent is biuret positive and the proportions of the first antibiotic and second agent are such that the second agent enhances the activity of the first antibiotic.

Opfindelsen angår også en enhedsdosis til behandling af en infektion 15 i et pattedyr, hvilken enhedsdosis omfatter en effektiv dosis af et medikament omfattende et antibiotisk middel med aktivitet mod infektionen og et andet middel udvalgt fra gruppen bestående af mindst et Hymenoptera-gift, mindst en aktiv proteinkomponent fra en Hymenoptera-gift, mindst en polypeptidkomponent fra en Hymenoptera-20 gift, mindst en analog eller kemisk modificeret derivat af en aktiv proteinkomponent fra Hymenoptera-gift, mindst en analog eller kemisk modificeret derivat af en polypeptidkomponent fra Hymenoptera-gift, og blandinger heraf, hvor det andet middel er bioretpositivt, og hvor andelene af det antibiotiske middel og det andet middel er 25 således, at det forstærker aktiviteten af det antibiotiske middel.The invention also relates to a unit dose for treating an infection in a mammal, which unit dose comprises an effective dose of a drug comprising an antibiotic with activity against the infection and another agent selected from the group consisting of at least one Hymenoptera poison, at least one active agent. protein component of a Hymenoptera venom, at least one polypeptide component of a Hymenoptera venom, at least one analog or chemically modified derivative of an active Hymenoptera venom protein component, at least one analog or chemically modified derivative of a Hymenoptera venom polypeptide component, and mixtures thereof, wherein the second agent is bioretpositive and the proportions of the antibiotic and the second agent are such that it enhances the activity of the antibiotic.

Identiteten af antibakterielle, antivirale og antikarcinogene midler, og navnlig antibiotiske midler samt aktiviteterne og terapeutiske anvendelser af disse materialer er velkendt. De sekundære 30 midler, der benyttes i forbindelse med opfindelsen ved forstærkning af aktiviteten af disse primære anti-infektiøse midler, er også i sig selv kendt, og er i nogle tilfælde blevet anvendt i medicin, men deres evne til at forstærke aktiviteten af antibakterielle, antivirale og antikarcinogene midler og navnlig antibiotiske midler har 35 ikke tidligere været kendt. Nogle af de sekundære midler, der benyttes ved opfindelsen opnås primært fra giften fra arter fra ordenen hymenoptera, som omfatter, uden at være begrænsende og kun som et eksempel, honningbier, humlebier, hvepse, gedehamse (eng.: "bald faced hornets"), stikmyrer og lign.The identity of antibacterial, antiviral and anticarcinogenic agents, and in particular antibiotic agents, as well as the activities and therapeutic uses of these materials are well known. The secondary agents used in the invention in enhancing the activity of these primary anti-infectious agents are also known per se, and have been used in medicine in some cases, but their ability to enhance the activity of antibacterial agents. antiviral and anticarcinogenic agents and in particular antibiotic agents have not been previously known. Some of the secondary agents used in the invention are obtained primarily from the venom of species of the order hymenoptera, which include, without limitation, and by way of example only, honeybees, bumblebees, wasps, goats, bald faced hornets , ants and the like.

DK 167901 B1 2DK 167901 B1 2

Det har vist sig, at hymenopteragift, isolerede aktive proteinagtige komponenter eller polypeptidkomponenter fra sådanne gifte og analoger til disse proteinagtige komponenter eller polypeptidkomponenter forstærker eller fremmmer aktiviteten af antibakterialle, antivirale 5 og anti kræftmidl er, og navnlig antibiotiske midler.It has been found that hymenopteran agents, isolated active proteinaceous components or polypeptide components from such poisons and analogues to these proteinaceous components or polypeptide components enhance or promote the activity of antibacterial, antiviral and anti-cancer agents, and in particular antibiotic agents.

Den foreliggende opfindelse er fremkommet på basis af det arbejde, der er beskrevet i en afhandling inden for veterinærvidenskaben af Lorraine Smith Mulfinger med benævnelsen "Synergi sti sk aktivitet af 10 honningbigift med antibiotika", som skal indleveres til the Graduate School Department of Veterinay Science, Pennsylvaina State University. Hele indholdet i den afhandling gøres hermed til en del af den foreliggende beskrivelse med denne henvisning. Henvisninger nedenfor til tidligere arbejde af andre er blevet forkortet heri, idet hele 15 referencer er anført i litteraturfortegnelsen til Mulfingers afhandling og ved slutningen af denne beskrivelse.The present invention is made on the basis of the work described in a dissertation in veterinary science by Lorraine Smith Mulfinger entitled "Synergistic activity of 10 honey bee antibiotics" to be submitted to the Graduate School Department of Veterinay Science, Pennsylvaina State University. The entire content of the thesis is hereby made part of the present description with this reference. References below to previous work by others have been abbreviated herein, with as many as 15 references cited in the literature record for Mulfinger's dissertation and at the end of this description.

Baggrund oq kendt teknik 20' Anvendelse af anti-bakterielle, antivirale, karcinostatiske og anti-karcinogene forbindelser er, selvom det er meget kendt inden for fagområdet, stadig genstand for omfattende, fortsat forskning, hvoraf en del udover opdagelsen af nye midler er rettet mod opdagelse af midler til forbedring af aktiviteten af kendte, aktive 25 midler.BACKGROUND AND PRIOR ART 20 The use of anti-bacterial, antiviral, carcinostatic and anti-carcinogenic compounds is, although well known in the art, still subject to extensive, ongoing research, some of which, in addition to the discovery of new agents, is aimed at discovery of agents for improving the activity of known active agents.

Faktisk er visse forbindelser afledt fra bigift blevet undersøgt og har vist sig at være anvendelige til visse specifikke farmakologiske anvendelser. For eksempel beskrives der i US patent nr. 4.444.753 30 udstedt 24. april 1984 en sammensætning omfattende en komponent opnået ved deproteinisering af et ekstrakt fra indholdet i biers giftsæk. Dette produkt har en immunstimulerende aktivitet, en karcinostatisk aktivitet, en virkning på forbedring af den antibak-terielle aktivitet af en antibakteriel forbindelse og en virkning 35 til forbedring af en karcinostatisk forbindelses karcinostatiske aktivitet. Opfindelsen beskrevet i nævnte patent er rettet mod karcinostatiske, immunstimulerende og antibakterialle midler omfattende den beskrevne sammensætning. Selvom opfindelsen med hensyn til formål svarer til den foreliggende opfindelse er den forskellig ved DK 167901 B1 3 at biekstraket modificeres ved deproteinisering, således at det er negativt ved biuretreaktionen og sulfosalicylsyrereaktionen.In fact, certain compounds derived from bigift have been investigated and have been found to be useful for certain specific pharmacological applications. For example, U.S. Patent No. 4,444,753 issued April 24, 1984, discloses a composition comprising a component obtained by deproteinizing an extract from the contents of the bee's poison bag. This product has an immunostimulatory activity, a carcinostatic activity, an effect on enhancing the antibacterial activity of an antibacterial compound, and an effect on enhancing the carcinostatic activity of a carcinostatic compound. The invention disclosed in said patent is directed to carcinostatic, immunostimulatory and antibacterial agents comprising the composition described. Although the invention is similar in purpose to the present invention, it is different from DK 167901 B1 3 that the beech extract is modified by deproteinization so that it is negative in the biuret reaction and the sulfosalicylic acid reaction.

I beskrivelsen til US patent nr. 4.370.316 udstedt den 25. januar 5 1983 til samme opfindere som ovennævnte patent beskrives også en fremgangsmåde til behandl i g af et værtsdyr med mindsket immunitet ved indgivelse af en effektiv mængde af det deproteiniserede ekstrakt fra biens giftsæk.Also, the disclosure of U.S. Patent No. 4,370,316 issued January 25, 1983 to the same inventors as the above patent discloses a method of treating a host animal with diminished immunity by administering an effective amount of the deproteinized extract from the bee's poison bag.

10 Selvom antibakterielle, antivirale og antikarcinogene forbindelser er velkendte og det også er kendt, at et deproteini seret ekstrakt fra en bi's giftsæk har visse anvendelige aktiviteter, herunder antibakteriel aktivitet, aktivitet med hensyn til stimulering af antibakteriel aktivitet og immunstimulerende aktivitet har det ikke 15 tidligere været kendt, at proteinagtige hymenopteragifte, protein-agtige ekstrakter eller polypeptidekstrakter deraf og analoger til sådanne proteinagtige komponenter eller polypeptidkomponenter har en forstærkende virkning på faktisk alle antibakterialle, antivirale, karcinostatiske og antikarcinogene midler. En sådan forstærkning af 20 aktiviteten af sådanne primære antiinfektiøse midler øger ikke kun virkningen af doser af sådanne midler, som ville være effektive alene, men kan også gøre lave doser af sådanne midler, som vil være ineffektive, hvis de anvendes alene, effektive.Although antibacterial, antiviral and anticarcinogenic compounds are well known and it is also known that a deprotected extract from a bee's sachet has certain useful activities, including antibacterial activity, anti-bacterial activity and immunostimulatory activity, it has not previously It has been known that proteinaceous hymenopteran agents, proteinaceous extracts or polypeptide extracts thereof and analogues to such proteinaceous components or polypeptide components have an enhancing effect on virtually all antibacterial, antiviral, carcinostatic and anticarcinogenic agents. Such enhancement of the activity of such primary anti-infectious agents not only enhances the efficacy of doses of such agents which would be effective alone, but may also render low doses of such agents which would be ineffective if used alone.

25 Som anført ovenfor kan hymenopteragift, proteinkomponenter eller polypeptidkomponenter og analoger til sådanne proteinagtige komponenter eller polypeptidkomponenter generelt forstærke aktiviteten af antiinfektiøse terapeutiske midler. For at forenkle beskrivelsen af opfindelsen vil der med henblik på illustrering imidlertid blive 30 beskrevet anvendelse af honningbigift eller dets proteinagtige ekstrakt melittin i sammensætningen til forstærkning af aktiviteten af antibiotika til styring af bakterielle, virale og kræftinfektioner. Honningbigift (HBV) er blevet udvalgt, idet den er let opnåelig. Det skal imidlertid forstås, at gift fra andre hymenoptera-ar-35 ter og proteinkomponenten eller polypeptidkomponenter heraf, såvel som analoger hertil, også i varierende grad er effektiv i forbindelse med opfindelsen. Endvidere kan der benyttes andre antiinfektiøse midler end antibiotika i forbindelse med opfindelsen til behandling af infektioner, hvortil de tidligere er blevet anvendt, men med DK 167901 B1 4 forbedret virkning, når de anvendes i kombination med de proteinag-tige hymenopteramidler.As noted above, hymenopteran agents, protein components or polypeptide components and analogs to such proteinaceous components or polypeptide components can generally enhance the activity of anti-infectious therapeutics. However, to simplify the description of the invention, for purposes of illustration, the use of honey bee venom or its proteinaceous extract melittin in the composition will be described to enhance the activity of antibiotics to control bacterial, viral and cancer infections. Honey bee venom (HBV) has been selected as it is easily obtainable. However, it should be understood that venom from other hymenoptera species and the protein component or polypeptide components thereof, as well as analogues thereof, are also to varying degrees effective in the invention. Furthermore, anti-infectious agents other than antibiotics may be used in connection with the invention for the treatment of infections to which they have been previously used, but with improved efficacy when used in combination with the protein-aggravated hymenopteran agents.

Det skal som yderligere baggrund bemærkes, at honningbigift har æren 5 for flere anvendelige aktiviteter. Nogle af aktiviteterne er videnskabeligt dokumenteret, mens andre viser sig at være baseret på emperiske resultater og sagn. Den antibakterielle in vitro aktivitet af honningbigift er vel dokumenteret (Schmidt-Lange, 1951; Ortel og Markwardt, 1955; Fennel et alia, 1968), men der er imidlertid gjort 10 få forsøg på at udnytte denne aktivitet i praksis. Ifølge den foreliggende opfindelse antyder resultater fra flere emperiske forsøg, at den antibakteriel le aktivitet af honningbigift kan have en signifikant virkning in vivo i nærvær af antibiotika. På basis af disse opdagelser er der blevet udformet en undersøgelse for at 15 undersøge vekselvirkningerne mellem honningbigift og antibiotika under anvendelse af en in vitro analyse, hvor de to forbindelser kan vurderes uden værtsdyrets naturlige immunreaktioners bidragende virkning.As a further background it should be noted that honey bee has the honor 5 for several useful activities. Some of the activities are scientifically documented, while others appear to be based on empirical results and legends. The antibacterial in vitro activity of honey bee venom is well documented (Schmidt-Lange, 1951; Ortel and Markwardt, 1955; Fennel et alia, 1968), however, 10 few attempts have been made to utilize this activity in practice. According to the present invention, results from several empirical studies suggest that the antibacterial activity of honey bee venom may have a significant effect in vivo in the presence of antibiotics. Based on these findings, a study has been designed to investigate the interactions between honey bee venom and antibiotics using an in vitro assay, where the two compounds can be assessed without the contributing effect of the host's natural immune responses.

20 Ved denne undersøgelse blev tre bakteriestammer indledningsvist afprøvet mod tre forskellige antibiotika under anvendelse af særskilte "skakbræt" titreringer af honningbigift med hvert antibiotika. Repræsentanter fra hver af de tre vigtigste grupper af antibiotika (penicilliner, aminoglycosider og polymyxiner) blev udvalgt og 25 analyseret for at bestemme om honningbigift kunne forbedre den antibakterielle virkning af udvalgte antibiotika. Som beskrevet nedenfor blev et antibiotika fra en fjerde vigtig gruppe undersøgt senere.20 In this study, three bacterial strains were initially tested against three different antibiotics using separate "chessboard" titrations of honey bee venom with each antibiotic. Representatives from each of the three main groups of antibiotics (penicillins, aminoglycosides and polymyxins) were selected and analyzed to determine whether honey bee venom could enhance the antibacterial effect of selected antibiotics. As described below, an antibiotic from a fourth important group was examined later.

30 Når der var blevet demonstreret synergi ved "skakbræt"-analysen, blev det forsøgt at lave en bredere oversigt under anvendelse af en forenklet procedure. To automatiserede minimalhæmningskoncentrations (MlC)-analyseplader, der titrerer følsomheden mod elleve antibiotika samtidig, blev inokuleret parallelt med bakteriekulturer med og uden 35 ikke-hæmmende doser af honningbigift (HBV). Otte grampositive og fire gramnegative organismer blev afprøvet under anvendelse af dette system for at finde klasser af antibiotika, der rutinemæssigt frembringer synergi med HBV, og for at bestemme spekteret for den synergistiske virkning af disse kombinationer blandt forskellige DK 167901 B1 5 grupper af bakterier.30 When synergy was demonstrated by the "chessboard" analysis, a broader overview was attempted using a simplified procedure. Two automated minimal inhibitory concentration (MlC) assay plates titrating the sensitivity to eleven antibiotics simultaneously were inoculated in parallel with bacterial cultures with and without 35 non-inhibitory doses of honey bee venom (HBV). Eight gram positive and four gram negative organisms were tested using this system to find classes of antibiotics that routinely produce synergy with HBV and to determine the spectrum of synergistic effect of these combinations among different groups of bacteria.

Udover afprøvning af hel honningbigift, blev giften fraktioneret ved størrelseseksklusionkromatografi. Hver af fire fraktioner blev 5 afprøvet for at bestemme om en specifik komponent var ansvarlig for antibakteriel aktivitet og også kunne virke synergistisk ved ant i -bakterielle analyser. Det viste sig, at fraktionen indeholdende melittin, som tidligere er blevet identifiseret som det antibakte-rielle element i honningbigift (Fenne! et al., 1968), er aktiv i 10 dens oprensede form og vil virke synergistisk i et omfang svarende til hel honningbigift.In addition to testing for whole honey bee venom, the venom was fractionated by size exclusion chromatography. Each of four fractions was tested to determine if a specific component was responsible for antibacterial activity and could also act synergistically in ant in-bacterial assays. It was found that the fraction containing melittin, previously identified as the antibacterial element of honey bee venom (Fenne! Et al., 1968), is active in its purified form and will act synergistically to an extent equivalent to whole honey bee venom. .

Endvidere blev aktiviteten af forskellige analoger til de aktive komponenter af hymenopteragifte bestemt og sammenlignet med melit-15 tins.Furthermore, the activity of various analogs to the active components of hymenoptera poison was determined and compared to melitin tins.

Kort beskrivelse af tegningenBrief description of the drawing

Figur 1 viser et diagram over mel i tti ns aminosyresekvens.Figure 1 shows a diagram of flour in tti n's amino acid sequence.

2020

Figur 2 viser en graf for optisk tæthed mod timer efter inokulering, som viser den antibakterielle aktivitet af honningbigift (HBV) på S. aureus.Figure 2 shows a graph of optical density versus hours after inoculation showing the antibacterial activity of honey bee venom (HBV) on S. aureus.

25 Figur 3 viser en graf for optisk tæthed mod timer efter inokulering for ampiciΠin og HBV versus S. aureus.Figure 3 shows a graph of optical density versus hours after inoculation for ampiciΠin and HBV versus S. aureus.

Figur 4 viser en graf for optisk tæthed mod timer efter inokulering for kanamycin og HBV versus S. aureus.Figure 4 shows a graph of optical density versus hours after inoculation for kanamycin and HBV versus S. aureus.

3030

Figur 5 viser en graf for optisk tæthed mod timer efter inokulering for polymyxin B og HBV versus S. aureus.Figure 5 shows a graph of optical density versus hours after inoculation for polymyxin B and HBV versus S. aureus.

Figur 6 viser en graf for optisk tæthed mod timer efter inokulering 35 for ampicillin og HBV versus E. coli.Figure 6 shows a graph of optical density versus hours after inoculation 35 for ampicillin and HBV versus E. coli.

Figur 7 viser en graf for optisk tæthed mod timer efter inokulering for kanamycin og HBV versus E. coli.Figure 7 shows a graph of optical density versus hours after inoculation for kanamycin and HBV versus E. coli.

DK 167901 B1 6DK 167901 B1 6

Figur 8 viser en graf for optisk tæthed mod timer efter inokulering for kanamycin og HBV versus E. col i.Figure 8 shows a graph of optical density versus hours after inoculation for kanamycin and HBV versus E. col i.

Figur 9 viser en graf for optisk tæthed mod timer efter inokulering 5 for polymyxin B og HBV versus E. col i.Figure 9 shows a graph of optical density versus hours after inoculation 5 for polymyxin B and HBV versus E. col i.

Figur 10 viser en graf for optisk tæthed mod timer efter inokulering for ampici1 lin og HBV versus kanamycinresistent S. aureus.Figure 10 shows a graph of optical density versus hours after inoculation for ampici1 lin and HBV versus kanamycin resistant S. aureus.

10 Figur 11 viser en graf for optisk tæthed mod timer efter inokulering for kanamycin og HBV versus kanamycinresistent S. aureus.Figure 11 shows a graph of optical density versus hours after inoculation for kanamycin and HBV versus kanamycin resistant S. aureus.

Figur 12 viser en graf for optisk tæthed mod timer efter inokulering for polymyxin B og HBV versus kanamycinresistent S. aureus.Figure 12 shows a graph of optical density versus hours after inoculation for polymyxin B and HBV versus kanamycin resistant S. aureus.

1515

Figur 13 viser elektroforese resultaterne fra 100/ig melittinprotein.Figure 13 shows the electrophoresis results of 100 µg melittin protein.

Figur 14 viser en graf for optisk tæthed mod timer efter inokulering, hvilket viser antibakterialle aktiviteter af melittin/HBV 20 versus S. aureus.Figure 14 shows a graph of optical density versus hours after inoculation, showing antibacterial activities of melittin / HBV 20 versus S. aureus.

Figur 15 viser en graf for optisk tæthed mod timer efter inokulering for meelittin/HBV og kanamycin versus S. aureus.Figure 15 shows a graph of optical density versus hours after inoculation for meelittin / HBV and kanamycin versus S. aureus.

25 Figur 16 viser en graf for optisk tæthed mod timer efter inokulering for rifampicin og HBV versus S. aureus.Figure 16 shows a graph of optical density versus hours after inoculation for rifampicin and HBV versus S. aureus.

Figur 17 viser en graf for optisk tæthed mod timer efter inokulering for rifampicin og HBV versus Ps. aeruginosa.Figure 17 shows a graph of optical density versus hours after inoculation for rifampicin and HBV versus Ps. aeruginosa.

3030

Figur 18 viser en graf for optisk tæthed mod timer efter inokulering for polymyxin B og humlebigift versus E. coli.Figure 18 shows a graph of optical density versus hours after inoculation for polymyxin B and hop poison versus E. coli.

Figur 19 viser en graf for optisk tæthed mod timer efter inokulering 35 for polymyxin B og hvepsegift versus E. coli.Figure 19 shows a graph of optical density versus hours after inoculation 35 for polymyxin B and wasp versus E. coli.

Figur 20 viser en graf for optisk tæthed mod timer efter inokulering for polymyxin B og gedehamsegift versus E. coli.Figure 20 shows a graph of optical density versus hours after inoculation for polymyxin B and goat venom versus E. coli.

DK 167901 B1 7DK 167901 B1 7

Figur 21 viser en graf for 1 og1Q bakterier/ml blod mod behandling for en enkelt sepsisbehandlingsmodel (polymyxin B- og melittin vekselvirkninger).Figure 21 shows a graph of 1 and 1Q bacteria / ml blood versus treatment for a single sepsis treatment model (polymyxin B and melittin interactions).

5 Figur 22 viser en graf for log1Q bakterier/ml blod mod behandling for en gentagen sepsisbehandlingsmodel (polymyxin B- og melittin vekselvirkninger).Figure 22 shows a graph of log1Q bacteria / ml of blood versus treatment for a repeated sepsis treatment model (polymyxin B and melittin interactions).

Figur 23 viser en graf for optisk tæthed mod timer efter inokulering 10 for melittin/analog og polymyxin B versus E. coli.Figure 23 shows a graph of optical density versus hours after inoculation 10 for melittin / analogue and polymyxin B versus E. coli.

Figur 24 viser en graf for optisk tæthed mod timer efter inokulering, hvilket viser relative aktiviteter af melittin og analoger hertil.Figure 24 shows a graph of optical density versus hours after inoculation, showing relative activities of melittin and analogs thereof.

1515

Figur 25 viser en graf for optisk tæthed mod timer efter inokulering, hvilket viser relative aktiviteter af melittin og analoger hertil.Figure 25 shows a graph of optical density versus hours after inoculation, showing relative activities of melittin and analogs thereof.

20 Figur 26 viser en graf for optisk tæthed mod timer efter inokulering, hvilket viser relative aktiviteter af melittin og analoger hertil.Figure 26 shows a graph of optical density versus hours after inoculation, showing relative activities of melittin and analogs thereof.

Giftsammensætnina 25The poison composition 25

Gifte er heterogene blandinger af biokemiske forbindelser. De fleste gifte består af mere end 90% protein. Toksiner og enzymer udgør denne proteindel og er årsagen til direkte celleskade. Selvom mange enzymer, såsom phospholipase A2, syrephosphatase og hyaluronidase er 30 almindelige for de fleste gifte, er toksiner og andre biologisk aktive peptider, som er indeholdt i gifte, meget artsspecifikke.Poisons are heterogeneous mixtures of biochemical compounds. Most poisons consist of more than 90% protein. Toxins and enzymes make up this protein component and are the cause of direct cell damage. Although many enzymes such as phospholipase A2, acid phosphatase and hyaluronidase are common to most poisons, toxins and other biologically active peptides contained in poisons are very species specific.

Giftproducerende insekter hører alle til insektordenen Hymenoptera. Ligesom slangegifte er enzymatiske aktiviteter, såsom phospholipase 35 A2, hyaluronidase og sur phosphatase, fælles for alle insektgifte.Poisonous insects all belong to the insect order Hymenoptera. Like snake venom, enzymatic activities such as phospholipase 35 A2, hyaluronidase and acid phosphatase are common to all insect poisons.

Toksin- og peptidkomponenterne varierer imidlertid meget fra art til art (Tu, 1977b).However, the toxin and peptide components vary widely from species to species (Tu, 1977b).

Giften fra italiensk honningbi (Apis mel li fera) er den mest DK 167901 B1 8 omfattende undersøgte insektgift. Den vigtigste komponent i honningbigift er melittin. Dette peptid har en molekylvægt på 2.847 dalton og udgør ca. 50% af giftens tørvægt. Et andet peptid, apamin, er til stede i et omfang på ca. 5% af giften og flere andre peptider 5 er til stede i spormængder (Haberman, 1972).The poison from Italian honey bee (Apis mel li fera) is the most extensively investigated insect venom. The most important component of honey bee venom is melittin. This peptide has a molecular weight of 2,847 daltons and amounts to approx. 50% of the poison's dry weight. Another peptide, apamine, is present to an extent of approx. 5% of the venom and several other peptides 5 are present in trace amounts (Haberman, 1972).

Gifte fra andre hymenoptera indeholder peptider med biologiske egenskaber, som svarer til de for melittin. Eksempler på sådanne peptider er bombolitiner I-V fra humlebien, Megabombus pensvlvani-10 cus, mastoporan fra hvepse, gedehamse og anden hvepseart samt krabolin fra europæiske gedehamse. En fælles egenskab ved disse peptider er deres amfifile natur. Disse peptider er blevet underkastet sekvensanalyse og deres struktur er velkendte (A. Argiolas og J.J. Pisano, 1985).Poisons from other hymenoptera contain peptides with biological properties similar to those of melittin. Examples of such peptides are bumblebees I-V from hops bee, Megabombus pensvilvani cus, mastoporan from wasp, goat ham and other wasp species, and krabolin from European goat ham. A common feature of these peptides is their amphiphilic nature. These peptides have been subjected to sequence analysis and their structure is well known (A. Argiolas and J. J. Pisano, 1985).

1515

Antibakteriel aktivitet af honningbigiftAntibacterial activity of honey bee venom

Den baktericide aktivitet af honningbigift blev først dokumenteret i 1941 af W. Schmidt-Lange (1941). Han afprøvede E. Coli og staphylo-20 cocci og fandt, at begge var følsomme for den antibakterielle aktivitet af honningbigift. Han bemærkede endvidere, at den minimale hæmmende dosis af honningbigift for E. Coli var meget højere end den for staphylococci.The bactericidal activity of honey bees was first documented in 1941 by W. Schmidt-Lange (1941). He tested E. coli and staphylo-20 cocci and found that both were sensitive to the antibacterial activity of honey bee venom. He further noted that the minimal inhibitory dose of honey bee venom for E. coli was much higher than that for staphylococci.

25 Det var først ti år senere, at Brangi og Pavan (1951) vurderede forskellige ekstraktionsprocedurer til isolering af den antibakteri-elle aktivitet fra honningbigift. De fandt, at aktiviteten var til stede i både vand og acetoneekstrakter af giften. De viste også, at aktiviteten var stabil ved opvarmning til op til 100°C i op til 15 30 min.25 It was not until ten years later that Brangi and Pavan (1951) evaluated various extraction procedures to isolate the antibacterial activity from honey bee venom. They found that the activity was present in both water and acetone extracts of the poison. They also showed that the activity was stable by heating up to 100 ° C for up to 15 30 min.

I 1955 offentliggjorde Ortel og Markwardt (1955) resultaterne fra en undersøgelse af variationen i følsomhed blandt forskellige bakterier over for honningbigifts antibakterielle aktivitet. 296 Bakteriestam-35 mer blev afprøvet. Resultaterne viste, at tolerance overfor honningbigift er meget større hos gramnegative organismer end hos grampositive organismer. Områder for baktericide koncentrationer blev beskrevet til at være 12,5 - 25/ig/ml for grampositive bakterier og 1 - 10 mg/ml for gramnegative bakterier. Den baktericide aktivitet DK 167901 B1 9 blev medoprenset sammen med den "direkte hæmolytisk fraktion" af røde blodlegemer. Navnet "melittin" var endnu ikke blevet tildelt den aktive komponent i denne fraktion.In 1955, Ortel and Markwardt (1955) published the results of a study on the variation in sensitivity among various bacteria to the antibacterial activity of honey bees. 296 bacterial strains were tested. The results showed that tolerance to honey bee venom is much greater in gram-negative organisms than in gram-positive organisms. Areas for bactericidal concentrations were described to be 12.5 - 25 µg / ml for gram-positive bacteria and 1 - 10 mg / ml for gram-negative bacteria. The bactericidal activity DK 167901 B1 9 was co-purified along with the "direct hemolytic fraction" of red blood cells. The name "melittin" had not yet been assigned to the active component of this fraction.

5 I 1963 publiserede Benton et al. en bioanalyse for honningbigift. Giftens bakteriostatiske aktivitet blev kvanti fiseret ved en radial diffusionsanalyse, som bestemte væksthæmningszoner forårsaget af serievise giftfortyndinger i plæner af bakterievækst. Denne analyse blev foreslået til standardisering af den biologiske aktivitet af 10 honningbigift til in vivo anvendelse. (For tiden er allergidesensi-bilisering den eneste in vivo honningbigiftbehandling, som accepteres af the Food and Drug Administation, USA). I artiklen beskrives også afprøvning af varmesensibil iteten af honn i ngbi gi ftakti vi teten, og det viste sig, at den kunne modstå steriliseringsprocedure (121eC 15 i 15 min), (Benton et al., 1963).5 In 1963, Benton et al. a bioanalysis for honey bee venom. The bacteriostatic activity of the venom was quantified by a radial diffusion assay, which determined growth inhibition zones caused by serial poison dilutions in bacterial growth lawns. This analysis was proposed to standardize the biological activity of 10 honey bees for in vivo use. (Currently, allergy sensitization is the only in vivo honey supplement treatment accepted by the Food and Drug Administration, USA). The article also describes the testing of the heat sensitivity of the honey in the ngbacti, and it was found to withstand sterilization procedure (121 ° C for 15 minutes) (Benton et al., 1963).

Melittinisolerinq og -aktiviteterMelittin insulation and activities

Honningbigift omfatter flere farmakologisk aktive forbindelser. Den 20 forbindelse, som er til stede i den største andel i giften, er melittin, som er et polypeptid med en molekylvægt på 2.847 dalton, og som virker som et direkte hæmolysin af røde blodlegemer. Andre aktive bestanddele omfatter phospholipase A2, histamin, dopamin, noradrenalin, apaamin og hyaluronidase (Haberman, 1972).Honey bees poison includes several pharmacologically active compounds. The 20 compound present in the largest proportion of the venom is melittin, which is a polypeptide having a molecular weight of 2,847 daltons and which acts as a direct red blood cell hemolysin. Other active ingredients include phospholipase A2, histamine, dopamine, norepinephrine, apaamine, and hyaluronidase (Haberman, 1972).

2525

Antibakteriel aktivitet af melittinAntibacterial activity of melittin

Fennel, Shipman og Cole (1968) oprensede melittin ved Sephadex G-50 kromatografi og viste, at mel ittinfraktionen besad "potent antibak-30 teriel aktivitet". De afprøvede 30 tilfældige bakteriestammer (herunder flere streptococci, staphylococci og enterale bakteriestammer) ved sammenligning af aktiviteten af oprenset melittin med hel honningbigift. De bemærkede, at en stamme af S. aureus, en penicillinresistent isolat, ikke udviste fald i sensibilitet overfor 35 melittin.Fennel, Shipman, and Cole (1968) purified melittin by Sephadex G-50 chromatography and showed that the meltin fraction possessed "potent antibacterial activity." They tested 30 random bacterial strains (including several streptococci, staphylococci and enteral bacterial strains) by comparing the activity of purified melittin with whole honey bee venom. They noted that a strain of S. aureus, a penicillin-resistant isolate, showed no decrease in sensitivity to 35 melittin.

Selvom melittin er blevet beskrevet som værende den antibakterielle faktor i honningbigift, er der ikke fundet nogen beskrivelse af dens anvendelse in vivo. Det blev bemærket af Mol 1ay og Kreil (1974), at DK 167901 B1 10 vekselvirkninger mellem melittin og lecithin forstærkede aktiviteten af phospholipse A2 honningbigift over for lecithin. Det er imidlertid ikke tidligere blevet erkendt, at melittin forstærker antibiotikas aktivitet.Although melittin has been described as the antibacterial factor in honey bee venom, no description has been found of its use in vivo. It was noted by Mol 1ay and Kreil (1974) that DK 167901 B1 10 interactions between melittin and lecithin enhanced the activity of phospholipse A2 honey venom against lecithin. However, it has not been previously recognized that melittin boosts antibiotic activity.

55

Haberman og Jentsch (1967) har oprenset melittin og offentliggjort aminosyresekvensen. De fandt, at melittin eksisterer i to naturlige former, der kun er forskellig ved en formyl substitution ved N-terminus (figur 1).Haberman and Jentsch (1967) have purified melittin and published the amino acid sequence. They found that melittin exists in two natural forms that differ only by a formyl substitution at the N-terminus (Figure 1).

1010

Analoqer til proteinaqtiqe komponenter og polypeptidkomponenter af hvmenopteraqifteAnalogues to proteinaceous components and polypeptide components of hematopoietic assays

Der blev fremstillet følgende analoger til melittin: 15 Analog nr. Sammensætning 1 Melittin (1-20) - NH2 2 Melittin (1-20) - 0rn-0rn-0rn-0rn-Gln-Gln-NH2 20 3 Melittin (1-20) - D-Lys-D-Lys-D-Lys-D-Arg-D-Gln-D-The following analogues to melittin were prepared: Analog No. Composition 1 Melittin (1-20) - NH2 2 Melittin (1-20) - 0rn-0rn-0rn-0rn-Gln-Gln-NH2 20 3 Melittin (1-20) ) - D-Lys-D-Lys-D-Lys-D-Arg-D-Gln-D-

Gln-NH2 4 Melittin (1-20) - Lys-Arg-Lys-Arg-Gly-Gly-NH2 5 Melittin (1-20) - Arg-Arg-Arg-Arg-Gln-Gln-NH2 6 Melittin (1-20) - Lys-Lys-Lys-Gln-Gln-NH2 25 7 Melittin (1-20) - Gly-Gly-Gly-Gly-Gln-GIn-NH2 8 Melittin (1-20) - Asp-Asp-Asp-Asp-Asp-Asp-NH2 9 Melittin (1-20) - Lys-Lys-NH2 10 Mastoporan (1-14) - NH2 (naturlig) 11 Mastoporan (1-14) - 0rn-0rn-0rn-0rn-Gln-Gln-NH2 30 12 Melittin (1-20) - (CH2NH2) 13 Melittin (1-20) - 0rn-0rn-NH2Gln-NH2 4 Melittin (1-20) - Lys-Arg-Lys-Arg-Gly-Gly-NH2 5 Melittin (1-20) - Arg-Arg-Arg-Arg-Gln-Gln-NH2 6 Melittin (1- 20) - Lys-Lys-Lys-Gln-Gln-NH2 7 Melittin (1-20) - Gly-Gly-Gly-Gly-Gln-GIn-NH2 8 Melittin (1-20) - Asp-Asp-Asp Asp-Asp-Asp-NH2 9 Melittin (1-20) - Lys-Lys-NH2 10 Mastoporan (1-14) - NH2 (natural) 11 Mastoporan (1-14) - 0rn-0rn-0rn-0rn-Gln Gln-NH2 12 Melittin (1-20) - (CH2 NH2) 13 Melittin (1-20) - Orn-Orn-NH2

Anal ogerne blev fremstillet ved traditionel peptidsyntese som beskrevet af f.eks. M. Bodanszky: "Principles of Peptide Synthesis", 35 Springer Verlag, 1984.The analogs were prepared by conventional peptide synthesis as described by e.g. M. Bodanszky: "Principles of Peptide Synthesis", 35 Springer Verlag, 1984.

Der vil i det følgende blive beskrevet et eksempel på peptidsyntese af analog nr. 4, d.v.s. melittin (l-20)-Lys-Arg-Lys-Arg-Gly-Gly-NH2.An example of peptide synthesis of analog # 4, i.e. melittin (1-20) -Lys-Arg-Lys-Arg-Gly-Gly-NH2.

DK 167901 B1 11DK 167901 B1 11

En derivatiseret harpiks, såsom en polydimethylacrylamidgel, der er kommercielt opnåelig under varemærket PEPSYN KA, omsættes med (Fmoc-Gly^O, hvor Fmoc betegner 9-fluorenylmethoxycarbonyl, der tjener som en midlertidig beskyttende gruppe.A derivatized resin, such as a polydimethylacrylamide gel commercially available under the trademark PEPSYN KA, is reacted with (Fmoc-Gly 2 O, where Fmoc represents 9-fluorenylmethoxycarbonyl, which serves as a temporary protecting group).

55

Reaktionen, der udføres i nærvær af 4-dimethylaminopyridin som katalysator, medfører dannelse af esteren Fmoc-Gly-O-harpiks.The reaction carried out in the presence of 4-dimethylaminopyridine as a catalyst results in the formation of the ester Fmoc-Gly-O resin.

Estereren afbeskyttes i nærvær af 20% piperidin i DMF til dannelse 10 af H-Gly-O-harpiks.The ester is deprotected in the presence of 20% piperidine in DMF to form 10 of H-Gly-O resin.

Det afbeskyttede produkt omsættes derpå med en aktiveret ester med formi en 15 Fmoc-Gly-OPfp hvor Pfp betegner pentafluorphenyl, til opnåelse afThe deprotected product is then reacted with an activated ester of the form a 15 Fmoc-Gly-OPfp, where Pfp represents pentafluorophenyl, to give

Fmoc-Gly-Gly-O-harpiks.Fmoc-Gly-Gly-O-Resin.

2020

De resterende 24 aminosyrer kobles til det dannede reaktionsprodukt i 20 tilsvarende cykluser med afbeskyttelse og kobling med aktive estere.The remaining 24 amino acids are coupled to the reaction product formed for 20 corresponding cycles of deprotection and coupling with active esters.

25 Det således dannede produkt afbeskyttes med 20% piperidin i DMF og den dannede melittinanalog spaltes fra harpiksen i nærvær af TFA (trifluoreddikesyre) og et udrensningsmiddel, såsom vand.The product thus formed is deprotected with 20% piperidine in DMF and the melittin analog formed is cleaved from the resin in the presence of TFA (trifluoroacetic acid) and a scavenger such as water.

Antibiotika 30Antibiotics 30

Antibiotika kan inddeles funktionelt i fire grupper baseret på antibiotikaens aktive steder (Volk, 1978a). Målstrukturer for de fire grupper er cellevæggen, cellemembranen, proteinsynteseapparatet og nukleinsyrereplikationsapparatet. På grund af synergi analysens 55 kompleks i ti tet blev der valgt fire antibiotika, et for hver af ovennævnte grupper til afprøvning. De udvalgte antibiotika var ampicillin, kanamycin, polymycin B og rifampicin. Hver har en forskellig virkningsmåde på prokaryote celler.Antibiotics can be functionally divided into four groups based on the active sites of the antibiotic (Volk, 1978a). Target structures for the four groups are the cell wall, the cell membrane, the protein synthesizer and the nucleic acid replicator. Due to the complexity of the synergy 55 complex in ten, four antibiotics were selected, one for each of the above groups for testing. The antibiotics selected were ampicillin, kanamycin, polymycin B and rifampicin. Each has a different mode of action on prokaryotic cells.

DK 167901 B1 12DK 167901 B1 12

Ampicillinampicillin

Ampicillin hører til gruppen af antibiotika, som påvirker cellevægsstruktur. Disse antibiotika er alle penicillinderivater, som hver 5 især indeholder den funktionelle beta-lactam ring. Samlet kendt som beta-lactamgruppen blokerer disse antibiotika cellevægsyntese ved at hæmme transpeptidasesystemet, som tværbinder peptidoglycanens pentaglycinbroer, derfor påvirkes kun aktivt voksende celler af deres tilstedeværelse.Ampicillin belongs to the group of antibiotics that affect cell wall structure. These antibiotics are all penicillin derivatives, each containing the functional beta-lactam ring. Collectively known as the beta-lactam group, these antibiotics block cell wall synthesis by inhibiting the transpeptidase system, which cross-links the peptidoglycan's pentaglycine bridges, therefore only actively growing cells are affected by their presence.

1010

Ampicillin er et halvsyntetisk derivat af penicillin. Syntesetrinene ved ampicillinsyntese tilføjer en amingruppe til alfacarbonatomet i pinicillin G. Dette bidrager med resistens overfor beta-lactamaser (den dominerende penicillinresistensfaktor hos bakterier), hvilket 15 giver ampicillin et meget bredere virkningsspektrum blandt bakterier end penicillin (Volk, 1978b).Ampicillin is a semi-synthetic derivative of penicillin. The synthesis steps of ampicillin synthesis add an amine group to the alpha carbon atom of pinicillin G. This contributes to resistance to beta-lactamases (the dominant penicillin resistance factor in bacteria), giving ampicillin a much broader spectrum of action among bacteria than penicillin (Volk, 1978b).

Kanamvcin 20 Kanamycin er et aminoglycosid. Denne gruppe af antibiotika blokerer proteinsyntese. Medlemmer fra denne gruppe binder til 30s ribosomet i bakterier og blokerer sterisk binding af aminoacyl-tRNA'er eller hæmmer translokation af den voksende peptidkæde ved det ribosomale aktiveringssted (Volk, 1979c). Idet proteinsyntese er krævet ved 25 mange regulator!ske cellefunktioner, er aminoglycosider effektive på bakterier i enten aktive eller stationære vækstfaser.Kanamycin 20 Kanamycin is an aminoglycoside. This group of antibiotics blocks protein synthesis. Members of this group bind to the 30s ribosome in bacteria and block steric binding of aminoacyl tRNAs or inhibit translocation of the growing peptide chain at the ribosomal activation site (Volk, 1979c). As protein synthesis is required by many regulatory cell functions, aminoglycosides are effective on bacteria in either active or stationary growth phases.

Polvmvxin BPolyvinyl B

30 Polymyxin B er et cyklisk, amfifatisk peptid. På grund af de kombinerede hydrofile og hydrofobe egenskaber har polymyxin B en detergent-lignende virkning, som ikke kræver, at cellevækst er effektiv. Ligesom melittin vekselvirker polymyxin B med membraner til dannelse af små hydrofile porer i det hydrofobe område af 35 membranerne. I gramnegative organismer, som har et tykt lipopoly-saccharidlag, der virker som en selektiv permeabilitetsbarriere, er polymyxin B effektiv til at forstyrre osmotiske gradienter. Polymyxin B er derfor meget effektiv på gramnegative organismer, også selvom det er minimalt effektivt på grampositive organismer (Sebek DK 167901 B1 13 1979). Selvom mel i ttin kan danne membranporer tilsvarende polymyxin B, er melittin mere aktiv på grampositive organismer, hvorfor mel ittins virkning ikke er fuldstændig analog med polymyxin B's virkning.Polymyxin B is a cyclic amphiphatic peptide. Due to the combined hydrophilic and hydrophobic properties, polymyxin B has a detergent-like effect which does not require cell growth to be effective. Like melittin, polymyxin B interacts with membranes to form small hydrophilic pores in the hydrophobic region of the 35 membranes. In gram-negative organisms which have a thick lipopoly-saccharide layer that acts as a selective permeability barrier, polymyxin B is effective in disrupting osmotic gradients. Polymyxin B is therefore very effective on gram-negative organisms, even if it is minimally effective on gram-positive organisms (Sebek DK 167901 B1 13 1979). Although flour in ttin may form membrane pores similar to polymyxin B, melittin is more active on Gram-positive organisms, so the effect of mel ittin is not completely analogous to the action of polymyxin B.

55

Rifampicinrifampicin

Rifampicin er et antibiotika fra gruppen, der virker ved nukleinsy-resynteseniveauer, hvilket fuldstændiggør eksempler på antibiotika 10 fra de fire vigtigste kategorier omtalt ovenfor.Rifampicin is an antibiotic from the group that acts at nucleic acid synthesis levels, completing examples of antibiotics 10 from the four main categories discussed above.

Svnerqi undersøge!seSvnerqi examine! See

Et gennemsyn af artikler beskrivende synergi imellem antibiotika og 15 andre forbindelser i bakteriesystemer viste, at alle forskerne anvendte den samme basismetode. Bakterievækst blev overvåget i bouillonkultur med og uden hver forbindelse separat og derpå med begge forbindelser sammen. For at bevise synergistisk virkning i modsætning til en additiv virkning blev mindst en af forbindelserne 20 anvendt i et omfang, hvor den alene vil udvise minimal væskthæmning.A review of articles describing synergy between antibiotics and 15 other compounds in bacterial systems showed that all the researchers used the same basic method. Bacterial growth was monitored in broth culture with and without each compound separately and then with both compounds together. To demonstrate synergistic action as opposed to an additive effect, at least one of the compounds 20 was used to an extent where it will exhibit only minimal fluid retention.

Ved en forholdsvis inaktiv forbindelse vil enhver øget aktivitet af den anden forbindelse i den førstes nærvær være resultatet af synergistiske vekselvirkninger (Moellering et al., 1971, Carrizosa og Levison, 1981, og Cynamon og Palmer, 1983). Det er på basis af 25 denne udformning, at forsøg i nærværende beskrivelse er baseret.With a relatively inactive compound, any increased activity of the second compound in the presence of the first will be the result of synergistic interactions (Moellering et al., 1971; Carrizosa and Levison, 1981; and Cynamon and Palmer, 1983). It is on this basis that experiments in this specification are based.

Materialer og fremgangsmåderMaterials and Methods

Materialer 30Materials 30

Gift fra honningbi (Api s mel i feral blev leveret af Vespa Laboratories, Spring Mills, Pennsylvania.Gift from honey bee (Api's flour in feral was provided by Vespa Laboratories, Spring Mills, Pennsylvania.

Bakteriestammer blev leveret af den veterinærvidenskabelige afdeling 35' på Pennsylvania statsuniversitet. S. aureus nr. 140A er et feltiso-1 at fra et tilfælde med kvægmastitis. E. coli nr. G188E blev udvalgt fra E. coli Reference Center systematisk samling. En kanamyci nresistent stamme af S. aureus blev isoleret ved naturlig udvælgelsesprocedure, som beskrevet nedenfor.Bacterial strains were provided by the Veterinary Science Department 35 'at Pennsylvania State University. S. aureus No. 140A is a field iso-1 from a case of bovine mastitis. E. coli No. G188E was selected from the E. coli Reference Center systematic assembly. A kanamyci resistant strain of S. aureus was isolated by natural selection procedure, as described below.

DK 167901 B1 14DK 167901 B1 14

Antibiotika blev købt fra Sigma Chemical Company (St. Louis, Missouri) og aktivitetsenheder var baseret på deres analyser.Antibiotics were purchased from Sigma Chemical Company (St. Louis, Missouri) and activity units were based on their analyzes.

Trypticase-soyabasis (BBL Microbiology Systems, Cockeysville, Mary-5 land) blev anvendt til at undersøtte al bakterievækst enten som en bouillon eller en agar.Trypticase soy base (BBL Microbiology Systems, Cockeysville, Maryland) was used to study all bacterial growth either as a broth or an agar.

Sephadex G-50 blev opnået fra Pharmacia Fine Chemicals, Uppsala, Sverige.Sephadex G-50 was obtained from Pharmacia Fine Chemicals, Uppsala, Sweden.

1010

Minimal hæmningskoncentrations (MIC) -analyser af antibiotika med og uden honningbigift blev udført af mikrobiologiafdelingen på Allegheny General Hospital, Pittsburgh, Pennsylvania under anvendelse af Sensititre® analysesystemet, distribueret af Gibco Laboratories, 15 Lawrence, Massachusetts.Minimum inhibitory concentration (MIC) assays of antibiotics with and without honey bee venom were performed by the microbiology department at Allegheny General Hospital, Pittsburgh, Pennsylvania using the Sensititre® assay system distributed by Gibco Laboratories, 15 Lawrence, Massachusetts.

Fremgangsmådermethods

Isolering af kanamvcinresistent mutant 20 S. aureus blev dyrket i 5 ml trypticase-soyabouillon (TSB) natten g over til en tæthed på omtrent 10 kolonidannende enheder/ml. 0,1 ml af denne kultur blev udpladet på en plade af trypticase-soyaagar (TSA) indeholdende 39/ig/ml kanamycin og blev inkuberet i 48 timer 25 ved 37°C. Kolonier, som fremkom inden for 48 timer, blev underdyrket på en anden TSA-plade tilsat 39/ig/ml kanamycin.Isolation of kanamycin resistant mutant 20 S. aureus was grown in 5 ml of trypticase soy broth (TSB) overnight g to a density of about 10 colony forming units / ml. 0.1 ml of this culture was plated on a plate of trypticase soy agar (TSA) containing 39 µg / ml kanamycin and incubated for 48 hours at 37 ° C. Colonies that appeared within 48 hours were sub-cultured on another TSA plate added 39 µg / ml kanamycin.

Skakbræt ti treringsanalvse for svnergi 30 Der blev fremstillet bakteriekultur til denne analyse ved at fryse hver stamme i dens logaritmiske vækstfase i TSB. Til dette formål blev en 5 ml 24-timers kultur anvendt til at inokulere 200 ml TSB i en 500 ml erlenmeyer kolbe. Kulturen blev inkuberet ved 37°C under konstant omrøring og den optiske tæthed (OD) ved 660 nm blev aflæst 35 hver time. Når kulturen nåede den midtlogaritmiske fase (ca. 0,500 OD enheder), blev 5 ml delprøver overført til 16 x 100 mm rør med skruehætter. Alle kulturerne blev frosset og opbevaret ved -20°C. E. coli krævede, at glycerol blev sat til mediumet til en slutkoncen-tration på 20% for at overleve frysning. Dette blev udført ved at DK 167901 B1 15 blande 1 ml steril glycerol med 4 ml kultur i logaritmefasen umiddelbart før frysning.Chessboard Ten Serenity Analyzes 30 Bacterial culture was prepared for this analysis by freezing each strain in its logarithmic growth phase in TSB. For this purpose, a 5 ml 24-hour culture was used to inoculate 200 ml of TSB into a 500 ml erlenmeyer flask. The culture was incubated at 37 ° C with constant stirring and the optical density (OD) at 660 nm was read 35 every hour. When the culture reached the mid-logarithmic phase (about 0.500 OD units), 5 ml of sub-samples were transferred to 16 x 100 mm screw cap tubes. All the cultures were frozen and stored at -20 ° C. E. coli required glycerol to be added to the medium at a final concentration of 20% to survive freezing. This was done by mixing 1 ml of sterile glycerol with 4 ml of culture in the logarithm phase immediately before freezing.

For at starte en analyse blev et rør af den frosne kultur optøet i 5 et bægerglas med vand ved stuetemperatur. Den optøede kultur blev sat til 175 ml TSB i en 500 erlenmeyer kolbe, omrørt, og ODgg0 blev bestemt umiddelbart og registreret som aflæsning ved "tiden nul". Kolben blev derpå inkuberet ved 37°C under konstant omrøring i 2 timer, hvorefter ODgg0 igen blev aflæst og optegnet, kulturen blev 10 delt i 16 x 100 mm forsøgsrør med skruehætte forfyldt med specifiserede delprøver af honningbigift (HBV) og antibiotika, som beskrevet nedenfor.To begin an analysis, a tube of frozen culture was thawed in a beaker of water at room temperature. The thawed culture was added to 175 ml of TSB in a 500 Erlenmeyer flask, stirred, and ODgG0 was determined immediately and recorded as reading at "time zero". The flask was then incubated at 37 ° C with constant stirring for 2 hours, after which the ODgg0 was read and recorded again, the culture was divided into 16 x 100 mm screw cap tubes pre-filled with specified honeycomb (HBV) and antibiotic specimens as described below. .

Stamopløsninger af HBV og antibiotika blev fremstillet i destilleret 15 vand, filtersteriliseret og opbevaret ved -20°C i 5 ml delprøver med koncentrationer på 2 gange den koncentration, der er nødvendig for skakbrættitreringsystemet. De frosne stamopløsningskoncentrationer, som er krævet for hver bakterieart, er anført i tabel 1 (side 43). Koncentrationen anvendt til hver bakterie, var baseret på forudgå-20 ende forsøg under anvendelse af antibiotika alene for at fastlægge de minimale hæmmende områder for hvert antibiotika for hver mikroorganisme.Stock solutions of HBV and antibiotics were prepared in distilled water, filter sterilized and stored at -20 ° C in 5 ml partial samples with concentrations twice the concentration needed for the chessboard titration system. The frozen stock solution concentrations required for each bacterial species are listed in Table 1 (page 43). The concentration used for each bacterium was based on prior experiments using antibiotics alone to determine the minimum inhibitory ranges for each antibiotic for each microorganism.

For hver analyse blev en hætteflaske med antibiotika og en hætte-25 flaske med HBV optøet ved stuetemperatur og fortyndet med et tilsvarende volumen 2 x TSB og derpå serievis fortyndet to gange til normalstyrke TSB til opnåelse af fire koncentrationer af gift og fire koncentrationer af antibiotika. 75 forsøgsrør med skruehætte blev nummereret og anbragt på tilsvarende måde som skakbrætmønsteret 30 vist i tabel 2. TSB, antibiotika og HBV blev derpå fordelt i henhold til udformningen vist i tabel 3. Rør mærket som 00 og 0 indeholdt 2,5 ml TSB og tjente som OD-blindprøver og steril itetskontrolrør. Rørerne 1 - 75, som hver indeholdte et samlet volumen på 500/fl, blev inokuleret med 2 ml af den ovenfor beskrevne 2 timers kultur. [Note: 35 slutkoncentration af HBV og/eller antibiotika i hvert rør var 1/10 af koncentrationen tilsat i 250μ1 delprøve, (jvf. tabel 3)]. Hvert rør blev umiddelbart forseglet og vendt om. Efter at alle rørerne var inokuleret, blev de anbragt i horisontale stativer på en indstillelig platform ved 37°C. Væksten i hvert rør blev overvåget DK 167901 B1 16 individuelt i 4, 6, 8, 12 og 24 timer ved at bestemme den optiske tæthed i hvert rør ved 660 nm.For each assay, a vial of antibiotics and a vial of HBV were thawed at room temperature and diluted with a corresponding volume of 2 x TSB and then serially diluted twice to normal strength TSB to obtain four concentrations of poison and four concentrations of antibiotics. 75 test tubes with screw cap were numbered and placed in a manner similar to the checkerboard pattern 30 shown in Table 2. TSB, antibiotics and HBV were then distributed according to the design shown in Table 3. Tubes marked as 00 and 0 contained 2.5 ml of TSB and served such as OD blind samples and sterile etch control tubes. Tubes 1 - 75, each containing a total volume of 500 µl, were inoculated with 2 ml of the above-described 2 hour culture. [Note: 35 final concentrations of HBV and / or antibiotics in each tube were 1/10 of the concentration added in 250μ1 sub-sample, (cf. Table 3)]. Each tube was immediately sealed and flipped over. After all the tubes were inoculated, they were placed in horizontal racks on an adjustable platform at 37 ° C. The growth of each tube was monitored individually for 4, 6, 8, 12 and 24 hours by determining the optical density of each tube at 660 nm.

Minimal hæmmende koncentrationsanalvser med HBV 5Minimum inhibitory concentration analyzes with HBV 5

Mikrobiologilaboratoriet på Allegheny Genral Hospital med kapacitet til at udføre automatiserede MIC-analyser blev bedt om at udføre en forsøgsoversigt på 12 kliniske bakterieisolater. Tilpasningen af hver automatiseret MIC-analyse havde følgende begrænsninger: (1) 10 Hver analyse kunne kun afprøve en dosis HBV, og (2) HBV's virkning alene kunne kun vurderes som fuldstændig hæmmende eller ikke-hæm-mende. HBV's synergi med de 11 antibiotika i dette system blev vurderet ved at sammenligne to analysegennemløb samtidig med og uden tilstedeværelse af HBV. Den anvendte HBV-dosis for hver art blev 15 vurderet til at være en ikke-hæmmende dosis på basis af skakbrættitreringsanalyserne.The microbiology laboratory at Allegheny Genral Hospital with the capacity to perform automated MIC assays was asked to perform an experimental review of 12 clinical bacterial isolates. The adaptation of each automated MIC analysis had the following limitations: (1) 10 Each assay could test only one dose of HBV, and (2) the effect of HBV alone could only be assessed as completely inhibitory or noninhibitory. HBV's synergy with the 11 antibiotics in this system was assessed by comparing two assays with and without the presence of HBV. The HBV dose used for each species was assessed to be a non-inhibitory dose based on the chessboard titration assays.

Melittinoprensninq 20 Sephadex® G-50-gelfiltreringslejemateriale blev kvældet i 24 timer ved stuetemperatur i beta-alanin-eddikesyrepuffer (BAAB), pH 4,3 (Guralnick et al., 1986) og derpå ækvilibreret ved 5°C natten over.Melittin Purification 20 Sephadex® G-50 gel filtration bed material was swollen for 24 hours at room temperature in beta-alanine acetic acid buffer (BAAB), pH 4.3 (Guralnick et al., 1986) and then equilibrated at 5 ° C overnight.

En 2,5 x 60 cm sølje blev ophældt og ækvilibreret ved en strømningshastighed på 1,0 ml/time. 100 mg HBV blev rekonstitueret i 5 ml 25 BAAB-puffer indeholdende 20¾ saccharose. HBV blev sat på søjlen og elueret ved en strømningshastighed på 1 ml/time. Gennemløbet blev overvåget for absorbans ved 280 nm. Fraktioner indeholdende hovedtoppen blev sammenhældt, en delprøve blev analyseret ved Lowry's proteinanalyse (Lowry, 1951) og resten blev frysetørret.A 2.5 x 60 cm column was poured and equilibrated at a flow rate of 1.0 ml / hr. 100 mg of HBV was reconstituted in 5 ml of 25 BAAB buffer containing 20¾ sucrose. HBV was put on the column and eluted at a flow rate of 1 ml / hr. The throughput was monitored for absorbance at 280 nm. Fractions containing the main peak were pooled, a sub-sample was analyzed by Lowry's protein analysis (Lowry, 1951) and the remainder was lyophilized.

3030

Identifikation af melittinfraktionen var baseret på den relative mobilitet og kvanti fisering af bånd fremkommende ved polyacrylamidgel adskillelser af hver fraktion (Benton, 1965). Melittin blev også afprøvet for renhed ved polyacrylamidgelelektroforese. Eletroforese 35 blev udført som beskrevet af Guralnick et al. (1986). Frysetørrede fraktioner blev rekonstitueret til 2 mg/ml i elektroforeseprøvepuf-feren og 50/fl prøver blev påsat pr. prøvebrønd på gelerne.Identification of the melittin fraction was based on the relative mobility and quantization of bands resulting from polyacrylamide gel separations of each fraction (Benton, 1965). Melittin was also tested for purity by polyacrylamide gel electrophoresis. Eletrophoresis 35 was performed as described by Guralnick et al. (1986). Freeze-dried fractions were reconstituted to 2 mg / ml in the electrophoresis sample buffer and 50 µl samples were loaded per ml. sample well on the gels.

DK 167901 B1 17DK 167901 B1 17

Melittins ækvivalens til hel gi ft Mængden af mel ittinfraktionen, som er ækvilent med dets andel i hel honningbigift, blev bestemt ved kvanti fisering af individuelle bånd 5 i eletroforetiserede prøver af helgift og melittinfraktion. 20, 40, 60, 80 og 100/tg prøver af hel honningbigift blev skilt ved eletrofo-rese, farvet med Coomassie® brilliantblåt perchlorsyrefarve og scannet med et densitometer. Der blev fastlagt en standardkode, som forbinder toparealet af mel ittinbåndet fra hele giftprøver med 10 mængden af protein i prøven, når den blev påsat. Seks 40/ig's prøver af det oprensede melittin blev analyseret samtidig, og deres ækvivalens til honningbigift blev bestemt udfra standardkurven. Denne procudure er beskrevet detaljeret af Mulfinger et al. (1986).Melittin equivalence to whole gi ft The amount of melittin fraction, which is equivalent to its proportion in whole honey bee venom, was determined by quantifying individual bands 5 in electrophorized samples of venom and melittin fraction. 20, 40, 60, 80 and 100 µg samples of whole honey bee venom were separated by electrophoresis, stained with Coomassie® brilliant blue perchloric acid color and scanned with a densitometer. A standard code was established linking the peak area of the meal band from whole venom samples to the amount of protein in the sample when applied. Six 40 µg samples of the purified melittin were analyzed simultaneously and their equivalence to honey bees was determined from the standard curve. This procudure is described in detail by Mulfinger et al. (1986).

15 Afprøvning af melittinfraktionen for svnergistisk aktivitet15 Testing the Melittin Fraction for Snergistic Activity

For at sammenligne den antibakterielle aktivitet af hel honningbigift og melittinfraktionen blev tidligere skakbrættitreringsresultater studeret og det forsøgssystem, hvorved HBV-dosisvirkninger let 20 kunne ses alene og i kombination med et antibiotika, blev udvalgt. Idet staphylococci var følsomme overfor HBV alene ved koncentrationer anvendt i ovennævnte skakbrætanalyser og idet kanamycin udviste god synergistisk virkning med HBV, blev dette system udvalgt til sammenligning af de antibakterielle aktiviteter af hel HBV og 25 melittin. Doser af hver komponent anvendt ved denne analyse var 2^g/ml HBV og 2,5/ig/ml kanamycin. Disse doser lå i et område med bakteriel reaktivitet, hvor virkningen af små dosisændringer var reproducerbar og let bestemmelige. Den ækvivalente dosis melittinfraktion til 2,0/zg/ml HBV var 1,6/zg/ml. Hvert forsøg sammenlignede 30 parallelt tredobbelte prøver af melittinfraktionen og hel honningbigift med og uden tilstedeværelse af kanamycin for at afprøve for ækvivalent aktivitet.To compare the antibacterial activity of whole honey bee venom and the melittin fraction, previous chessboard titration results were studied and the experimental system by which HBV dose effects could easily be seen alone and in combination with an antibiotic was selected. Since staphylococci were sensitive to HBV only at concentrations used in the above chessboard assays and kanamycin exhibited good synergistic effect with HBV, this system was selected to compare the antibacterial activities of whole HBV and melittin. Doses of each component used in this assay were 2 µg / ml HBV and 2.5 µg / ml kanamycin. These doses were in an area of bacterial reactivity where the effect of small dose changes was reproducible and easily determinable. The equivalent dose of melittin fraction to 2.0 µg / ml HBV was 1.6 µg / ml. Each trial compared 30 parallel triplicate samples of the melittin fraction and whole honey bee venom with and without the presence of kanamycin to test for equivalent activity.

Statistisk analyse 35Statistical Analysis 35

Hvert skakbrætforsøg blev gentaget fem gange. Gennemsnittet af de fem gentagelser for hver bakterie-antibioti kakombi nat i on blev for hvert tidspunkt testet for signifikante forskelle under anvendelse af en Waller-Duncan K-forhold T-test og der blev udvalgt familier af DK 167901 B1 18 kurver til synergiafprøvning. En kurvefamilie bestod af en forsøgskontrolkurve (bakterievækst uden tilstedeværelse af antibiotika eller HBV), en antibiotikakontrol kurve (bakterievækst med antibiotika, men uden HBV), en giftkontrol kurve (bakterievækst med HBV, men 5 intet tilstedeværende antibiotika) og en vekselvirkningkurve (vækst med tilstedeværelse af antibiotika og HBV). Familier, hvor antibiotikakontrol kurven og giftkontrolkurven viste små gennemsnitlige OD-fald i forhold til forsøgskontrol kurven, og som også viste større OD-fald for interaktionskurven i forhold til forsøgskontrol kurven, 10 blev afprøvet for synergi virkning.Each chessboard attempt was repeated five times. The average of the five repetitions for each bacterial-antibiotic kakombi night in on was tested for significant differences at each time using a Waller-Duncan K ratio T test and families of DK 167901 B1 18 curves were selected for synergy testing. A curve family consisted of a trial control curve (bacterial growth without the presence of antibiotics or HBV), an antibiotic control curve (bacterial growth with antibiotics but without HBV), a poison control curve (bacterial growth with HBV but no antibiotics present) and an interaction curve (growth with presence). of antibiotics and HBV). Families in which the antibiotic control curve and the poison control curve showed small mean OD decreases relative to the experimental control curve, and also showed greater OD decreases for the interaction curve compared to the experimental control curve, 10 were tested for synergy effect.

Der kan differentieres en synergi sti sk virkning mellem forbindelserne ud fra den additive virkning af forbindelserne, idet en additiv virkning er forudseelig. Additive virkninger kan forudsiges ved at 15 opsummere virkningen af de to forbindelser individuelt, og således vil enhver større virkning indikere en synergistisk vekselvirkning.A synergistic effect can be differentiated between the compounds from the additive effect of the compounds, an additive effect being foreseeable. Additive effects can be predicted by summing up the effect of the two compounds individually, and thus any major effect will indicate a synergistic interaction.

Der blev afledt en ligning forudsigende OD-aflæsninger for en additiv vekselvirkning mellem HBV og et antibiotika. Jvf. omtalte Mulfinger-afhandling (1987), side 23-25.An equation predicting OD readings for an additive interaction between HBV and an antibiotic was derived. Cf. Mulfinger's dissertation (1987), pages 23-25.

2020

Resultaterresults

Skakbrætti treri nasanalvser 25 Der blev afprøvet tre bakteriestammer mod hver især tre antibiotika kombineret med honningbigift. Disse ni kombinationer af bakterier, antibiotika og HBV blev analyseret under anvendelse af skakbrætsanalysen, som gav 25 behandlinger (antibiotika- og HBV-kombination-er) for hver bakterie-antibiotika-kombination. Hvert skakbrætforsøg 30 omfattede tredobbelte prøver for hver behandling og blev gentaget fem gange. Der blev taget et gennemsnit af resultaterne fra de tredobbelte prøver gentaget i fem forsøg og gennemsnit og standardafvigelse for hvert tidspunkt ved hver behandling fremgår af appendikset. For hver bakterie-antibiotikakombination blev de gennemsnit-35 lige OD-værdier for hver antibiotika/HBV-behandling på hvert tidspunkt arrangeret i nedadgående rækkefølge og grupperet i henhold til signifikante forskelle under anvendelse af Waller-Duncan K-forhold T-test. Fra Waller-Duncan-profilerne blev familier med fire kurver, som beskrevet i afsnittet "Statistisk analyse" ovenfor sammenlignet DK 167901 B1 19 for tegn på synergi. Den kurvefamilie, som viste den største OD-for-skel mellem interaktionskurven og den nederste af forsøgskurven, antibiotikakontrol kurven og giftkontrol kurven, blev afbildet og hvert tidspunkt blev afprøvet for synergi under anvendelse af 5 ligningen afledt i ovennævnte afsnit "Statistisk analyse". Hvis estimatet (-X+A+V-AV) for et tidspunkt er signifikant større end nul på 95% konfidensniveau (d.v.s. antydning af synergi), vil tidspunktet for hver kurvefamilie blive noteret på interaktionskurven med en påskrift "s" ved kvadraten, som repræsenterer dette tidspunkt 10 (figurerne 2-11).Chessboarding nasal ointments 25 Three bacterial strains were tested against each of three antibiotics combined with honey bee venom. These nine combinations of bacteria, antibiotics and HBV were analyzed using the chessboard assay, which yielded 25 treatments (antibiotic and HBV combinations) for each bacterial antibiotic combination. Each chessboard trial 30 included triplicate samples for each treatment and was repeated five times. An average of the results from the triplicate samples was repeated in five experiments and the mean and standard deviation for each time point at each treatment are shown in the appendix. For each bacterial antibiotic combination, the mean OD values for each antibiotic / HBV treatment at each time point were arranged in descending order and grouped according to significant differences using the Waller-Duncan K ratio T test. From the Waller-Duncan profiles, families with four curves, as described in the "Statistical Analysis" section above, compared DK 167901 B1 19 for signs of synergy. The curve family, which showed the largest OD difference between the interaction curve and the bottom of the test curve, the antibiotic control curve and the poison control curve, was plotted and each time point tested for synergy using the equation derived in the above section "Statistical Analysis". If the estimate (-X + A + V-AV) for a time point is significantly greater than zero at 95% confidence level (i.e., suggestion of synergy), the time of each curve family will be noted on the interaction curve with an inscription "s" at the square, which represents this time 10 (Figures 2-11).

S. aureus S. aureus er følsom over for honningbigift alene ved lave koncen-15 trationer. Det var derfor vigtigt at finde den maksimale dosis af honningbigift, som ikke gav nogen virkninger. Denne koncentration var ca. 2/ig/ml. For alle antibiotika/HBV-kombinationer med S. aureus , var giftdoserne ved skakbrættitreringssystemet derfor 0, 2, 4, 8 og 16/xg/ml (tabel A-l - A-3). Figur 2 viser virkningerne af disse doser 20 honningbigift, når de anvendes alene som en antibakteriel forbindel se.S. aureus S. aureus is sensitive to honey bees alone at low concentrations. Therefore, it was important to find the maximum dose of honey bee venom that did not produce any effects. This concentration was approx. 2 / ug / ml. Therefore, for all antibiotic / HBV combinations with S. aureus, the poison doses of the chessboard titration system were 0, 2, 4, 8 and 16 µg / ml (Table A-1 - A-3). Figure 2 shows the effects of these doses of 20 honey bees when used alone as an antibacterial compound.

S. aureus versus amoici11 in/HBVS. aureus versus amoici11 in / HBV

25 Slutkoncentrationen af ampicillin i rør fra skakbrætsystemet var 0, 0,05, 0,1, 0,2 og 0,4/ig/ml. Figur 3 viser resultaterne fra ampicil-lin/HBV-kombinationen under anvendelse af 2/ig/ml HBV og 0,05/ig/ml ampicillin. Der ses ingen synergi ved 4 eller 6 timers punktet. Ved både 8 og 12 timers punkterne er det imidlertid klart, at interakti-30 onskurven er meget lavere end det ville forventes ud fra summen af virkningerne forårsaget af ampicillin og HBV alene. Statistisk analyse viser, at ved begge tidspunkter er additionen (-X+A+V-AV) signifikant større end 0.The final concentration of ampicillin in tubes from the checkerboard system was 0, 0.05, 0.1, 0.2 and 0.4 µg / ml. Figure 3 shows the results of the ampicillin / HBV combination using 2 µg / ml HBV and 0.05 µg / ml ampicillin. No synergy is seen at the 4 or 6 hour point. However, at both the 8 and 12 hour points, it is clear that the interaction curve is much lower than would be expected from the sum of the effects caused by ampicillin and HBV alone. Statistical analysis shows that at both time points the addition (-X + A + V-AV) is significantly greater than 0.

35 S. aureus versus kanamvcin/HBV35 S. aureus versus kanamvcin / HBV

SIutkoncentrationerne af kanamycin udvalgt til afprøvning af S. aureus i skakbrætsystemet var 0, 1,25, 2,50, 5,0 og 10,0/tg/ml (tabel A-2). Figur 4 afbilder kurvefamilien, som viser den største kontrast DK 167901 B1 20 mellem kontrol- og interaktionskurven. I dette forsøg bliver synergien først påviselig nier 6 timers punktet, og fremgår tydeligt ved 8 timers inkubation. Efter 12 timer synes kulturerne at have undgået virkningerne fra den kombinerede dosis og den synergistiske virkning 5 tabes, idet vækst bliver begrænset af andre (nærings) faktorer i mediet (denne vækstbegrænsning vises ved kontrol kurven). På trods af den 12 timers vækstbegrænsning, antyder statistisk analyse af resultaterne efter 6, 8 og 12 timer synergistisk interaktion mellem kanamycin og HBV ved denne analyse.The concentrations of kanamycin selected for testing S. aureus in the chessboard system were 0, 1.25, 2.50, 5.0 and 10.0 / tg / ml (Table A-2). Figure 4 depicts the curve family, which shows the greatest contrast between the control and interaction curve. In this experiment, the synergy first becomes detectable at the 6 hour point, and is evident at the 8 hour incubation. After 12 hours, the cultures appear to have avoided the effects of the combined dose and the synergistic effect 5 lost as growth is limited by other (nutritional) factors in the medium (this growth restriction is shown by the control curve). Despite the 12 h growth restriction, statistical analysis of the results after 6, 8 and 12 h suggests synergistic interaction between kanamycin and HBV in this analysis.

1010

$. auresu versus polvmvxin B/HBV$. auresu versus polvmvxin B / HBV

SI utkoncentrat!onerne af polymyxin B i disse forsøg var 0, 312, 624, 1250 og 2500 U/ml (tabel A-3). Der blev observeret synergi med 15 4/tg/ml HBV og 625 U/ml polymyxin B (figur 5). Der blev vist synergi efter både 8 og 12 timers inkubation med interaktionskurven.The SI concentrations of polymyxin B in these experiments were 0, 312, 624, 1250 and 2500 U / ml (Table A-3). Synergy with 15 4 µg / ml HBV and 625 U / ml polymyxin B was observed (Figure 5). Synergy was shown after both 8 and 12 hours of incubation with the interaction curve.

E. coli 20· Honningbigift var ikke alene hæmmende for E. coli ved de niveauer, der er nødvendige for at vise synergi (tabel A-4 - A-6) og toksisi-tet var således ikke den begrænsende faktor for HBV ved skakbrætanalysen med E. coli. Forsøgsbetingelserne begrænsede imidlertid den øvre koncentration af HBV til ca. 40/ig/ml. Koncentrationer herover 25 forårsagede udfældning af bestanddele i mediet. . Derfor er den anvendte slutkoncentration af HBV ved skakbrætsanalysen med E. col i 0, 5, 10, 20 og 40μg/m^.E. coli 20 · Honey venom was not only inhibitory to E. coli at the levels required to show synergy (Table A-4 - A-6), and thus toxicity was not the limiting factor for HBV in the chessboard assay. E. coli. However, the experimental conditions limited the upper concentration of HBV to approx. 40 / ig / ml. Concentrations above 25 caused precipitation of constituents in the medium. . Therefore, the final concentration of HBV used in the chessboard analysis with E. col is at 0, 5, 10, 20 and 40µg / m 2.

E. coli versus ampicillin/HBV 30 SIutkoncentrationerne af ampicillin udvalgt til anvendelse ved E. coli skakbrættitreringen var 0,5, 1, 2 og 4 /ig/ml (tabel A-4). Synergien var mindre drastisk i alle vurderede kurvefamilier end for hver af ovennævnte forsøg. Der var kun tegn på synergi med $0β$/\η\ 35 HBV-ljLtg/ml ampicillin-kombination og kun ved 6 timers tidspunktet (figur 6).E. coli versus ampicillin / HBV 30 The SI concentrations of ampicillin selected for use in the E. coli checkerboard titration were 0.5, 1, 2 and 4 µg / ml (Table A-4). The synergy was less drastic in all assessed curve families than for each of the above trials. There was only evidence of synergy with $ 0β $ / \ η \ 35 HBV-ljLtg / ml ampicillin combination and only at the 6 hour time point (Figure 6).

DK 167901 B1 21DK 167901 B1 21

E. coli versus kanamvcin/HBVE. coli versus kanamvcin / HBV

Slutkoncentrationerne af kanamycin udvalgt til skakbrætsanalysen var O, 5, 10, 20 og 40 μg/m^ (tabel A-5). Figur 7 viser virkningerne af 5 honningbigift med en minimal effektiv dosis kanamycin. I denne situation udviser kun 8 timers punktet synergi. Uafhængigt af HBV-dosen var der ingen synergi i nogen af de andre kombinationer af HBV med lave doser kanamycin.The final concentrations of kanamycin selected for the chessboard assay were 0, 5, 10, 20 and 40 μg / m 2 (Table A-5). Figure 7 shows the effects of 5 honey bees with a minimal effective dose of kanamycin. In this situation, only the 8 hour point exhibits synergy. Regardless of the HBV dose, there was no synergy in any of the other low dose HBV combinations kanamycin.

10 Figur 8 viser en højere dosis kanamycin med HBV på E. coli. I dette tilfælde vises synergismen statistisk på alle tidspunkter efter 2 timer.Figure 8 shows a higher dose of kanamycin with HBV on E. coli. In this case, the synergism is statistically displayed at all times after 2 hours.

E. coli versus polvmvxin B/HBV 15E. coli versus polyvinyl B / HBV 15

Slutkoncentrationerne af polymyxin B ved skakbrættitreringerne var 0, 1,5, 3, 6 og 12 U/ml (tabel A-6). Kombinationen af 3 U/ml polymyxin B og 5/ig/ml HBV gav den mest drastiske illustrering af synergi smen (figur 9). Synergien er tydelig på alle tidspunkter under 20 behandlingen og forskellen mellem de observerede og forudsagte værdier er store.The final concentrations of polymyxin B at the chessboard titrations were 0, 1.5, 3, 6 and 12 U / ml (Table A-6). The combination of 3 U / ml polymyxin B and 5 µg / ml HBV provided the most drastic illustration of the synergy blend (Figure 9). The synergy is evident at all times during the 20 treatment and the difference between the observed and predicted values is large.

Kanamvcinresi stent S. aureus 25 En kanamycinresistent S. aureus, der var opnået ved udvælgelse af spontane mutanter, blev analyseret for at vurdere virkningen af HBV på lægemiddelresistente bakterier. Det var ønskeligt med en kanamy-cinresistent S. aureus, idet der blev observeret en vis synergi for alle antibiotika med organismen, og fordi de synergistiske 30 virkninger lettest kunne ses med kanamycin.Kanamycin-resistant S. aureus 25 A kanamycin-resistant S. aureus obtained by selection of spontaneous mutants was analyzed to assess the effect of HBV on drug-resistant bacteria. A kanamycin-resistant S. aureus was desirable, with some synergy being observed for all antibiotics with the organism and because the synergistic effects were most easily seen with kanamycin.

Der blev ikke fundet nogen forskel med hensyn til de resistente stammers følsomhed overfor HBV, og giftkoncentrationerne i skakbrætsanalyserne var således de samme som for moderstammen, 0, 2, 35 4, 8 og 16/tg/ml (tabel A-7 - A-9). Det blev bemærket, at under identiske betingelser havde den resistente stamme en langsommere væksthastighed end moderstammen og derfor har sammenligning af de optiske tæthedsaflæsninger for forsøgene på to forskellige stammer ingen betydning.No difference was found with respect to the susceptibility of the resistant strains to HBV, and the poison concentrations in the chessboard assays were thus the same as for the parent strain, 0, 2, 35 4, 8 and 16 / tg / ml (Table A-7 - A 9). It was noted that under identical conditions, the resistant strain had a slower growth rate than the parent strain and therefore comparison of the optical density readings for the experiments on two different strains did not matter.

DK 167901 B1 22DK 167901 B1 22

Kanamvcinresistent S. aureus versus ampicillIn/HBVKanamvcin-resistant S. aureus versus ampicillIn / HBV

Slutkoncentrationerne af ampicillin anvendt ved denne skakbrætsanalyse var de samme som for S. aureus ophavet O, 0,05, 0,1, 0,2 og 0,4 5 g/ml (tabel A-7). Hvad enten det skyldes den langsommere væksthastighed eller resistensfaktoren, var de virkninger, som der ses med denne stamme, ikke fuldstændige analoge til moderstammen. Det bedste bevis på synergi kunne ses ved en højere ampicillinkoncentration end for ophavscellen. På grund af den langsommere væksthastighed blev 10 der undersøgt en længere vækstperiode. Figur 10 viser interaktionen mellem 2/ig/ml HBV og 0,4/jg/ml ampicill in. Statistisk vurdering af resultaterne viser synergi ved 8, 12 og 24 timers tidspunktet.The final concentrations of ampicillin used in this chessboard analysis were the same as those of S. aureus of 0, 0.05, 0.1, 0.2 and 0.4 5 g / ml (Table A-7). Whether due to the slower growth rate or the resistance factor, the effects seen with this strain were not completely analogous to the parent strain. The best evidence of synergy could be seen at a higher ampicillin concentration than for the parent cell. Due to the slower growth rate, a longer growth period was investigated. Figure 10 shows the interaction between 2 µg / ml HBV and 0.4 µg / ml ampicill in. Statistical evaluation of the results shows synergy at 8, 12 and 24 hours time.

Kanamvcinresistent S. aureus versus kanamvcin/HBV 15Kanamvcin resistant S. aureus versus kanamvcin / HBV 15

Den kanamycin-dosis, der er krævet for at mindske den kanamycinresistente S. aureus-stammes væksthastighed, var ca. fire gange højere end den dosis, der er krævet af ophavsstammen. Skakbrætanalyseom-rådet for den kanamyci nresi stente S. aureus var 0, 5, 10, 20 og 20 40/zg/ml kanamycin (tabel A-8). Igen gjorde den langsomme væksthastighed det nødvendigt at betragte en længere vækstperiode. Kombination af 8/ig/ml honningbigift og 10/ig/ml kanamycin er vist i figur 11. Selvom den anvendte kanamyci ndosis er to gange så høj som den dosis, der er nødvendig for S. aureus ophavet, forbliver den effek-25 tiv to gange så længe i nærvær af honningbigift. Der blev kun observeret synergi efter 12 timer og den viste sig kun at være signifikant efter 24 timer.The kanamycin dose required to decrease the growth rate of the kanamycin resistant S. aureus strain was approx. four times higher than the dose required by the parent strain. The chessboard analysis range for the kanamycin resin stent S. aureus was 0, 5, 10, 20 and 20 40 µg / ml kanamycin (Table A-8). Again, the slow growth rate made it necessary to consider a longer growth period. The combination of 8 µg / ml honey bee venom and 10 µg / ml kanamycin is shown in Figure 11. Although the dose of kanamycin used is twice as high as the dose required for S. aureus originated, it remains effective. twice as long in the presence of honey bees. Only synergy was observed after 12 hours and it was found to be significant only after 24 hours.

Kanamvcinresistent S. aureus versus polvmvxin B/HBV 30Kanamvcin-resistant S. aureus versus polyvinoxin B / HBV 30

Det var interessant at bemærke, at denne mutant, der blev udvalgt for øget resistens mod kanamycin, blev mere følsom overfor polymyxin B end ophavsstammen. De til skakbrætanalysen anvendte polymyxin B-doser var 0, 12,5, 25, 50 og 100 U/ml (tabel A-9), hvorimod det 35 polymyxin B-dosisområdet, der blev anvendt til at analysere ophavsstammen, var mellem 312 og 2500 U/ml. Figur 12 viser kanamycinresistent S. aureus versus 50 U/ml polymyxin B og 4/jg/ml HBV. Der blev vist synergi ved 12 timers tidspunktet.It was interesting to note that this mutant, selected for increased resistance to kanamycin, became more sensitive to polymyxin B than the parent strain. The polymyxin B doses used for the chessboard assay were 0, 12.5, 25, 50 and 100 U / ml (Table A-9), whereas the 35 polymyxin B dose range used to analyze the parent strain was between 312 and 2500 U / ml. Figure 12 shows kanamycin resistant S. aureus versus 50 U / ml polymyxin B and 4 µg / ml HBV. Synergy was shown at the 12 hour time point.

DK 167901 B1 23DK 167901 B1 23

MlC-analvser af antibiotika med oq uden HBVMlC analyzes of antibiotics with and without HBV

Resultaterne fra en indledende undersøgelse af HBV's virkning på MIC af antibiotika for 8 grampositive bakterier og 4 gramnegative 5 bakterier er vist i tabel 4 henholdsvis tabel 5. På trods af den tilsyneladende utilstrækkelighed af analysesystemet, fremkom der tydelige tendenser ved resultaterne fra undersøgelsen. Der blev kraftigt antydet synergi, når observationerne inden for en enkelt MIC-analyse viste, at identiske doser HBV påvirkede nogle antibio-10 tiske MIC'er uden at påvirke andre. I tabel 4 og 5 blev (+) anvendt til at vise et fald på mere end en 2 ganges fortynding af MIC af et antibiotika i nærvær af HBV. Et (-) indikerer ingen forskel eller kun et enkelt fortyndingstrinsvariation (vurderet til at være analysens varians) i MIC af et antibiotika med tilstedeværende HBV.The results of an initial study on the effect of HBV on the MIC of antibiotics for 8 gram-positive bacteria and 4 gram-negative 5 bacteria are shown in Table 4 and Table 5. Despite the apparent inadequacy of the assay system, clear trends emerged from the results of the study. Synergy was strongly suggested when the observations within a single MIC analysis showed that identical doses of HBV affected some antibiotic MICs without affecting others. In Tables 4 and 5, (+) was used to show a decrease of more than a 2-fold dilution of MIC by an antibiotic in the presence of HBV. One (-) indicates no difference or only a single dilution step variation (considered to be the variance of the assay) in the MIC of an antibiotic with HBV present.

1515

Tabel 4 viser resultaterne fra flere grampositive organismer. Resultaterne antyder, at der eksisterer tendenser inden for de afprøvede arter. For eksempel viser S. aureus sig at udvise synergi med alle antibiotika/HBV-kombinationer, mens S. epidermidis kun 20 udviser samstemmende synergistiske resultater med cephalothin/HBV-kombinationen og enkeltvise resultater med andre antibiotika/HBV-kombinationer. Den ene afprøvede Streptococcus faecal i s-stamme afspejlede ingen af de samme synergistiske tendenser, som udvises af de to staphvlocuccus organismer.Table 4 shows the results of several gram-positive organisms. The results suggest that trends exist within the species tested. For example, S. aureus is found to show synergy with all antibiotic / HBV combinations, whereas S. epidermidis only 20 exhibits concordant synergistic results with the cephalothin / HBV combination and single results with other antibiotic / HBV combinations. The one tested Streptococcus faecal in the s strain did not reflect any of the same synergistic tendencies exhibited by the two staphylococcus organisms.

2525

Tabel 5 viser resultaterne for fire E. coli-stammer i MIC-analysesy-stemet. Klare synergimønstre ses med hver af beta-lactamantibiotika-erne (ampicillin, carbenicillin og piperacillin), som er indbefattet i MIC-analysesystemet. Også MIC for aminoglycosiderne gentimicin og 30 amikacin blev sænket i hvert tilfælde med undtagelse af et. MIC for cefoxitin blev også sænket af HBV i alle E. colj-analyser.Table 5 shows the results for four E. coli strains in the MIC assay system. Clear synergy patterns are seen with each of the beta-lactam antibiotics (ampicillin, carbenicillin and piperacillin) included in the MIC assay system. Also, the MIC of the aminoglycosides gentimicin and 30 amikacin was lowered in each case except one. MIC for cefoxitin was also lowered by HBV in all E. colj assays.

Melittinoprensnino og afprøvning 35 Kromatografi af honninqbiaiftMelittinoprene Rino and Test 35 Chromatography of honeycomb

Oprensning af melittin på Sephadex G-50 gav veldefinerede toppe med opløst basislinie. Hulrumsvolurnenet var 100 ml og melittinfraktionen elueredes mellem 200 og 230 ml efter hulrumsvolumenet. Omkring 65/ig DK 167901 B1 24 af den indledende 100/zg's prøve blev indvundet i fraktionerne 200 -230. Disse fraktioner blev sammenhældt og derpå afprøvet for renhed ved polyacrylamidgel elektroforese. Figur 13 viser elektroforesere-sultater for lOOjLtg protein fra de sammenhældte fraktioner 200 - 230.Purification of melittin on the Sephadex G-50 yielded well-defined dissolved baseline peaks. The void volume was 100 ml and the melittin fraction eluted between 200 and 230 ml after void volume. About 65 µg of the sample of the initial 100 µg was recovered in fractions 200 -230. These fractions were combined and then tested for purity by polyacrylamide gel electrophoresis. Figure 13 shows electrophoresis results for 100 µLg of protein from the pooled fractions 200 - 230.

5 Sammenligning af den relative mobilitet af dette bånd med de relative mobiliteter af elektroforetisk adskilte HBV-komponenter identificerede mel ittin som den eneste komponent i fraktioner 200 - 230, som er påviselig ved denne adskillelse.5 Comparison of the relative mobility of this band with the relative mobility of electrophoretically separated HBV components identified mel ittin as the only component of fractions 200 - 230 which is detectable by this separation.

Afprøvning af mel i ttin for antibakteriel aktivitetTesting of flour in ttin for antibacterial activity

Tilsvarende doser melittin og hel honningbigift blev sammenlignet for antibakteriel aktivitet i kombination med og uden antibiotika (tabel A-10). Idet S. aureus var følsom over for HBV i niveauer 15 anvendt ved ovennævnte analyser blev denne organisme valgt til at afprøve melittinfraktionens aktivitet. Kanamycin blev valgt til vurdering af fraktionens synergistiske aktivitet, idet interak-tionskurven, som ses ved ovennævnte afprøvning af S. aureus versus dette antibiotika med HBV afspejlede synergi på alle tidspunkter.Similar doses of melittin and whole honey bee venom were compared for antibacterial activity in combination with and without antibiotics (Table A-10). As S. aureus was sensitive to HBV at levels 15 used in the above assays, this organism was selected to test the activity of melittin fraction. Kanamycin was chosen to assess the synergistic activity of the fraction, as the interaction curve seen in the above test of S. aureus versus this antibiotic with HBV reflected synergy at all times.

2020

Mel i ttins antibakterielle aktivitetFlour in ttin's antibacterial activity

Resultaterne for melittin versus hel HBV er vist i figur 14. Der blev ikke observeret signifikante forskelle med hensyn til antibak-25 teriel aktivitet for hel HBV og melittinfraktionen. For hvert tidspunkt vist i figur 14 er de optiske tætheder for HBV-kurven og mel i ttin-kurven statistisk ens.The results for melittin versus whole HBV are shown in Figure 14. No significant differences in antibacterial activity were observed for whole HBV and melittin fraction. For each time point shown in Figure 14, the optical densities of the HBV curve and flour in the ttin curve are statistically similar.

Melittins svnerqistiske aktivitet med kanamvcin 30Melittin's synergistic activity with kanamvcin 30

Figur 15 sammenligner de antibakterielle aktiviteter af lige store doser mel ittinfraktion af hel HBV-gift i kombination med lige store doser kanamycin. Ingen af de optiske tætheder er på noget tidspunkt på de to kurver signifikant forskellige. Uden at tage hensyn til 35 statistiske vurderinger er interaktionskurven, som repræsenterer mel ittinfraktionen, faktisk lidt mindre på alle tidspunkter end interaktionskurven, der repræsenterer hel HBV. Hvis tidspunktet på begge kurver således accepteres som ægte gennemsnit, ville den endelige konklusion være, at melittinfraktionen faktisk er mere DK 167901 B1 25 aktiv end hel HBV.Figure 15 compares the antibacterial activities of equal doses with whole fraction of HBV venom in combination with equal doses of kanamycin. Neither optical density is significantly different at any point on the two curves. In fact, without taking into account 35 statistical assessments, the interaction curve representing the meal fraction is slightly smaller at all times than the interaction curve representing whole HBV. Thus, if the time on both curves is accepted as true averages, the final conclusion would be that the melittin fraction is actually more active than whole HBV.

Fortolkning af skakbrætanalvseresultater 5 Resultaterne fra skakbrætanalyserne viser tydeligt synergien mellem antibiotika og honningbigift. Figur 2 viser virkningen af forskellige doser honningbigift på S. aureus uden antibiotika. Det fremgår af denne figur, at tilsætning af høje giftdoser, såsom 8 eller 16/zg/ml, til voksende kulturer faktisk sænker kulturens optiske 10 tæthed. Denne indikation på cellelyse er et bevis for, at honningbigift faktisk er baktericidt. Mekanismer med denne baktericide aktivitet og dens bidrag til synergien med antibiotika er ikke kendt. De varierede resultater fra skakbrættitreringsanalyserne antyder, at flere forskellige synergistiske mekanismer kan virke ved 15 disse forsøg.Interpretation of chessboard analysis results 5 The results of the chessboard analyzes clearly show the synergy between antibiotics and honey bee venom. Figure 2 shows the effect of different doses of honey bee venom on S. aureus without antibiotics. It can be seen from this figure that adding high poison doses, such as 8 or 16 µg / ml, to growing cultures actually lowers the optical density of the culture. This indication of cell lysis is proof that honey bees are actually bactericidal. Mechanisms of this bactericidal activity and its contribution to the synergy with antibiotics are unknown. The varied results from the chessboard titration analyzes suggest that several different synergistic mechanisms may work in these experiments.

Spørgsmål kan opstå med hensyn til de store standardafvigelser, der ses på visse tidspunkter i resultattabellerne. Denne variation skyldes den skarpe hældning af vækstkurven, når bakterierne er i 20 logaritmisk fase. Tidspunkter i den midtlogaritmiske fase vil have en meget større forskel i optisk tæthed som funktion af tiden end tidspunkter under en langsommere vækstperiode. Ukontrollerbare små variationer i prøveudtagningsintervaller kan således forårsage større variationer i aflæsning af optisk tæthed på tidspunkter under 25 logaritmisk vækst. Da kulturen deles under den logaritmiske fase til forskellige behandlingsgrupper er variationerne endnu mere synlige mellem forsøgene. Denne fejltype tages imidlertid i betragtning ved den statistiske vurdering. Ved at anvende et stort prøveantal (15) blev estimationsområderne for gennemsnittene af tidspunkter gjort 30 snævre nok til statistisk at vurdere forskelle blandt disse gennemsnit.Questions may arise with regard to the large standard deviations seen at certain times in the result tables. This variation is due to the sharp slope of the growth curve when the bacteria are in the 20 logarithmic phase. Mid-logarithmic phase times will have a much greater difference in optical density as a function of time than times during a slower growth period. Thus, uncontrollable small variations in sampling intervals may cause greater variations in optical density readings at times below 25 logarithmic growth. As the culture is divided during the logarithmic phase into different treatment groups, the variations are even more visible between the experiments. However, this type of error is taken into account in the statistical assessment. Using a large sample number (15), the estimation ranges for the time averages were made 30 narrow enough to statistically estimate differences among these averages.

Selvom melittin kun blev afprøvet indledningsvis som den synergistiske komponent af HBV sammen med et antibiotika og en bakteriestam-55 me med henblik på at diskutere mulige mekanismer er det blevet antaget, at melittin er den synergistiske honningbigiftkomponent i hver af de afprøvede bakterie-antibiotika-HBV-kombinationer.Although melittin was only initially tested as the synergistic component of HBV along with an antibiotic and bacterial strain to discuss possible mechanisms, it has been hypothesized that melittin is the synergistic honey bee component of each of the bacterial antibiotic HBV tested. combinations.

DK 167901 B1 26DK 167901 B1 26

Tilsyneladende øget dosis I de fleste tilfælde synes honningbigift at øge den indledende effektivitet af antibiotikaet, hvilket er antydet af en øget evne 5 til at sænke bakterievæksthastighed umiddelbart efter tilsætning af de to forbindelser. Denne type samvirkning var mest påviselig med E. coli versus HBV og polymyxin B (figur 9). På det første tidspunkt efter tilsætning af de to forbindelser er synergien tydelig og den fortsætter, når kulturen går gennem den logaritmiske fase. Disse 10 resultater antyder, at lave, ikke-effektive doser af antibiotika kan gøres effektive med tilsætning af HBV.Apparently increased dose In most cases, honey bee venom seems to increase the initial effectiveness of the antibiotic, which is suggested by an increased ability 5 to lower bacterial growth rate immediately after the addition of the two compounds. This type of interaction was most detectable with E. coli versus HBV and polymyxin B (Figure 9). At the first stage after the addition of the two compounds, the synergy is evident and it continues as the culture goes through the logarithmic phase. These 10 results suggest that low, ineffective doses of antibiotics can be made effective with the addition of HBV.

Den ovenfor beskrevne øgede dosisvirkning er den synergitype, som ses i de fleste af de afprøvede forsøgskombinationer. Denne virk-15 ningstype kan forklares ved virkningen af melittin gennem flere forskellige mekanismer: (1) ændring af antibiotikamolekylernes opløselighedsegenskaber, (2) forøgelse af bakteriemembranens permeabilitet og (3) forøgelse af 20 antibiotikamolekylernes effektivitet ved deres aktive steder.The increased dose effect described above is the synergy type seen in most of the tested combinations tested. This type of action can be explained by the action of melittin through several different mechanisms: (1) altering the solubility properties of antibiotic molecules, (2) increasing the permeability of the bacterial membrane, and (3) increasing the effectiveness of the antibiotic molecules at their active sites.

Ændrede opløse!ighedsegenskaber af antibiotikaAltered solubility properties of antibiotics

Melittin kunne øge antibiotikas virkning ved at lade det blive 25 lettere at transportere ind i bakteriecellen. Den direkte interak tion mellem melittin og antibiotikamolekyler, som gør molekylerne mindre polære og mere hydrofobe, kan tillade passiv transport gennem bakteriemembraner. Melittins amfifatiske natur og basiskhed gør den til en sandsynlig kandidat til en sådan virkning og giver øget 30 sandsynlighed for denne mekanisme. Denne mekanismetype vil svare til den lettere diffusion af caliumioner med valinomycin.Melittin could increase the effect of antibiotics by making it easier to transport into the bacterial cell. The direct interaction between melittin and antibiotic molecules, which makes the molecules less polar and more hydrophobic, may allow passive transport through bacterial membranes. Melittin's amphiphatic nature and basicity make it a likely candidate for such an effect and give increased probability of this mechanism. This type of mechanism will correspond to the easier diffusion of potassium ions with valinomycin.

Øget membranpermeabilitet 35 Den tilsyneladende antibiotikadosis kan også øges ved at mindske bakteriens gennemtrængningsbarriere. Selvom denne rolle som et kanaldannende peptid let underbygges, kan det ikke være den eneste virkning af melittin, som er involveret i den antibakteriel le synergi. Øget transport over membraner kan ikke forklare, hvorfor DK 167901 B1 27 melittin alene er mere effektiv på grampositive organismer, hvilke har mindre membranbarriere.Increased membrane permeability 35 The apparent antibiotic dose can also be increased by reducing the bacterial penetration barrier. Although this role as a channel-forming peptide is easily supported, it may not be the only effect of melittin involved in the antibacterial le synergy. Increased transport across membranes cannot explain why DK 167901 B1 27 melittin alone is more effective on Gram-positive organisms, which have less membrane barrier.

Øget antibiotikaspecifik aktivitet 5Increased antibiotic-specific activity 5

En tredje mulig mekanisme for synergistiske interaktioner antyder den direkte interaktion mellem melittin og antibiotika, hvilket gør antibiotika mere effektivt, når det når det aktive sted. Et mere specifikt eksempel er den mulige interaktion med kanamycin. Når 10 kanamycin når 30S ribosomet, kan et melittin-kanamycinkompleks have en større affinitet for det aktive sted end ubundet kanamycin (faktisk er melittin et basisk molekyle, ligesom nukleinsyre) eller mel ittin-kanamycinkomplekset kan være mere effektivt med hensyn til sterisk blokering af transfer-RNA'er fra ribosomet simpelthen på 15 grund af kompleksets størrelse.A third possible mechanism for synergistic interactions suggests the direct interaction between melittin and antibiotics, making antibiotics more effective when it reaches the active site. A more specific example is the possible interaction with kanamycin. When 10 kanamycin reaches the 30S ribosome, a melittin-kanamycin complex may have a greater affinity for the active site than unbound kanamycin (in fact, melittin is a basic molecule, like nucleic acid) or the mel ittin-kanamycin complex may be more effective in steric blocking of transfer. -RNAs from the ribosome simply due to the size of the complex.

Øget aktiv levetid for antibiotika I flere tilfælde var det vanskeligt at påvise en øgning af antibio-20 tikas effektivitet ved tilsætning af honningbigift (melittin) før sent i vækstperioden. I disse tilfælde viste det sig, at melittin forårsagede en øgning i antibiotikavirkningens varighed. Denne virkning blev set med kanamycinresi stent S. aureus behandlet med kanamycin/HBV. Figur 9 viser en forholdsvis høj dosis HBV, hvilket 25 skyldes, at der ikke er synergi ved lavere dosis. Selvom det ifølge figur 9 er vanskeligt at udelukke synergi på de tidligere tidspunkter på grund af HBV's effektivitet alene, viste lavere HBV-doser ingen synergi med kanamycin på disse tidlige tidspunkter. Der bemærkes imidlertid en synergistisk virkning ved 24 timers tidspunk-30 tet. Der foreslås to forklaringer på denne type af forsinket virkning: (1) eliminering af resistente mutanter eller (2) forsinkelse af antibiotikas halvveringstid.Increased active life of antibiotics In several cases, it was difficult to detect an increase in the effectiveness of antibiotics by the addition of honey bees (melittin) until late in the growth period. In these cases, melittin was found to cause an increase in the duration of antibiotic action. This effect was seen with kanamycin resistant S. aureus treated with kanamycin / HBV. Figure 9 shows a relatively high dose of HBV, which is due to no synergy at the lower dose. Although Figure 9 is difficult to exclude synergy at the earlier times due to the efficacy of HBV alone, lower HBV doses showed no synergy with kanamycin at these early times. However, a synergistic effect is noted at the 24 hour time point. Two explanations for this type of delayed effect are proposed: (1) elimination of resistant mutants or (2) delay of half-life of antibiotics.

Faldende sandsynlighed for udvælgelse af resistente stammer 35Decreasing probability of selection of resistant strains 35

Hvis både honningbigiften og antibiotikaen er til stede i bakteriekulturen i bakteriostatiske doser, er sandsynligheden for, at en resistent bakterie vil overleve den kombinerede blanding lig med produktet af sandsynlighederne for, at en vil eksistere og overleve DK 167901 B1 28 hver behandling. Dette ville fremkomme som en forsinket synergistisk virkning, idet det vil tage mange generationer for mutanterne at formere sig til et niveau, der kan påvises ved øgede OD-aflæsninger. Mutantudvælgelse ville være karakteriseret som en sporadisk fore-5 komst af en drastisk højere OD-aflæsning blandt kopiprøver, hvilket vil afspejles i behandlingens standardafvigelse. Når virkningerne af HBV-behandling alene på den kanamycinresistente S. aureus med kanamycin for eksempel vurderes, er OD-gennemsnittet for 12 timers punktet på giftkontrol kurven 0,65 med en standardafvigelse på 0,51 10 (tabel A-8), hvilket antyder meget varierede aflæsninger på dette tidspunkt. Det kunne således være meget sandsynligt, at den synergistiske virkning, som ses her på 24 timers tidspunktet, er et resultat af suppression af HBV-giftresistente mutanter.If both honey bee venom and antibiotics are present in the bacterial culture at bacteriostatic doses, the probability that a resistant bacterium will survive the combined mixture is equal to the product of the probabilities that one will exist and survive each treatment. This would appear as a delayed synergistic effect as it will take many generations for the mutants to multiply to a level that can be detected by increased OD readings. Mutant selection would be characterized as a sporadic occurrence of a drastically higher OD reading among copy samples, which would be reflected in the standard deviation of the treatment. For example, when assessing the effects of HBV treatment on kanamycin-resistant S. aureus alone with kanamycin, the OD average of the 12-hour point on the poison control curve is 0.65 with a standard deviation of 0.51 10 (Table A-8), suggesting very varied readings at this time. Thus, it could be very likely that the synergistic effect seen here at the 24 hour time point is the result of suppression of HBV venom resistant mutants.

15 Øget antibiotikastabilitet15 Increased antibiotic stability

En mulig mekanisme, som ikke kan udelukkes, er beskyttelse af antibiotikum mod sønderdeling. En almindelig metode til øgning af antibiotisk virkeevne er at ændre antibiotikum strukturelt for at 20· gøre det mere stabilt i opløsning eller modstandsdygtigt overfor enzymatisk angreb. Disse modifikationstyper er ansvarlig for mange af derivaterne i penicillinfamil i en af antibiotika. For eksempel har penicillin V en phenoxymethylsubstitution, som bibringes sterisk hindring, beskytter antibiotikumets beta-lactamring mod enzymatisk 25 angreb (Volk, 1978c). Sådanne substitutioner kan også forhindre, at denne ende af molekylet ringslutter med beta-lactamringen, hvilket gør molekylet mere modstandsdygtigt over for syrehydrolyse. Disse modifikationstyper vil også frembringe en synergistisk virkning, der kun kan påvises i bakteriostatiske doser, idet antibiotikumet ikke 30 indledningsvist vil være mere effektivt, og antibiotikumets længere levetid ville kun være tydelig, hvis bakteriekulturen ikke havde nået en næringsbegrænsende OD på dette tidspunkt. Hvis HBV imidlertid kunne forårsage en sådan modifikation, kunne der forventes mere overensstemmende resultater blandt kopiprøver.One possible mechanism that cannot be ruled out is the protection of antibiotics from disintegration. A common method of increasing antibiotic efficacy is to change the antibiotic structurally to make it more stable in solution or resistant to enzymatic attack. These types of modification are responsible for many of the derivatives of the penicillin family in one of the antibiotics. For example, penicillin V has a phenoxymethyl substitution which is sterically hindered, protecting the beta-lactam ring of the antibiotic from enzymatic attack (Volk, 1978c). Such substitutions may also prevent this end of the molecule ring-ending with the beta-lactam ring, making the molecule more resistant to acid hydrolysis. These types of modification will also produce a synergistic effect that can only be detected in bacteriostatic doses, since the antibiotic will not initially be more effective and the longer life of the antibiotic would be evident only if the bacterial culture had not reached a nutrient-limiting OD at this time. However, if HBV could cause such a modification, more consistent results could be expected among copy samples.

3535

Vurdering af MIC-afprøvninqAssessment of MIC testing

Skakbrættitreringsanalysen, der var udviklet til HBV/antibiotikasyn-ergi afprøvning var for tidsforbrugende til anvendelse ved DK 167901 B1 29 undersøgelse af HBV's virkning på forskellige antibiotika og på forskellige bakterier. En sådan undersøgelse var imidlertid nødvendig for at lokalisere tendenser blandt antibiotikaklasser til synergi med HBV, såvel som for at bestemme spektrummet af følsomhed 5 blandt bakteriearter overfor specifikke synergistiske kombinationer af antibiotika og HBV. Modifikationen af de automatiserede MIC-ana-lyser blev udformet for at lette denne undersøgelsestype.The chessboard titration assay developed for HBV / antibiotic synergy testing was for time consuming to be used in DK 167901 B1 29's study of the effect of HBV on different antibiotics and on different bacteria. However, such a study was needed to locate trends among antibiotic classes for synergy with HBV, as well as to determine the spectrum of sensitivity 5 among bacterial species to specific synergistic combinations of antibiotics and HBV. The modification of the automated MIC analysis was designed to facilitate this type of study.

På grund af begrænsningerne ved de automatiserede MIC-analyser er 10 vurderingen af resultaterne noget emperiske. Resultaterne kan ikke påvises at være synergistiske interaktioner i modsætning til additive, idet virkningen af HBV alene kun blev registreret som hæmmende eller ikke-hæmmende (svagt hæmmende HBV-doser vil være blevet registreret som ikke-hæmmende, på denne måde kan nogle MIC-fald 15 faktisk være resultatet af en additiv virkning). I de fleste tilfælde udviste imidlertid visse antibiotika faldende MIC'er, hvilket antyder, at HBV-dosen ikke var additiv. Ved underbygning med resultaterne fra skakbrættitreringssystemet bør anvendelsen af disse MIC-analyser derfor være pålidelige til at udpege de antibiotikum/-20 HBV-kombinationer med det største potentiale for specifikke bakteriegrupper. Med hensyn til dette vil MIC'erne være anvendelig til direkte undersøgelse fremover.Due to the limitations of the automated MIC analyzes, the 10 assessment of the results is somewhat empirical. The results cannot be shown to be synergistic interactions as opposed to additives, as the effect of HBV alone was only recorded as inhibitory or noninhibitory (slightly inhibitory HBV doses would have been recorded as noninhibitory, in this way some MIC decreases 15 actually be the result of an additive effect). However, in most cases, certain antibiotics exhibited decreasing MICs, suggesting that the HBV dose was not additive. Therefore, when supported by the results of the chessboard titration system, the use of these MIC assays should be reliable in identifying the antibiotic / -20 HBV combinations with the greatest potential for specific bacterial groups. In this regard, the MICs will be useful for direct investigation in the future.

Identifikation af den aktive honninabiaiftbestanddel 25Identification of the active honeycomb component 25

Selvom resultaterne fra disse undersøgelser antyder, at honningbi-gifts synergistiske aktiviteter fuldstændigt er indeholdt i melit-tinfraktionen, bør der udføres omhyggelig undersøgelse af disse resultater. Det er muligt, at små peptider eller ikke-farvende 30 (Coomassie blåt) forbindelser comigrerer med melittinen ved kromatografien på grund af ioniske eller hydrofobe interaktioner med mel i tti nmolekylet. Melittin migreres som et aggregat med fem gange dets sædvanlige molekylvægt både ved naturlig polyacrylamidgelelek-troforese og ved Sephadex gelkromatrografi (Haberman, 1972). Disse 35 små miceller kan bære mindre hydrofobe forbindelser gennem kromatografien.Although the results of these studies suggest that the honey bee synergistic activities are completely contained in the melite-tin fraction, careful examination of these results should be performed. It is possible that small peptides or non-staining (Coomassie blue) compounds migrate with the melittin by chromatography due to ionic or hydrophobic interactions with flour in the molecule. Melittin is migrated as an aggregate with five times its usual molecular weight both by natural polyacrylamide gel electrophoresis and by Sephadex gel chromatography (Haberman, 1972). These 35 small micelles can carry less hydrophobic compounds through the chromatography.

Som anført ovenfor blev der udført yderligere forsøg for at vise, at DK 167901 B1 30 HBV også er effektiv med henblik på at øge aktiviteten af den ovenfor omtalte fjerde gruppe af antibiotika, som er repræsenteret ved rifampicin. Resultaterne er anført nedenfor i tabel 6, 7 og i figur 16, 17.As stated above, further experiments were performed to show that DK 167901 B1 30 HBV is also effective in increasing the activity of the above mentioned fourth group of antibiotics represented by rifampicin. The results are listed below in Tables 6, 7 and in Figures 16, 17.

55

Aktiviteten af anden hymenopteragift end HBV, nemlig for humlebi-gift, hvepsegift og gedehamsegift, som vist nedenfor i tabel 8, 9 og figur 18 - 20, blev også bestemt. Nogle af de ovenfor nævnte analoger blev også afprøvet for at fastlægge deres relative aktiviteter i 10 forhold til naturlig mel ittin. Den relative aktivitet beregnes som følger: _Melittindosis_ jqqThe activity of hymenopteran venom other than HBV, namely, for hop bee venom, wasp venom and goat venom, as shown below in Tables 8, 9 and Figures 18 - 20, was also determined. Some of the above-mentioned analogs were also tested to determine their relative activities in relation to natural flour. The relative activity is calculated as follows: _Melittine dose_ yqq

Analogdosis, som var påkrævet for 15 at vise tilsvarende synergi medAnalog dose required to show similar synergy

polymyxin Bpolymyxin B

De opnåede resultater er anført i tabel 10.The results obtained are listed in Table 10.

20 Det viser sig, at de analoger, hvori den NHg-terminale ende hovedsagelig består af basiske aminosyrer er mere aktive end analoger med en NHg-terminal ende, som hovedsagelig består af neutrale og/eller sure aminosyrer.It turns out that the analogs in which the NHg terminal end consists mainly of basic amino acids are more active than analogs with an NHg terminal end consisting mainly of neutral and / or acidic amino acids.

25 In vivo forsøg25 In vivo experiments

IndledningIntroduction

In vivo forsøg viser, at melittin, der er det vigtigste peptid i 30 honningbigift, øger virkningen af et afprøvet antibiotika, polymyxin B. Der blev udviklet en sygdomsmodel, bakteriel sepsis, i mus. Til forsøgene sammenlignes aktiviteterne af polymyxin B og melittin, særskilt og i kombination, overfor en E. coli septicaemia i to grundlæggende forsøgssæt. For begge forsøgsprotokoller ses der en 35 synergi stisk interaktion mellem melittin og polymyxin B og denne bekræftes statistisk ved sammenligning af behandlingerne i hver variansanalyse. Melittins evne til at øge virkningen af polymyxin B og give fremragende antibakteriel virkning in vivo vises således kl art.In vivo tests show that melittin, the major peptide in 30 honey bees, increases the efficacy of a tested antibiotic, polymyxin B. A disease model, bacterial sepsis, was developed in mice. For the experiments, the activities of polymyxin B and melittin, separately and in combination, are compared against E. coli septicaemia in two basic test kits. For both test protocols, a synergistic interaction between melittin and polymyxin B is seen and this is statistically confirmed by comparing the treatments in each analysis of variance. Thus, the ability of melittin to increase the effect of polymyxin B and to provide excellent antibacterial activity in vivo is shown at species.

DK 167901 B1 31DK 167901 B1 31

Flere af de referencer, der er citeret ovenfor i afsnittet med titlen "Baggrund og kendt teknik" beskriver anvendelse af honning-bigift og nærmere bestemt melittin som et antimikrobielt middel. Disse referencer beskriver imidlertid kun in vitro effektivitet af 5 honningbi g i ft eller melittin.Several of the references cited above in the section entitled "Background and Prior Art" describe the use of honey bee venom and more specifically melittin as an antimicrobial agent. However, these references only describe in vitro efficacy of 5 honey bees in ft or melittin.

Flere andre systemer har anvendt melittin som et kunstigt middel til at vække forskellige immumsvar i i sol at in vitro systemer. Goodman et al. (1984) rapporterede om B celleaktivering med melittin jn.Several other systems have used melittin as an artificial means of eliciting various immune responses in solar in vitro systems. Goodman et al. (1984) reported on B cell activation with melittin jn.

10 vitro. To særskilte rapporter, en af Kondo og Kanai (1986) og en af Kondo (1986) beskriver anvendelse af melittin in vitro til stimulering af den baktericide aktivitet af membraner isoleret fra fagocyter fra både mus og marsvin. En publikation (Somerfield et al., 1986), der angår virkningen af honni ngbi gi ft på immumsystemet, 15. beskriver hæmning af neutrofil O-produktion med melittin. Somerfield et al. foreslår, at melittin har en rolle som et antiinflammatorisk middel. Denne aktivitet vil mest sandsynligt svække antibakterielt forsvar jn vivo.In vitro. Two separate reports, one by Kondo and Kanai (1986) and one by Kondo (1986), describe the use of melittin in vitro to stimulate the bactericidal activity of membranes isolated from both mouse and guinea pig phagocytes. A publication (Somerfield et al., 1986) on the effect of honni ngbi gi ft on the immune system, 15. describes inhibition of neutrophil O production by melittin. Somerfield et al. suggests that melittin has a role as an anti-inflammatory agent. This activity is likely to impair antibacterial defense in vivo.

20 på trods af det væsentlige omfang af undersøgelser med melittin er det endnu ikke blevet vist, at melittin er effektiv in vivo mod infektiøse organismer. Mere vigtigt er det, at der ingen steder er blevet foreslået behovet eller fordelen af mel ittins interaktion med antibiotika. De heri beskrevne resultater viser fordelagtige inter-25 aktioner mellem melittin og polymyxin B, når det anvendes in vivo til behandling af mus, der lider af en bakteriel septicæmia, som er forårsaget af E. coli.Despite the substantial scope of studies with melittin, melittin has not yet been shown to be effective in vivo against infectious organisms. More importantly, the need or benefit of mel ittin's interaction with antibiotics has never been proposed. The results described herein show beneficial interactions between melittin and polymyxin B when used in vivo to treat mice suffering from a bacterial septicemia caused by E. coli.

Materialer og fremgangsmåder 30Materials and Methods 30

Swiss CD-I hunmus (Charles River) blev opnået med vægte på 18-20 g. Musene blev anbragt ved 25±0,6°C og 30 - 45% relativ fugtighed med en daglig lysperiode på 12 timer. Efter levering blev hver forsendelse af mus opretholdt i en 2 ugers aklimatiseringsperiode, før 35 anvendelse ved forsøget.Swiss CD-I female mice (Charles River) were obtained with weights of 18-20 g. The mice were placed at 25 ± 0.6 ° C and 30 - 45% relative humidity with a daily light period of 12 hours. After delivery, each shipment of mice was maintained for a 2-week acclimation period prior to use in the experiment.

Polymyxin B (Sigma Chemical Company) blev købt som pulverform med en aktivitet på 7900 enheder/mg. Der blev fremstillet en stamopløsning med 0,1 mg/ml i 0,85% NaCl og den blev frosset ved -20°C i 5 ml DK 167901 B1 32 delprøver indtil anvendelse.Polymyxin B (Sigma Chemical Company) was purchased as a powder form with an activity of 7900 units / mg. A stock solution of 0.1 mg / ml in 0.85% NaCl was prepared and frozen at -20 ° C in 5 ml DK 167901 B1 32 partial samples until use.

Der blev leveret honni ngbi gi ft (HBV) af Vespa Laboratories, Inc. Spring Mills, PA. HBV var kilden til mel i ttin, som blev isoleret 5 under anvendelse af gelfiltrering som beskrevet tidligere i forbindelse med in vitro forsøg. Mel i ttin blev kvantifi seret ved Lowrys proteinanalyse (Lowry et al., 1951) og derpå frysetørret. Det frysetørrede mel i ttin blev rekonstitueret i 0,85% NaCl til en koncentration på 0,1 mg/ml og frosset ved -20°C i 1,5 ml delprøver, 10 indtil yderligere anvendelse.Honni ngbi gi ft (HBV) was provided by Vespa Laboratories, Inc. Spring Mills, PA. HBV was the source of ttin flour which was isolated using gel filtration as described previously in in vitro experiments. Flour in ttin was quantified by Lowry's protein analysis (Lowry et al., 1951) and then lyophilized. The freeze-dried flour in ttin was reconstituted in 0.85% NaCl to a concentration of 0.1 mg / ml and frozen at -20 ° C in 1.5 ml aliquots, until further use.

E. coli stamme nr. G1108E blev opnået fra Pennsylvania State University E. coli Reference Center, University Park. PA. 0,5 ml af en 24 timers tryptikasesoyabouillon blev anvendt til at inokulere 800 ml 15 frisk tryptikasesoyabouillon. Kulturen blev formeret natten over under mild rystning. Der blev sat 200 ml sterilt glycerol til kulturen, som derpå aseptisk blev fordelt under omrøring i 5,0 ml delprøver. Disse delprøver blev frosset og opbevaret ved -20°C.E. coli strain No. G1108E was obtained from Pennsylvania State University E. coli Reference Center, University Park. ON. 0.5 ml of a 24 hour trypticase soy broth was used to inoculate 800 ml of 15 fresh trypticase soy broth. The culture was propagated overnight under mild shaking. 200 ml of sterile glycerol was added to the culture, which was then aseptically distributed with stirring in 5.0 ml of sub-samples. These subsamples were frozen and stored at -20 ° C.

OISLAND

Efter optøning gav hver delprøve (±3) x 10 levende bakterier/ml.After thawing, each subsample gave (± 3) x 10 live bacteria / ml.

20 Kulturen blev derpå fortyndet 1:400 med tryptikasesoyabouillon indeholdende 2,5% gastrisk mucin (Sigma Chemical Company) før inokulering.The culture was then diluted 1: 400 with trypticase soy broth containing 2.5% gastric mucin (Sigma Chemical Company) before inoculation.

Mus blev inficeret ved intraperitoneal injection af 0,25 ml af en 25 1:400 fortynding af bakterier (ca. 500.000 levende bakterier) opslæmmet i tryptikasesoyabouillon med 2,5% mucin.Mice were infected by intraperitoneal injection of 0.25 ml of a 25 1: 400 dilution of bacteria (approximately 500,000 live bacteria) suspended in trypticase soy broth with 2.5% mucin.

Før injektion blev polymyxin B og melittin optøet, filtersteriliseret og passende fortyndet med sterilt 0,85% NaCl, således at den 30 krævede dosis var indeholdt i 0,2 ml opløsning. 30 minutter efter infektion blev dette volumen derpå indgivet til musen ved subkutan injektion i hudfolden ved nakkens basis. Hudfolden dannes mellem tommelfinger og pegefinger med et basalt fastholdelsesgreb.Prior to injection, polymyxin B and melittin were thawed, filter sterilized and appropriately diluted with sterile 0.85% NaCl so that the required dose was contained in 0.2 ml of solution. Thirty minutes after infection, this volume was then administered to the mouse by subcutaneous injection into the skin fold at the base of the neck. The skin fold is formed between the thumb and forefinger with a basic grip.

35 Bakterieniveauer i blodet blev bestemt ud fra blodprøver opnået ved aseptisk hjertepunktur. Efter hjertepunktur blev nålen fjernet fra den hepari nbel agte sprøjte og 0,2 ml blod blev fordelt i et rør indeholdende 0,2 ml 0,85% NaCl og blandet godt. Alle prøver blev holdt på is indtil udpladning. Dobbelte udspredte plader af alle DK 167901 B1 33 prøver ved passende fortyndinger blev fremstillet på tryptikasesoya-agar og inkuberet ved 37°C natten over. Alle plader indeholdende mindre end 400 kolonier blev talt og registreret.35 Bacteria levels in the blood were determined from blood samples obtained by aseptic heart puncture. After cardiac puncture, the needle was removed from the hepatic nebuliser and 0.2 ml of blood was partitioned into a tube containing 0.2 ml of 0.85% NaCl and mixed well. All samples were kept on ice until plating. Double spread sheets of all samples at appropriate dilutions were prepared on trypticase soy agar and incubated at 37 ° C overnight. All plates containing less than 400 colonies were counted and recorded.

5 Resultater5 results

Ved den første forsøgsudformning blev fire tilfældige grupper med hver især fire mus inokuleret med E. coli som beskrevet ovenfor. 30 minutter senere blev de fire mus i hver gruppe hver især behandlet 10 med 0,2 ml 0,85% NaCl-opløsning indeholdende en af følgende: 1) kun 0,85% NaCl ("ingen behandling"), 2) 2,0/ig polymyxin B, 3) 50 ng melittin eller 4) 2,0/ig polymyxin B + 50 ng melittin. 21 timer efter den indledende inokulering blev blodprøver udtaget og antallet af bakterier pr. ml blod blev beregnet ved at tage gennemsnittet af 1® resultaterne fra dobbelte pladetæl ni nger af passende blodfortyndinger (tabel A-ll). Dette forsøg blev udført in triplo og det gennemsnitlige antal bakterier pr. ml blod for hver af de fire behandlinger blev sammenlignet (figur 21). En p-værdi på 0,0015 for behandlingsvirkningen ved en to-vejs variansanalyse (justeret for uens 20 prøvestørrelser) indikerede en signifikant forskel i mindst en af behandlingsmetoderne. Tukeys multiple gennemsnitssammenligning viste, at det eneste gennemsnit, som var signifikant forskelligt var gennemsnittet for gruppen, som modtog kombinationen 2/zg polymyxin B og 50 ng melittin. Ved at sammenligne summen af aktiviteter, som 25 opnås med melittin og polymyxin B anvendt individulet, med deres aktivitet, når de anvendes i kombination, bekræftede en kontrast inden for variansanalysen, at interaktionen var synergistisk (p-værdi = 0,0493).In the first experimental design, four random groups with each of four mice were inoculated with E. coli as described above. Thirty minutes later, the four mice in each group were each treated with 0.2 ml of 0.85% NaCl solution containing one of the following: 1) only 0.85% NaCl ("no treatment"), 2) 2, 0 µg polymyxin B, 3) 50 ng melittin or 4) 2.0 µg polymyxin B + 50 ng melittin. 21 hours after the initial inoculation, blood samples were taken and the number of bacteria per ml of blood was calculated by taking the mean of 1® results from double plate counts of appropriate blood dilutions (Table A-11). This experiment was performed in triplicate and the average number of bacteria per ml of blood for each of the four treatments was compared (Figure 21). A p-value of 0.0015 for the treatment effect of a two-way variance analysis (adjusted for 20 sample sizes) indicated a significant difference in at least one of the treatment methods. Tukey's multiple mean comparison showed that the only mean that was significantly different was the mean of the group receiving the combination of 2 µg polymyxin B and 50 ng melittin. By comparing the sum of activities obtained with melittin and polymyxin B used by the individual with their activity when used in combination, a contrast within the analysis of variance confirmed that the interaction was synergistic (p-value = 0.0493).

30. En anden forsøgsudformning afprøvede virkningen af gentagne behandlinger. Igen blev fire grupper hver indeholdende fire mus inokuleret med E. col i og behandlet 30 minutter senere med samme fire behandlinger: 1) kun 0,85% NaCl ("ingen behandling"), 2) 2,0/ig polymyxin B, 3) 50 ng melittin eller 4) 2,0/ig polymyxin B + 50 ng melittin. 18 35 timer efter den indledende infektion blev hver mus udfordret med det30. Another experimental design tested the effect of repeated treatments. Again, four groups each containing four mice were inoculated with E. col i and treated 30 minutes later with the same four treatments: 1) only 0.85% NaCl ("no treatment"), 2) 2.0 µg polymyxin B, 3 ) 50 ng melittin or 4) 2.0 µg polymyxin B + 50 ng melittin. 18 Hours after the initial infection, each mouse was challenged with it

samme E. coli-inokulum og 30 minutter senere behandlet med den samme Isame E. coli inoculum and treated 30 minutes later with the same I

anti bi oti ka/meli tti nbehandl i ng- 5 timer senere (23 timer efter den indledende infektion) blev blodprøver fra hver mus udpladet for at kvantifi sere antallet af bakterier i blodet. Dette forsøg blev DK 167901 B1 34 gentaget 5 gange, og resultaterne (tabel A-12) blev vurderet ved variansanalyse. Disse resultater viste en signifikant forskel (p-værdi = 0,0001) ved mindst en behandling. Tukeys multiple gennemsnitssammenligning viste, at gentagne polymoxyin B-behandlinger 5 forårsagede et signifikant fald i antallet af bakterier pr. ml blod. Mere vigtig viste Tukeys sammenligning, at bakterietælli ngerne i blodet fra dyr behandlet med polymyxin B samt melittin var signifikant lavere end tællingerne i blod fra dyr, som kun var behandlet med polymyxin B eller melittin (jvf. figur 22). En kontrast inden 10 for variansanalysen gav en høj konfidensgrad for synergien af disse to forbindelser (p-værdi = 0,0007).anti bi oti ka / meli tti treatment for 5 hours later (23 hours after the initial infection), blood samples from each mouse were plated to quantify the number of bacteria in the blood. This experiment was repeated 5 times and the results (Table A-12) were assessed by analysis of variance. These results showed a significant difference (p-value = 0.0001) in at least one treatment. Tukey's multiple average comparison showed that repeated polymoxyin B treatments 5 caused a significant decrease in the number of bacteria per ml of blood. More importantly, Tukey's comparison showed that the bacterial counts in the blood from animals treated with polymyxin B as well as melittin were significantly lower than the counts in blood from animals treated with polymyxin B or melittin only (see Figure 22). A contrast within 10 of the variance analysis yielded a high degree of confidence for the synergy of these two compounds (p-value = 0.0007).

Konklusion 15 Ovennævnte forsøg viser tydelig den synergistiske interaktion mellem antibiotikumet polymyxin B og melittin. Det er højst sandsynligt, at melittin forstærker de terapeutiske virkninger af andre farmaceutika på grund af dets antimikrobielle egenskaber og evne til at øge membranpermeabi1 i teten.Conclusion 15 The above test clearly shows the synergistic interaction between the antibiotic polymyxin B and melittin. Melittin is most likely to potentiate the therapeutic effects of other pharmaceuticals due to its antimicrobial properties and ability to increase membrane permeability in the theta.

2020

Resultaterne fra det første sæt af forsøg (figur 21) manglede statistisk signifikans for virkningen af melittin alene, men sammenligninger af de absolutte gennemsnit antydede positive virkninger med mel ittinbehandl ing alene. Resultaterne for det andet sæt af 25 forsøg (figur 22) manglede igen en signifikant forskel for behandling med melittin alene. En sammenligning af de absolutte behandlingsgennemsnit antydede en negativ virkning af melittin alene. Ihukommende at mus i det andet sæt forsøg modtog dobbelte melit-tindoser antyder dette, at højere melittindoser kan forværre den 30 infektiøse proces, når de anvendes uden antibiotika. Tidligere forsøg med højere melittindoser bekræfter denne antagelse. Det er sandsynligt, at den skadelige aktivitet forekommer, når melittin anvendes alene. Det er vigtigt, at den effektive anvendelse af melittin til behandling af infektioner ikke blev fundet ved litte-35· ratursøgning. Antibiotika imødegår tilsyneladende melittins negative virkninger og gør således kombineret terapi til en væsentlig udvikling.The results from the first set of experiments (Figure 21) lacked statistical significance for the effect of melittin alone, but comparisons of the absolute averages indicated positive effects with melitin treatment alone. The results for the second set of 25 trials (Figure 22) again lacked a significant difference for treatment with melittin alone. A comparison of the absolute treatment averages suggested a negative effect of melittin alone. Recalling that mice in the second set of trials received double melitin doses, this suggests that higher melitin doses may aggravate the infectious process when used without antibiotics. Previous trials of higher melittin doses confirm this assumption. The harmful activity is likely to occur when melittin is used alone. It is important that the effective use of melittin for the treatment of infections was not found in litte-35 rats. Antibiotics apparently counteract the negative effects of melittin and thus make combined therapy a significant development.

DK 167901 B1 35DK 167901 B1 35

AntibiotikasynerqiAntibiotikasynerqi

Vist med en syntetisk mel ittinanal og 5 Den synergi, som ses mellem antibiotika og melittin, kan også opnås ved at erstatte melittin med en syntetisk peptidanalog. En sådan analog blev udformet og syntentiseret til dette formål. Ved afprøvning parallelt med naturligt melittin gav den tilsvarende antibiotikaforstærkning.Shown with a synthetic flour ittin analogue and 5 The synergy seen between antibiotics and melittin can also be achieved by replacing melittin with a synthetic peptide analogue. Such an analog was designed and synthesized for this purpose. When tested in parallel with natural melittin, the corresponding antibiotic boost was given.

1010

IndledningIntroduction

Analog nr. 6, hvis struktur er vist nedenfor, 15 H-Gly-Ile-Gly-Ala-Val-Leu-Lys-Val-Leu-Thr-Thr-Gly-Leu-Pro-Ala-Leu-ne-Ser-TrD-ne-Lvs-Lvs-Lvs-Lvs-Gln-Gln-NHo blev afprøvet in vitro som beskrevet tidligere for synergi med polymxin B mod E. coli. Dette peptid varierer fra melittin ved 20 amiosyrerne 22 og 24 (understreget), hvor argeni nenheder er blevet erstattet af lysinenheder. Ved anvendelse i førnævnte analyse viste det en aktivitet svarende til naturligt melittin.Analog # 6, the structure of which is shown below, H-Gly-Ile-Gly-Ala-Val-Leu-Lys-Val-Leu-Thr-Thr-Gly-Leu-Pro-Ala-Leu-ne-Ser TrD-ne-Lvs-Lvs-Lvs-Lvs-Gln-Gln-NHo was tested in vitro as described previously for polymxin B synergy against E. coli. This peptide varies from melittin at the 20 amino acids 22 and 24 (underlined), where argenic units have been replaced by lysine units. When used in the aforementioned analysis, it showed an activity similar to natural melittin.

Materialer og fremgangsmåder 25Materials and Methods 25

Melittin blev isoleret fra hel honni ngbi gi ft (Vespa laboratories, Inc.) ved hjælp af gelfiltreringskromatografi, blev kvantificeret ved Lowry proteinanalyse og opbevaret frysetørret. Til disse analyser blev frysetørret melittin rekonstitueret til 0,4 mg/ml med 30 destilleret vand, filtersteriliseret og opbevaret som 4,0 ml delprøver ved -20°C indtil anvendelse.Melittin was isolated from whole honni ngbi gi ft (Vespa laboratories, Inc.) by gel filtration chromatography, quantified by Lowry protein analysis, and stored freeze-dried. For these assays, lyophilized melittin was reconstituted to 0.4 mg / ml with 30 distilled water, filter sterilized and stored as 4.0 ml aliquots at -20 ° C until use.

Analog nr. 6 blev syntetiseret af dr. Torben Saermark (ved Protein Laboratoriet, Københavns Universitet, Sigurdsgade 34, DK-2200 35 København N, Danmark). Den blev vurderet til at være mere end 98% ren baseret på højtryksvæskekromatografi elueringsprofilen fra en C18-søjle under anvendelse af en 0-80% acetonitrilgradient i 0,1% tri fluoracetat. Pepti det blev modtaget i frysetørret form og blev rekonstitueret til ca. 0,2 mg/ml i 0,85% NaCl, filtersteriliseret og DK 167901 B1 36 opbevaret som 0,5 ml delprøver ved -20°C indtil anvendelse.Analog # 6 was synthesized by dr. Torben Saermark (at the Protein Laboratory, University of Copenhagen, Sigurdsgade 34, DK-2200 35 Copenhagen N, Denmark). It was estimated to be more than 98% pure based on the high pressure liquid chromatography elution profile of a C18 column using a 0-80% acetonitrile gradient in 0.1% trifluoroacetate. Pepti it was received in freeze-dried form and was reconstituted to ca. 0.2 mg / ml in 0.85% NaCl, filter sterilized and stored as 0.5 ml partial samples at -20 ° C until use.

Polymyxin B (Sigma Chemical Company) med en specifik aktivitet på 7900 enheder/mg blev rekonstitueret til 240 enheder/ml i destilleret 5 vand, filtersteriliseret og opbevaret som 4,0 ml delprøver ved -20°C indtil anvendelse.Polymyxin B (Sigma Chemical Company) with a specific activity of 7900 units / mg was reconstituted to 240 units / ml in distilled water, filter sterilized and stored as 4.0 ml partial samples at -20 ° C until use.

E. coli stamme nr. G1108E blev opnået fra Pennsylvania State University E. coli Reference Center (105 Henning Building, University 10 Park, Pennsylvania, 16802). Der blev fremstillet inokulum fra en kultur, der var dyrket i tryptikasesoyabouillon til den midtlogaritmiske fase. Der blev tilsat sterilt glycerol til opnåelse af en slutkoncentration på 20% og kulturen blev uddelt og frosset i 5,0 ml delprøver ved -20°C indtil anvendelse.E. coli strain No. G1108E was obtained from Pennsylvania State University E. coli Reference Center (105 Henning Building, University 10 Park, Pennsylvania, 16802). Inoculum was prepared from a culture grown in trypticase soy broth to the middle logarithmic phase. Sterile glycerol was added to give a final concentration of 20% and the culture was distributed and frozen in 5.0 ml aliquots at -20 ° C until use.

1515

Der blev udført en skakbrætti treringssynergianalyse til parallel afprøvning af naturlig melittin og analog nr. 6 sammen med polymyxin B mod E. coli. Ækvivalente doser naturlig melittin og analog nr. 6 blev baseret på en Lowry-proteinanalyse udført samtidig på delprøver 20 af hver efter den endelige filtrering. Begge peptider blev afprøvet i synergi analysen ved slutkoncentrationer i mediet på 5/xg/ml og 10/ig/ml. Polymyxin B blev afprøvet ved slutmediekoncentrationer på 3 enheder/ml og 6 enheder/ml mod begge niveauer af begge peptider.A chess boarding synergy analysis was performed for parallel testing of natural melittin and analog # 6 together with polymyxin B against E. coli. Equivalent doses of natural melittin and analog # 6 were based on a Lowry protein assay performed simultaneously on sub-samples 20 of each after the final filtration. Both peptides were tested in the synergy assay at final concentrations in the medium of 5 µg / ml and 10 µg / ml. Polymyxin B was tested at final media concentrations of 3 units / ml and 6 units / ml against both levels of both peptides.

25 Resultater25 results

Synergien blev bedst vist med både det naturlige melittin og analog nr. 6 afprøvet ved 10/ig/ml mod 6 enheder/ml polymyxin B (tabel 11). Under disse betingelser (jvf. figur 23) blev resultater for hvert 30 peptid analyseret statistisk for synergistisk aktivitet på hvert tidspunkt. Under anvendelse af statistiske modsætninger blev aktivitetsgennemsnit for hvert peptid alene og polymyxin B alene sam-, menlignet med aktiviteten for den respektive peptid-polymyxin BThe synergy was best demonstrated with both the natural melittin and analogue # 6 tested at 10 µg / ml versus 6 units / ml polymyxin B (Table 11). Under these conditions (cf. Figure 23), results for each 30 peptide were statistically analyzed for synergistic activity at each time point. Using statistical contrasts, activity averages for each peptide alone and polymyxin B alone were compared to the activity of the respective peptide polymyxin B

kombination. Synergi blev påvist ved 4, 6 og 8 timers tidspunktet 35 for både melittin og analog nr. 6 (p-værdier = 0,0001).combination. Synergy was detected at 4, 6 and 8 hours at 35 for both melittin and analogue # 6 (p values = 0.0001).

Endvidere blev synergikurver for melittin (10/jg melittin + 6 enheder polymyxin B) og analog nr. 6 (ΐθ/xg analog nr. 6 + 6 enheder polymyxin B) sammenlignet på hvert tidspunkt for forskellig akti vi - DK 167901 B1 37 tetsniveauer. På intet tidspunkt kunne der påvises en signifikant forskel mellem disse to kurver.Furthermore, synergy curves for melittin (10 µg melittin + 6 units polymyxin B) and analogue no. 6 (ΐθ / xg analogue no. 6 + 6 units polymyxin B) were compared at each time point for different activity levels. At no time could a significant difference be detected between these two curves.

Konklusioner 5Conclusions 5

Resultaterne viser, at analog nr. 6, der er en syntetisk melittin-analog besidder en aktivitet, der er meget lig med melittins aktivitet med hensyn til dens evne til at forbedre polymyxin B's aktivitet. Selvom 12 timers punktet antyder, at analog nr. 6 besidder 10 svagt bedre aktivitet med polymyxin B end melittin gør, er denne forskel i aktivitet minimal med hensyn til den aktuelle kvantitative forskel i peptid, som den vil afspejle. Ved at sammenligne forskellen i synergi frembragt med 10μg melittin versus 10μg analog nr. 6 med forskellen i synergi frembragt med lOμg melittin versus 5μg 15 melittin (tabel 11) kan forskellen mellem de specifikke aktiviteter for melitten versus analog nr. 6 estimeres til at være mindre end 10%.The results show that analogue # 6, which is a synthetic melittin analog, possesses an activity very similar to the activity of melittin in terms of its ability to enhance polymyxin B's activity. Although the 12 hour point suggests that analog # 6 possesses 10 slightly better activity with polymyxin B than melittin does, this difference in activity is minimal in terms of the current quantitative difference in peptide that it will reflect. By comparing the difference in synergy produced with 10μg melittin versus 10μg analogue # 6 with the difference in synergy produced with 10μg melittin versus 5μg 15 melittin (Table 11), the difference between the specific activities of the melite versus analogue # 6 can be estimated to be smaller than 10%.

Undersøgelsen viser, at det er muligt at syntetisere melittinanalog-20 er med synergistiske evner, som svarer til eller er bedre end melittins.The study shows that it is possible to synthesize melittin analogs with synergistic capabilities equal to or better than melittins.

Synergistisk antibakteriel aktivitet af melittin og polymyxin B:Synergistic antibacterial activity of melittin and polymyxin B:

Relative aktiviteter af melittinanaloqer_ 25Relative activities of melittin analogs_ 25

Den synergi, som ses mellem antibiotika og melittin, kan også opnås ved at erstatte melittin med enten en syntetisk analog eller et kemisk modifiseret derivat af det naturlige peptid. Syntetisk melittin, fem syntetiske peptidanaloger og en kemisk modifikation af 30 naturlig melittin blev afprøvet for synergistisk interaktion med polymyxin B med hensyn til væksthæmming af E. coli. Deres relative aktiviteter blev sammenlignet med aktiviteten af melittin fra naturlig honningbigift. Hvert peptid udviste synergistisk interaktion med polymyxin B. Imidlertid var de specifikke aktiviteter 35 signifikant forskellige. Flere analoger tilvejebragte en bedre synergistisk aktivitet end naturlig melittin.The synergy seen between antibiotics and melittin can also be achieved by replacing melittin with either a synthetic analogue or a chemically modified derivative of the natural peptide. Synthetic melittin, five synthetic peptide analogs, and a chemical modification of 30 natural melittin were tested for synergistic interaction with polymyxin B for growth inhibition of E. coli. Their relative activities were compared to the activity of melittin from natural honey bees. Each peptide exhibited synergistic interaction with polymyxin B. However, the specific activities were significantly different. Several analogs provided better synergistic activity than natural melittin.

DK 167901 B1 38DK 167901 B1 38

IndledningIntroduction

Der blev analyseret to typer melittinanaloger in vitro, nemlig syntetiske peptider og en kemisk modifikation af naturlig melittin, 5 for synergi med polymyxin B ved en antibakteriel aktivitetsanalyse.Two types of melittin analogs were analyzed in vitro, namely synthetic peptides and a chemical modification of natural melittin, 5 for synergy with polymyxin B in an antibacterial activity assay.

De syntetiske analoger omfattede en gruppe af syntetiske peptider, som alle varierede fra melittins 26 aminosyresekvens med to eller flere enheder. Den kemiske modifikation af melittin, NPS-melittin, bestod af en fæstel se af en o-nitrophenylsulfenylgruppe til nr. 19 10 tryptophanenhed i naturlig melittin. Aktiviteten af hver af disse analoger blev sammenlignet med aktiviteterne af både naturlig og syntetisk melittin. Selvom hver af disse analoger udviste en vis synergistisk interaktion med polymyxin B In vitro var signifikante forskelle i peptidaktiviteter tydelige. Disse forskelle definerer 15 nøgleegenskaber af mel i tti nmolekylet i dets rolle som en potentiator for polymyxin B-aktivitet.The synthetic analogs included a group of synthetic peptides, all of which differed from melittin's 26 amino acid sequence by two or more units. The chemical modification of melittin, NPS-melittin, consisted of a fixed view of an o-nitrophenylsulphenyl group to No. 19 10 tryptophan unit in natural melittin. The activity of each of these analogs was compared to the activities of both natural and synthetic melittin. Although each of these analogs exhibited some synergistic interaction with polymyxin B In vitro, significant differences in peptide activities were evident. These differences define 15 key properties of flour in the molecule in its role as a potentiator of polymyxin B activity.

Materialer og fremgangsmåder 20 Naturlig melittin blev isoleret fra hel honningbigift (Vespa Laboratories, Inc.) ved hjælp af gel filtreringskromatografi, blev kvanti-fiseret ved Lowry-proteinanalyse og opbevaret frysetørret. Til disse analyser blev frysetørret melittin rekonstitueret til 0,34 mg/ml med destilleret vand, filtersteriliseret og opbevaret som 4,0 ml 25 delprøver ved -20°C indtil anvendelse.Materials and Methods Natural melittin was isolated from whole honey bee venom (Vespa Laboratories, Inc.) by gel filtration chromatography, quantified by Lowry protein analysis and stored lyophilized. For these assays, lyophilized melittin was reconstituted to 0.34 mg / ml with distilled water, filter sterilized and stored as 4.0 ml 25 samples at -20 ° C until use.

NPS-melittin blev syntetiseret ud fra naturligt melittin ved at omsætte peptidet med o-nitrophenylsulfenylchlorid (NPS-C1), som det er blevet beskrevet for adrenocorticortropin af Ramachandran et al.NPS-melittin was synthesized from natural melittin by reacting the peptide with o-nitrophenylsulfenyl chloride (NPS-C1), as has been described for adrenocorticortropin by Ramachandran et al.

30 Peptidet blev præcipiteret fra opløsning med ethyl acetat, genopslæm-met i 0,1 N eddikesyre og derpå ført gennem en Sephadex G-10 (LKB-Pharmacia, Piscataway, N.J.) -søjle for at fjerne tilbageblevne NPS-C1-salte. En bestemmelse af derivatets molabsorptivitet ved 365 nm antydede, at melittin var mere end 95% modificeret.The peptide was precipitated from solution with ethyl acetate, resuspended in 0.1N acetic acid and then passed through a Sephadex G-10 (LKB-Pharmacia, Piscataway, N.J.) column to remove residual NPS-C1 salts. A determination of the molar absorptivity of the derivative at 365 nm suggested that melittin was more than 95% modified.

3535

Der blev indkøbt syntetisk melittin fra Penisula Laboratories, Belmont, CA. 0,5 mg prøve blev rekonstitueret til 0,3 mg/ml i 0,85 saltopløsning baseret på Lowry-proteinanalyse. Prøven blev opbevaret ved -20°C indtil anvendelse.Synthetic melittin was purchased from Penisula Laboratories, Belmont, CA. 0.5 mg sample was reconstituted to 0.3 mg / ml in 0.85 saline solution based on Lowry protein analysis. The sample was stored at -20 ° C until use.

DK 167901 B1 39DK 167901 B1 39

Syntetiske analoger blev syntetiseret af dr. Torben Seemark (Proteinlaboratoriet, Københavns Universitet, Sigurdsgade 34, DK-2200 København N, Danmark). Hver analog blev analyseret for renhed og blev vurderet til at være mere end 98 rent baseret på den kromato-5 grafiske elueringsprofil fra en C-18 søjle under anvendelse af en 0-100% acetonitrilgradient. Hvert peptid blev modtaget i frysetørret form og blev rekonstitueret til ca. 1,0 mg/ml i 0,85% NaCL, filtersteriliseret og opbevaret som 1,0 ml delprøver ved -20eC indtil anvendelse. Hver peptidopløsning blev kvantifiseret ved Lowry-pro-10 teinanalyse før anvendelse. Lowry-resultaterne stemte godt overens med koncentrationsestimaterne baseret på peptidtørvægte.Synthetic analogues were synthesized by dr. Torben Seemark (Protein Laboratory, University of Copenhagen, Sigurdsgade 34, DK-2200 Copenhagen N, Denmark). Each analog was analyzed for purity and was estimated to be more than 98 purely based on the chromatographic elution profile of a C-18 column using a 0-100% acetonitrile gradient. Each peptide was received in lyophilized form and reconstituted to ca. 1.0 mg / ml in 0.85% NaCL, filter sterilized and stored as 1.0 ml partial samples at -20 ° C until use. Each peptide solution was quantified by Lowry protein assay before use. The Lowry results were in good agreement with the concentration estimates based on peptide dry weights.

Polymyxin B (Sigma Chemical Company, St. Louis, Mo.) med en specifik aktivitet på 7900 enheder/mg blev rekonstitueret til 240 enheder/mg i 0,85% saltopløsning, filtersteriliseret og opbevaret som 4,0 ml delprøver ved -20eC indtil anvendelse.Polymyxin B (Sigma Chemical Company, St. Louis, Mo.) with a specific activity of 7900 units / mg was reconstituted to 240 units / mg in 0.85% saline, filter sterilized and stored as 4.0 ml aliquots at -20 ° C until application.

E. coli G1108E blev opnået fra the Pennsuylvania State University E. coli Reference Center (105 Henning Building, University Park, Pa.E. coli G1108E was obtained from the Pennsylvania State University E. coli Reference Center (105 Henning Building, University Park, Pa.).

20 16802). Der blev fremstillet inokulum ud fra en kultur dyrket i trypticasesøjlebouillon til midtlogaritmisk fase. Der blev sat sterilt glycerol til kulturen til en slutkoncentration på 20% og 5,0 ml delprøver blev uddelt og frosset ved -20°C indtil anvendelse.20 16802). Inoculum was prepared from a culture grown in trypticase column broth for midlogarithmic phase. Sterile glycerol was added to the culture to a final concentration of 20% and 5.0 ml aliquots were dispensed and frozen at -20 ° C until use.

25 Der blev udført en skakbrættitreringssynergianalyse, som afprøver hvert peptid med polymyxin B mod E. coli parallelt med melittin.A checkerboard titration synergy analysis was performed which tests each peptide with polymyxin B against E. coli in parallel with melittin.

Ækvivalente doser af det naturlige melittin og hver analog var baseret på en Lowry-proteinanalyse udført på delprøver af hvert peptid efter den sidste filtrering af stamopløsningen. Alle peptider j 3° blev afprøvet ved synergi analysen i slutkoncentrationer i mediet på 5/ig/ml. Koncentrationen af polymyxin B i mediet ved alle analyserne var 6 enheder/ml.Equivalent doses of the natural melittin and each analog were based on a Lowry protein assay performed on subsamples of each peptide after the last filtration of the stock solution. All peptides j 3 ° were tested by the synergy analysis at final concentrations in the medium of 5 µg / ml. The concentration of polymyxin B in the medium in all the assays was 6 units / ml.

Resultater 35Results 35

Tabel 12 viser aminosyresekvenserne for de syntetiske melittinana-loger. For hver syntetisk analog er de første 20 N-terminale aminosyrer de samme som for naturlig melittin. Ændringer forekommer i de seks C-terminale aminosyrer og er anført ved fremhævet tekst.Table 12 shows the amino acid sequences of the synthetic melittin analogs. For each synthetic analogue, the first 20 N-terminal amino acids are the same as for natural melittin. Changes occur in the six C-terminal amino acids and are indicated by highlighted text.

DK 167901 B1 40DK 167901 B1 40

Tabel 13 indeholder vækstkurveaflæsningerne for hver af forbindelserne afprøvet for synergistisk interaktion med polymyxin B. Værdien for hvert tidspunkt repræsenterer gennemsnittet og standardfejlen for gennemsnittet for seks prøver. "Kontrol"-kurven repræsenterer 5 vækst af kulturen uden tilsat polymyxin B eller peptid. Virkningen af hvert peptid alene på kulturen er ikke indbefattet i tabellen. Ligesom mel i ttin havde disse peptider imidlertid ingen virkning på vækst af E, coli, når de blev anvendt alene ved 10/ig/ml eller derunder. "Kontrollen" er således også repræsentativ for kulturen, 10 når den er behandlet med hvert peptid alene.Table 13 contains the growth curve readings for each of the compounds tested for synergistic interaction with polymyxin B. The value for each time point represents the mean and standard error of the mean for six samples. The "control" curve represents growth of the culture without added polymyxin B or peptide. The effect of each peptide on the culture alone is not included in the table. However, like flour in ttin, these peptides had no effect on the growth of E. coli when used alone at 10 µg / ml or less. Thus, the "control" is also representative of the culture when treated with each peptide alone.

Når vækstkurven for bakteriekulturer behandlet med polymyxin B (6 enheder/ml) alene sammenlignes med kurven for en kultur behandlet med polymyxin B samt melittin (5/ig/ml) vises der øget antibakteriel 15 aktivitet ved øgning af det tidsrum, der er krævet for at kulturen kommer over behandlingen og når logaritmisk vækstfase (figur 24}. Idet behandling af kulturen med melittin alene ved 5/ig/ml vil frembringe en vækstkurve, som i alt væsentligt ville overlappe "kontrol"-kurven, vil en øgning af det tidsrum, der er krævet for at 20 kulturen undslipper polymyxin B-hæmningen og når den midtlogaritmiske fase i nærvær af peptidet være et bevis på peptidets synergistiske aktivitet. Et skrift af vækstkurven, som repræsenterer polymyxin B med peptid, til højre for kurven, som repræsenterer behandling med polymyxin B alene, vil være et bevis på synergi.When the growth curve for bacterial cultures treated with polymyxin B (6 units / ml) alone is compared with the curve for a culture treated with polymyxin B as well as melittin (5 µg / ml), increased antibacterial activity is shown by increasing the time required for that the culture gets over the treatment and reaches the logarithmic growth phase (Figure 24}. As treatment of the culture with melittin alone at 5 µg / ml will produce a growth curve that would substantially overlap the "control" curve, an increase in the time required for the culture to escape the polymyxin B inhibition and reach the mid-logarithmic phase in the presence of the peptide as evidence of the synergistic activity of the peptide A script of the growth curve representing polymyxin B with peptide to the right of the curve representing with polymyxin B alone, will be evidence of synergy.

2525

Forholdet mellem polymyxin B, melittin og bakterier i disse forsøg var udformet med henblik på at frembringe minimal synergi, således at øget aktivitet af peptidanal oger kunne ses. En sådan øgning fremgår af figur 24 for både syntetisk melittin og NPS-melittin.The relationship between polymyxin B, melittin and bacteria in these experiments was designed to produce minimal synergy so that increased activity of peptide anal ogers could be seen. Such an increase is shown in Figure 24 for both synthetic melittin and NPS melittin.

30 Alle peptider var til stede i lige store koncentrationer bestemt ved Lowry-analyse.All peptides were present at equal concentrations determined by Lowry analysis.

Tilsvarende vækstkurver, som sammenligner de synergistiske aktiviteter af de syntetiske melittinanaloger med polymyxin B er vist i 35 figur 25.Corresponding growth curves comparing the synergistic activities of the synthetic melittin analogs with polymyxin B are shown in Figure 25.

For mere tydeligt at kunne visualisere forskellen i melittin/analog-synergi med polymyxin B blev figurerne 24 og 25 anvendt til at beregne den yderligere tidsforsinkelse, indtil hver vækstkurve nåede DK 167901 B1 41 den midtlogaritmiske fase på grund af tilsætning af melittin eller analoger i sammenligning med behandlingen med polymyxin B alene. Disse værdier er vist i et søjlediagram i figur 26. Der blev udført en Tukey-studentiseret værdimængdetest på resultaterne i tabel 13 5 for at sammenligne aflæsningerne opnået på hvert tidspunkt mellem de forskellige behandlinger. Peptiderne blev derpå grupperet alt afhængigt af deres evne til at udvise signifikant forskellige niveauer af væksthæmning (alfa = 0,05) for mindst et af vækstkurvetidspunkterne. Disse grupperinger er blevet betegnet med forskellige 10 søjlemarkeringer i figur 26.To more clearly visualize the difference in melittin / analog synergy with polymyxin B, Figures 24 and 25 were used to calculate the additional time delay until each growth curve reached the mid logarithmic phase due to addition of melittin or analogs in comparison. with the treatment with polymyxin B alone. These values are shown in a bar chart in Figure 26. A Tukey-studentized value set test was performed on the results in Table 13 5 to compare the readings obtained at each time point between the different treatments. The peptides were then grouped all depending on their ability to exhibit significantly different levels of growth inhibition (alpha = 0.05) for at least one of the growth curve times. These groupings have been denoted by various 10 column markings in Figure 26.

Konklusionerconclusions

Disse resultater viser, at der kan skabes en lang række melittinana-loger ved både aminosyresubstitutioner og kemiske modifikationer. Disse typer af modifikationer kan enten øge eller mindske peptidets relative synergistiske aktivitet. På grundlag af figur 26 kan de relative in vitro aktiviteter af melittin og analoger heraf anføres i faldende række!følge som følger: 20These results show that a wide variety of melittin analogs can be created by both amino acid substitutions and chemical modifications. These types of modifications can either increase or decrease the relative synergistic activity of the peptide. On the basis of Figure 26, the relative in vitro activities of melittin and its analogs can be listed in descending order: 20

1 Analog nr. 7 A1 Analog No. 7 A

2 Naturlig melittin B2 Natural melittin B

3 NPS-melittin C3 NPS melittin C

4 Analog nr. 6 C4 Analog No. 6 C

25 5 Syntetisk melittin C25 5 Synthetic melittin C

6 Analog nr. 2 C6 Analog No. 2 C

7 Analog nr. 4 D7 Analog No. 4 D

8 Analog nr. 5 D8 Analog No. 5 D

5° Peptider med signifikant forskellige (alfa = 0,05) synergistisk aktiviteter ved 5 jug/ml-niveauet er anført i bogstavsgrupper.5 ° Peptides with significantly different (alpha = 0.05) synergistic activities at the 5 µg / ml level are listed in letter groups.

Det skal bemærkes, at den parameter, som anvendes til at etablere denne virkningsrækkefølge, nemlig forsinket tid indtil midtlogarit-25 mi sk fase af kulturen, kun øges støkiometrisk med peptidmængden over et snævert område af melittinkoncentrationer. Idet grænserne for det linære område for hver analog ikke behøver at være ækvivalent, kan de foreliggende resultater kun anvendes til at fastlægge den relative rækkefølge af disse peptiders virkeevne ved den givne 42 DK 167901 B1 koncentration og kan ikke anvendes til at estimere kvantitative forskelle. Rækkefølgen for virkeevne antyder imidlertid, at den synergistiske aktivitet af peptiderne afhænger af antallet og udsættelsen for positivt ladede sidekæder på aminosyrerne i det 5 C-terminale område.It should be noted that the parameter used to establish this order of action, namely delayed time until the mid-logarithmic phase of the culture, is increased stoichiometricly with the amount of peptide over a narrow range of melittin concentrations. Since the boundaries of the linear range of each analogue need not be equivalent, the present results can only be used to determine the relative order of activity of these peptides at the given concentration and cannot be used to estimate quantitative differences. However, the order of action suggests that the synergistic activity of the peptides depends on the number and exposure of positively charged side chains on the amino acids in the 5 C-terminal region.

Selvom den ralative virkeevne af disse mel ittinanal oger er blevet fastlagt i_n vitro kan der forekomme væsentlige forskelle in vivo. In vivo-parameter, såsom absorption i og clearance fra værten kan ændre 10 denne virkningsrækkefølge signifikant ved anvendelse i praksis. Der skal også tages bivirkninger i betragtning. Selvom adrenocortico-tropaktivitet af melittin er vel dokumenteret, kan NPS-melittin besidde mindre adrenal aktivitet end naturligt melittin, idet NPS-derivatet af adrenocorticotropin (ACTH) inducerer 100 gange 15 mindre lipolytisk aktivitet end umodificeret ACTH. På grund af dette bør hver analog omfattet af denne undersøgelse betragtes ved in vivo vurdering.Although the relative efficacy of these cells has been determined in vitro, significant differences may occur in vivo. In vivo parameters such as absorption in and clearance from the host can significantly alter this order of action when used in practice. Side effects must also be taken into account. Although adrenocortico-tropic activity of melittin is well documented, NPS-melittin may possess less adrenal activity than natural melittin, with the NPS derivative of adrenocorticotropin (ACTH) inducing 100 times less lipolytic activity than unmodified ACTH. Because of this, every analogue covered by this study should be considered in in vivo assessment.

20 25· 30 35 5 43 DK 167901 B120 25 · 30 35 5 43 DK 167901 B1

Tabel 1 Koncentrationer af antibiotikastamopløsninger og honningbigift afprøvet overfor tre forskellige bakterier.Table 1 Concentrations of antibiotic stock solutions and honey bee venom tested against three different bacteria.

Organisme Gift Ampici11 in Kanamvein Polvmvxin BOrganism Gift Ampici11 in Kanamvein Polvmvxin B

E. col i 800/ig/ml 80^g/ml 800jug/ml 240 U/ml S. aureus 320/ig/ml 8/ig/ml 200/zg/ml 50/000 U/ml 10 S. aureuskana® 320μ9/ιη1 8^g/ml 800/ig/ml 2000 U/mlE. col i 800 µg / ml 80 µg / ml 800 µg / ml 240 U / ml S. aureus 320 µg / ml 8 / ig / ml 200 / zg / ml 50/000 U / ml 10 S. aureuskana® 320µ9 / ιη1 8 µg / ml 800 µg / ml 2000 U / ml

Tabel 2 Udformning og fordeling af honningbigift og antibio tika ved en skakbrættitreringsanalyse.Table 2 Design and distribution of honey bee venom and antibiotics by a chessboard titration analysis.

15 Antibiotikafortvndinqer15 Antibiotic Disorders

Kontrol 1:16 1:8 1:4 1:2 H Kontrol 0a\0b 0\1:16 0\1:8 0\1:4 0\1:2 20 0 f !_3c 4-6 7-9 10-12 13-15 n o n r 1:16 1:16\0 1:16\1:16 1:16\1:8 1:16\1:4 1:16\1:2 i t 16-18 19-21 21-24 25-27 28-30 • n y 25 g n 1:8 1:8\0 1:8\1:16 1:8\1:8 1:8\1:4 1:8\1:2 b d 31-33 34-36 37-39 40-42 43-45 i i g n 1:4 1:4\0 1:4\1:16 1:4\1:8 1:4\1:4 1:4\1:2 i g 46-48 49-51 52-54 55-57 58-60 30 9 e t r 1:2 1:2\0 1:2\1:16 1:2\1:8 1:2\1:4 1:2\1:2 61-63 64-66 67-69 70-72 73-75 a = tæller, fortyndingsniveauet for HBV-stamopløsningen 35 b = nævner, fortyndingsniveauet for antibiotikastamopløsgningen c = analyseposition i et sekvensvis arrangement med 75 forsøgsrør DK 167901 B1 44Control 1:16 1: 8 1: 4 1: 2 H Control 0a \ 0b 0 \ 1: 16 0 \ 1: 8 0 \ 1: 4 0 \ 1: 2 20 0 f! _3c 4-6 7-9 10 -12 13-15 nonr 1:16 1: 16 \ 0 1: 16 \ 1: 16 1: 16 \ 1: 8 1: 16 \ 1: 4 1: 16 \ 1: 2 it 16-18 19-21 21 -24 25-27 28-30 • new 25 gn 1: 8 1: 8 \ 0 1: 8 \ 1: 16 1: 8 \ 1: 8 1: 8 \ 1: 4 1: 8 \ 1: 2 bd 31 -33 34-36 37-39 40-42 43-45 iign 1: 4 1: 4 \ 0 1: 4 \ 1: 16 1: 4 \ 1: 8 1: 4 \ 1: 4 1: 4 \ 1: 2 ig 46-48 49-51 52-54 55-57 58-60 30 9 etr 1: 2 1: 2 \ 0 1: 2 \ 1: 16 1: 2 \ 1: 8 1: 2 \ 1: 4 1 : 2 \ 1: 2 61-63 64-66 67-69 70-72 73-75 a = counter, dilution level of HBV stock solution 35 b = denominator, dilution level of antibiotic stock c = assay position in a sequential arrangement with 75 test tubes DK 167901 B1 44

Tabel 3 Voluminer og fordelinger af hver bestanddel fra skakbrætti treri ngsanalysen.Table 3 Volumes and distributions of each component from the chess board analysis.

Rør nr._TSB_Antibiotika_Gift_Bakterie 5 00-0 2,5 ml - - 1-3 500/Ltl - - 2,0 ml 4-6 250/il - 250/il 1:16 2,0 ml 7-9 250μ1 - 250/il 1:8 2,0 ml 10-12 250/il - 250/tl 1:4 2,0 ml 13-15 250/il - 250/il 1:2 2,0 ml 16-18 250/il 250/il 1:16 - 2,0 ml 10 19-21 - 250μ1 1:16 250/il 1:16 2,0 ml 22-24 - - 250/il 1:16 250/il 1:8 2,0 ml 25-27 - 250/il 1:16 250/il 1:4 2,0 ml 28-30 - 250/il 1:16 250/il 1:2 2,0 ml 31-33 250/il 250/il 1:8 - 2,0 ml 34-36 - 250/il 1:8 250/il 1:16 2,0 ml 37-39 - 250/il 1:8 250/il 1:8 2,0 ml lt; 40-42 - 250/il 1:8 250/tl 1:4 2,0 ml lb 43-45 - 250/il 1:8 250/tl 1:2 2,0 ml 46-48 250/tl 250/tl 1:4 - 2,0 ml 49-51 - 250/tl 1:4 250/tl 1:16 2,0 ml 52-54 - 250/il 1:4 250/il 1:8 2,0 ml 55-57 - . 250/tl 1:4 250/il 1:4 2,0 ml 58-60 - 250/il 1:4 250/tl 1:2 2,0 ml 61-63 250/il 250/il 1:2 - 2,0 ml 20 64-66 - 250/tl 1:2 250/il 1:16 2,0 ml 67-69 - 250μ1 1:2 250μ1 1:8 2,0 ml 70-72 - 250/tl 1:2 250μ1 1:4 2,0 ml 73-75 - 250μ1 1:2 250μ1 1:2 2,0 mlStir No._TSB_Antibiotics_Gift_Bacteria 5 00-0 2.5 ml - - 1-3 500 / Ltl - - 2.0 ml 4-6 250 µl - 250 µl 1:16 2.0 ml 7-9 250µ1 - 250 / l 1: 8 2.0 ml 10-12 250 / l - 250 / l 1: 4 2.0 ml 13-15 250 / l - 250 / l 1: 2 2.0 ml 16-18 250 / l 250 il 1:16 - 2.0 ml 10 19-21 - 250 µl 1:16 250 µl 1:16 2.0 ml 22-24 - 250 µl 1:16 250 µl 1: 8 2.0 ml 25 -27 - 250 µl 1:16 250 µl 1: 4 2.0 ml 28-30 - 250 µl 1:16 250 µl 1: 2 2.0 ml 31-33 250 µl 250 µl 1: 8 - 2.0 ml 34-36 - 250 µl 1: 8 250 µl 1:16 2.0 ml 37-39 - 250 µl 1: 8 250 µl 1: 8 2.0 ml lt; 40-42 - 250 / l 1: 8 250 / l 1: 4 2.0 ml lb 43-45 - 250 / l 1: 8 250 / l 1: 2 2.0 ml 46-48 250 / l 250 / l 1: 4 - 2.0 ml 49-51 - 250 / l 1: 4 250 / l 1:16 2.0 ml 52-54 - 250 / l 1: 4 250 / l 1: 8 2.0 ml 55- 57 -. 250 / l 1: 4 250 / l 1: 4 2.0 ml 58-60 - 250 / l 1: 4 250 / l 1: 2 2.0 ml 61-63 250 / l 250 / l 1: 2 - 2 , 0 ml 20 64-66 - 250 / tl 1: 2 250 / l 1:16 2.0 ml 67-69 - 250µl 1: 2 250µl 1: 8 2.0 ml 70-72 - 250 / tl 1: 2 250µ1 1: 4 2.0 ml 73-75 - 250µ1 1: 2 250µ1 1: 2 2.0 ml

Tabel 4 Virkningen af 4μ9/πι1 HBV på MIC'er af elleve antibiotika på otte grampositive organismer.Table 4 The effect of 4μ9 / πι1 HBV on MICs of eleven antibiotics on eight Gram-positive organisms.

A1 _B2_ ΟΞ.A1 _B2_ ΟΞ.

Q.535577S C4 1 9 9 9 9 9 f 0 8 0 0 0 0 7 1 5 7 5 8 2 7 30 - -Q.535577S C4 1 9 9 9 9 9 f 0 8 0 0 0 0 7 1 5 7 5 8 2 7 30 - -

Penicillin -5 +6 + - - + +Penicillin -5 +6 + - - ++

Methicillin + + -*-- + + -Methicillin + + - * - + + -

Ampicillin + + + -- + + “Ampicillin + + + - + + “

Cephalothin + + + + + + + -Cephalothin + + + + + + + + -

Gentamicin + + + -- - + “ 35 Kanamycin + + -- - + + -Gentamicin + + + - - + + - 35 Kanamycin + + - - + + -

Ery thromyciri + + -- — — + “Ery thromyciri + + - - - + “

Chloramphenicol ++----++Chloramphenicol ++ ---- ++

Clindamycin + + -- -- + -Clindamycin + + - - + -

Tetracycline + + -- -- + “Tetracycline + + - - + “

Vancomycin + + -- -- + - 45 DK 167901 B1 1 - Gruppe "A" = to S. aureus-stammer 2 - Gruppe "B" = fem S. aureus-stammer 3 - "C" = en Streptococcus faecal i s-stamme 4 - QC = en S. aureus-stamme anvendt til rutinemæssig kvalitetskon- 5 trolafprøvning af dette analysesystem.Vancomycin + + - - + - 45 DK 167901 B1 1 - Group "A" = two S. aureus strains 2 - Group "B" = five S. aureus strains 3 - "C" = one Streptococcus faecal in S. strain 4 - QC = an S. aureus strain used for routine quality control testing of this assay system.

5 - A (-) angiver et MIC-fald på mindre end to fortyndingstrin 6 - (+) angiver et MIC-fald på mere end eller lig med to fortyndingstrin.5 - A (-) indicates an MIC decrease of less than two dilution steps 6 - (+) indicates an MIC decrease of more than or equal to two dilution steps.

10 Tabel 5 Virkningen af 4/ig/ml HBV på MIC'er af elleve antibio tika på fire E. coli-stammer.10 Table 5 The effect of 4 µg / ml HBV on MICs of eleven antibiotics on four E. coli strains.

_E, coli-stamme_ 0 14 1 15 C1 2 3 1 3 9 7 0 0 3 2 3 _3_E, coli strain_ 0 14 1 15 C1 2 3 1 3 9 7 0 0 3 2 3 _3

Ampicillin +=+++ 20 Carberiicillin + + + +Ampicillin + = +++ Carberiicillin ++ ++

Piperacillin + + + +Piperacillin ++++

Cephalothin _3__-Cephalothin _3 __-

Cefoxitin + + + +Cefoxitin + + + +

Cefamandole -Cefamandole -

Moxalactam - + - -Moxalactam - + - -

Amikacia + + + +Amikacia +++++

Gentimicia + - + + ^ Chloramphenicol _ _ - +Gentimicia + - + + ^ Chloramphenicol _ _ - +

Tobramycin. _ _ _ - 35 - QC er en E. coli-stamme anvendt til rutinemæssig kvalitetskon- 30 trolafprøvning af dette analysesystem 2 - (+) angiver et MIC-fald på mere end eller lig med to fortynd ingstrin 3 - (-) angiver et MIC-fald på mindre end to fortyndingstrin DK 167901 Bl 46Tobramycin. - 35 - QC is an E. coli strain used for routine quality control testing of this assay system 2 - (+) indicates a MIC decrease of more than or equal to two dilution steps 3 - (-) indicates a MIC decrease of less than two dilution steps DK 167901 Bl 46

Tabel 6 Staphylococcus aureusTable 6 Staphylococcus aureus

Rifampin = OjOljtg/ml eller 0,001/ig/mlRifampin = OjOilgg / ml or 0.001 / g / ml

Honningbigift = 4/ig/mlHoney supplement = 4 µg / ml

Timer efter inokulering 0 2 4 6 Θ 12 0,046 0-030 0-850 1.17 1.26 1.34Hours after inoculation 0 2 4 6 Θ 12 0.046 0-030 0-850 1.17 1.26 1.34

Kontrol 0-046 0-073 0.815 1.16 1.26 1.32Control 0-046 0-073 0.815 1.16 1.26 1.32

Gnm 0.046 0.073 o-815 1-16 1.26 1.35 _I_^ .046 0.075 0.827 1.16 1.26 1.34 0.046 0.056 0-140 0.372 1.07 1.32Gnm 0.046 0.073 o-815 1-16 1.26 1.35 _I_ ^ .046 0.075 0.827 1.16 1.26 1.34 0.046 0.056 0-140 0.372 1.07 1.32

Rifampicin 0.046 0.054 0.06S 0.156 0.625 1.34 0,Qlug/ml 0.046 0-058 0-112 0.304 1.00 1.30Rifampicin 0.046 0.054 0.06S 0.156 0.625 1.34 0, Qlug / ml 0.046 0-058 0-112 0.304 1.00 1.30

Gnm._0.046 0.056 0.107 0.277 0.898 1.32 0-046 0-081 0-855 1.18 1.27 1.34Avg ._0.046 0.056 0.107 0.277 0.898 1.32 0-046 0-081 0-855 1.18 1.27 1.34

Rifampicin °.C)46 q-064 0-765 1.16 1.26 1.34 0,001ug/ml 0-046 0-072 0-800 1.17 1.26 1.34Rifampicin ° C) 46 q-064 0-765 1.16 1.26 1.34 0.001 µg / ml 0-046 0-072 0-800 1.17 1.26 1.34

Gnm·_0.046 0-072 0.807 1.17 1.26 1.34 0.046 0-062 0.158 0.705 1.20 1.29Gnm · _0.046 0-072 0.807 1.17 1.26 1.34 0.046 0-062 0.158 0.705 1.20 1.29

Gift O- 046 0.063 0-284 0.g75 1.22 1.31 4ug/ml o-046 0-059 0.068 °.312 1.09 1.29Gift O- 046 0.063 0-284 0.g75 1.22 1.31 4ug / ml o-046 0-059 0.068 ° .312 1.09 1.29

Gnm·_0-046 0-061 0-170 °.631 1.17 1.30Gnm · _0-046 0-061 0-170 ° .631 1.17 1.30

Rifampicin o.O46 0.053 °.078 0.156 0-665 1.33 O,01ug/ml + o- 046 °.055 0-078 0-162 0.640 1.32Rifampicin o.O46 0.053 ° .078 0.156 0-665 1.33 0.1g / ml + o- 046 ° .055 0-078 0-162 0.640 1.32

Gift 4M9/ml 0-046 0.056 0.062 0-092 0.332 1.32Poison 4M9 / ml 0-046 0.056 0.062 0-092 0.332 1.32

Gnm·_<0.046 0.055 0.073 0.137 °.546 1.32Gnm · _ <0.046 0.055 0.073 0.137 ° .546 1.32

Rifampicin 0.046 °.066 0.068 0.242 1.08 1.32 0,00lug/ml + O-046 °.063 0-109 0.485 1.19 1.34Rifampicin 0.046 ° .066 0.068 0.242 1.08 1.32 0.00lug / ml + O-046 ° .063 0-109 0.485 1.19 1.34

Gift 4ug/mlo.046 0-067 0-087 0.3S1 1.16 1.33Married 4ug / mlo.046 0-067 0-087 0.3S1 1.16 1.33

Gnm.__0.046 °.065 0,088 0.369 1.14 1,33 DK 167901 B1 47Gnm .__ 0.046 ° .065 0.088 0.369 1.14 1.33 DK 167901 B1 47

Tabel 7 Pseudomonas aeruginosaTable 7 Pseudomonas aeruginosa

Rifampin = 10/tg/ml eller 20^g/mlRifampin = 10 µg / ml or 20 µg / ml

Honningbigift = 40/fg/mlHoney supplement = 40 / fg / ml

Timer efter inokulering _ _ _ _ _ _ 0-033 0.062 0-735 1.00 1.02 1.00Hours after inoculation _ _ _ _ _ _ 0-033 0.062 0-735 1.00 1.02 1.00

Kontrol £>.033 0-069 0-755 0-955 1.00 0-990 0-033 Q. 068 O- 775 0-950 0.990 0.900Check £> .033 0-069 0-755 0-955 1.00 0-990 0-033 Q. 068 O- 775 0-950 0.990 0.900

Gnm._0.053 0.066 0.755 0.968 1,00 0,965 0-033 O- 07& Q.690 0-090 O- 960 0.980Avg._0.053 0.066 0.755 0.968 1.00 0.965 0-033 O- 07 & Q.690 0-090 O- 960 0.980

Gift 0.033 0-087 O'-687 £-870 0-960 0.980 40uq/ml 0-033 0.058 0.685 <£080 0.953 O 950Gift 0.033 0-087 O'-687 £ -870 0-960 0.980 40uq / ml 0-033 0.058 0.685 <£ 080 0.953 O 950

Gnm._0.055 0.074 0.685 0.880 0.955 CJ.970 O-033 0-074 . 0.630 0.830 0.885 0.842Avg._0.055 0.074 0.685 0.880 0.955 CJ.970 O-033 0-074. 0.630 0.830 0.885 0.842

Rifampicin 0-033 £..084 0-672 £'.350 £.895 0-850 10 uq/ml 0-033 p.082 0-640 0-830 0-865 0.832Rifampicin 0-033 £ .084 0-672 £ '.350 £ .895 0-850 10 uq / ml 0-033 p.082 0-640 0-830 0-865 0.832

Gnm._0.055 D.08Q 0.647 0.857 0.88? 0.841 0-033 0-053 0-375 O 660 0.730 0.730Avg._0.055 D.08Q 0.647 0.857 0.88? 0.841 0-033 0-053 0-375 O 660 0.730 0.730

Rifampicin £.033 0.056 0-326 0.645 Q-720 0-730 20 ug/ml 0.033 Q. 063 0-380 0.700 0.760 0.745Rifampicin £ .033 0.056 0-326 0.645 Q-720 0-730 20 µg / ml 0.033 Q. 063 0-380 0.700 0.760 0.745

Gnm._6.035 C. 057 0.551 0.688 0.737 0.735Gnm._6.035 C. 057 0.551 0.688 0.737 0.735

Rifampicin Q- 033 C: 084 0.452 0-805 0-860 O- 861 10uq/ml +n O 033 Q. 079 O-475 0-795 £-820 0-839Rifampicin Q- 033 C: 084 0.452 0-805 0-860 O- 861 10uq / ml + n O 033 Q. 079 O-475 0-795 £ -820 0-839

Gift 40ug/mlO033 O-078 0-490 0-020 0 860 0.880Married 40ug / mlO033 O-078 0-490 0-020 0 860 0.880

Prim, 6.053 O 080 0.466 0 807 0.847 0-860Prim, 6,053 O 080 0.466 0 807 0.847 0-860

Rifampicin 0033 0.065 0.180 0.410 o 580 CO620 20ug/ml + £033 O'.082 O'-168 O-375 Cl 5p5 O-620Rifampicin 0033 0.065 0.180 0.410 o 580 CO620 20ug / ml + £ 033 O'.082 O'-168 O-375 Cl 5p5 O-620

Gift 40ug/nl 6-033 O-058 0-168 0.37a £525 0.612Gift 40ug / nl 6-033 O-058 0-168 0.37a £ 525 0.612

Gnm._Q 053 O 068 0.172 0.386 C. 547 0.617 DK 167901 B1 48Gnm._Q 053 O 068 0.172 0.386 C. 547 0.617 DK 167901 B1 48

Tabel 8 Escherichia col iTable 8 Escherichia col i

Polymyxin B = 6,25 enheder/ml og 3,125 enheder/mlPolymyxin B = 6.25 units / ml and 3.125 units / ml

Humi ebigift (BBV) = 5/zg/ml og 20øg/ml (Megabombus pennsulvanicus)Humi ebigift (BBV) = 5 µg / ml and 20 µg / ml (Megabombus pennsulvanicus)

Timer efter inokulering 5 2 4 6 8 12 0,030 0.688 1.04 1.05 1.14 1.23Hours after inoculation 5 2 4 6 8 12 0.030 0.688 1.04 1.05 1.14 1.23

Kontrol Or 030 0-680 1.03 1.04 1.13 1.22 O- 030 0-683 1.02 1.04 1.13 1.22 gnm-_0.030 (9.684 1.03 1.04 1.13 1.22Control Or 030 0-680 1.03 1.04 1.13 1.22 O-030 0-683 1.02 1.04 1.13 1.22 gnm-_.030 (9.684 1.03 1.04 1.13 1.22

Humlebigift 0.030 (9-715 1.03 1.02 1.04 1.12 0-030 0-712 1.03 lr04 1.04 1.14 5ug/ml 0-030 0-730 1.03 1.03 1.04 1.13Bumblebee gift 0.030 (9-715 1.03 1.02 1.04 1.12 0-030 0-712 1.03 lr04 1.04 1.14 5ug / ml 0-030 0-730 1.03 1.03 1.04 1.13

Gnm._0.030 0.719 1.03 1.03_1.04 1.15Avg._0.030 0.719 1.03 1.03_1.04 1.15

Humlebigift 0.030 0.672 1.03 1.03 1.04 1.13 0.030 0-673 1.04 1.03 1.05 1.16 20ug/ml 0.030 0-688 1.04 1.03 1.06 1.13Bumblebee gift 0.030 0.672 1.03 1.03 1.04 1.13 0.030 0-673 1.04 1.03 1.05 1.16 20ug / ml 0.030 0-688 1.04 1.03 1.06 1.13

Gnm._0,030 £.678 1.04 1.03_1.05 1.14 0.030 0.654 1.03 1.03 1.04 1.12Avg._0,030 £ .678 1.04 1.03_1.05 1.14 0.030 0.654 1.03 1.03 1.04 1.12

Pol B 0.030 0.642 1.02 1.03 1.04 1.14 3.125.enh./ml C’.030 0.652 1.02 1.03 1.04 1.14Pol B 0.030 0.642 1.02 1.03 1.04 1.14 3.125./ml C'.030 0.652 1.02 1.03 1.04 1.14

Gnm._9,030 0.649 1.02 1.03_1.04 1.13 0-030 0.022 0.102 0.710 0.960 1.03Avg._9,030 0.649 1.02 1.03_1.04 1.13 0-030 0.022 0.102 0.710 0.960 1.03

Pol 8 C. 030 0-024 0.472 0-940 0.950 1.03 6.25 enh /ml 9-030 9-022 0-180 0.830 0-970 1.04Pol 8 C. 030 0-024 0.472 0-940 0.950 1.03 6.25 units / ml 9-030 9-022 0-180 0.830 0-970 1.04

Gnm- ‘ 0.030 £.023 0.251 0,627 O.960 1.03Gnm- '0.030 £ .023 0.251 0.627 O.960 1.03

Pol B = 9.030 G-008 0-168 0.820 1.00 1.06 3.125 enh./ml9.030 C--008 0-250 0-910 1.02 1.06 BBV=5ug/ml 9-030 C .009 0-333 0-950 1.02 1.07Pole B = 9.030 G-008 0-168 0.820 1.00 1.06 3.125 units / ml9.030 C - 008 0-250 0-910 1.02 1.06 BBV = 5ug / ml 9-030 C .009 0-333 0-950 1.02 1.07

Omn._9.030 0.008 0.250 0.893_1.01 1.06Omn._9.030 0.008 0.250 0.893_1.01 1.06

Pol B= 9.030 9.008 0-012 0-008 0.009 0.013 6.25 enh./ml 9-030 G.009 0-009 0-008 0.008 0-012 BBV=20ug/ml 9-030 0-011 0-009 O-008 0-008 0-013Pol B = 9.030 9.008 0-012 0-008 0.009 0.013 6.25 units / ml 9-030 G.009 0-009 0-008 0.008 0-012 BBV = 20ug / ml 9-030 0-011 0-009 O- 008 0-008 0-013

Gnm._9.030 0.OQ9 Cl 010 G. 008 0.008 0.013 DK 167901 Bl 49Gnm._9.030 0.OQ9 Cl 010 G. 008 0.008 0.013 DK 167901 Bl 49

Tabel 9 Escherichia col iTable 9 Escherichia col i

Polymyxin B = 3,123 enheder (U)/ml Hvepsegift (YJ) = 5jig/ml (Vespula germanica)Polymyxin B = 3,123 units (U) / ml Wasp poison (YJ) = 5 µg / ml (Vespula germanica)

Gedehamsegift (BF) = 5/ig/ml (Dolichovespula maculata)Puffin poison (BF) = 5 µg / ml (Dolichovespula maculata)

Timer efter inokulering 0 2 4 0 8 12 0,038 0.526 1.03 1.07 1-08 1-12Hours after inoculation 0 2 4 0 8 12 0.038 0.526 1.03 1.07 1-08 1-12

Kontrol 0.038 0.522 1.04 1.07 1-08 1.12Control 0.038 0.522 1.04 1.07 1-08 1.12

Gnm._0,038 0.524_1.04 1 07 1-08_1 = 12,Avg._0.038 0.524_1.04 1 07 1-08_1 = 12,

Pol B 0.038 0.477 1.03 1.07 1-08 1.14 3 125U/ml 0.038 0-482 1.03 1.07 1-08 1-14Pol B 0.038 0.477 1.03 1.07 1-08 1.14 3 125U / ml 0.038 0-482 1.03 1.07 1-08 1-14

Gnm·_O'. 038 0.480 1.03 1.07 _LJAGNM · _O '. 038 0.480 1.03 1.07 _LJA

YJ 0.038 O.547 1.04 1.07 1-09 1-16 5u9/ml 0.038 O-550 1.04 1.07 1-08 1.14YJ 0.038 O.547 1.04 1.07 1-09 1-16 5u9 / ml 0.038 O-550 1.04 1.07 1-08 1.14

Gnm._0.038 0-549_1.04 ,1 07 1-09_1=.15 BF 0.038 0.552 1.04 1.08 1-08 1-16Avg ._0.038 0-549_1.04, 1 07 1-09_1 = .15 BF 0.038 0.552 1.04 1.08 1-08 1-16

Sug/ml 0-038 0.565 1.04 1.07 1-09 1-15Suction / ml 0-038 0.565 1.04 1.07 1-09 1-15

Gnm._0.038 0.559_1.04 1.08 1-09 1-16 YJ 5ug/ml 0.038 C-028 0-183 0.945 1-08 1-14Avg._0.038 0.559_1.04 1.08 1-09 1-16 YJ 5ug / ml 0.038 C-028 0-183 0.945 1-08 1-14

Pol B 5U/ml 0-038 0-029 0-098 O-350 1-06 1-12Pole B 5U / ml 0-038 0-029 0-098 O-350 1-06 1-12

Gnm~_G, 038 0-029 O. 141 0.893 KQZ_ BF 5ug/ml O.038 0-027 0.118 O.S90 1-08 1.13Gnm ~ _G, 038 0-029 O. 141 0.893 KQZ_ BF 5ug / ml O.038 0-027 0.118 O.S90 1-08 1.13

Pol B 5U/ml Gi038 C-023 O.096 o-840 1-06 1-10Pol B 5U / ml Gi038 C-023 O.096 o-840 1-06 1-10

Gnm._G. 038 0.025 0.107 0.865 1-07_1^12Gnm._G. 038 0.025 0.107 0.865 1-07_1 ^ 12

Tabel 10 Relativ aktivitet af analoger til proteinagtige komponenter eller polypeptidkomponenter af Hymenop-tera-gifte.Table 10 Relative activity of analogues to proteinaceous or polypeptide components of Hymenoptera toxins.

Analog nr. Relativ aktivitet 1 20% 2 200% 5 300% 6 100% 7 20% DK 167901 B1 50Analog No. Relative Activity 1 20% 2 200% 5 300% 6 100% 7 20% DK 167901 B1 50

Tabel 11 Gennemsnitlige optiske tætheder (0DggQ) af bakterie kulturer som funktion af tid og behandling.Table 11 Average optical densities (0DggQ) of bacterial cultures as a function of time and processing.

_Q timer 2 timer 4 timer 6 timer 8 timer 12 timer_Q hours 2 hours 4 hours 6 hours 8 hours 12 hours

Kontrol 013 .072 .831 1.08 1.10 1.17Control 013 .072 .831 1.08 1.10 1.17

Mellttin - .013 .072 .827 1.09 1.10 l.ig 10 ugMellttin - .013 .072 .827 1.09 1.10 l.ig 10 µg

Mellttin - .013 .072 .833 1.10 1.11 1.18 5 ugMellttin - .013 .072 .833 1.10 1.11 1.18 5 µg

Analog" nr· 6 - .013 .072 .824 1.09 1.11 1.17 10 ugAnalog "No. · 6 - .013 .072 .824 1.09 1.11 1.17 10 µg

Analog nr. 6 - . 013 .072 .831 1.07 1.09 1.16 5 ugAnalog # 6 -. 013 .072 .831 1.07 1.09 1.16 5 µg

Polymyxin B - .013 .072 .423 .840 .911 .930 6 enhederPolymyxin B - .013 .072 .423 .840 .911 .930 6 units

Polymyxin B - .013 .072 .808 1.06 1.08 1.15 3 enhederPolymyxin B - .013 .072 .808 1.06 1.08 1.15 3 units

Poly B - 6 U + .013 .072 .015 .014 .036 .908Poly B - 6 U + .013 .072 .015 .014 .036 .908

Mel - i 0 ugFlour - in 0 µg

Poly B - 6 U + .013 .072 .031 .229 .550 .977Poly B - 6 U + .013 .072 .031 .229 .550 .977

Mel - 5 ugFlour - 5 µg

Poly B - 6 U + ,013 .072 .018 .018 .019 .844Poly B - 6 U +, 013 .072 .018 .018 .019 .844

Ana#6 — 10 ugAna # 6 - 10 µg

Poly B -'6 U + .013 .072 .018 .029 .224 .926Poly B -'6 U + .013 .072 .018 .029 .224 .926

Ana#6 - 5 ugAna # 6 - 5 µg

Poly B - 3 U + .013 .072 .359 1.03 1.07 1.14Poly B - 3 U + .013 .072 .359 1.03 1.07 1.14

Me 1 - 10 ugMe 1 - 10 pm

Poly B - 3 U + .013 .072 .544 1.08 1.10 1.18Poly B - 3 U + .013 .072 .544 1.08 1.10 1.18

Me 1 - 5 ugMe 1 - 5 pm

Poly B - 3 U + .013 .072 .206 .911 1.07 1.12Poly B - 3 U + .013 .072 .206 .911 1.07 1.12

Ana#6 - 10 ugAna # 6 - 10 µg

Poly B - 3 U + .013 .072 .460 1.06 1.09 1.16Poly B - 3 U + .013 .072 .460 1.06 1.09 1.16

Ana#6 — 5 ug 51 DK 167901 B1Ana # 6 - 5 ug 51 DK 167901 B1

Tabel 12 Sekvenser af syntetiske mel ittinanal oger*.Table 12 Sequences of synthetic melaninal oger *.

Naturlig melittin 5 Melittin (l-20)-Lys-Arg-Lys-Arg-Gln-Gln-NH2·Natural Melittin Melittin (1-20) -Lys-Arg-Lys-Arg-Gln-Gln-NH2 ·

Analog nr. 2Analog # 2

Melittin (1-20)-Orn-Orn-Orn-Orn-Gln-Gln-NH^.Melittin (1-20) -Orn-Orn-Orn-Orn-Gln-Gln-NH ^.

1010

Analog nr. 4Analog # 4

Melittin (l-20)-Lys-Arg-Lys-Arg-Gly-Gly-NH2.Melittin (1-20) -Lys-Arg-Lys-Arg-Gly-Gly-NH 2.

15 Analog nr. 5Analog # 5

Melittin (l-20)-Arg-Arg-Arg-Arg-Gln-Gln-NH2·Melittin (1-20) -Arg-Arg-Arg-Arg-Gln-Gln-NH2 ·

Analog nr. 6 20Analog No. 6 20

Melittin (l-20)-Lys-Lys-Lys-Lys-Gln-Gln-NH2.Melittin (1-20) -Lys-Lys-Lys-Lys-Gln-Gln-NH2.

Analog nr. 7 25 Melittin (l-20)-Gly-Gly-Gly-Gly-Gln-Gln-NH2.Analog No. 7 Melittin (1-20) -Gly-Gly-Gly-Gly-Gln-Gln-NH2.

* Aminosyrer anført med fed skrift angiver ændringer fra den naturlige melittinsekvens.* Bold amino acids indicate changes from the natural melittin sequence.

30 35 DK 167901 B1 5230 35 DK 167901 B1 52

Tabel 13 Optiske tætheder (0D6g0) bakteriekulturer for behandlinger som funktion af tiden. Værdierne repræsenterer gennemsnit med SEM anført i parentes (n=6)Table 13 Optical densities (0D6g0) of bacterial cultures for treatments as a function of time. Values represent averages with SEM listed in parentheses (n = 6)

Timer efter kulturinokulering —2-2-i_§_a lø i,Hours after Cultural Inoculation —2-2-i_§_a Sat,

Kontrol 0,007 .08 B .692 1.01 1. ø5 i øg i ffRControl 0.007 .08 B .692 1.01 1. ø5 in increase in ffR

(.αβΐ) (.»03j (.ase, (,βιβ) (.ai«) (;„8)(.αβΐ) (. »03j (.ase, (, βιβ) (.ai«) (; „8)

Polymyxin Β .007 .088 .470 .326 1.02 l ga i σβ (.SOI) (.003) (.072) (.014) (.027) (^6)Polymyxin Β .007 .088 .470 .326 1.02 l ga in σβ (.SOI) (.003) (.072) (.014) (.027) (^ 6)

Me 1 I tt 1η + .007 .088 .071 ,514 .925 1 02 ι σςMe 1 I tt 1η + .007 .088 .071, 514 .925 1 02 ι σς

Pol Β (.001) (.003) (.017) (.116) (.077) '('. 025 ) ( BZZ)Pol Β (.001) (.003) (.017) (.116) (.077) '('. 025) (BZZ)

Synthetic + .007 .088 .018 .143 .662 881 1 a^Synthetic + .007 .088 .018 .143 .662 881 1 a ^

Pol B t*·«) (·««, C-«7, *(.i*a) NPS-Me1 + .007 .088 .042 .247 .766 1 04 , opPol B t * · «) (·« «, C-« 7, * (. I * a) NPS-Me1 + .007 .088 .042 .247 .766 1 04, op

Pol B (.<?*!) (- αοτ3) (.elg, (.ιο8) (.194) (!069) { elZ)Pol B (. <? *!) (- αοτ3) (.elg, (.ιο8) (.194) (! 069) {elZ)

AnalogS2 + .007 .088 .022 .208 .509 942 1AnalogS2 + .007 .088 .022 .208 .509 942 1

Pol B (-0^1) C-e*3) (.age, (.ιιβ) (.i46) '(.azi) (.”2JPol B (-0 ^ 1) C-e * 3) (.age, (.ιιβ) (.i46) '(.azi) (. ”2J

Analog#4 + .007 .088 .020 .023 094 533Analog # 4 + .007 .088 .020 .023 094 533

Pol B (.OO 1) (. 003) (. 004) (.001) (.034) '(.157) '(125)Pole B (.OO 1) (.003) (.004) (.001) (.034) '(.157)' (125)

An a i o g#5 + . 007 .088 .036 . 036 .038 334An a i o g # 5 +. 007 .088 .036. 036 .038 334

Pol B (-001) (.003) (.OOl) (.adl) (.034) (.096) [ J5Ø)Pol B (-001) (.003) (.OOl) (.adl) (.034) (.096) [J5Ø)

Analog#6 + .007 .088 .ø2ø .ieø >T93Analog # 6 + .007 .088 .ø2ø .ieø> T93

Pol B (·»»!) (·"«) (.007) «...i, ,.0,1)Pol B (· »»!) (· "") (.007) «... i,, .0.1)

Analog#! + .007 .088 .146 .818 l.ø2 i σ5 Λ ac p„l B <·««> (·««) <·««) (·««!) (.«li, };”β)Analog #! + .007 .088 .146 .818 l.ø2 i σ5 Λ ac p „l B <·« «> (·« «) <·« «) (·« «!) (.« Li,}; ”β )

Tabel A-l Skakbrætanalyseresultater for ampi c i 11 i n og honningbigift versus S. aureus.Table A-l Chessboard analysis results for ampi c i 11 i n and honey bee venom versus S. aureus.

53 DK 167901 B1 IM Gnm. Acco Std.afv. Tid Gnm. ACCQ Std.afv.53 DK 167901 B1 IM Gnm. Acco Std.afv. Time Avg. ACCQ Std.afv.

AHP-0,HBV-0 AMP-O.HBV-2 TO 0.013 0.002 TO 0.013 0.002 T2 0.085 0.018 T2 0.085 0.018 TA 0.573 0.178 Γ4 0.213 0.135 T 6 1.102 0.159 T6 0.844 0.311 T8 1.223 0.101 TB 1.119 0.193 T12 1.213 0.307 T12 1.198 0.306 T24 1.329 0.069 T24 1.295 0.208 AHP-0,HBV—4 AHP-O,HBV-8 TO 0.013 0.002 TO 0.013 0.002 T2 0.086 0.018 T2 0.085 0.018 TA 0.065 O.OAO TA 0.026 0.019 T6 0.217 0.181 T6 0,014 0.012 T 8 0.671 0.412 T8 0.027 0.036 TI 2 1.147 0.317 T12 1.028 0.273 T2A 1.278 0.165 T24 1.291 0.119 AHP-0,HBV-16 AHP-0.05,HBV-0 TO 0.013 0.002 TO 0.013 0.002 T2 0.085 0.018 T2 0.085 0.018 TA 0.025 0.011 TA 0.355 0.073 T 6 0.007 0.004 T 6 0.552 0.195 T8 0.006 0.00A T 8 0.689 0.14 6 T12 0.077 0.173 T12 0.736 0.135 T2A 0.857 0.576 T24 0.760 0.114AHP-0, HBV-0 AMP-O.HBV-2 TO 0.013 0.002 TO 0.013 0.002 T2 0.085 0.018 T2 0.085 0.018 TA 0.573 0.178 Γ4 0.213 0.135 T 6 1.102 0.159 T6 0.844 0.311 T8 1.223 0.101 TB 1.119 0.193 T12 1.213 0.307 T12 1.198 0.306 T24 1.329 0.069 T24 1.295 0.208 AHP-0, HBV — 4 AHP-O, HBV-8 TO 0.013 0.002 TO 0.013 0.002 T2 0.086 0.018 T2 0.085 0.018 TA 0.065 O.OAO TA 0.026 0.019 T6 0.217 0.181 T6 0.014 0.012 T 8 0.671 0.412 T8 0.027 0.036 TI 2 1.147 0.317 T12 1.028 0.273 T2A 1.278 0.165 T24 1.291 0.119 AHP-0, HBV-16 AHP-0.05, HBV-0 TO 0.013 0.002 TO 0.013 0.002 T2 0.085 0.018 T2 0.085 0.018 TA 0.025 0.011 TA 0.355 0.073 T 6 0.007 0.004 T 6 0.552 0.195 T8 0.006 0.00AT 8 0.689 0.14 6 T12 0.077 0.173 T12 0.736 0.135 T2A 0.857 0.576 T24 0.760 0.114

AHP-0.05,HBV-2 AHP-0.05,HBV-AAHP-0.05, HBV-2 AHP-0.05, HBV-A

TO 0.013 0.003 TO O . OT 3 0.002 T2 0.085 0.004 T2' 0.083 0.017 ΤΑ 0.142 0.039 ΤΑ 0.045 0.025 T 6 0.260 0.142 T6 0.041 0.033 T 8 0.296 0.196 T8 0.035 0.032 TI 2 1.372 0.093 Ti 2 0.131 0.307 T2A 1.647 0.063 T24 0.840 0.251 AHP-0.0 5,HBV-8 AHP-0.O 5,HBV-1 6 TO 0,013 0.002 TO 0.013 0.002 T2 0,085 0.018 T2 0.085 0.018 TA 0,026 0.021 TA 0.025 0.009 T6 0.012 0.012 TG 0.006 0.004 T8 0.008 0.007 TB 0.007 0.004 TI 2 0.009 0.004 TI 2 0.008 0.005 T2A 0.331 0.395 T24 0.013 0.004 j Tabel A-l (fortsat) 54 DK 167901 B1TO 0.013 0.003 TO O. OT 3 0.002 T2 0.085 0.004 T2 '0.083 0.017 ΤΑ 0.142 0.039 ΤΑ 0.045 0.025 T 6 0.260 0.142 T6 0.041 0.033 T 8 0.296 0.196 T8 0.035 0.032 TI 2 1,372 0.093 Ti 2 0.131 0.307 T2A 1.647 0.063 T24 0.840 0.251 AHP-0.0 5, HBV -8 AHP-0.O 5, HBV-1 6 TO 0.013 0.002 TO 0.013 0.002 T2 0.085 0.018 T2 0.085 0.018 TA 0.026 0.021 TA 0.025 0.009 T6 0.012 0.012 TG 0.006 0.004 T8 0.008 0.007 TB 0.007 0.004 TI 2 0.009 0.004 TI 2 0.008 0.005 T2A 0.331 0.395 T24 0.013 0.004 j Table Al (continued) 54 DK 167901 B1

Tid Gnm. A,-™ Std.afv. Tid Gnm. A,-™ Std.afv.Time Avg. A, - ™ Std. Time Avg. A, - ™ Std.

— ---660 - - ·-660 - AHP-0.1,1IBV-0 AHP-0.1, HDV-2 TO 0.013 0.002 TO 0.013 0.002 T2 0.085 0.018 T2 0.083 0.017 T4 0.257 0.043 T4 0.124 0.068 T6 0.248 0.061 T6 0.109 0.057 T8 0.155 0.059 T8 0.056 0.025 T12 0.095 0.033 T12 0.034 0.015 T24 0.347 0.178 T24 0.259 0.229 AHP-0.1,HBV-4 AHP-0.1,HBV-8 TO 0.013 0.002 TO 0.013 0.002 T2 0.085 0.018 T2 0.085 0.018 T4 0.042 0.026 T4 0.022 0.016 T6 0.031 0.030 T 6 0.007 0.006 T8 0.026 0.021 T8 0.005 0.004 T12 0.272 0.534 T12 0.011 0.013 T24 0.511 0.552 T24 0.246 0.497 AHP-0 . 1 , IIBV —16 AHP-0.2 , HBV-0 T° 0.013 0.002 TO 0.013 0.002 T2 0.085 0.018 T2 0.085 0.018 T4 0.026 0.013 T4 0.202 0.038 16 0.007 0.005 T 6 0.112 0.026 T8 0.006 0.004 T 8 0.052 0.016 T12 0.007 0.004 T12 0.037 0.009 T24 0.011 0.004 T24 0.042 0.008 AMP-0.2,HBV-2 AKP-0.2,HBV-4 TO 0.013 0.002 TO 0.013 0.002 T2 0.086 0.018 T2 0.085 0.018 T4 0.103 0.065 T 4 0.045 0.024 T6 0.079 0.050 T 6 0.029 0.022 T8 0.036 0.027 T8 0.021 0.015 T12 0.026 0.021 T12 0.013 0.006 T24 0.069 0.179 T24 0.011 0.008 AMP-0.2.HBV-8 AMP-0.2.HBV-16 TO 0.013 0.002 TO 0.013 0.002 T2 0.085 0.018 T2 0.085 0.018 T4 0.023 0.019 T4 0.024 0.012 T6 0.011 0.010 T 6 0.009 0.008 T8 0.007 0.007 T 8 0.006 0.003 T12 0.008 0.002 T12 0.009 0.006 T24 0.009 0.005 T24 0.011 0.003 55- --- 660 - - · -660 - AHP-0.1,1IBV-0 AHP-0.1, HDV-2 TO 0.013 0.002 TO 0.013 0.002 T2 0.085 0.018 T2 0.083 0.017 T4 0.257 0.043 T4 0.124 0.068 T6 0.248 0.061 T6 0.109 0.057 T8 0.155 0.059 T8 0.056 0.025 T12 0.095 0.033 T12 0.034 0.015 T24 0.347 0.178 T24 0.259 0.229 AHP-0.1, HBV-4 AHP-0.1, HBV-8 TO 0.013 0.002 TO 0.013 0.002 T2 0.085 0.018 T2 0.085 0.018 T4 0.042 0.026 T4 0.022 0.016 T6 0.031 0.030 T 6 0.007 0.006 T8 0.026 0.021 T8 0.005 0.004 T12 0.272 0.534 T12 0.011 0.013 T24 0.511 0.552 T24 0.246 0.497 AHP-0. 1, IIBV —16 AHP-0.2, HBV-0 T ° 0.013 0.002 TO 0.013 0.002 T2 0.085 0.018 T2 0.085 0.018 T4 0.026 0.013 T4 0.202 0.038 16 0.007 0.005 T 6 0.112 0.026 T8 0.006 0.004 T 8 0.052 0.016 T12 0.007 0.004 T12 0.037 0.009 T24 0.011 0.004 T24 0.042 0.008 AMP-0.2, HBV-2 AKP-0.2, HBV-4 TO 0.013 0.002 TO 0.013 0.002 T2 0.086 0.018 T2 0.085 0.018 T4 0.103 0.065 T 4 0.045 0.024 T6 0.079 0.050 T 6 0.029 0.022 T8 0.036 0.027 T8 0.021 0.015 T12 0.026 0.021 T12 0.013 0.006 T24 0.069 0.179 T24 0.011 0.008 AMP-0.2.HBV-8 AMP-0.2.HBV-16 TO 0.013 0.002 TO 0.013 0.002 T2 0.085 0.018 T2 0.085 0.018 T4 0.023 0.019 T4 0.024 0.012 T6 0.011 0.010 T 6 0.009 0.008 T8 0.007 0.007 T 8 0.006 0.003 T12 0.008 0.002 T12 0.009 0.006 T24 0.009 0.005 T24 0.011 0.003 55

Tabel A-l (fortsat) DK 167901 B1Table A-1 (continued) DK 167901 B1

Tid Gnnh_Agg0 Std.afv. Tid Gnm. AggQ Std.afv.Time Gnnh_Agg0 Std.vv. Time Avg. AggQ Std.afv.

AMP-0 . 4,HBV-0 AMP-0 . 4,HBV-2 TO 0.013 0.002 TO 0.013 0.002 T2 0.085 0.018 T2 0.085 0.018 TA 0.191 0.042 T4 0.098 0.054 T6 0.110 0.027 T6 0.061 0.041 T8 0.048 0.019 T8 0.034 0.027 T12 0.027 0.009 T12 0.020 0.011 T24 0.027 0.005 T24 0.018 0.008 AMP-0.4,HBV-4 AMP-0.4,HBV-8 TO 0.013 0.002 TO 0.013 0.002 T2 0.085 0.018 T2 0.085 0.018 T4 0.040 0.028 T4 0.023 0.015 T 6 0.028 0.023 T6 0.010 0.006 T8 0.019 0.017 T8 0.006 0.004 TI 2 0.012 0.004 T12 0.008 0.005 T24 0.009 0.007 T24 0.010 0.006 AMP-0.4,HBV-16 TO 0.013 0.002 T2 0.085 0.018 T4 0.027 0.013 T 6 0.008 0.004 T8 0.006 0.004 T12 0.008 0.005 T24 0.010 0.004AMP-0. 4, HBV-0 AMP-0. 4, HBV-2 TO 0.013 0.002 TO 0.013 0.002 T2 0.085 0.018 T2 0.085 0.018 TA 0.191 0.042 T4 0.098 0.054 T6 0.110 0.027 T6 0.061 0.041 T8 0.048 0.019 T8 0.034 0.027 T12 0.027 0.009 T12 0.020 0.011 T24 0.027 0.005 T24 0.018 0.008 AMP-0.4 , HBV-4 AMP-0.4, HBV-8 TO 0.013 0.002 TO 0.013 0.002 T2 0.085 0.018 T2 0.085 0.018 T4 0.040 0.028 T4 0.023 0.015 T 6 0.028 0.023 T6 0.010 0.006 T8 0.019 0.017 T8 0.006 0.004 TI 2 0.012 0.004 T12 0.008 0.005 T24 0.009 0.007 T24 0.010 0.006 AMP-0.4, HBV-16 TO 0.013 0.002 T2 0.085 0.018 T4 0.027 0.013 T 6 0.008 0.004 T8 0.006 0.004 T12 0.008 0.005 T24 0.010 0.004

Tabel A-2 Skakbrætanalyseresultater for kanamycin' og honningbigift versus S. aureus.Table A-2 Chessboard analysis results for kanamycin 'and honey bee venom versus S. aureus.

5656

Tid Gnnu_A660 Std.afv. Tid Gm,_A660 Std.afv,.Time Gnnu_A660 Std.vv. Time Gm, _A660 Std.afv,.

KANA-0,HBV—0 KANA-0,HBV-2 TO 0.024 0.005 TO 0.024 0.005 T2 -0.094 0.012 T2 0.095 0.011 T4 0.854 0.157 T4 0.542 0.183 T6 1.219 0.052 T6 1.132 0.146 T8 1.275 0.032 T8 1.275 0.042 T12 1.320 0.044 T12 1.333 0.041 T24 1.358 0.031 T24 1.402 0.040 KANA-0,HBV-4 KANA-0,HBV-8 TO 0.024 0.005 TO 0.024 0.005 T2 0.094 0.012 T2 0.094 0.012 T4 0.154 0.131 T4 0.036 0.017 T6 0.630 0.391 T6 0.062 0.048 T8 1.100 0.233 T8 0.571 0.403 T12 1.322 0.048 T12 1.275 0.062 T24 1.405 0.040 T24 1.389 0.057KANA-0, HBV — 0 KANA-0, HBV-2 TO 0.024 0.005 TO 0.024 0.005 T2 -0.094 0.012 T2 0.095 0.011 T4 0.854 0.157 T4 0.542 0.183 T6 1.219 0.052 T6 1.132 0.146 T8 1.275 0.032 T8 1.275 0.042 T12 1.320 0.044 T12 1.333 0.041 T24 1.358 0.031 T24 1.402 0.040 CANA-0, HBV-4 CANA-0, HBV-8 TO 0.024 0.005 TO 0.024 0.005 T2 0.094 0.012 T2 0.094 0.012 T4 0.154 0.131 T4 0.036 0.017 T6 0.630 0.391 T6 0.062 0.048 T8 1.100 0.233 T8 0.571 0.403 T12 1.322 0.048 T12 1.275 0.062 T24 1.405 0.040 T24 1.389 0.057

KANA-0,HBV-16 KANA-1.25,HBV-OKANA-0, HBV-16 KANA-1.25, HBV-O

TO 0.024 0.005 TO 0.024 0.005 T2 0.094 0.012 T2 0.094 0.012 T4 0.029 0.014 T4 0.747 0.125 T6 0.020 0.008 T6 1.199 0.060 T8 0.066 0.078 T8 1.269 0.043 T12 0.666 0.556 T12 1.315 0.046 T24 1.336 0.195 T24 1.355 0.042 KANA-1.25,HBV-2 KANA-1.25,HBV-4 TO 0.024 0.005 TO 0.024 0.005 T2 0.094 0.012 T2 0.094 0.012 T4 0.428 0.197 T4 0.107 0.060 T6 0.929 0.369 T6 0.31C 0.289 T8 1.174 0.116 T8 0.694 0.422 T12 1.290 0.048 T12 1.231 0.107 T24 1.373 0.035 T24 1.350 0.077 KANA-1.25.HBV-8 KANA-1.25.HBV-16 TO 0.024 0.005 TO 0.-024 0.005 T2 0.094 0.012 T2 0.094 0.012 T4 0.039 0.014 T4 0.030 0.014 T6 0.031 0.011 T6 0.017 0.009 T8 0.095 0.129 T8 0.018 0.012 T12 0.712 0.487. T12 0.179 0.344 T24 1.343 0.096 T24 1.124 0.357TO 0.024 0.005 TO 0.024 0.005 T2 0.094 0.012 T2 0.094 0.012 T4 0.029 0.014 T4 0.747 0.125 T6 0.020 0.008 T6 1.199 0.060 T8 0.066 0.078 T8 1.269 0.043 T12 0.666 0.556 T12 1.315 0.046 T24 1.336 0.195 T24 1.355 0.042 KANA-1.25, HBV-2A -1.25, HBV-4 TO 0.024 0.005 TO 0.024 0.005 T2 0.094 0.012 T2 0.094 0.012 T4 0.428 0.197 T4 0.107 0.060 T6 0.929 0.369 T6 0.31C 0.289 T8 1.174 0.116 T8 0.694 0.422 T12 1.290 0.048 T12 1.231 0.107 T24 1.350 0.077 T24 1.350 0.077 -1.25.HBV-8 CANA-1.25.HBV-16 TO 0.024 0.005 TO 0.-024 0.005 T2 0.094 0.012 T2 0.094 0.012 T4 0.039 0.014 T4 0.030 0.014 T6 0.031 0.011 T6 0.017 0.009 T8 0.095 0.129 T8 0.018 0.012 T12 0.712 0.487. T12 0.179 0.344 T24 1.343 0.096 T24 1.124 0.357

Tabel A-2 ( fortsat) 57 DK 167901 B1Table A-2 (continued) 57 DK 167901 B1

Tid £ηηκ_Α660 Std.afv, Tid Grim......A66Q Std^afv^ KAN A-2. 5,HBV-0 KANA-2.5 , HBV-2 TO 0.024 0.005 TO 0.024 0.005 T2 0..094 0.012 T2 0.094 0.012 T4 0.630 0.081 T4 0.358 0.203 T6 1.090 0.093 T6 0.747 0.438 T8 1.227 0.042 T8 0.925 0.462 T12 1.248 0.046 T12 1.229 0.079 T24 1.315 0.056 T24 1.320 0.073 KANA-2.5,HBV—4 KANA-2.5,HBV-8 TO 0.024 0.005 TO 0.025 0.005 T2 0.094 0.012 T2 0.094 0.012 T4 0.089 0.070 T4 0.037 0.015 T6 0.124 0.191 T6 0.026 0.010 T8 0.186 0.279 T8 0.021 0.010 T12 0.842 0.381 T12 0.187 0.224 T24 1.284 0.062 T24 1.287 0.100 KANA-2.5.HBV-16 KANA-5,HBV-0 TO 0..024 0.005 TO 0.024 0.005 T2 0.094 0.012 T2 0.094 0.012 T4 0.028 0.014 T4 0.448 0.076 T6 0.017 0.009 T 6 0.696 0.159 T8 0.026 0.041 T8 0.888 0.193 T12 0.246 0.481 T12 1.008 0.195 T24 0.950 0.589 T24 1.085 0.093 KANA-5,HBV-2 KANA-5.HBV-4 TO 0.024 0.005 .TO 0.024 0.005 T2 0.094 0.012 T2 0.094 0.012 T4 0.265 0.152 T4 0.065 0.026 T 6 0.371 0.260 T6 0.057 0.029 T8 0.483 0.329 T8 0.065 0.047 T12 0.915 0.189 T12 0.653 0.380 T24 1.119 0.098 T24 1.242 0.068 KANA-5,HBV-8 KANA-5,HBV-16 TO 0.024 0.005 ' TO 0.024 0.005 T2 0.094 0.012 T2 0.094 0.012 T4 0.035 0.015 T4 0.030 0.015 T6 0.023 0.011 T 6 0.019 0.009 T8 0.018 0.012 T8 0.015 0.010 T12 0.054 0.048 T12 0.012 0.015 T24 1.245 0.096 T24 0.484 0.544 DK 167901 Bl 58Time £ ηηκ_Α660 Std.afv, Time Grim ...... A66Q Std ^ afv ^ CAN A-2. 5, HBV-0 KANA-2.5, HBV-2 TO 0.024 0.005 TO 0.024 0.005 T2 0.094 0.012 T2 0.094 0.012 T4 0.630 0.081 T4 0.358 0.203 T6 1.090 0.093 T6 0.747 0.438 T8 1.227 0.042 T8 0.925 0.462 T12 1.248 0.046 T12 1.229 0.079 T24 1.315 0.056 T24 1.320 0.073 KANA-2.5, HBV — 4 KANA-2.5, HBV-8 TO 0.024 0.005 TO 0.025 0.005 T2 0.094 0.012 T2 0.094 0.012 T4 0.089 0.070 T4 0.037 0.015 T6 0.124 0.191 T6 0.026 0.010 T8 0.186 0.279 T8 0.021 0.010 T12 0.842 0.381 T12 0.187 0.224 T24 1.284 0.062 T24 1.287 0.100 KANA-2.5.HBV-16 KANA-5, HBV-0 TO 0..024 0.005 TO 0.024 0.005 T2 0.094 0.012 T2 0.094 0.012 T4 0.028 0.014 T4 0.448 0.076 T6 0.017 0.009 T 6 0.696 0.159 T8 0.026 0.041 T8 0.888 0.193 T12 0.246 0.481 T12 1.008 0.195 T24 0.950 0.589 T24 1.085 0.093 KANA-5, HBV-2 KANA-5.HBV-4 TO 0.024 0.005 .TO 0.024 0.005 T2 0.094 0.012 T2 0.094 0.012 T4 0.265 0.152 T4 0.065 0.026 T 6 0.371 0.260 T6 0.057 0.029 T8 0.483 0.329 T8 0.065 0.047 T12 0.915 0.189 T12 0.653 0.380 T24 1.119 0.098 T24 1.242 0.068 KANA-5, HBV-8 KANA-5, HBV-16 TO 0.024 0.005 'TO 0.024 0.005 T2 0.094 0.012 T2 0.094 0.012 T4 0.035 0.015 T4 0.030 0.015 T6 0.023 0.011 T 6 0.019 0.009 T8 0.018 0.012 T8 0.015 0.010 T12 0.054 0.048 T12 0.012 0.015 T24 1.245 0.096 T24 0.484 0.544 DK 167901 Pg 58

Tabel A-2 (fortsat)Table A-2 (continued)

Tid Gnm. Acco Std.afv. Ud Gnm,._A660 Std.afv.Time Avg. Acco Std.afv. Out Gnm, ._ A660 Std.vv.

KANA-10,HBV-0 KARA-10,HBV-2 TO 0.024 0.005 TO 0.024 0.005 T2 0.094 0.012 T2 0.094 0.012 T4 0.279 0.054 T4 0.167 0.089 T6 0.359 0.063 T6 0.183 0.112 T8 0.416 0.082 T8 0.205 0.128 T12 0.667 0.175 T12 0.666 0.168 T24 0.995 0.074 T24 1.153 0.070 KANA-10.HBV-4 KANA-10,HBV-8 TO 0.024 0.005 TO 0.024 0.005 T2 0.094 0.012 T2 0.094 0.012 T4 0.064 0.023 T4 0.041 0.023 T 6 0.054 0.021 T6 0.027 0.019 T8 0.052 0.024 T8 0.023 0.019 T12 0.314 0.299 T12 0.022 0.018 T24 1.193 0.080 T24 0.836 0.412 KANA-10.HBV-16 TO 0.024 0.005 T2 0.094 0.012 T4 0.031 0.014 T6 0.020 0.009 T8 0.014 0.010 T12 0.015 0.013 T24 0.614 0.567KANA-10, HBV-0 KARA-10, HBV-2 TO 0.024 0.005 TO 0.024 0.005 T2 0.094 0.012 T2 0.094 0.012 T4 0.279 0.054 T4 0.167 0.089 T6 0.359 0.063 T6 0.183 0.112 T8 0.416 0.082 T8 0.205 0.128 T12 0.667 0.175 T12 0.666 0.168 T24 0.995 0.074 T24 1.153 0.070 KANA-10.HBV-4 KANA-10, HBV-8 TO 0.024 0.005 TO 0.024 0.005 T2 0.094 0.012 T2 0.094 0.012 T4 0.064 0.023 T4 0.041 0.023 T 6 0.054 0.021 T6 0.027 0.019 T8 0.052 0.024 T8 0.023 0.019 T12 0.314 0.299 T12 0.022 0.018 T24 1.193 0.080 T24 0.836 0.412 CANA-10.HBV-16 TO 0.024 0.005 T2 0.094 0.012 T4 0.031 0.014 T6 0.020 0.009 T8 0.014 0.010 T12 0.015 0.013 T24 0.614 0.567

Tabel A-3 Skakbrætanalyseresultater for polymyxin B og honningbigift versus E. coli.Table A-3 Chessboard analysis results for polymyxin B and honey bee venom versus E. coli.

59 DK 167901 B159 DK 167901 B1

Tid Gnnk_A660 Std.afv. Tid Gnnk_å660 std·- POLY B-=0 , HBV-0 POLY B=0,HBV-2 TO 0.006 0.002 TO 0.006 0.002 T2 0.074 0.004 T2 0.074 0.004 T4 0.785 0.061 T4 0.195 0.116 T6 1.243 0.011 T6 0.886 0.304 T8 1.295 0.024 T8 1.264 0.027 T12 1.343 0.018 T12 1.316 0.026 T24 1.396 0.023 T24 1.405 0.020 POLY B-O.HBV-4 POLY B-0.HBV-8 TO 0.006 0.002 TO 0.006 0.002 T2 0.074 0.004 T2 0.074 -0.004 T4 0.038 0.013 T4 0.018 0.008 T6 0.070 0.046 T6 0.012 0.014 T8 0.589 0.235 T8 0.022 0.012 T12 1.315 0.081 T12 0.769 0.503 T24 1.415 0.024 T24 1.405 0.028 POLY B-0 , HBVOM-16 POLY B-=312,HBV-0 TO 0.006 0.002 TO 0.006 0.022 T2 0.074 0.004 T2 0.074 0.004 T 4 0.015 0.007 T4 0.526 0.138 T 6 0.006 0.003 T6 1.046 0.269 T8 0.007 0.004 T8 1.244 0.057 T12 0.012 0.005 T12 1.305 0.051 T24 0.457 0.566 T24 1.429 0.053 POLY B-312.HBV-2 POLY B-312.HBV-4 TO 0.006 0.002 TO 0.006 0.002 T2 0.074 0.004 T2 0.074 0.004 • T4 0.167 0.071 T4 0.023 0.013 T 6 0.795 0.231 T6 0.064 0.132 T8 1.195 0.117 T8 0.216 0.357 T12 1.303 0.041 T12 0.812 0.513 T24 1.422 0.066 T24 1.415 0.040 POLY B-312,HBV-8 FpLY B-312.HBV-16 TO 0.006 0.002 TO 0.006 0.002 . T2 0.074 0.004 T2 0.074 0.004 T4 0.014 0.005 T4 0.023 0.008 T 6 0.007 0.005 T6 0.013 0.004 TB 0.011 0.005 T 8 0.013 0.004 TI 2 0.384 0.383 T12 0.031 0.048 T24 1.294 0.393 T24 0.334 0.579Time Gnnk_A660 Std.vv. Time Gnnk_å660 hrs · - POLY B- = 0, HBV-0 POLY B = 0, HBV-2 TO 0.006 0.002 TO 0.006 0.002 T2 0.074 0.004 T2 0.074 0.004 T4 0.785 0.061 T4 0.195 0.116 T6 1.243 0.011 T6 0.886 0.304 T8 1.295 0.024 T8 1.264 0.027 T12 1.343 0.018 T12 1.316 0.026 T24 1.396 0.023 T24 1.405 0.020 POLY BO.HBV-4 POLY B-0.HBV-8 TO 0.006 0.002 TO 0.006 0.002 T2 0.074 0.004 T2 0.074 -0.004 T4 0.038 0.013 T4 0.018 0.008 T6 0.070 0.046 T6 0.012 0.014 T8 0.589 0.235 T8 0.022 0.012 T12 1.315 0.081 T12 0.769 0.503 T24 1.415 0.024 T24 1.405 0.028 POLY B-0, HBVOM-16 POLY B- = 312, HBV-0 TO 0.006 0.002 TO 0.006 0.022 T2 0.074 0.004 T2 0.074 0.004 T 4 0.015 0.007 T4 0.526 0.138 T 6 0.006 0.003 T6 1.046 0.269 T8 0.007 0.004 T8 1.244 0.057 T12 0.012 0.005 T12 1.305 0.051 T24 0.457 0.566 T24 1.429 0.053 POLY B-312.HBV-2 POLY B-312.HBV-4 TO 0.006 0.002 TO 0.006 0.002 T2 0.074 0.004 T2 0.074 0.004 • T4 0.167 0.071 T4 0.023 0.013 T 6 0.795 0.231 T6 0.064 0.132 T8 1.195 0.117 T8 0.216 0.357 T12 1.303 0.041 T12 0.812 0.513 T24 1.422 0 .066 T24 1.415 0.040 POLY B-312, HBV-8 FpLY B-312.HBV-16 TO 0.006 0.002 TO 0.006 0.002. T2 0.074 0.004 T2 0.074 0.004 T4 0.014 0.005 T4 0.023 0.008 T 6 0.007 0.005 T6 0.013 0.004 TB 0.011 0.005 T 8 0.013 0.004 TI 2 0.384 0.383 T12 0.031 0.048 T24 1.294 0.393 T24 0.334 0.579

Tabel A-3 (fortsat) 60 DK 167901 B1Table A-3 (continued) 60 DK 167901 B1

Tid Gnm. Acgq Std.afv. Tid Gnm. A66Q Std,_afv.Time Avg. Acgq Std.afv. Time Avg. A66Q Std, _afv.

POLY B-625,HBV-0 POLY B-625,HBV-2 TO 0.006 0.002 TO 0.006 0.002 T2 0.074 0.004 T2 0.074 0.004 T4 0.330 0.117 T4 0.165 0.076 T6 0.766 0.386 T6 0.553 0.267 T8 1.048 0.314 T8' 1.037 0.260 T12 1.238 0.125 T12 1.261 0.067 T24 1.401 0.123 T24 1.405 0.075 POLY B-625,HBV-4 POLY B-625,HBV-8 TO 0.006 0.002 TO 0.007 0.002 T2 0.074 0.004 T2 0.074 0.004 T4 0.025 0.011 T4 0.015 0.005 T6 0.030 0.034 T6 0.009 0.004 18 0.073 0.128 TB 0.011 0.005 T12 0.627 0.428 T12 0.051 0.062 T24 1.405 0.050 T24 1.323 0.307 POLY B-625.HBV-16 · PQLY B-1250,HBV-0 TO 0.006 0.002 TO 0.006 0.002 T2 0.074 0.004 T2 0.074 0.004 T4 0.039 0.013 T4 0.159 0.032.POLY B-625, HBV-0 POLY B-625, HBV-2 TO 0.006 0.002 TO 0.006 0.002 T2 0.074 0.004 T2 0.074 0.004 T4 0.330 0.117 T4 0.165 0.076 T6 0.766 0.386 T6 0.553 0.267 T8 1.048 0.314 T8 '1.037 0.260 T12 1.238 0.125 T12 1.261 0.067 T24 1.401 0.123 T24 1.405 0.075 POLY B-625, HBV-4 POLY B-625, HBV-8 TO 0.006 0.002 TO 0.007 0.002 T2 0.074 0.004 T2 0.074 0.004 T4 0.025 0.011 T4 0.015 0.005 T6 0.030 0.034 T6 0.009 0.004 18 0.073 0.128 TB 0.011 0.005 T12 0.627 0.428 T12 0.051 0.062 T24 1.405 0.050 T24 1.323 0.307 POLY B-625.HBV-16 · PQLY B-1250, HBV-0 TO 0.006 0.002 TO 0.006 0.002 T2 0.074 0.004 T2 0.074 0.004 T4 0.039 0.013 T4 0.159 0.032.

T6 0.023 0.008 T6 0.172 -0.093 T8 0.022 0.007 T8 0.259 0.261 T12 0.022 0.007 T12 0.778 0.437 T24 0.294 0.538 T24 1.362 0.094 POLY B-1250,HBV-2 POLY B-1250,HBV-4 • TO 0.006 0.002 TO 0.006 0.002 T2 0.074 0.004 T2 0.074 0.004 T4 0,.110 0.043 T4 0.038 0.012 16 0.115 0.085 T6 0.020 0.009 T8 0.203 0.237 T8 0.018 0.006 T12 0.552 0.557 T12 0.033 0.042 T24 1.207 0.487 T24 1.150 0.449 POLY B-1250,HBV-8 POLY B-1250 , HBV-16 TO 0.006 0.002 TO 0.006 0.002 12 0.074 0.004 T2 0.074 0.004 TA 0.028 0.010 T4 0.071 0.014 T6 0.019 0.007 T6 0.054 0.012 18 0.019 0.006 T8 0.046 0.009 T12 0.021 0.010 T12 0.036 0.006 T24 1.013 0.556 T24 0.223 0.440 61 DK 167901 B1T6 0.023 0.008 T6 0.172 -0.093 T8 0.022 0.007 T8 0.259 0.261 T12 0.022 0.007 T12 0.778 0.437 T24 0.294 0.538 T24 1.362 0.094 POLY B-1250, HBV-2 POLY B-1250, HBV-4 • TO 0.006 0.002 TO 0.006 0.002 T2 0.074 0.004 T2 0.074 0.004 T4 0, .110 0.043 T4 0.038 0.012 16 0.115 0.085 T6 0.020 0.009 T8 0.203 0.237 T8 0.018 0.006 T12 0.552 0.557 T12 0.033 0.042 T24 1,207 0.487 T24 1.150 0.449 POLY B-1250, HBV-8 POLY B-1250, HBV-16 TO 0.006 0.002 TO 0.006 0.002 12 0.074 0.004 T2 0.074 0.004 TA 0.028 0.010 T4 0.071 0.014 T6 0.019 0.007 T6 0.054 0.012 18 0.019 0.006 T8 0.046 0.009 T12 0.021 0.010 T12 0.036 0.006 T24 1.013 0.556 T24 0.223 0.440 61 DK 167901 B1

Tabel A-3 (fortsat)Table A-3 (continued)

Tid Gnnk_A66Q Std.afv. Tid Gnm. ACCQ Std.afv.Time Gnnk_A66Q Std.vv. Time Avg. ACCQ Std.afv.

POLY B-2500.HBV-0 POLY B-2500,HBV-2 TO 0.006 0.002 TO 0.006 0.002 T2 0.074 0.004 T2 0.074 0.004 T4 0.123 0.013 T4 0.107 0.022 T6 0.109 0.019 T6 0.085 0.021 T8 0.167 0.276 T8 0.072 0.020 T12 0.075 0.010 T12 0.056 0.013 T24 1.037 0.423 T24 0.879 0.530 POLY B—2500,HBV—4 POLY B-2500.HBV-8 TO 0.006 0.002 TO 0.006 0.002 T2 0.074 0.004 T2 0.074 0.004 T4 0.080 0.013 T4 0.070 0.020 T6 0.065 0.013 T6 0.067 0.010 T8 0.057 0.008 T8 0.058 0.015 T12 0.049 0.011 T12 0.052 0.007 T24 0.416 0.491 T24 0.301 0.524 POLY B-2500,HBV-16 TO 0.006 0.002 T2 0.074 0.004 T4 0.110 0.009 T6 0.091 0.008 T8 0.078 0.009 T12 0.061 0.006 T24 0.210 0.425POLY B-2500.HBV-0 POLY B-2500, HBV-2 TO 0.006 0.002 TO 0.006 0.002 T2 0.074 0.004 T2 0.074 0.004 T4 0.123 0.013 T4 0.107 0.022 T6 0.109 0.019 T6 0.085 0.021 T8 0.167 0.276 T8 0.072 0.020 T12 0.075 0.010 T12 0.056 0.013 T24 1.037 0.423 T24 0.879 0.530 POLY B — 2500, HBV — 4 POLY B-2500.HBV-8 TO 0.006 0.002 TO 0.006 0.002 T2 0.074 0.004 T2 0.074 0.004 T4 0.080 0.013 T4 0.070 0.020 T6 0.065 0.013 T6 0.067 0.010 T8 0.057 0.008 T8 0.058 0.015 T12 0.049 0.011 T12 0.052 0.007 T24 0.416 0.491 T24 0.301 0.524 POLY B-2500, HBV-16 TO 0.006 0.002 T2 0.074 0.004 T4 0.110 0.009 T6 0.091 0.008 T8 0.078 0.009 T12 0.061 0.006 T24 0.210 0.425

Tabel A-4 Skakbrætanalyseresultater for ampici11 in og honningbigift versus E. cgl_L.Table A-4 Chessboard analysis results for ampici11 in and honey bee venom versus E. cgl_L.

62 DK 167901 B162 DK 167901 B1

Tid Gnnk_A660 Std.afv. Ild Gnm. A66Q std-afv··- AMP-O.HBV-O AMP-O.HBV-5 TO 0.015 0.015 TO 0.015 0.015 T2 0.084 0.032 T2 0.084 0.032 T4 0.644 0.098 T4 0.624 0.102 T6 1.053 0.067 T6 1.049 0.081 T8 1.071 0.071 T8 1.070 0.078 T12 1.144 0.075 T12 1.146 0.098 T24 1.244 0.101 T24 1.258 0.128 AMP-0,HBV-10 AMP-0,HBV-20 TO 0.015 0.015 TO 0.015 -0.015 T2 0.084 0.032 T2 0.084 0.032 T4 0.646 0.103 T4 0.643 0.132 T6 1.056 0.085 T6 1.031 0.088 TB 1.066 0.091 T8 1.052 0.097 T12 1.154 0.110 T12 1.127 0.113 T24 1.260 0.139 T24 1.244 0.155 AMP-0,HBV-40 AMP-0.5,HBV-0 TO 0.015 0.015 TO 0.015 0.015 T2 0.084 0.032 T2 0.084 0.032 T4 0.587 0.204 T4 0.600 0.099 T6 1.026 0.092 T6 1.001 0.078 TB 1.050 0.094 T8 0.999 0.101 T12 1.119 0.111 T12 1.085 0.111 T24 1.210 0.167 T24 1.156 0.222 AMP-0.5,HBV-5 AMP-0.5,HBV-10 TO 0.015 0.015 TO 0.015 0.015 T2 0.084 0.032 T2 0.084 0.032 TA 0.603 0.099 T4 0.624 0.111 16 0.998 0.095 'T6 1.001 0.097 T8 1.011 0.097 T8 1.013 0.100 T12 1.099 0.120 T12 1.100 0.136 T24 1.215 0.159 T24 1.219 0.176Time Gnnk_A660 Std.vv. Fire Gnm. A66Q std-afv ·· - AMP-O.HBV-O AMP-O.HBV-5 TO 0.015 0.015 TO 0.015 0.015 T2 0.084 0.032 T2 0.084 0.032 T4 0.644 0.098 T4 0.624 0.102 T6 1.053 0.067 T6 1.049 0.081 T8 1.071 0.071 T8 1.070 0.078 T12 1.144 0.075 T12 1.146 0.098 T24 1.244 0.101 T24 1.258 0.128 AMP-0, HBV-10 AMP-0, HBV-20 TO 0.015 0.015 TO 0.015 -0.015 T2 0.084 0.032 T2 0.084 0.032 T4 0.646 0.103 T4 0.643 0.132 T6 1.056 0.085 T6 1.031 0.088 TB 1.066 0.091 T8 1.052 0.097 T12 1.154 0.110 T12 1.127 0.113 T24 1.260 0.139 T24 1.244 0.155 AMP-0, HBV-40 AMP-0.5, HBV-0 TO 0.015 0.015 TO 0.015 0.015 T2 0.084 0.032 T2 0.084 0.032 T4 0.587 0.204 T4 0.600 0.099 T6 1.026 0.092 T6 1.001 0.078 TB 1.050 0.094 T8 0.999 0.101 T12 1.119 0.111 T12 1.085 0.111 T24 1.210 0.167 T24 1.156 0.222 AMP-0.5, HBV-5 AMP-0.5, HBV-10 TO 0.015 0.015 TO 0.015 0.015 T2 0.084 0.032 T2 0.084 0.032 TA 0.603 0.099 T4 0.624 0.111 16 0.998 0.095 'T6 1.001 0.097 T8 1.011 0.097 T8 1.013 0.100 T12 1.099 0.120 T12 1.100 0.136 T24 1.215 0.159 T24 1.219 0.176

AMP-0.5.HBV-20 AMP-0.5,HBV-4OAMP-0.5.HBV-20 AMP-0.5, HBV-4O

TO 0.015 0.015 TO 0.015 0.015 T2 0.084 0.032 T2 0.084 0.032 TA 0.614 0.148 T4 0.508 0.205 T6 0.980 0.094 T6 0.961 0.097 TB 0.993 0.093 T8 0.991 0.098 T12 1.073 0.123 T12 1.063 0.138 T24 1.182 0.155 T24 1.162 0.172 63 DK 167901 B1TO 0.015 0.015 TO 0.015 0.015 T2 0.084 0.032 T2 0.084 0.032 TA 0.614 0.148 T4 0.508 0.205 T6 0.980 0.094 T6 0.961 0.097 TB 0.993 0.093 T8 0.991 0.098 T12 1.073 0.123 T12 1.063 0.138 T24 1.182 0.155 T24 1.162 0.172 63 DK 167901 B1

Tabel A-4 (fortsat) lul Gnm. ftcc0 SUUflu Ud Sfl!lJ660 SLdjf», AMP- 1 , HBV-0 AMP -1 ,11BV-5 TO 0.015 0.015 TO 0.015 0.015 T2 0.084 0.032 T2 0.084 0.032 T 4 0.538 0.094 T4 0.545 0.095 T 6 0.628 0.1 75 T6 0.621 0.126 T8 0.493 0.157 T8 0.470 0.147 TI 2 0.475 0.230 T12 0.407 0.125 T24 0.504 0.228 T24 0.447 0.028 AMP-1 , HBV-10 AMP-1 ,HBV-2 0 TO 0.015 0.016 TO 0.015 0.015 T2 0.083 0.033 T2 0.084 0.032 T4 0.561 0.116 T4 0.543 0.122 T 6 0.506 0.077 T6 0.513 0.080 T 8 0.4 53 0.120 T8 0.43 2 0.132 T12 0.396 0.106 T12 0.367 0.1 04 T24 0.414 0.028 T24 0.395 0.047 ΛΜΡ-1 ,11BV-40 AMP- 2 , HBV-0 TO 0.015 0.016 TO 0.015 0.015 T2 0.084 0.031 T2 0.084 0.032 T4 0.439 0.183 T4 0.428 0.112 T6 0.456 0.125 T6 0.125 0.042 T 8 0.4 35 0.191 T8 0.133 0.055 T12 0.385 0.163 T12 0.136 0.090 T 2 4 0.4 84 0.082 T 2 4 0.64 7 0.1 94 AMP-2 , 1IBV-5 ΛΜΡ-2 , HBV-10 TO 0.015 0.015 TO 0.015 0.015 T 2 0.08 4 0.0 32 T2 0.084 0.032 T4 0.440 0.130 T4 0.432 0.122 T 6 0.134 0.052 T6 0.1 2 7 0.052 T 8 0.14 8 0.073 T8 0.133 0.070 TI 2 0.192 0.14 7 TI 2 0.18 2 0.137 T24 0.685 0.175 T24 0.654 0.253Table A-4 (continued) ll Gnm. ftcc0 SUUflu Ud Sfl! lJ660 SLdjf », AMP-1, HBV-0 AMP -1, 11BV-5 TO 0.015 0.015 TO 0.015 0.015 T2 0.084 0.032 T2 0.084 0.032 T 4 0.538 0.094 T4 0.545 0.095 T 6 0.628 0.1 75 T6 0.621 0.126 T8 0.493 0.157 T8 0.470 0.147 TI 2 0.475 0.230 T12 0.407 0.125 T24 0.504 0.228 T24 0.447 0.028 AMP-1, HBV-10 AMP-1, HBV-2 0 TO 0.015 0.016 TO 0.015 0.015 T2 0.083 0.033 T2 0.084 0.032 T4 0.561 0.116 T4 0.543 0.122 T 6 0.506 0.077 T6 0.513 0.080 T 8 0.4 53 0.120 T8 0.43 2 0.132 T12 0.396 0.106 T12 0.367 0.1 04 T24 0.414 0.028 T24 0.395 0.047 ΛΜΡ-1, 11BV-40 AMP-2, HBV-0 TO 0.015 0.016 TO 0.015 0.015 T2 0.084 0.031 T2 0.084 0.032 T4 0.439 0.183 T4 0.428 0.112 T6 0.456 0.125 T6 0.125 0.042 T 8 0.4 35 0.191 T8 0.133 0.055 T12 0.385 0.163 T12 0.136 0.090 T 2 4 0.4 84 0.082 T 2 4 0.64 7 0.1 94 AMP-2, 1IBV-5 ΛΜΡ-2, HBV-10 TO 0.015 0.015 TO 0.015 0.015 T 2 0.08 4 0.0 32 T2 0.084 0.032 T4 0.440 0.130 T4 0.432 0.122 T 6 0.134 0.052 T6 0.1 2 7 0.052 T 8 0.14 8 0.073 T8 0.133 0.070 TI 2 0.192 0.14 7 TI 2 0.18 2 0.137 T24 0.685 0.175 T24 0.654 0.253

AMP-2, HBV-20 AMP-2,HBV-4OAMP-2, HBV-20 AMP-2, HBV-4O

TO 0.015 0.015 TO 0.015 0.015 T2 0.084 0.032 T2 0.084 0.032 T4 0.406 0.151 T4 0.300 0.173 T 6 0.114 0.054 T 6 0.08 6 0.058 T 8 0.123 0.073 T8 0.096 0.07 1 T1 2 0.209 0.1 9 3 T12 0.098 0.055 T 2 4 0.687 0.205’ T24 0.618 0.241TO 0.015 0.015 TO 0.015 0.015 T2 0.084 0.032 T2 0.084 0.032 T4 0.406 0.151 T4 0.300 0.173 T 6 0.114 0.054 T 6 0.08 6 0.058 T 8 0.123 0.073 T8 0.096 0.07 1 T1 2 0.209 0.1 9 3 T12 0.098 0.055 T 2 4 0.687 0.205 ' T24 0.618 0.241

Tabel A-4 (fortsat) 64 DK 167901 B1Table A-4 (continued) 64 DK 167901 B1

Ud Gnm. Acco Std.afv. Ud Gnm. A66Q Std^åiv.Ud Gnm. Acco Std.afv. Ud Gnm. A66Q Std ^ åiv.

AMP-4,HBV-0 AHP-A.HBV-5 TO 0.015 0.015 TO 0.015 0.015 T2 0.084 0.032 T2 0.084 0.032 TA 0.158 0.118 TA 0.154 0.108 T 6 0.063 0.019 T6 0.076 0.037 T8 0.126 0.230 T8 0.084 0.044 T12 0.055 0.023 T12 0.057 0.022 T24 .0.056 0.015 T24 0.076 0.071 AKP-4.HBV-10 AMP-4,HBV-20 TO 0.015 0.015 TO 0.015 0.015 T2 0.084 0.032 T2 0.084 0.032 TA 0.128 0.092 T4 0.090 0.070 T6 0.075 0.039 T6 0.066 0.043 T8 0.074 0.045 TB 0.066 0.045 TT 2 0.066 0.034 T12 0.050 0.031 T2A 0.063 0.032 T24 0.052 0.026AMP-4, HBV-0 AHP-A.HBV-5 TO 0.015 0.015 TO 0.015 0.015 T2 0.084 0.032 T2 0.084 0.032 TA 0.158 0.118 TA 0.154 0.108 T 6 0.063 0.019 T6 0.076 0.037 T8 0.126 0.230 T8 0.084 0.044 T12 0.055 0.023 T12 0.057 0.022 T24 .0.056 0.015 T24 0.076 0.071 AKP-4.HBV-10 AMP-4, HBV-20 TO 0.015 0.015 TO 0.015 0.015 T2 0.084 0.032 T2 0.084 0.032 TA 0.128 0.092 T4 0.090 0.070 T6 0.075 0.039 T6 0.066 0.043 T8 0.074 0.045 TB 0.066 0.045 TT 2 0.066 0.034 T12 0.050 0.031 T2A 0.063 0.032 T24 0.052 0.026

AMP-4,HBV-4 OAMP-4, HBV-4O

TO 0.015 0.015 T2 0.084 0.032 TA 0.062 0.040 T6 0.055 0.040 TB O.054 0.039 TI 2 0.051 0.028 T24 0.042 0.022 DK 167901 B1TO 0.015 0.015 T2 0.084 0.032 TA 0.062 0.040 T6 0.055 0.040 TB O.054 0.039 TI 2 0.051 0.028 T24 0.042 0.022 DK 167901 B1

Tabel A-5 Skakbrætanalyseresultater for kanamycin og honningbigift versus E. coli,.Table A-5 Chessboard analysis results for kanamycin and honey bee venom versus E. coli,.

6565

Tid Gnm. A^q Std.afv. Tid Gnm. AggQ Std.afv, KANA-0,HBV-0 KANA-0,HBV-5 TO 0.025 0.009 TO 0.025 0.009 T2 0.119 0.028 T2 0.118 0.028 TA 0.701 0.136 TA 0.726 0.108 T6 0.980 0.075 T6 1.002 0.065 T8 0.988 0.068 T8 1.028 0.063Time Avg. A ^ q Std.afv. Time Avg. AggQ Std.afv, KANA-0, HBV-0 KANA-0, HBV-5 TO 0.025 0.009 TO 0.025 0.009 T2 0.119 0.028 T2 0.118 0.028 TA 0.701 0.136 TA 0.726 0.108 T6 0.980 0.075 T6 1.002 0.065 T8 0.988 0.068 T8 1.028 0.063

T12 1.062 0.090 T12 1.10A 0.08AT12 1.062 0.090 T12 1.10A 0.08A

T2A 1.1AA 0.119 T2A 1.191 0.101 KANA-O,HBV-10 KANA-0,HBV-20 TO 0.025 0.009 TO 0.025 0.009 T2 0.119 0.028 T2 0.119 0.028 ΤΑ 0.7A7 0.108 ΤΑ 0.76A 0.087 T 6 1.005 0.073 T6 1.001 0.060 T8 1.028 0.065 T8 1.026 0.063 T12 1.099 0.09A T12 1.09A 0.090 T2A 1.188 0.11A T2A 1.198 0.102 KANA-0,HBV-AO ΚΑΝΑ-5,HBV-0 TO 0.025 0.009 TO 0.025 0.009 T2 0.119 0.028 T2 0.12A 0.033 TA 0.736 0.075 ΤΑ 0.A73 0.120 T 6 0.9 8A 0.06A T6 0.800 0.132 T 8 1.005 0.062 T8 0.889 0.081 T12 1.080 0.080 T12 0.930 0.091 T2A 1.163 0.103 T2A 1.019 0.119 KANA-5,HBV-5 KANA-5.HBV-10 TO 0.025 0.009 TO 0.025 0.009 T2 0.119 0.028 T2 0.119 0.028 ΤΑ 0.A8A 0.128 ΤΑ 0.A80 0.1A6 T6 0.827 0.129 T6 0.805 0.1A1 T8 0.908 0.080 T8 0.893 0.093 T12 0.955 0.101 T12 0.939 0.108 T2A 1.050 0.122 T2A l.OAA 0.127T2A 1.1AA 0.119 T2A 1.191 0.101 KANA-O, HBV-10 KANA-0, HBV-20 TO 0.025 0.009 TO 0.025 0.009 T2 0.119 0.028 T2 0.119 0.028 ΤΑ 0.7A7 0.108 ΤΑ 0.76A 0.087 T 6 1.005 0.073 T6 1.001 0.060 T8 1.028 0.065 T8 1.026 0.063 T12 1.099 0.09A T12 1.09A 0.090 T2A 1.188 0.11A T2A 1.198 0.102 CANA-0, HBV-AO 5-5, HBV-0 TO 0.025 0.009 TO 0.025 0.009 T2 0.119 0.028 T2 0.12A 0.033 TA 0.736 0.075 ΤΑ 0.A73 0.120 T 6 0.9 8A 0.06A T6 0.800 0.132 T 8 1.005 0.062 T8 0.889 0.081 T12 1.080 0.080 T12 0.930 0.091 T2A 1.163 0.103 T2A 1.019 0.119 KANA-5, HBV-5 KANA-5.HBV-10 TO 0.025 0.009 TO 0.025 0.009 T2 0.119 0.028 T2 0.119 0.028 ΤΑ 0.A8A 0.128 ΤΑ 0.A80 0.1A6 T6 0.827 0.129 T6 0.805 0.1A1 T8 0.908 0.080 T8 0.893 0.093 T12 0.955 0.101 T12 0.939 0.108 T2A 1.050 0.122 T2A l.OAA 0.127

KANA-5.HBV-20 KANA-5,HBV-AOKANA-5.HBV-20 KANA-5, HBV-AO

TO 0.025 0.009 TO 0.025 0.009 T2 0.119 0.028 T2 0.119 0.028 TA O. A 9 3 0.169 TA 0.503 0.177 T6 0.765 0.192 T6 0.783 0.181 T8 0.862 0.108 T8 0.873 0.096 T12 0.9A2 0.116 T12 0.950 0.107 T2A 1.0A6 0.126 T2A 1.0A1 0.118 66 DK 167901 B1TO 0.025 0.009 TO 0.025 0.009 T2 0.119 0.028 T2 0.119 0.028 TA O. A 9 3 0.169 TA 0.503 0.177 T6 0.765 0.192 T6 0.783 0.181 T8 0.862 0.108 T8 0.873 0.096 T12 0.950 0.106 T2 0.950 0.107 T2A 1.0A6 0.126 T2A 1.0A1 0.116 DK 167901 B1

Tabel A-5 (fortsat)Table A-5 (continued)

Tid Gnm- Acco Std.afv,. Tjd 6nni--^660 Std.afv, KANA-10,HBV-0 KANA-10,HBV-5 TO 0.025 0.009 TO 0.025 0.009 T2 0.119 0.028 T2 0.119 0.028 T4 0.263 0.114 T4 0.267 0.135 T6 0.417 0.209 T6 0.414 0.242 T8 0.576 0.222 T8 0.563 0.248 T12 0.814 0.084 T12 0.807 0.098 T24 0.878 0.095 T24 0.894 0.095 KANA-10,HBV-10 KANA-10,HBV-20 TO 0.025 0.009 TO 0.025 0.009 T2 0.119 0.028 T2 0.119 0.028 T4 0.258 0.142 T4 0.257 0.153 T6 0.364 0.243 T6 0.361 0.262 T8 0.511 0.242 T8 0.520 0.259 T12 0.738 0.180 T12 0.754 0.171 T24 0.873 0.078 T24 0.881 0.071 KANA-10.HBV-40 KANA-20,HBV-0 TO 0.025 0.009 TO 0.025 0.009 T2 0.119 0.028 T2 0.119 0.028 TA 0.258 0.176 T4 0.161 0.054 T6 0.356 0.303 T6 0.161 0.065 T8 0.494 0.292 T8 0.170 0.079 T12 0.784 0.147 T12 0.268 0.108 T24 0.906 0.103 T24 0.631 0.103 KANA-20.HBV-5 KANA-20,HBV-10 TO 0.025 0.009 TO 0.025 0.009 12 0.119 0.028 T2 0.119 0.028 TA 0.156 0.072 T4 0.144 0.075 16 0.133 0.083 T6 0.095 0.069 18 0.119 0.086 T8 0.085 0.063 T12 0.233 0.122 T12 0.209 0.081 T24 0.678 0.112 T24 0.667 0.100 KANA-20,HBV-20 KANA-20,HBV-40 TO 0.025 0.009 TO 0.025 0.009 T2 0.119 0.028 T2 0.119 0.028 TA 0.128 0.081 T4 0.103 0.074 T6 0.078 0.065 T 6 0.063 0.051 T8 0.151 0.128 T 8 0.063 0.048 T12 0.174 0.061 T12 0.179 0.083 T24 0.692 0.113 T24 0.716 0.087 DK 167901 B1 67Time Gnm- Acco Std.afv,. Tjd 6nni - ^ 660 Std.afv, KANA-10, HBV-0 KANA-10, HBV-5 TO 0.025 0.009 TO 0.025 0.009 T2 0.119 0.028 T2 0.119 0.028 T4 0.263 0.114 T4 0.267 0.135 T6 0.417 0.209 T6 0.414 0.242 T8 0.576 0.222 T8 0.563 0.248 T12 0.814 0.084 T12 0.807 0.098 T24 0.878 0.095 T24 0.894 0.095 CANA-10, HBV-10 CANA-10, HBV-20 TO 0.025 0.009 TO 0.025 0.009 T2 0.119 0.028 T2 0.119 0.028 T4 0.258 0.142 T4 0.257 0.153 0.243 T6 0.361 0.262 T8 0.511 0.242 T8 0.520 0.259 T12 0.738 0.180 T12 0.754 0.171 T24 0.873 0.078 T24 0.881 0.071 KANA-10.HBV-40 KANA-20, HBV-0 TO 0.025 0.009 TO 0.025 0.009 T2 0.119 0.028 TA 0.25 0.176 T4 0.161 0.054 T6 0.356 0.303 T6 0.161 0.065 T8 0.494 0.292 T8 0.170 0.079 T12 0.784 0.147 T12 0.268 0.108 T24 0.906 0.103 T24 0.631 0.103 KANA-20.HBV-5 KANA-20, HBV-10 TO 0.09 0.009 TO 0.09 TO 0.028 T2 0.119 0.028 TA 0.156 0.072 T4 0.144 0.075 16 0.133 0.083 T6 0.095 0.069 18 0.119 0.086 T8 0.085 0.063 T12 0.233 0.122 T12 0.209 0.081 T24 0.678 0.112 T24 0.667 0.100 CANA -20, HBV-20 CANANA-20, HBV-40 TO 0.025 0.009 TO 0.025 0.009 T2 0.119 0.028 T2 0.119 0.028 TA 0.128 0.081 T4 0.103 0.074 T6 0.078 0.065 T 6 0.063 0.051 T8 0.151 0.128 T 8 0.063 0.048 T12 0.174 0.061 T12 0.179 0.083 T24 0.692 0.113 T24 0.716 0.087 DK 167901 B1 67

Tabel A-5 (fortsat)Table A-5 (continued)

Tid Gnnk_A660 Std.afv. Tjd Gnm,.....A66Q Std.afv, KANA*»4 O,HBV-0 KANA-4 O,HBV-5 TO 0.025 0.009 TO 0.024 0.009 T2 0.119 0.028 T2 0.117 0.029 T4 0.136 0.049 T4 0.128 0.062 T 6 0.126 0.052 T6 0.098 0.071 T8 0.120 0.057 T8 0.074 0.055 T12 0.100 0.055 T12 0.043 0.024 T24 0.617 0.108 T24 0.432 0.301 ΚΑΝΑ-4O,HBV—10 ΚΑΝΑ-4 O,HBV-20 TO 0.025 0.009 TO 0.025 0.009 T2 0.119 0.028 T2 0.119 0.028 T4 0.117 0.068 T4 0.096 0.059 T6 0.066 0.047 T6 0.046 0.025 • T8 0.045 0.026 T8 0.038 0.016 T12 0.042 0.026 T12 0.039 0.017 T24 0.416 0.310 T24 0.404 0.318 KANA-40,HBV-40 TO 0.025 0.009 T2 0.119 0.028 T4 0.080 0.054 T6 0.041 0.020 T8 0.036 0.013 TI 2 0.040 0.019 T24 0.342 0.344 DK 167901 BlTime Gnnk_A660 Std.vv. Tjd Gnm, ..... A66Q Std.afv, CANA * »4 O, HBV-0 CANA-4 O, HBV-5 TO 0.025 0.009 TO 0.024 0.009 T2 0.119 0.028 T2 0.117 0.029 T4 0.136 0.049 T4 0.128 0.062 T 6 0.126 0.052 T6 0.098 0.071 T8 0.120 0.057 T8 0.074 0.055 T12 0.100 0.055 T12 0.043 0.024 T24 0.617 0.108 T24 0.432 0.301 ΚΑΝΑ-4O, HBV — 10 ΚΑΝΑ-4 O, HBV-20 TO 0.025 0.009 TO 0.025 0.009 T2 0.119 0.028 T2 0.119 0.028 T4 0.117 0.068 T4 0.096 0.059 T6 0.066 0.047 T6 0.046 0.025 • T8 0.045 0.026 T8 0.038 0.016 T12 0.042 0.026 T12 0.039 0.017 T24 0.416 0.310 T24 0.404 0.318 CANA-40, HBV-40 TO 0.025 0.009 T2 0.119 0.028 T4 0.080 0.054 T6 0.041 T8 0.036 0.013 TI 2 0.040 0.019 T24 0.342 0.344 DK 167901 Bl

Tabel A-6 Skakbrætanalyseresultater for polymyxin B og honningbigift versus E. col i.Table A-6 Chessboard analysis results for polymyxin B and honey bee venom versus E. col i.

6868

Tid Gnm^-AggQ Std.afv. Tid Gnm. A^q Std.afv.Time Gnm ^ -AggQ Std.afv. Time Avg. A ^ q Std.afv.

POLY B-O.HBV-O POLY B-0.HBV-5 TO 0.012 0.005 TO 0.012 0.005 T2 0.040 0.004 T2 0.040 0.004 T4 0.506 0.076 T4 0.529 0.080 T6 1.011 0.110 T6 1.018 0.116 T8 1.043 0.096 T8 1.049 0.095 T12 1.103 0.116 T12 1.113 0.119 T24 1.201 0.137 T24 1.227 0.150 POLY B-0,HBV-10 POLY B-0,HBV-20 TO . 0.012 0.005 TO 0.012 0.005 T2 0.040 0.004 T2 0.040 0.004 T4 0.557 0.087 T4 0.544 0.061 T6 1.010 0.130 T6 1.005 0.117 • T8 1.049 0.100 T8 1.040 0.102 T12 1.104 0.142 T12 1.092 0.139 T24 1.228 0.162 T24 1.217 0.157 POLY B-0,HBV-4O POLY B-1.5.HBV-0 TO 0.012 0.005 TO 0.012 0.005 T2 0.040 0.004 T2 0.040 0.004 T4 0.439 0.058 T4 0.411 0.078 . T6 0.992 0.129 T6 0.984 0.105 T8 1.036 0.116 T8 1.020 0.091 T12 1.082 0.139 T12 1.075 0.107 T24 1.188 0.157 T24 1.200 0.141 POLY B-1.5 ,HBV-=5 POLY B-=l. 5 , HBV-10 TO 0.012 0.003 TO 0.012 0.005 T2 0.040 0.004 T2 0.040 0.004 T4 0.176 0.039 T4 0.160 0.078 T6 0.851 0.142 T6 0.837 0.133 T8 1.012 0.196 T8 1.015 0.091 T12 1.068 0.093 T12 1.073 0.134 T24 1.200 0.063 T24 1.203 0.145POLY BO.HBV-O POLY B-0.HBV-5 TO 0.012 0.005 TO 0.012 0.005 T2 0.040 0.004 T2 0.040 0.004 T4 0.506 0.076 T4 0.529 0.080 T6 1.011 0.110 T6 1.018 0.116 T8 1.043 0.096 T8 1.049 0.095 T12 1.103 0.116 T12 1.113 0.119 T24 1.201 0.137 T24 1.227 0.150 POLY B-0, HBV-10 POLY B-0, HBV-20 TO. 0.012 0.005 TO 0.012 0.005 T2 0.040 0.004 T2 0.040 0.004 T4 0.557 0.087 T4 0.544 0.061 T6 1.010 0.130 T6 1.005 0.117 • T8 1.049 0.100 T8 1.040 0.102 T12 1.104 0.142 T12 1.092 0.139 T24 1.228 0.162 T24 1.217 0.157 POLY B-0, HBV-4 POLY B-1.5.HBV-0 TO 0.012 0.005 TO 0.012 0.005 T2 0.040 0.004 T2 0.040 0.004 T4 0.439 0.058 T4 0.411 0.078. T6 0.992 0.129 T6 0.984 0.105 T8 1.036 0.116 T8 1.020 0.091 T12 1.082 0.139 T12 1.075 0.107 T24 1.188 0.157 T24 1.200 0.141 POLY B-1.5, HBV- = 5 POLY B- = l. 5, HBV-10 TO 0.012 0.003 TO 0.012 0.005 T2 0.040 0.004 T2 0.040 0.004 T4 0.176 0.039 T4 0.160 0.078 T6 0.851 0.142 T6 0.837 0.133 T8 1.012 0.196 T8 1.015 0.091 T12 1.068 0.093 T12 1.073 0.134 T24 1.200 0.063 T24 1.203 0.145

POLY B-1.5.HBV-20 POLY B = 1.5.HBV-4OPOLY B-1.5.HBV-20 POLY B = 1.5.HBV-4O

TO 0.012 0.005 TO 0.012 0.005 T2 0.040 0.004 T2 0.040 0.004 -T4 0.058 0.026 T4 0.024 0.010 T6 0.507 0.196 T6 0.147 0.262 T8 0.948 0.128 T8 0.438 0.390 T12 1.046 0.120 T12 1.016 0.102 T24 1.201 0.129 T24 1.153 0.143 69 DK 167901 B1TO 0.012 0.005 TO 0.012 0.005 T2 0.040 0.004 T2 0.040 0.004 -T4 0.058 0.026 T4 0.024 0.010 T6 0.507 0.196 T6 0.147 0.262 T8 0.948 0.128 T8 0.438 0.390 T12 1.046 0.120 T12 1.016 0.102 T24 1.201 0.129 T24 1.153 0.143 69 DK 167901 B1

Tabel A-6 (fortsat)Table A-6 (continued)

Tid 6nm. Accq Std.afv^ Tid GnnL_A660 Stdjifx.Time 6pm Accq Std.afv ^ Time GnnL_A660 Stdjifx.

POLY B-3.HBV-0 POLY B-3.HBV-5 TO 0.012 0.005 TO 0.012 0.005 T2 0.040 0.004 T2 0.040 0.004 T4 0.138 0.094 T4 0.029 0.018 T6 0.642 0.139 T6 0.105 0.188 T8 0.943 0.117 T8 0.174 0.339 T12 0.985 0.147 T12 0.471 0.390 T24 1.116 0.184 T24 1.117 0.132 POLY B-3,HBV-10 POLY B-3.HBV-20 TO 0.012 0.005 TO 0.012 0.005 T2 0.040 0.004 T2 0.040 0.004 T4 0.030 0.019 T4 0.023 0.007 T6 0.092 0.169 T6 0.013 0.004 T8 0.200 0.339 T8 0.016 0.013 T12 0.442 0.414 T12 0.445 0.351 T24 1.105 0.111 T24 1.126 0.111 POLY B-3,HBV-40 POLY B-6.HBV-0 TO 0.012 0.005 TO 0.012 0.005 T2 0.040 0.004 T2 0.040 0.004 T4 0.033 0.014 T4 0.022 0.007 T6 0.018 0.006 T6 0.014 0.006 T8 0.054 0.101 T8 0.011 0.004 T12 0.444 0.357 T12 0.109 0.188 T24 1.123 0.123 T24 0.975 0.140 POLY B-6.HBV-5 POLY B-6,HBV-10 TO 0.012 0.005 TO 0.012 0.005 ’ T2 0.040 0.004 T2 0.040 0.004 T4 0.024 0.006 T4 0.029 0.006 T 6 0.016 0.007 T6 0.017 0.005 T8 0.011 0.004 T8 0.012 0.004 T12 0.056 0.115 T12 0.065 0.111 T24 0.733 0.398 T24 0.701 0.441 POLY B-6,HBV-20 POLY B-6,HBV-40 •TO 0.012 0.005 TO 0.012 0.005 T2 0.040 0.004 T2 0.042 0.009 T4 0.030 0.007 T 4 0.041 0.008 T 6 0.016 0.004 T 6 0.019 0.006 T 8 0.012 0.004 T8 0.014 0.006 T12 0.066 0.116 T12 0.016 0.006 T24 0.486 0.448 T24 0.270 0.374POLY B-3.HBV-0 POLY B-3.HBV-5 TO 0.012 0.005 TO 0.012 0.005 T2 0.040 0.004 T2 0.040 0.004 T4 0.138 0.094 T4 0.029 0.018 T6 0.642 0.139 T6 0.105 0.188 T8 0.943 0.117 T8 0.174 0.339 T12 0.985 0.147 T12 0.471 0.390 T24 1.116 0.184 T24 1.117 0.132 POLY B-3, HBV-10 POLY B-3.HBV-20 TO 0.012 0.005 TO 0.012 0.005 T2 0.040 0.004 T2 0.040 0.004 T4 0.030 0.019 T4 0.023 0.007 T6 0.092 0.169 T6 0.013 0.004 T8 0.200 0.339 T8 0.016 0.013 T12 0.442 0.414 T12 0.445 0.351 T24 1.105 0.111 T24 1.126 0.111 POLY B-3, HBV-40 POLY B-6.HBV-0 TO 0.012 0.005 TO 0.012 0.005 T2 0.040 0.004 T2 0.040 0.004 T4 0.033 0.014 T4 0.022 0.007 T6 0.018 0.006 T6 0.014 0.006 T8 0.054 0.101 T8 0.011 0.004 T12 0.444 0.357 T12 0.109 0.188 T24 1.123 0.123 T24 0.975 0.140 POLY B-6.HBV-5 POLY B-6, HBV-10 TO 0.012 0.005 TO 0.012 0.005 'T2 0.040 0.004 T2 0.040 0.004 T4 0.024 0.006 T4 0.029 0.006 T 6 0.016 0.007 T6 0.017 0.005 T8 0.011 0.004 T8 0.012 0.004 T12 0.056 0.115 T12 0.065 0.111 T24 0.733 0.398 T24 0.701 0.441 POLY B-6, HBV-20 POLY B-6, HBV-40 • TO 0.012 0.005 TO 0.012 0.005 T2 0.040 0.004 T2 0.042 0.009 T4 0.030 0.007 T 4 0.041 0.008 T 6 0.016 0.004 T 6 0.019 0.006 T 8 0.012 0.004 T8 0.014 0.006 T12 0.066 0.116 T12 0.016 0.006 T24 0.486 0.448 T24 0.270 0.374

Tabel A-6 (fortsat) 70 DK 167901 B1Table A-6 (continued) 70 DK 167901 B1

Tid Gnnk_A660 Std.afv. Tid Gnm. AG{-0 Std.afv.Time Gnnk_A660 Std.vv. Time Avg. AG {-0 Std.

POLY B-12.HBV-0 POLY B-12.HBV-5 TO 0.012 0.005 TO 0.012 0.005 T2 0.040 0.004 T2 0.040 0.004 T4 0.018 0.005 T4 0.025 0.005 T6 0.011 0.005 T6 0.016 0.006 T8 0.009 0.003 T8 0.011 0.005 T12 0.075 0.150 T12 0.010 0.005 T24 0.472 0.498 T24 0.196 0.361 POLY B-12,HBV-10 POLY B-12.HBV-20 TO 0.012 0.005 TO 0.012 0.005 T2 0.040 0.004 T2 0.040 0.004 T4 0.029 0.004 T4 0.030 0.006 T 6 0.017 0.005 T6 0.017 0.006 T8 0.012 0.003 T8 0.013 0.003 T12 0.024 0.051 T12 0.012 0.004 T24 0.201 0.352 T24 0.073 0.184 POLY B-12,HBV-40 TO 0.012 0.005 T2 0.040 0.004 T4 0.048 0.007 T 6 0.022 0.006 T8 0.016 0.005 T12 0.015 0.006 T24 0.047 0.085 HH ~ -T—__ _ 7l DK 167901 B1POLY B-12.HBV-0 POLY B-12.HBV-5 TO 0.012 0.005 TO 0.012 0.005 T2 0.040 0.004 T2 0.040 0.004 T4 0.018 0.005 T4 0.025 0.005 T6 0.011 0.005 T6 0.016 0.006 T8 0.009 0.003 T8 0.011 0.005 T12 0.075 0.150 T12 0.010 0.005 T24 0.472 0.498 T24 0.196 0.361 POLY B-12, HBV-10 POLY B-12.HBV-20 TO 0.012 0.005 TO 0.012 0.005 T2 0.040 0.004 T2 0.040 0.004 T4 0.029 0.004 T4 0.030 0.006 T 6 0.017 0.005 T6 0.017 0.006 T8 0.012 0.003 T8 0.013 0.003 T12 0.024 0.051 T12 0.012 0.004 T24 0.201 0.352 T24 0.073 0.184 POLY B-12, HBV-40 TO 0.012 0.005 T2 0.040 0.004 T4 0.048 0.007 T 6 0.022 0.006 T8 0.016 0.005 T12 0.015 0.006 T24 0.047 0.085 HH ~ - T —__ _ 7l DK 167901 B1

Tabel A-7 Skakbrætanalyseresultater for ampiciTI in og honningbigift versus kanamycinresi stent S. aureus.Table A-7 Chessboard analysis results for ampiciTI in and honey bee venom versus kanamycin resistance stent S. aureus.

Tid GnnL-A660 Std.afv. Ud Gnm. A66Q Std,.afy._ AMP-O,HBV-0 AMP-O.HBV-2 TO 0.020 0.016 TO 0.020 0.016 T2 0.064 0.020 T2 0.064 0.020 T4 0.382 0.155 T4 0.150 0.134 T6 0.885 0.173 T6 0.533 0.286 T8 1.108 0.041 T8 0.937 0.207 T12 1.191 0.035 T12 1.167 0.038 T24 1.233 0.049 T24 1.217 0.041Time GnnL-A660 Std.vv. Ud Gnm. A66Q Std, .afy._ AMP-O, HBV-0 AMP-O.HBV-2 TO 0.020 0.016 TO 0.020 0.016 T2 0.064 0.020 T2 0.064 0.020 T4 0.382 0.155 T4 0.150 0.134 T6 0.885 0.173 T6 0.533 0.286 T8 1.108 0.041 T8 0.937 0.207 T12 1.191 0.035 T12 1.167 0.038 T24 1.233 0.049 T24 1.217 0.041

AMP-O,HBV-4 AMP-O,HBV-BAMP-O, HBV-4 AMP-O, HBV-B

TO 0.020 0.016 TO 0.020 0.016 T2 0.064 0.020 T2 0.064 0.020 T4 0.038 0.021 T4 0.032 0.019 T6 0.040 0.029 T6 0.015 0.010 T8 0.155 0.184 T8 0.011 0.007 T12 0.903 0.263 T12 0.234 0.326 T24 1.181 0.050 T24 0.894 0.441 AMP-O,HBV-16 AMP-O.05,HBV-0 TO 0.020 0.016 TO 0.020 0.016 T2 0.064 0.020 T2 0.064 0.020 T4 0.033 0.016 T4 0.230 0.054 T6 0.013 0.005 T6 0.338 0.076 T8 0.007 0.004 T8 0.372 0.144 T12 0.008 0.004 T12 0.352 0.220 T24 0.126 0.305 T24 0.461 0.139 AMP-O.05,HBV-2 AMP-O.O 5,HBV-4 TO 0.020 0.016 TO 0.020 0.016 T2 0.064 0.020 T2 0.064 0.020 T4 0.112 0.099 T4 0.044 0.025 T6 0.175 0.144 T6 0.031 0.021 T8 0.190 0.153 T8 0.025 0.018 T12 0.130 0.131 T12 0.018 0.012 T24 0.440 0.260 T24 0.581 0.239 AMP-O.05,HBV-8 AMP-O.05,HBV-16 TO 0.020 0.016 TO 0.020 0.016 T2 0.064 0.020 T2 0.064 0.020 T4 0.025 0.013 T4 0.035 0.016 T 6 0.013 0.009 T6 0.013 0.004 T8 0.008 0.005 T8 0.008 0.004 T12 0.010 0.007 TI 2 0.008 0.004 T24 0.150 0.295 T24 0.011 0.002 72 DK 167901 B1TO 0.020 0.016 TO 0.020 0.016 T2 0.064 0.020 T2 0.064 0.020 T4 0.038 0.021 T4 0.032 0.019 T6 0.040 0.029 T6 0.015 0.010 T8 0.155 0.184 T8 0.011 0.007 T12 0.903 0.263 T12 0.234 0.326 T24 1.181 0.050 T24 0.894 0.441 AMP-O, HBV-16 AMP -O.05, HBV-0 TO 0.020 0.016 TO 0.020 0.016 T2 0.064 0.020 T2 0.064 0.020 T4 0.033 0.016 T4 0.230 0.054 T6 0.013 0.005 T6 0.338 0.076 T8 0.007 0.004 T8 0.372 0.144 T12 0.008 0.004 T12 0.352 0.220 T24 0.126 0.305 T24 0.461 0.139 AMP-O.05, HBV-2 AMP-OO 5, HBV-4 TO 0.020 0.016 TO 0.020 0.016 T2 0.064 0.020 T2 0.064 0.020 T4 0.112 0.099 T4 0.044 0.025 T6 0.175 0.144 T6 0.031 0.021 T8 0.190 0.153 T8 0.025 0.018 T12 0.130 0.131 T12 0.018 0.012 T24 0.440 0.260 T24 0.581 0.239 AMP-O.05, HBV-8 AMP-O.05, HBV-16 TO 0.020 0.016 TO 0.020 0.016 T2 0.064 0.020 T2 0.064 0.020 T4 0.025 0.013 T4 0.035 0.016 T 6 0.013 0.009 T6 0.013 0.004 T8 0.008 0.005 T8 0.008 0.004 T12 0.010 0.007 TI 2 0.008 0.004 T24 0.150 0.295 T24 0.011 0.002 72 DK 167901 B1

Tabel A-7 (fortsat)Table A-7 (continued)

Tid GjTflL_Aggo Std.afv. Tid 6nm. A^q Std.afv.Time GjTflL_Aggo Std.vv. Time 6pm A ^ q Std.afv.

AMP-0.l.HBV-0 AMP-0.l.HBV-2 TO 0.020 0.016 TO 0.020 0.016 T2 0.064 0.020 T2 0.064 0.020 T4 0.379 0.430 T4 0.109 0.079 T6 0.156 0.045 T6 0.108 0.063 T8 0.112 0.038 T8 0.075 0.037 T12 0.050 0.011 T12 0.037 0.023 T24 0.053 0.009 T24 0.052 0.034 AMP-0.1,HBV-4 AMP-0.l.HBV-8 TO 0.020 0.016 TO 0.020 0.016 T2 0.064 0.020 T2 0.064 0.020 T4 0.045 0.029 T4 0.030 0.018 T6 0.030 0.022 -T6 0.015 0.008 T8 0.023 0.016 T8 0.010 0.004 T12 0.018 0.012 ΤΓ2 0.008 0.004 T24 0.044 0.102 T24 0.011 0.004 AMP-0.1,HBV-16 AMP-O.2,HBV-0 TO 0.020 0.016 TO 0.020 0.016 T2 0.064 0.020 T2 0.064 0.020 0.031 0.017 T4 0.131 0.026 T6 0.014 0.004 T6 0.110 0.024 T8 0.007 0.005 T8 0.073 0.018 T12 0.009 0.005 T12 0.030 0.009 T24 0.012 0.004 T24 0.037 0.051 AMP-0.2,HBV-2 AMP-0.2,HBV-4 T0 0.020 0.016 TO 0.020 0.016 T2 0.064 0.020 T2 0.064 0.020 0.071 0.052 T4 0.047 0.029 T6 0.062 0.047 T6 0.033 0.026 Τβ 0.039 0.026 T8 0.024 0.018 T12 0.018 0.011 T12 0.017 0.010 T24 0.017 0.010 T24 0.068 0.212 AMP-0.2,HBV-8 AMP-0.2,HBV-16 T0 0.020 0.016 ‘TO 0.020 0.016 T2 0.064 0.020 T2 0.064 0.020 T* 0.031 0.019 T4 0.036 0.015 T6 0.016 0.010 T 6 0.015 0.005 TB 0.010 0.007 T8 0.008 0.005 T12 0.007 0.006 T12 0.008 0.005 T24 0.010 0.004 T24 0.012 0.003 73AMP-0.l.HBV-0 AMP-0.l.HBV-2 TO 0.020 0.016 TO 0.020 0.016 T2 0.064 0.020 T2 0.064 0.020 T4 0.379 0.430 T4 0.109 0.079 T6 0.156 0.045 T6 0.108 0.063 T8 0.112 0.038 T8 0.075 0.037 T12 0.050 0.011 T12 0.037 0.023 T24 0.053 0.009 T24 0.052 0.034 AMP-0.1, HBV-4 AMP-0.l.HBV-8 TO 0.020 0.016 TO 0.020 0.016 T2 0.064 0.020 T2 0.064 0.020 T4 0.045 0.029 T4 0.030 0.018 T6 0.030 0.022 -T6 0.015 0.008 T8 0.023 0.016 T8 0.010 0.004 T12 0.018 0.012 ΤΓ2 0.008 0.004 T24 0.044 0.102 T24 0.011 0.004 AMP-0.1, HBV-16 AMP-O.2, HBV-0 TO 0.020 0.016 TO 0.020 0.016 T2 0.064 0.020 T2 0.064 0.020 0.031 0.017 T4 0.131 0.026 T6 0.014 0.004 T6 0.110 0.024 T8 0.007 0.005 T8 0.073 0.018 T12 0.009 0.005 T12 0.030 0.009 T24 0.012 0.004 T24 0.037 0.051 AMP-0.2, HBV-2 AMP-0.2, HBV-4 T0 0.020 0.016 TO 0.020 0.016 T2 0.064 0.020 T2 0.064 0.020 0.071 0.052 T4 0.047 0.029 T6 0.062 0.047 T6 0.033 0.026 Τβ 0.039 0.026 T8 0.024 0.018 T12 0.018 0.011 T12 0.017 0.010 T24 0.017 0.010 T24 0.068 0.212 AMP-0.2, HBV-8 AMP-0.2, HBV-16 T0 0.020 0.016 'TO 0.020 0.016 T2 0.064 0.020 T2 0.064 0.020 T * 0.031 0.019 T4 0.036 0.015 T6 0.016 0.010 T 6 0.015 0.005 TB 0.010 0.007 T8 0.008 0.005 T12 0.007 0.006 T12 0.008 0.005 T24 0.010 0.004 T24 0.012 0.003 73

Tabel A-7 (fortsat) DK 167901 B1 ' Tid Gnnu_A650 Std.afv^. Ild Gnm. _A66Q Std^L, AMP-0.4,HBV-0 AMP-0.4,HBV-2 TO 0.020 0.016 TO 0.020 0.016 T2 0.064 0.020 T2 0.064 0.020 T4 0.202 0.184 T4 0.080 0.055 T6 0.290 0.415 T6 0.073 0.044 T8 0.285 0.472 T8 0.043 0.023 T12 0.271 0.514 T12 0.021 0.012 T24 0.277 0.530 T24 0.020 0.012 AMP-0.4,HBV-4 AMP-0.4,HBV-8 TO 0.020 0.016 TO 0.020 0.016 T2 0.064 0.020 T2 0.064 0.020 T4 0.044 0.026 T4 0.030 0.019 T6 0.028 0.016 T6 0.015 0.008 T8 0.021 0.011 T8 0.008 0.005 TI 2 0.014 0.006 T12 0.008 0.005 T24 0.011 0.003 T24 0.011 0.003 AMP-0.4,HBV-16 TO 0.020 0.016 T2 0.064 0.020 T 4 0.033 0.014 T 6 0.015 0.004 T 8 0.008 0.005 TI 2 0.009 0.006 T24 0.012 0.003 DK 167901 B1 74Table A-7 (continued) DK 167901 B1 Time Gnnu_A650 Std.afv ^. Fire Gnm. _A66Q Std ^ L, AMP-0.4, HBV-0 AMP-0.4, HBV-2 TO 0.020 0.016 TO 0.020 0.016 T2 0.064 0.020 T2 0.064 0.020 T4 0.202 0.184 T4 0.080 0.055 T6 0.290 0.415 T6 0.073 0.044 T8 0.285 0.472 T8 0.043 0.023 T12 0.271 0.514 T12 0.021 0.012 T24 0.277 0.530 T24 0.020 0.012 AMP-0.4, HBV-4 AMP-0.4, HBV-8 TO 0.020 0.016 TO 0.020 0.016 T2 0.064 0.020 T2 0.064 0.020 T4 0.044 0.026 T4 0.030 0.019 T6 0.028 0.016 T6 0.015 0.008 T8 0.021 0.011 T8 0.008 0.005 TI 2 0.014 0.006 T12 0.008 0.005 T24 0.011 0.003 T24 0.011 0.003 AMP-0.4, HBV-16 TO 0.020 0.016 T2 0.064 0.020 T 4 0.033 0.014 T 6 0.015 0.004 T 8 0.008 0.005 TI 2 0.009 0.006 T24 0.012 0.003 DK 167901 B1 74

Tabel A-8 Skakbrætanalyseresultater for kanamycin og honningbigift versus kanamycinresi stent S. aureus.Table A-8 Chessboard analysis results for kanamycin and honey bee venom versus kanamycin resistance stent S. aureus.

Tid jaOnL—Aggø Std.afv. Tid Gnm.. Aqqq $td..afv.Time yesOnL — Aggø Std.vv. Time Gnm .. Aqqq $ td..afv.

KANA-0,HBV-0 KANA-0,HBV-2 T0 0.016 0.005 TO 0.015 0.005 T2 0.047 0.009 T2 0.047 0.009 T4 0.636 0.151 T4 0.187 0.116 T6 1.246 0.026 T6 0.980 0.205 T8 1-331 0.015 T8 1.056 0.481 T12 1.356 0.025 T12 1.100 0.498 T24 1.417 0.039 124 1.418 0.020 KANA-0,HBV—4 KANA-O,HBV-8 TO 0.015 0.004 TO 0.015 0.004 , T2 0.047 0.009 T2 0.047 0.009 T4 0.030 0.016 T4 0.021 0.013 T6 0.065 0.075 T6 0.016 0.009 18 0.373 0.354 T8 0.043 0.056 T12 1.306 0.062 T12 0.655 0.507 T24 1.437 0.016 T24 1.402 0.034 KANA-0.HBV-16 ΚΑΝΑ-5,HBV-0 TO 0.015 0.004 TO 0.016 0.005 T2 0.047 0.009 T2 0.047 0.009 T4 0.025 0.012 T4 0.204 0.103 T6 0.014 0.007 T6 0.282 0.140 T8 0.013 0.008 T8 Q.351 0.176 T12 0.117 0.263 T12 0.751 0.288 T24 0.454 0.582 T24 1.152 0.121 KANA-5,HBV-2 KANA-5,HBV-4 T0 0.015 0.004 TO 0.015 0.004 T2 0.047 0.009 T2 0.047 0.009 T4 0.057 0.034 T4 0.031 0.017 T6 0.059 0.038 T6 0.024 0.012 T8 0.068 0.044 T8 0.022 0.011 T12 0.660 0.271 T12 0.147 0.223 T24 1.299 0.046 T24 1.279 0.063 KANA-5,HBV-8 ΚΑΝΑ-5,HBV-16 T0 0.015 0.004 TO 0.015 0.004 T2 0.047 0.009 . T2 0.047 0.009 T4 0.022 0.013 T4 0.024 0.010 T6 0.016 0.008 T 6 0.016 0.008 T8 0.012 0.007 T 8 0.014 0.008 T12 0.015 0.008' T12 0.016 0.005 T24 0.876 0.403 T24 0.237 0.378CANA-0, HBV-0 CANA-0, HBV-2 T0 0.016 0.005 TO 0.015 0.005 T2 0.047 0.009 T2 0.047 0.009 T4 0.636 0.151 T4 0.187 0.116 T6 1.246 0.026 T6 0.980 0.205 T8 1-331 0.015 T8 1.056 0.481 T12 1.356 0.025 T12 1.100 0.498 T24 1.417 0.039 124 1.418 0.020 KANA-0, HBV — 4 KANA-O, HBV-8 TO 0.015 0.004 TO 0.015 0.004, T2 0.047 0.009 T2 0.047 0.009 T4 0.030 0.016 T4 0.021 0.013 T6 0.065 0.075 T6 0.016 0.009 18 0.373 0.354 T8 0.043 0.056 T12 1.306 0.062 T12 0.655 0.507 T24 1.437 0.016 T24 1.402 0.034 CANA-0.HBV-16 ΚΑΝΑ-5, HBV-0 TO 0.015 0.004 TO 0.016 0.005 T2 0.047 0.009 T2 0.047 0.009 T4 0.025 0.012 T4 0.204 0.103 T6 0.014 0.007 T6 0.282 0.140 T8 0.013 0.008 T8 Q.351 0.176 T12 0.117 0.263 T12 0.751 0.288 T24 0.454 0.582 T24 1.152 0.121 KANA-5, HBV-2 KANA-5, HBV-4 T0 0.015 0.004 TO 0.015 0.004 T2 0.047 0.009 T2 0.047 0.009 T4 0.057 0.034 T4 0.031 0.017 T6 0.059 0.038 T6 0.024 0.012 T8 0.068 0.044 T8 0.022 0.011 T12 0.660 0.271 T12 0.147 0.223 T24 1.299 0.046 T24 1.279 0.063 CANA-5, HBV-8 ΚΑΝΑ-5, HBV-16 T0 0.015 0.004 TO 0.015 0.004 T2 0.047 0.009. T2 0.047 0.009 T4 0.022 0.013 T4 0.024 0.010 T6 0.016 0.008 T 6 0.016 0.008 T8 0.012 0.007 T 8 0.014 0.008 T12 0.015 0.008 'T12 0.016 0.005 T24 0.876 0.403 T24 0.237 0.378

Tabel A-8 (fortsat) 75 DK 167901 B1Table A-8 (continued) 75 DK 167901 B1

Tid GjTm_^_AggQ Std.afv., Ild Gnm. AggQ Std.afv.Time GjTm _ ^ _ AggQ Std.vv., Fire Gnm. AggQ Std.afv.

KANA-10,HBV-0 KAKA-10,HBV-2 TO 0.016 0.005 TO 0.015 0.004 T2 0.047 0.009 T2 0.047 0.009 T4 0.135 0.065 T4 0.045 0.026 T 6 0.172 0.080 T6 0.044 0.029 T 8 0.200 0.086 T8 0.043 0.031 T12 0.397 0.186 T12 0.185 0.182 T24 1.164 0.145 T24 1.056 0.412 KANA-10,HBV-4 KANA-10,HBV-8 TO 0.015 0.004 TO 0.015 0.004 T2 0.047 0.009 T2 0.047 0.009 T4 0.030 .0.016 T4 0.022 0.012 T 6 0.023 0.010 T6 0.016 0.008 T8 0.020 0.008 T8 0.014 0.011 T12 0.061 0.070 T12 0.015 0.006 T24 1.135 0.305 T24 0.264 0.385 ΚΑΝΑ-10 , HBV-16 K.ANA-20 , HBV-0 TO 0.015 0.004 TO 0.016 0.005 T2 0.047 0.009 T2 0.047 0.009 T4 0.022 0.011 T4 0.123 0.061 T 6 0.016 0.007 T6 0.145 0.073 T 8 0.014 0.009 T 8 0.166 0.079 TI 2 0.017 0.006 T12 0.220 0.081 T24 0.028 0.024 T24 0.975 0.266 KANA-20.HBV-2 KANA=20,HBV-4 TO 0.015 0.004 TO 0.015 0.004 T2 0.047 0.009 T2 0.047 0.009 T 4 0.044 0.020 T4 0.036 0.035 T6 0.041 0.020 T 6 0.022 0.013 T8 0.038 0.019 T8 0.019 0.011 T12 0.096 0.067 T12 0.025 0.018 T24 1.155 0.074 T24 0.666 0.488 KANA-20.HBV-8 KANA-20,HEV«16 TO 0.015 0.004 TO 0.015 0.004 T2 0.047 0.009 T2 0.047 0.009 T4 0.023 0.011 T4 0.022 0.011 T 6 0.017 0.007 T 6 0.016 0.011 T8 0.014 0.006 T8 0.015 0.009 TI 2 0.017 0.007. T12 0.016 0.008 T24 0.240 0.340 T24 0.081 0.151 76 DK 167901 B1KANA-10, HBV-0 KAKA-10, HBV-2 TO 0.016 0.005 TO 0.015 0.004 T2 0.047 0.009 T2 0.047 0.009 T4 0.135 0.065 T4 0.045 0.026 T 6 0.172 0.080 T6 0.044 0.029 T 8 0.200 0.086 T8 0.043 0.031 T12 0.397 0.186 T12 0.185 0.182 T24 1.164 0.145 T24 1.056 0.412 CANA-10, HBV-4 CANA-10, HBV-8 TO 0.015 0.004 TO 0.015 0.004 T2 0.047 0.009 T2 0.047 0.009 T4 0.030 .016 T4 0.022 0.012 T 6 0.023 0.010 T6 0.016 0.008 T8 0.020 0.008 T8 0.014 0.011 T12 0.061 0.070 T12 0.015 0.006 T24 1.135 0.305 T24 0.264 0.385 ΚΑΝΑ-10, HBV-16 K.ANA-20, HBV-0 TO 0.015 0.004 TO 0.016 0.005 T2 0.047 0.009 T2 0.047 0.009 T4 0.022 0.011 T4 0.123 0.061 T 6 0.016 0.007 T6 0.145 0.073 T 8 0.014 0.009 T 8 0.166 0.079 TI 2 0.017 0.006 T12 0.220 0.081 T24 0.028 0.024 T24 0.975 0.266 KANA-20.HBV-2 KANA = 20, HBV-4 TO 0.015 0.004 TO 0.015 0.004 T2 0.047 0.009 T2 0.047 0.009 T 4 0.044 0.020 T4 0.036 0.035 T6 0.041 0.020 T 6 0.022 0.013 T8 0.038 0.019 T8 0.019 0.011 T12 0.096 0.067 T12 0.025 0.018 T24 1.155 0.074 T24 0.666 0.488 CANA-20.HBV- 8 KANA-20, HEV «16 TO 0.015 0.004 TO 0.015 0.004 T2 0.047 0.009 T2 0.047 0.009 T4 0.023 0.011 T4 0.022 0.011 T 6 0.017 0.007 T 6 0.016 0.011 T8 0.014 0.006 T8 0.015 0.009 TI 2 0.017 0.007. T12 0.016 0.008 T24 0.240 0.340 T24 0.081 0.151 76 DK 167901 B1

Tabel A-8 (fortsat)Table A-8 (continued)

Tid GnnL_AggQ Std.afv. Tid Gnm. Aggg Std.afv.Time GnnL_AggQ Std.vv. Time Avg. Aggg Std.afv.

KANA-4 O,HBV-0 KANA-40.HBV-2 TO 0.016 0.005 TO 0.015 O.004 T2 O.OA 7 0.009 T2 0.047 0.009 T4 0.116 0.057 T4 0.048 0.021 T6 0.146 0.069 T6 0.047 0.021 T8 0.161 0.075 T8 0.043 0.020 T12 0.184 0.084 T12 0.049 0.022 T24 0.697 0.396 T24 0.692 0.463 KANA-40.HBV-4 KANA-4 O,HBV-8 TO 0.015 0.004 TO 0.015 0.004 T2 0.047 0.009 T2 0.047 0.009 T4 0.033 0.023 T4 0.023 0.011 T6 0.029 0.016 T6 0.017 0.007 T8 0.026 0.015 T8 0.015 0.008 T12 0.043 0.068 T12 0.016 0.007 T24 0.433 0.401 T24 0.113 0.176 KANA-40 , HBV-16 TO 0.015 0.004 T2 0.047 0.009 T4 0.023 0.011 T6 0.017 0.008 T8 0.016 0.008 T12 0.019 0.007 . T24 0.023 0.009 77 DK 167901 B1KANA-4 O, HBV-0 KANA-40.HBV-2 TO 0.016 0.005 TO 0.015 O.004 T2 O.OA 7 0.009 T2 0.047 0.009 T4 0.116 0.057 T4 0.048 0.021 T6 0.146 0.069 T6 0.047 0.021 T8 0.161 0.075 T8 0.043 0.020 T12 0.184 0.084 T12 0.049 0.022 T24 0.697 0.396 T24 0.692 0.463 KANA-40.HBV-4 KANA-4 O, HBV-8 TO 0.015 0.004 TO 0.015 0.004 T2 0.047 0.009 T2 0.047 0.009 T4 0.033 0.023 T4 0.023 0.011 T6 0.029 0.016 T6 0.017 0.007 T8 0.026 0.015 T8 0.015 0.008 T12 0.043 0.068 T12 0.016 0.007 T24 0.433 0.401 T24 0.113 0.176 KANA-40, HBV-16 TO 0.015 0.004 T2 0.047 0.009 T4 0.023 0.011 T6 0.017 0.008 T8 0.016 0.008 T12 0.019 0.007. T24 0.023 0.009 77 DK 167901 B1

Tabel A-9 Skakbrætanalyseresultater for polymyxin B og honningbigift versus kanamycinresi stent S. aureus.Table A-9 Chessboard analysis results for polymyxin B and honey bee venom versus kanamycin resistance stent S. aureus.

Tid GmTL_A660 Std.afv^. Ud Gnnk_A660 std-afv-^- POLY B-O.HBV-O POLY B-O.HBV-2 TO 0.009 0.003 TO 0.009 0.003 T2 0.068 0.004 T2 0.068 0.004 T4 0.329 0.079 T4 0.178 0.042 T6 0.726 0.149 T6 0.621 0.122 T8 0.887 0.107 T8 0.851 0.112 T12 1.020 0.078 T12 1.065 0.072 T24 1.027 0.093 T24 1.106 0.083 POLY B-0,HBV-4 POLY B-O.HBV-8 TO 0.009 0.003 TO 0.009 0.003 T2 0.068 0.004 T2 0.068 0.004 T4 0.046 0.019 T4 0.023 0.013 T6 0.050 0.020 T6 0.012 0.011 T8 0.162 0.087 T8 0.007 0.003 T12 0.921 0.053 T12 0.138 0.142 T24 1.029 0.090 T24 1.038 0.068 POLY B-0,HBV-16 POLY B~12.5,HBV-0 TO 0.009 0.003 TO 0.009 0.003 T2 0.068 0.004 T2 0.068 0.004 T4 0.-034 0.010 T4 0.266 0.051 T 6 0.013 0.004 T6 0.640 0.120 T 8 0.010 0.002 T8 0.826 0.110 T12 0.011 0.003 T12 0.976 0.095 T24 0.142 0.268 T24 0.962 0.074 POLY B-12.5,HBV-2 POLY B-12.5.HBV-4 TO 0.009 0.003 TO 0.009 0.003 T2 0.068 0.004 T2 0.068. 0.004 T4 0.132 0.039. T4 0.035 0.012 T 6 0.490 0.142 T6 0.024 0.007 T8 0.742 0.196 T8 0.039 0.018 T12 1.027 0.093 T12 0.684 0.171 T24 1.083 0.063 T24 0.996 0.077 POLY B-12.5,HBV-8 PQLY B-12.5,HBV-16 TO 0.009 0.003 TO 0.009 0.003 T2 0.068 0.004 T2 0.068 0.004 T4 0.023 0.012 T4 0.036 0.012 T 6 0.010 0.005 T6 0.013 0.004 T 8 0.007 0.003 T8 0.009 0.004 T12 0.050 0.056 T12 0.011 0.004 T24 0.993 0.073 T24 0.161 0.202Time GmTL_A660 Std.afv ^. Out Gnnk_A660 std-afv - ^ - POLY BO.HBV-O POLY BO.HBV-2 TO 0.009 0.003 TO 0.009 0.003 T2 0.068 0.004 T2 0.068 0.004 T4 0.329 0.079 T4 0.178 0.042 T6 0.726 0.149 T6 0.621 0.127 T8 0.851 0.112 T8 0.851 T12 1.020 0.078 T12 1.065 0.072 T24 1.027 0.093 T24 1.106 0.083 POLY B-0, HBV-4 POLY BO.HBV-8 TO 0.009 0.003 TO 0.009 0.003 T2 0.068 0.004 T2 0.068 0.004 T4 0.046 0.019 T4 0.023 0.013 T6 0.050 0.020 T6 0.012 0.011 T8 0.162 0.087 T8 0.007 0.003 T12 0.921 0.053 T12 0.138 0.142 T24 1.029 0.090 T24 1.038 0.068 POLY B-0, HBV-16 POLY B ~ 12.5, HBV-0 TO 0.009 0.003 TO 0.009 0.003 T2 0.068 0.004 T2 0.068 0.004 T4 0.- 034 0.010 T4 0.266 0.051 T 6 0.013 0.004 T6 0.640 0.120 T 8 0.010 0.002 T8 0.826 0.110 T12 0.011 0.003 T12 0.976 0.095 T24 0.142 0.268 T24 0.962 0.074 POLY B-12.5, HBV-2 POLY B-12.5.HBV-4 TO 0.009 0.003 TO 0.009 0.003 T2 0.068 0.004 T2 0.068. 0.004 T4 0.132 0.039. T4 0.035 0.012 T 6 0.490 0.142 T6 0.024 0.007 T8 0.742 0.196 T8 0.039 0.018 T12 1.027 0.093 T12 0.684 0.171 T24 1.083 0.063 T24 0.996 0.077 POLY B-12.5, HBV-8 PQLY B-12.5, HBV-16 TO 0.009 0.003 TO 0.009 0.003 T2 0.068 0.004 T2 0.068 0.004 T4 0.023 0.012 T4 0.036 0.012 T 6 0.010 0.005 T6 0.013 0.004 T 8 0.007 0.003 T8 0.009 0.004 T12 0.050 0.056 T12 0.011 0.004 T24 0.993 0.073 T24 0.161 0.202

Tabel A-9 (fortsat) 78 DK 167901 B1Table A-9 (continued) 78 DK 167901 B1

Tid Gnj!L_Ag5o Std.afv. Tid Gnm. AC(-0 Std.afv.Time Gnj! L_Ag5o Std.vv. Time Avg. AC (-0 Std.vv.

POLY B-25.HBV-0 POLY B-25.HBV-2 TO 0.009 0.003 TO 0.009 0.003 T2 0.068 0.004 T2 0.068 0.004 T4 0.243 0.033 T4 0.123 0.037 T6 0.629 0.073 T6 0.375 0.130 T8 0.835 0.114 T8 0.619 0.228 T12 1.008 0.096 T12 1.994 0.088 T24 1.048 0.091 T24 1.075 0.046 POLY B-25.HBV-4 POLY B-25.HBV-8 TO 0.009 0.003 TO 0.009 0.003 T2 0.068 0.004 T2 0.068 0.004 T4 0.034 0.013 T4 0.022 0.012 T6 0.018 0.007 T6 0.009 0.003 T8 0.024 0.012 T8 0.007 0.003 T12 0.489 0.198 T12 0.016 0.014 T24 0.973 0.093 T24 0.906 0.171 POLY B-25.HBV-16 POLY B-50,HBV-0 TO 0.009 0.003 TO 0.009 0.003 T2 0.068 0.004 T2 0.068 0.004 T4 0.035 0.013 T4 0.208 0.034 16 0.015 0.008 T6 0.376 0.123 T8 0.009 0.003 T8 0.567 0.192 T12 0.011 0.004 T12 0.841 0.115 T24 0.178 0.291 T24 0.968 0.048 POLY B-50,HBV-2 POLY B-50.HBV-4 TO 0.009 0.003 TO 0.009 0.003 12 0.068 0.004 T2 0.067 - 0.004 TZi 0.083 0.046 T4 0.027 0.013 T6 0.158 0.122 T6 0.012 0.006 T8 0.253 0.229 T8 0.011 0.006 T12 0.674 0.275 T12 0.263 0.177 T24 0.971 0.105 T24 0.951 0.105 POLY B-5O,HBV-8 POLY B-50.HBV-16 TO 0.009 0.003 TO 0.009 0.003 T2 0.068 0.004 T2 0.068 0.004 T4 0.021 0.010 T4 0.038 0.012 T6 0.009 0.002 T6 0.015 0.005 T8 0.006 0.003 T 8 0.011 0.005 T12 0.011 0.004 T12 0.012 0.004 T24 0.807 0.222 T24 0.023 0.028POLY B-25.HBV-0 POLY B-25.HBV-2 TO 0.009 0.003 TO 0.009 0.003 T2 0.068 0.004 T2 0.068 0.004 T4 0.243 0.033 T4 0.123 0.037 T6 0.629 0.073 T6 0.375 0.130 T8 0.835 0.114 T8 0.619 0.228 T12 1.008 0.096 T12 1.994 0.088 T24 1.048 0.091 T24 1.075 0.046 POLY B-25.HBV-4 POLY B-25.HBV-8 TO 0.009 0.003 TO 0.009 0.003 T2 0.068 0.004 T2 0.068 0.004 T4 0.034 0.013 T4 0.022 0.012 T6 0.018 0.007 T6 0.009 0.003 T8 0.024 0.012 T8 0.007 0.003 T12 0.489 0.198 T12 0.016 0.014 T24 0.973 0.093 T24 0.906 0.171 POLY B-25.HBV-16 POLY B-50, HBV-0 TO 0.009 0.003 TO 0.009 0.003 T2 0.068 0.004 T2 0.068 0.004 T4 0.035 0.013 T4 0.208 0.034 16 0.015 0.008 T6 0.376 0.123 T8 0.009 0.003 T8 0.567 0.192 T12 0.011 0.004 T12 0.841 0.115 T24 0.178 0.291 T24 0.968 0.048 POLY B-50, HBV-2 POLY B-50.HBV-4 TO 0.009 0.003 TO 0.009 0.003 12 0.068 0.004 T2 0.067 - 0.004 TZi 0.083 0.046 T4 0.027 0.013 T6 0.158 0.122 T6 0.012 0.006 T8 0.253 0.229 T8 0.011 0.006 T12 0.674 0.275 T12 0.263 0.177 T24 0.971 0.105 T24 0.951 0.105 POLY B-5O, HB V-8 POLY B-50.HBV-16 TO 0.009 0.003 TO 0.009 0.003 T2 0.068 0.004 T2 0.068 0.004 T4 0.021 0.010 T4 0.038 0.012 T6 0.009 0.002 T6 0.015 0.005 T8 0.006 0.003 T 8 0.011 0.005 T12 0.011 0.004 T12 0.012 0.004 T24 0.807 0.222 T24 0.023 0.028

Tabel A-9 (fortsat) 79 DK 167901 B1Table A-9 (continued) 79 DK 167901 B1

Tid 6ηπκ_Α660 Std.afv. Ild Gnm. jA66q Std.afv,, POLY B-100 , HBV-0 POLY B-100,HBV-2 TO 0.009 0.003 TO 0.009 0.003 T2 0.068 0.004 T2 0.068 0.004 T4 0.243 0.033 T4 0.123 0.037 T6 0.629 0.073 T6 0.375 0.130 T8 0.835 0.114 T8 0.619 0.228 T12 1.008 0.096 T12 1.994 0.088 T24 1.048 0.091 T24 1.075 0.046 POLY B-100,HBV-4 POLY B-100,HBV-8 TO 0.009 0.003 TO 0.009 0.003 T2 0.068 0.004 T2 0.068 0.004 • T4 0.034 0.013 T4 0.022 0.012 T6 0.018 0.007 T6 0.009 0.003 T8 0.024 0.012 T8 0.007 0.003 T12 0.489 0.198 T12 0.016 0.014 T24 0.973 0.093 T24 0.906 0.171 POLY B-100,HBV-16 TO 0.009 0.003 T2 0.068 0.004 T4 0.042 0.012 T 6 0.020 0.006 T8 0.015 0.005 T12 0.014 0.004 T24 0.106 0.232 DK 167901 B1 80Time 6ηπκ_Α660 Std.afv. Fire Gnm. jA66q Std.afv ,, POLY B-100, HBV-0 POLY B-100, HBV-2 TO 0.009 0.003 TO 0.009 0.003 T2 0.068 0.004 T2 0.068 0.004 T4 0.243 0.033 T4 0.123 0.037 T6 0.629 0.073 T6 0.375 0.130 T8 0.835 0.114 T8 0.619 0.228 T12 1.008 0.096 T12 1.994 0.088 T24 1.048 0.091 T24 1.075 0.046 POLY B-100, HBV-4 POLY B-100, HBV-8 TO 0.009 0.003 TO 0.009 0.003 T2 0.068 0.004 T2 0.068 0.004 • T4 0.034 0.013 T4 0.022 0.012 T6 0.018 0.007 T6 0.009 0.003 T8 0.024 0.012 T8 0.007 0.003 T12 0.489 0.198 T12 0.016 0.014 T24 0.973 0.093 T24 0.906 0.171 POLY B-100, HBV-16 TO 0.009 0.003 T2 0.068 0.004 T4 0.042 0.012 T 6 0.020 0.006 T8 0.015 0.005 T12 0.014 0.004 T24 0.106 0.232 DK 167901 B1 80

Tabel A-10 Resultaterne fra ækvivalente doser melittin og hel honningbi gi ft med og uden kanamycin på S. aureus.Table A-10 Results from equivalent doses of melittin and whole honey bee ft with and without kanamycin on S. aureus.

Tid Gnm. Accq Std.afv. Ud Gnfn._A660 Std.afy_..Time Avg. Accq Std.afv. Out Gnfn._A660 Std.afy_ ..

KANA-0,MEL-O,HBV-0 ΚΑΝΑΔΟ,MEL-O,HBV-2 TO 0.021 0.002 TO 0.021 0.002 T2 0.080 0.007 T2 0.080 0.007 TA 0.899 0.025 TA 0.381 0.201 T6 1.262 0.015 T6 1.089 0.139 T8 1.327 0.013 T8 1.289 0.041 T12 1.355 0.018 T12 1.347 0.033 T2A 1.398 0.037 T2A 1.417 0.024 KANA-0,MEL-1.6,HBV-0 KANA-2.5,KEL-O,HBV-0 TO 0.021 0.002 TO 0.021 0.002 T2 0.080 0.007 T2 0.080 0.007 TA 0.374 0.189 T4 0.692 0.106 T6 1.099 0.108 T6 1.114 0.182 T8 1.288 0.029 T8 1.217 0.180 T12 1.339 0.025 T12 1.265 0.115 T24 1.415 0.022 T24 1.330 0.105 KANA-2.5,MEL-0,HBV-2 KANA-2.5,MEL-O,HBV-2 TO 0.021 0.002 TO 0.021 0.003 T2 0.080 0.007 T2 0.068 0.004 TA 0.167 0.129 TA 0.266 0.051 T6 0.259 0.250 T6 0.640 0.120 T8 0.428 0.370 T8 0.826 0.110 T12 1.100 0.080 T12 0.976. 0.095 T24 1.290 0.053 T24 0.962 0.074 KANA-2.5.MEL-1.6,HBV-0 TO 0.021 0.002 T2 0.080 0.007 T4 0.152 0.121 T6 · 0.219 0.218 T8 0.366 0.363KANA-0, MEL-O, HBV-0 ΚΑΝΑΔΟ, MEL-O, HBV-2 TO 0.021 0.002 TO 0.021 0.002 T2 0.080 0.007 T2 0.080 0.007 TA 0.899 0.025 TA 0.381 0.201 T6 1.262 0.015 T6 1.089 0.139 T8 1.327 0.013 T8 1.289 0.041 T12 1.355 0.018 T12 1.347 0.033 T2A 1.398 0.037 T2A 1.417 0.024 KANA-0, MEL-1.6, HBV-0 KANA-2.5, KEL-O, HBV-0 TO 0.021 0.002 TO 0.021 0.002 T2 0.080 0.007 T2 0.080 0.007 TA 0.374 0.189 T4 0.692 0.106 T6 1.099 0.108 T6 1.114 0.182 T8 1.288 0.029 T8 1.217 0.180 T12 1.339 0.025 T12 1.265 0.115 T24 1.415 0.022 T24 1.330 0.105 KANA-2.5, MEL-0, HBV-2 KANA-2.5, MEL-O, HBV-2 TO 0.021 0.002 TO 0.021 0.003 T2 0.080 0.007 T2 0.068 0.004 TA 0.167 0.129 TA 0.266 0.051 T6 0.259 0.250 T6 0.640 0.120 T8 0.428 0.370 T8 0.826 0.110 T12 1.100 0.080 T12 0.976. 0.095 T24 1.290 0.053 T24 0.962 0.074 KANA-2.5.MEL-1.6, HBV-0 TO 0.021 0.002 T2 0.080 0.007 T4 0.152 0.121 T6 · 0.219 0.218 T8 0.366 0.363

T12 0.030 0.12AT12 0.030 0.12A

T24 0.286 0.064 3i DK 167901 B1T24 0.286 0.064 3i DK 167901 B1

Tabel A-11 "Råresultater" fra enkelt behandlingsmodelTable A-11 "Raw results" from single treatment model

Log^p bakterier/ml blodLog ^ p bacteria / ml blood

Forsøg Behandling_mus 1 mus 2 mus 3 mus 4 1 ingen behandling 2.62 3.49 2.91 3.18 1 mellttin - 50ng 3.27 2.88 2.76 * 1 polymyxin B - 2 ug 3.2 0 3.61 2.30 3742* 1 mel 50 ug + pol 2ug 1.90 2.38 2.58 2.94 2 ingen behandling 2.96 4.16 3.77 389 2 mellttin - 50 ng 3.39 2.79 2.58 2.88 2 polymyxin B-2ug 3.88 3.00 3.34 3.27 2 mel 50ng + pol 2ug 2.38 0.00 2.62 2.15 3 ingen behandling 2.34 2 . 62 2.51 1.90 3 mellttin - 50 ng 3.52 2.34 1.61 3.00 3 polymyxin B - 2ug 3.08 3.11 2.91 q -00 3 mel 50 ng + pol 2ug 2.41 1.32 1.32 0 -00 * mangler observation på grund af mangelfuld blodprøveTest Treatment_mice 1 mouse 2 mouse 3 mouse 4 1 no treatment 2.62 3.49 2.91 3.18 1 medium tin - 50ng 3.27 2.88 2.76 * 1 polymyxin B - 2 µg 3.2 0 3.61 2.30 3742 * 1 flour 50 µg + pol 2ug 1.90 2.38 2.58 2.94 2 no treatment 2.96 4.16 3.77 389 2 medium tin - 50 ng 3.39 2.79 2.58 2.88 2 polymyxin B-2ug 3.88 3.00 3.34 3.27 2 flour 50ng + pol 2ug 2.38 0.00 2.62 2.15 3 no treatment 2.34 2. 62 2.51 1.90 3 medium tin - 50 ng 3.52 2.34 1.61 3.00 3 polymyxin B - 2ug 3.08 3.11 2.91 q -00 3 flour 50 ng + pole 2ug 2.41 1.32 1.32 0 -00 * lacks observation due to deficient blood test

Tabel A~12 "Råresultater" fra gentaget behandlingsmodelTable A ~ 12 "Raw Results" from Repeated Treatment Model

Log10 bakterier/ml blodLog10 bacteria / ml blood

Forsøg Behandling mus 1 mus 2 mus 3 mus 4 1 Ingen behandling 4.8 0 4.38 4.57 4.4Ο 1 luel i ttin - 50ng 4.ø4 4.74 5.07 4.62 1 polymyxin B - 2ug 5.04 4.56 3.48 q.00 1 me i 50 n g + pol 2ug 0. 00 0-00 3.30 0.00 2 Ingen behandling 4.67 4.36 4.45 4.41 2 mellttin - 50ng 4.67 4.51 4.89 4.9q 2 polymyxin B - 2ug 1.78 3 .0 9 2.57 4 .0 6 2 mel 50ng + pol 2ug 1.30 1.85 0-00 3.21 3 Ingen behandling 4.51 4.46 3.78 1.95 3 melittln-50ng 4.99 4.43 4.61 4.41 3 polymyxin B - 2ug 3.20 3.26 3.95 3.16 3 mel 50ng +pol2ug 3.80 3.24 3.22 3.46 4 Ingen behandling 4.92 3.18 3.78 4.93 4 mellttin - 50ng 5.14 4.18 4.28 4.76 4 polymyxin B - 2ug 3.35 3.51 3.51 3.89 4 mel 50 n g + pol 2ug 2.60 3.6 8 3.5 1 2 . 23 5 Ingen behandling 3.53 4.30 4.46 4 .o 8 5 mellttin - SOng 4.0 8 4.7G 4.32 4.45 5 polymyxin - 2ug 4.43 2.94 3.34 3.72 5 mel 50ng + pol 2ug 2.34 3.41 3.05 2.93 DK 167901 B1 82Experiment Treatment mouse 1 mouse 2 mouse 3 mouse 4 1 No treatment 4.8 0 4.38 4.57 4.4Ο 1 luel in ttin - 50ng 4.ø4 4.74 5.07 4.62 1 polymyxin B - 2ug 5.04 4.56 3.48 q.00 1 me in 50 ng + pol 2ug 0. 00 0-00 3.30 0.00 2 No treatment 4.67 4.36 4.45 4.41 2 medium tin - 50ng 4.67 4.51 4.89 4.9q 2 polymyxin B - 2ug 1.78 3 .0 9 2.57 4 .0 6 2 flour 50ng + pole 2ug 1.30 1.85 0-00 3.21 3 No treatment 4.51 4.46 3.78 1.95 3 melittln-50ng 4.99 4.43 4.61 4.41 3 polymyxin B - 2ug 3.20 3.26 3.95 3.16 3 flour 50ng + pol2ug 3.80 3.24 3.22 3.46 4 No treatment 4.92 3.18 3.78 4.93 4 medium - 50ng 5.14 4.18 4.28 4.76 4 polymyxin B - 2ug 3.35 3.51 3.51 3.89 4 flour 50 ng + pol 2ug 2.60 3.6 8 3.5 1 2. 23 5 No treatment 3.53 4.30 4.46 4 .o 8 5 medium tin - SOng 4.0 8 4.7G 4.32 4.45 5 polymyxin - 2ug 4.43 2.94 3.34 3.72 5 flour 50ng + pol 2ug 2.34 3.41 3.05 2.93 DK 167901 B1 82

Litteraturfortecinel seLiterature fortecinel se

Benton, A.W. 1965. Bee venom, its collection, toxicity and proteins. Thesis, Dept. Entomology, Councill University, Ithaca, New York.Benton, A.W. 1965. Bee venom, its collection, toxicity and proteins. Thesis, Dept. Entomology, Councill University, Ithaca, New York.

55

Benton, A.W., R.A. Morse og F.V. Kosikowski, 1963. Bioassay and standardization of venom of the honeybee. Nature 198:295-296.Benton, A.W., R.A. Morse and F.V. Kosikowski, 1963. Bioassay and standardization of venom of the honeybee. Nature 198: 295-296.

Brangi, G.P. og M. Pavan. 1954. Bactericidal properties of bee venom 10 (Translated title, in Italian). Isoctex sociaux 1:209-217.Brangi, G.P. and M. Pavan. 1954. Bactericidal properties of bee venom 10 (Translated title, in Italian). Isoctex sociaux 1: 209-217.

Brown, L.R., J. Lauterwein, og K. Wuthnich. 1980. High-resolution *H-NMR studies of self-aggrogation of melittin in aqueous solution. Biochim. Biophys. Acta 622:231-244.Brown, L. R., J. Lauterwein, and K. Wuthnich. 1980. High-resolution * H-NMR studies of self-aggrogation of melittin in aqueous solution. Biochim. Biophys. Acta 622: 231-244.

1515

Carrizosa, J. og M.E. Levison, 1981. Minimal concentration of aminoglycoside that can synergize with penicillin in entrococcal endocarditis. Antimicrob. Agents Chemother. 20:204-409.Carrizosa, J. and M.E. Levison, 1981. Minimal concentration of aminoglycoside that can synergize with penicillin in entrococcal endocarditis. Antimicrob. Agents Chemother. 20: 204-409.

20 Coulson, C.C. og R.L. Kincaid. 1985. Gram-preparative purification of calmodulin and S-100 protein using melittin-sepharose X L.Coulson, C.C. and R.L. Kincaid. 1985. Gram preparative purification of calmodulin and S-100 protein using melittin-sepharose X L.

chromatography. 69ΐΠ Annual Meeting of the Federation of American Society for Experimental Biology. Federation Procedings 44:1777.chromatography. 69ΐΠ Annual Meeting of the Federation of American Society for Experimental Biology. Federation Procedings 44: 1777.

25 Cynamon, Μ. H. og G.S. Palmer. 1983. In vitro activity of amoxicillin in combination with clavulanic acid against Mycobacterium turberculosis. Antimicrob. Agents Chemother. 24:429-431.25 Cynamon, Μ. H. and G.S. Palmer. 1983. In vitro activity of amoxicillin in combination with clavulanic acid against Mycobacterium turberculosis. Antimicrob. Agents Chemother. 24: 429-431.

30 Fennel, J.F., W.H. Shipman og L.J. Cole. 1968. Anti-bacterial action of melittin, a polypeptide from bee venom. Proc Soc. Exp. Biol. Med. 127:707-710.Fennel, J.F., W.H. Shipman and L.J. Cole. 1968. Anti-bacterial action of melittin, a polypeptide from bee venom. Proc Soc. Exp. Biol. With. 127: 707-710.

Franklin, T.J. og G.A. Snow. 1981a. Biochemistry of antimicrobial 35 action. Chapman and Hall, New York, New York, side 67-72.Franklin, T.J. and G.A. Snow. 1981a. Biochemistry of antimicrobial action. Chapman and Hall, New York, New York, pages 67-72.

Franklin, T.J. og G.A. Snow. 1981b. Biochemistry of antimicrobial action. Chapman and Hall, New York, New York, side 73-74.Franklin, T.J. and G.A. Snow. 1981b. Biochemistry of antimicrobial action. Chapman and Hall, New York, New York, pages 73-74.

DK 167901 B1 83DK 167901 B1 83

Guralnick, M.W., L.M. Mulfinger and A.W.Benton. 1986. Collection and standardization of hymenoptera venoms. Folia Allergol. Immunol. Clin. 33:9-18.Guralnick, M.W., L.M. Mulfinger and A.W.Benton. 1986. Collection and standardization of hymenoptera venoms. Folia Allergol. Immunol. Clin. 33: 9-18.

5 Haberman, E. 1972. Bee and wasp venoms: The biochemistry and pharmacology of their peptides and enzymes are revieved. Science 177:314-322.5 Haberman, E. 1972. Bee and wasp venoms: The biochemistry and pharmacology of their peptides and enzymes are reviewed. Science 177: 314-322.

Haberman, E. og J. Jentsch. 1967. Sequenzanalyse des melittins aus 10 den tryptischen und peptischen spaltstucken. Hoppe-Seyler's Z. Physiol. Chem. 348-37-5.Haberman, E. and J. Jentsch. 1967. Sequence analysis of melittins from the 10 tryptic and peptic clefts. Hoppe-Seyler's Z. Physiol. Chem. 348-37-5.

Hanke, W., C. Methfessel. H.U. Wiltnsen, E. Katz, G. Jung, og G. Boheim. 1983. Melittin and a chemically modified trichotoxin from 15 alamethiein-type multi-state pores. Biochim. Biophys. Acta 727:100-114.Hanke, W., C. Methfessel. H.U. Wiltnsen, E. Katz, G. Jung, and G. Boheim. 1983. Melittin and a chemically modified trichotoxin from 15 alamethiein-type multi-state pores. Biochim. Biophys. Acta 727: 100-114.

Lauterwein, J., C. Bosch, L.R. Brown og K. Wuthrich. 1979. Physiochmemical studies of the protein-lipid interactions in 20 melittin-containing micelles. Biochim. Biophys. Acta 556:244-264.Lauterwein, J., C. Bosch, L.R. Brown and K. Wuthrich. 1979. Physiochemical studies of the protein-lipid interactions in 20 melittin-containing micelles. Biochim. Biophys. Acta 556: 244-264.

Lauterwein, J., L.R. Brown og K. Wuthrich. 1980. High-resolution 3 H-MNR studies of monomeric melittin in aqueous solution. Biochim. Biophys. Acta 622:219-230.Lauterwein, J., L.R. Brown and K. Wuthrich. 1980. High-resolution 3 H-MNR studies of monomeric melittin in aqueous solution. Biochim. Biophys. Acta 622: 219-230.

2525

Lowry, O.H., N.J. Rosenbrough, A.L. Farr og R.O. Randall. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193-265-275.Lowry, O.H., N.J. Rosenbrough, A.L. Farr and R.O. Randall. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193-265-275.

30 Moellering, R.C., C. Wennersten og A.N. Weinberg. 1971. Studies of antibiotic synergism against enterococci. J. Lab. Clin. Med. 77:821-827.30 Moellering, R.C., C. Wennersten, and A.N. Weinberg. 1971. Studies of antibiotic synergism against enterococci. J. Lab. Clin. With. 77: 821-827.

Mollay, C. og G. Kreil. 1973. Fluorometric measurements on the 35 interaction of melittin with lecithin. Biochim. Biophys. Acta 316:196-203.Mollay, C. and G. Kreil. 1973. Fluorometric measurements on the interaction of melittin with lecithin. Biochim. Biophys. Acta 316: 196-203.

Mulfinger, L.M., A.W. Benton, M.W. Guralnick og R.A. Wilson. 1986. A qualitative and quantitative analysis of proteins found in vespid 84 DK 167901 B1 venoms. J. Allergy Clin. Immunol. 77:681-686.Mulfinger, L.M., A.W. Benton, M.W. Guralnick and R.A. Wilson. 1986. A qualitative and quantitative analysis of proteins found in vespid 84 ven 167901 B1 venoms. J. Allergy Clin. Immunol. 77: 681-686.

Ortel, S. og F. Markwardt. 1955. Investigations on the bactericidal properties of bee venom (Translated title, in German). Pharmazie 5 10:743-746. Abstracted in Chemical Abstracts. 1956. 50:12290.Ortel, S. and F. Markwardt. 1955. Investigations on the bactericidal properties of bee venom (Translated title, in German). Pharmacie 5 10: 743-746. Abstracted in Chemical Abstracts. 1956. 50: 12290.

Schmidt-Lange, W. 1941. The bactericidal action of bee venom (Translated title, in German). Munchemer Medizinische Wochenschrift 88:935-936.Schmidt-Lange, W. 1941. The bactericidal action of bee venom (Translated title, in German). Munchemer Medical Weekly Journal 88: 935-936.

1010

Sebek, O.K. 1980 Antibiotics: volume 1: mechanism of action. D. Gottlieb og P.D. Shaw (eds.). Springer-Verlag, New York, side 142-149.Sebek, O.K. 1980 Antibiotics: volume 1: mechanism of action. D. Gottlieb and P.D. Shaw (eds.). Springer-Verlag, New York, pages 142-149.

15 Tu, A.T. 1977a. Venoms: chemistry and molecular biology. John Wiley and Sons, Inc., New York, London, Sydney, og Toronto, side 1-16.Tu, A.T. 1977a. Venoms: chemistry and molecular biology. John Wiley and Sons, Inc., New York, London, Sydney, and Toronto, pages 1-16.

Tu, A.T. 1977b. Venoms: chemistry and molecular biology John Wiley and Sons, Inc., New York, London, Sydney, og Toronto, side 501-512.Tu, A.T. 1977b. Venoms: chemistry and molecular biology John Wiley and Sons, Inc., New York, London, Sydney, and Toronto, pages 501-512.

2020

Tu, A.T. 1977c. Venoms: chemistry and molecular biology John Wiley and Sons, Inc., New York, London, Sydney, og Toronto, side 505-509.Tu, A.T. 1977c. Venoms: chemistry and molecular biology John Wiley and Sons, Inc., New York, London, Sydney, and Toronto, pages 505-509.

Volk, W.A. 1978a. Essentials of medical microbiology. C. May og J.Volk, W.A. 1978a. Essentials of medical microbiology. C. May and J.

25 Frazier (eds.). J.P. Lippincott Company, Phil a., New York, San Jose og Toronto, side 121-122.25 Frazier (eds.). J.P. Lippincott Company, Phil a., New York, San Jose and Toronto, pages 121-122.

Volk, W.A. 1978b. Essentials of medical microbiology. C. May og J. Frazier (eds.). J.P. Lippincott Company, Phil a., New York, San Jose 30 og Toronto, side 122-126.Volk, W.A. 1978b. Essentials of medical microbiology. C. May and J. Frazier (eds.). J.P. Lippincott Company, Phil a., New York, San Jose 30 and Toronto, pages 122-126.

Volk, W.A. 1978c. Essentials of medical microbiology. C. May and J. Frazier (eds.). J.P. Lippincott Company, Phi 1 a., New York, San Jose og Toronto, side 130-133.Volk, W.A. 1978c. Essentials of medical microbiology. C. May and J. Frazier (eds.). J.P. Lippincott Company, Phi 1 a., New York, San Jose and Toronto, pages 130-133.

Volk, W.A. 1978d. Essentials of medical microbiology. C. May og J. Frazier (eds.). J.P. Lippincott Company, Phi 1 a., New York, San Jose og Toronto, side 133-135.Volk, W.A. 1978d. Essentials of medical microbiology. C. May and J. Frazier (eds.). J.P. Lippincott Company, Phi 1 a., New York, San Jose and Toronto, pages 133-135.

35 85 DK 167901 B135 85 DK 167901 B1

Yunes, R.A. 1982. A circular dichroism study of the structure of Apis melifera melittin. Arch. Biochem. Biophys. 216(2):559-565.Yunes, R.A. 1982. A circular dichroism study of the structure of Apis melifera melittin. Arch. Biochem. Biophys. 216 (2): 559-565.

5 10 15 20 25 30 35 865 10 15 20 25 30 35 86

Yderligere litteraturfortegnelseFurther literature listing

Goodman, M.G. og W.O. Weigle. Regulation of B-lymphocyte proliferative responses by arachidonate metabolites: Effects on 5 membrane-directed versus intracellular activators. J. Allergy Clin. Immunol. Z4:418-425, 1984.Goodman, M.G. and W.O. Weigle. Regulation of B-lymphocyte proliferative responses by arachidonate metabolites: Effects on 5 membrane-directed versus intracellular activators. J. Allergy Clin. Immunol. Z4: 418-425, 1984.

Kondo, E. og K. Kanai. Bactericidal activity of the membrane fraction isolated from phagocytes of mice and its stimulation by 10 melittin. Japan. J. Med. Sci. Biol. 39:9-20, 1986.Kondo, E. and K. Kanai. Bactericidal activity of the membrane fraction isolated from phagocytes of mice and its stimulation by 10 melittin. Japan. J. Med. Sci. Biol. 39: 9-20, 1986.

Kondo, E. Melittin-stimulated anti mycobacterial activity of the membrane fraction isolated from phagocytes of guinea pigs. Japan. J. Med. Sci. Biol. 39:21-24, 1986.Kondo, E. Melittin-stimulated anti mycobacterial activity of the membrane fraction isolated from phagocytes of guinea pigs. Japan. J. Med. Sci. Biol. 39: 21-24, 1986.

1515

Somerfield, S.D., J. Stach, C. Mraz, F. Gervais, og E. Skarnene. Bee venom melittin blocks neutrophil Oz production. Inflammation 10:175-182, 1986.Somerfield, S.D., J. Stach, C. Mraz, F. Gervais, and E. Skarnene. Bee venom melittin blocks neutrophil Oz production. Inflammation 10: 175-182, 1986.

20 Mulfinger, L.M. The synergistic activities of honey bee venom with antibiotics. Unpublished M.S. thesis, Pennsylvania State University, 1986 (omfattet af US patenansøgning serial nr. 096.628).Mulfinger, L.M. The synergistic activities of honey bee venom with antibiotics. Unpublished M.S. thesis, Pennsylvania State University, 1986 (covered by U.S. Patent Application Serial No. 096,628).

Lowry, O.H., N.J. Rosenbrough, A.L. Farr, og R.J. Randall. Protein 25 measurement with the folin phenol reagent. J. Biol. Chem.Lowry, O.H., N.J. Rosenbrough, A.L. Farr, and R.J. Randall. Protein 25 measurement with the folin phenol reagent. J. Biol. Chem.

193:265-275. 1951.193: 265-275. 1,951th

Ramachandran, J. og Virginia Lee. Preparation and properties of the o-nitrophenyl sulfenyl derivative of ACTH: an inhibitor of the 30 lipolytic action of the hormone. Biochem. Biophys. Res. Com.Ramachandran, J. and Virginia Lee. Preparation and properties of the o-nitrophenyl sulfenyl derivative of ACTH: an inhibitor of the lipolytic action of the hormone. Biochem. Biophys. Res. Com.

38(3):507-512. 1970.38 (3): 507-512. 1970th

Scoffone, E., A. Fontana, og R. Rocchi. Sulfenyl halides as modifying reagents for polypeptides and proteins. I. Modification of 35 tryptophan residues. Biochemistry 7(3):971-979. 1968.Scoffone, E., A. Fontana, and R. Rocchi. Sulfenyl halides as modifying reagents for polypeptides and proteins. I. Modification of 35 tryptophan residues. Biochemistry 7 (3): 971-979. 1968th

Couch, T. og A. Benton. The effect of the venom of the honey bee, Apis mellifera L., on the adrenocortical response of the adult male rat. Toxicon 10:55-62. 1972.Couch, T. and A. Benton. The effect of the venom of the honey bee, Apis mellifera L., on the adrenocortical response of the adult male rat. Toxicon 10: 55-62. 1,972th

Claims (5)

1. Sammensætning til behandling af en infektion i et pattedyr, kendetegnet ved, at den omfatter: 5 et første antibiotisk middel besiddende aktivitet mod infektionen, og et andet middel, som er mindst en Hymenoptera-gift, eller mindst en 10 aktiv proteinkomponent af en Hymenoptera-gift, eller mindst en polypeptidkomponent af en Hymenoptera-gift, eller mindst en analog eller kemisk modificeret derivat af en aktiv proteinkomponent af Hymenoptera-gift, eller mindst en analog eller kemisk modificeret derivat af en polypeptidkomponent af Hymenoptera-gift eller bland-15 inger heraf, hvor det andet middel er biuretpositivt, og hvor andelene af det første antibiotiske middel og det andet middel 20 er således, at det andet middel forstærker aktiviteten af det første antibiotiske middel.A composition for treating an infection in a mammal, characterized in that it comprises: a first antibiotic possessing activity against the infection, and a second agent which is at least one Hymenoptera venom, or at least one active protein component of a Hymenoptera venom, or at least one polypeptide component of a Hymenoptera venom, or at least one analog or chemically modified derivative of an active Hymenoptera venom protein component, or at least one analog or chemically modified derivative of a Hymenoptera venom or mixed polypeptide component. thereof, wherein the second agent is biuret positive and the proportions of the first antibiotic and second agent 20 are such that the second agent enhances the activity of the first antibiotic. 2. Sammensætning ifølge krav 2, kendetegnet ved, at det første antibiotiske middel omfatter et antibiotikum udvalgt blandt 25 ampicillin, kanamycin, polymyxin B eller rifampicin.Composition according to claim 2, characterized in that the first antibiotic comprises an antibiotic selected from ampicillin, kanamycin, polymyxin B or rifampicin. 3. Sammensætning ifølge krav 1 eller 2, kendetegnet ved, at det andet middel er honningbigift, humlebigift, hvepsegift, gedehamsegift, aktive proteinkomponenter af mindst en af disse 30 gifte, aktive polypeptidkomponenter af mindst en af disse gifte eller analoger eller kemisk modificerede derivater af mel i ttin, bombilittin, mastoporan og crabolin eller blandinger heraf.Composition according to claim 1 or 2, characterized in that the other agent is honey poison, hop poison, wasp poison, goat's venom, active protein components of at least one of these poisons, active polypeptide components of at least one of these poisons or analogs or chemically modified derivatives of flour in ttin, bombilittin, mastoporane and crabolin or mixtures thereof. 4. Sammensætning ifølge krav 1, 2 eller 3, kendetegnet 35 ved, at det første antibiotiske middel omfatter ampicillin, kanamy- cin, polymyxin B eller rifampicin og at det andet middel er honningbigift eller melittin.Composition according to claim 1, 2 or 3, characterized in that the first antibiotic comprises ampicillin, kanamycin, polymyxin B or rifampicin and the second agent is honey bee poison or melittin. 5. Enhedsdosis til behandling af en infektion i et pattedyr, 5 88 UK iD/aui Dl kendetegnet ved, at det omfatter en effektiv dosis af et medikament, som omfatter en sammensætning ifølge et hvilket som helst af de foregående krav. 10 o 15 20 25 30 35Unit dose for treating an infection in a mammal, 5 88 UK iD / aui D1, characterized in that it comprises an effective dose of a medicament comprising a composition according to any of the preceding claims. 10 o 15 20 25 30 35
DK293790A 1989-04-13 1990-12-11 Compositions for treating mammalian infections, which compositions comprise Hymenoptera venom, proteinaceous components or polypeptide components of such venom, or analogues of these proteinaceous components or polypeptide components, and a unit dose which comprises such a composition DK167901B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US33609689A 1989-04-13 1989-04-13
US33609689 1989-04-13
PCT/US1989/001643 WO1990011766A1 (en) 1989-04-13 1989-04-17 Methods and compositions for the treatment of mammalian infections employing medicaments comprising hymenoptera venom, proteinaceous or polypeptide components thereof, or analogues of such proteinaceous or polypeptide components
US8901643 1989-04-17

Publications (3)

Publication Number Publication Date
DK293790D0 DK293790D0 (en) 1990-12-11
DK293790A DK293790A (en) 1991-02-08
DK167901B1 true DK167901B1 (en) 1994-01-03

Family

ID=23314548

Family Applications (1)

Application Number Title Priority Date Filing Date
DK293790A DK167901B1 (en) 1989-04-13 1990-12-11 Compositions for treating mammalian infections, which compositions comprise Hymenoptera venom, proteinaceous components or polypeptide components of such venom, or analogues of these proteinaceous components or polypeptide components, and a unit dose which comprises such a composition

Country Status (2)

Country Link
DK (1) DK167901B1 (en)
FI (1) FI906112A0 (en)

Also Published As

Publication number Publication date
FI906112A0 (en) 1990-12-12
DK293790D0 (en) 1990-12-11
DK293790A (en) 1991-02-08

Similar Documents

Publication Publication Date Title
KR102419616B1 (en) antibacterial therapy
AU2005222387B2 (en) Methods and compositions for the treatment of gastrointestinal disorders
US20180289768A1 (en) Antimicrobial and anti-inflammatory peptides
CA2341340C (en) Anti-endotoxic, antimicrobial cationic peptides and methods of use therefor
JPH05504566A (en) Wound treatment method using biologically active peptides
US6025326A (en) Compositions and methods for the prevention and treatment of oral mucositis
US20110028386A1 (en) Antimicrobial Peptides
EP2735570A1 (en) Antibiotic peptide and preparation method therefor and application thereof
KR102499670B1 (en) Romo1-derived antimicrobial peptides containing lysine substitution and variants thereof
AU7485691A (en) Compositions and methods for treating infections caused by organisms sensitive to beta -lactam antibiotics
EP2346521A1 (en) Peptides and methods of use
US5208220A (en) Composition and treatment with biologically active peptides and antibiotics which inhibit DNA gyrase
US20010021697A1 (en) Methods and compositions for the treatment of mammalian infections employing medicaments comprising hymenoptera venom, proteinageous or polypeptide components thereof, or analogues of such proteinaceous or polypeptide components
CA2451310C (en) Antimicrobial peptides
DK167901B1 (en) Compositions for treating mammalian infections, which compositions comprise Hymenoptera venom, proteinaceous components or polypeptide components of such venom, or analogues of these proteinaceous components or polypeptide components, and a unit dose which comprises such a composition
KR101905016B1 (en) Antimicrobial Peptide Derived From The Mytilus coruscus And Its Use
US20210261623A1 (en) Theta defensin analogs and methods of use
EP0419501B1 (en) Methods and compositions for the treatment of mammalian infections employing medicaments comprising hymenoptera venom, proteinaceous or polypeptide components thereof, or analogues of such proteinaceous or polypeptide components
US20150072922A1 (en) Rnase 7 antimicrobial peptides
US20020077282A1 (en) Method for treating cystic fibrosis
AU704851B2 (en) Compositions and methods for the prevention and treatment of oral mucositis
WO2018217880A1 (en) Antimicrobial peptides and methods of treating gram-negative pathogen infections: polar and non-polar face analogs
DE68905183T2 (en) METHODS AND COMPOSITIONS FOR THE TREATMENT OF INFECTIVES IN MAMMALS BY USE OF MEDICINAL PRODUCTS WITH A CONTENT OF HYMENOPTERIC POISON, PROTEIN-BASED OR POLYPEPTIDE-COMPONENTS THEREOF, OR ANALOGOUSLY SUCH POWERS.
KR101843097B1 (en) Antimicrobial Peptide Derived From The Chiton Acanthopleura Japonica And Its Use
WO1992000090A1 (en) Composition and treatment with biologically active peptides and antibiotics which inhibit dna gyrase

Legal Events

Date Code Title Description
B1 Patent granted (law 1993)
PBP Patent lapsed

Country of ref document: DK